Abstract

Within the last two decades dispersive dielectric multilayer mirrors (DMs), also known as chirped mirrors (CMs), have played a significant role in the progress of ultrafast science. Their ability to manipulate the phase of a light pulse has advanced the synthesis of intense femtosecond optical pulses followed by remarkable progress in the disciplines of nonlinear optics. Meanwhile, the performance of the mirrors themselves has been strictly limited to the linear regime, as essential mirror characteristics such as reflectance, transmittance, and dispersion are evaluated with only intensity-independent values of refractive indices and extinction coefficients taken into the design formalism. Here, we report, to the best of our knowledge, the first observation of a strong nonlinear response of the DMs. We have found that the DM’s multilayer stack causes very significant enhancement of the internal electric field that becomes sufficient to enable third-order nonlinearity. Remarkably, in our particular case, the response is solely emerging in the form of nonlinear absorbance. By modifying the multilayer structure of the mirror, we gained control over observed nonlinearity and were able to predict and to some extent to tune the magnitude of the response, without perturbing the dispersive properties of the DMs. This demonstration not only expands the functionality of DMs into the nonlinear domain, but also marks a new approach to the development of multilayer coatings for applications in ultrafast science.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multilayer coatings for femto- and attosecond technology

O. Razskazovskaya, F. Krausz, and V. Pervak
Optica 4(1) 129-138 (2017)

Kerr effect in multilayer dielectric coatings

Elena Fedulova, Michael Trubetskov, Tatiana Amotchkina, Kilian Fritsch, Peter Baum, Oleg Pronin, and Vladimir Pervak
Opt. Express 24(19) 21802-21817 (2016)

Theoretical study of multilayer coatingreflection taking into account third-order optical nonlinearities

Olaf Stenzel and Steffen Wilbrandt
Appl. Opt. 57(29) 8640-8647 (2018)

References

  • View by:
  • |
  • |
  • |

  1. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
    [Crossref]
  2. G. Steinmeyer, “Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,” Science 286, 1507–1512 (1999).
    [Crossref]
  3. R. Szipöcs, C. Spielmann, F. Krausz, and K. Ferencz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19, 201–203 (1994).
    [Crossref]
  4. R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. Kovács, G. DeBell, L. Mott, A. Louderback, A. Tikhonravov, and M. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,” Appl. Phys. B 70, S51–S57 (2000).
    [Crossref]
  5. R. Szipöcs, “Dispersive properties of dielectric laser mirrors and their use in femtosecond pulse lasers,” Ph.D. dissertation (SZTE TTK, 2000).
  6. V. Pervak, “Recent development and new ideas in the field of dispersive multilayer optics,” Appl. Opt. 50, C55–C61 (2011).
    [Crossref]
  7. T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
    [Crossref]
  8. C. Manzoni, O. D. Mücke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser Photon. Rev. 9, 129–171 (2015).
  9. H. Fattahi, H. G. Barros, M. Gorjan, T. Nubbemeyer, B. Alsaif, C. Y. Teisset, M. Schultze, S. Prinz, M. Haefner, M. Ueffing, A. Alismail, L. Vámos, A. Schwarz, O. Pronin, J. Brons, X. T. Geng, G. Arisholm, M. Ciappina, V. S. Yakovlev, D.-E. Kim, A. M. Azzeer, N. Karpowicz, D. Sutter, Z. Major, T. Metzger, and F. Krausz, “Third-generation femtosecond technology,” Optica 1, 45–63 (2014).
    [Crossref]
  10. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
    [Crossref]
  11. M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
    [Crossref]
  12. R. W. Boyd and J. E. Sipe, “Nonlinear optical susceptibilities of layered composite materials,” J. Opt. Soc. Am. B 11, 297–303 (1994).
    [Crossref]
  13. Z.-M. Meng, F. Qin, and Z.-Y. Li, “Ultrafast all-optical switching in one-dimensional semiconductor-polymer hybrid nonlinear photonic crystals with relaxing Kerr nonlinearity,” J. Opt. 14, 065003 (2012).
    [Crossref]
  14. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. Bennink, and R. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93, 123902 (2004).
    [Crossref]
  15. G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, “Enhanced nonlinear optical response of composite materials,” Phys. Rev. Lett. 74, 1871–1874 (1995).
    [Crossref]
  16. R. Lepkowicz, “Nonlinear photonic crystals for passive switches,” SPIE Newsroom, doi: 10.1117/2.1200805.1144 (2008).
  17. C.-Y. Tai, J. Wilkinson, N. Perney, C. Netti, F. Cattaneo, C. Finlayson, and J. Baumberg, “Determination of nonlinear refractive index in Ta2O5 rib waveguide using self-phase modulation,” Opt. Express 12, 5110–5116 (2004).
    [Crossref]
  18. R. W. Cahn, K. H. Jürgen Buschow, and M. C. Flemings, eds., “Thin-film optical filter,” in Encyclopedia of Materials: Science and Technology (Elsevier, 2001).
  19. P. Tournois, “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt. Commun. 140, 245–249 (1997).
    [Crossref]
  20. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25, 575–577 (2000).
    [Crossref]
  21. E. Franke, C. L. Trimble, M. J. DeVries, J. A. Woollam, M. Schubert, and F. Frost, “Dielectric function of amorphous tantalum oxide from the far infrared to the deep ultraviolet spectral region measured by spectroscopic ellipsometry,” J. Appl. Phys. 88, 5166–5174 (2000).
    [Crossref]
  22. O. Anderson, “Silicon oxides,” in Thin Films on Glass, H. Bach and D. Krause, eds. (Springer, 1997), pp. 159–170.
  23. H. A. Macleod, “Thin-film optical filters,” in Thin-Film Optical Filter, E. R. Pike and R. G. W. Brown, eds., 4th ed. (CRC Press, 2010), pp. 5–10.
  24. V. Pervak, V. Fedorov, Y. A. Pervak, and M. Trubetskov, “Empirical study of the group delay dispersion achievable with multilayer mirrors,” Opt. Express 21, 18311–18316 (2013).
    [Crossref]
  25. B. Golubovic, R. R. Austin, M. K. Steiner-Shepard, M. K. Reed, S. A. Diddams, D. J. Jones, and A. G. Van Engen, “Double Gires-Tournois interferometer negative-dispersion mirrors for use in tunable mode-locked lasers,” Opt. Lett. 25, 275–277 (2000).
    [Crossref]
  26. M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
    [Crossref]
  27. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
    [Crossref]
  28. D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
    [Crossref]
  29. A. V. Tikhonravov and M. K. Trubetskov, “Optilayer software,” http://optilayer.com .
  30. S. F. Furman and A. V. Tikhonravov, Basics of Optics of Multilayer Systems (Editions Frontieres, 1992).
  31. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
    [Crossref]
  32. R. L. Sutherland, Handbook of Nonlinear Optics, 2nd ed., Vol. 82 of Optical Engineering (Dekker, 2003).
  33. A. V. Tikhonravov and M. K. Trubetskov, “Modern design tools and a new paradigm in optical coating design,” Appl. Opt. 51, 7319–7332 (2012).
    [Crossref]
  34. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493–5508 (1996).
    [Crossref]
  35. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coating design approaches based on the needle optimization technique,” Appl. Opt. 46, 704–710 (2007).
    [Crossref]
  36. J. N. Sweetser, D. N. Fittinghoff, and R. Trebino, “Transient-grating frequency-resolved optical gating,” Opt. Lett. 22, 519–521 (1997).
    [Crossref]
  37. U. Keller, W. H. Knox, and H. Roskos, “Coupled-cavity resonant passive mode-locked Ti:sapphire laser,” Opt. Lett. 15, 1377–1379 (1990).
    [Crossref]
  38. U. Keller, “Ultrafast all-solid-state laser technology,” Appl. Phys. B 58, 347–363 (1994).
    [Crossref]
  39. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
    [Crossref]
  40. S. Tsuda, W. H. Knox, E. A. De Souza, W. Y. Jan, and J. E. Cunningham, “Low-loss intracavity AlAs/AlGaAs saturable Bragg reflector for femtosecond mode locking in solid-state lasers,” Opt. Lett. 20, 1406–1408 (1995).
    [Crossref]
  41. W. H. Loh, D. Atkinson, P. R. Morkel, M. Hopkinson, A. Rivers, A. J. Seeds, and D. N. Payne, “Passively mode-locked Er3+ fiber laser using a semiconductor nonlinear mirror,” IEEE Photon. Technol. Lett. 5, 35–37 (1993).
    [Crossref]
  42. R. W. Schirmer and A. L. Gaeta, “Nonlinear mirror based on two-photon absorption,” J. Opt. Soc. Am. B 14, 2865–2868 (1997).
    [Crossref]
  43. D. J. Hagan, “Optical limiting,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, 2008).
  44. E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett. 10, 490–492 (1985).
    [Crossref]
  45. E. W. Van Stryland, Y.-Y. Wu, D. J. Hagan, M. J. Soileau, and K. Mansour, “Optical limiting with semiconductors,” J. Opt. Soc. Am. B 5, 1980–1988 (1988).
    [Crossref]
  46. J. I. Dadap, G. B. Focht, D. H. Reitze, and M. C. Downer, “Two-photon absorption in diamond and its application to ultraviolet femtosecond pulse-width measurement,” Opt. Lett. 16, 499–501 (1991).
    [Crossref]
  47. A. M. Streltsov, J. K. Ranka, and A. L. Gaeta, “Femtosecond ultraviolet autocorrelation measurements based on two-photon conductivity in fused silica,” Opt. Lett. 23, 798–800 (1998).
    [Crossref]
  48. C. Homann, N. Krebs, and E. Riedle, “Convenient pulse length measurement of sub-20-fs pulses down to the deep UV via two-photon absorption in bulk material,” Appl. Phys. B 104, 783–791 (2011).
    [Crossref]

2015 (1)

C. Manzoni, O. D. Mücke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser Photon. Rev. 9, 129–171 (2015).

2014 (1)

2013 (1)

2012 (2)

Z.-M. Meng, F. Qin, and Z.-Y. Li, “Ultrafast all-optical switching in one-dimensional semiconductor-polymer hybrid nonlinear photonic crystals with relaxing Kerr nonlinearity,” J. Opt. 14, 065003 (2012).
[Crossref]

A. V. Tikhonravov and M. K. Trubetskov, “Modern design tools and a new paradigm in optical coating design,” Appl. Opt. 51, 7319–7332 (2012).
[Crossref]

2011 (2)

V. Pervak, “Recent development and new ideas in the field of dispersive multilayer optics,” Appl. Opt. 50, C55–C61 (2011).
[Crossref]

C. Homann, N. Krebs, and E. Riedle, “Convenient pulse length measurement of sub-20-fs pulses down to the deep UV via two-photon absorption in bulk material,” Appl. Phys. B 104, 783–791 (2011).
[Crossref]

2007 (1)

2004 (3)

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[Crossref]

N. Lepeshkin, A. Schweinsberg, G. Piredda, R. Bennink, and R. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93, 123902 (2004).
[Crossref]

C.-Y. Tai, J. Wilkinson, N. Perney, C. Netti, F. Cattaneo, C. Finlayson, and J. Baumberg, “Determination of nonlinear refractive index in Ta2O5 rib waveguide using self-phase modulation,” Opt. Express 12, 5110–5116 (2004).
[Crossref]

2003 (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref]

2000 (5)

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[Crossref]

B. Golubovic, R. R. Austin, M. K. Steiner-Shepard, M. K. Reed, S. A. Diddams, D. J. Jones, and A. G. Van Engen, “Double Gires-Tournois interferometer negative-dispersion mirrors for use in tunable mode-locked lasers,” Opt. Lett. 25, 275–277 (2000).
[Crossref]

F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25, 575–577 (2000).
[Crossref]

E. Franke, C. L. Trimble, M. J. DeVries, J. A. Woollam, M. Schubert, and F. Frost, “Dielectric function of amorphous tantalum oxide from the far infrared to the deep ultraviolet spectral region measured by spectroscopic ellipsometry,” J. Appl. Phys. 88, 5166–5174 (2000).
[Crossref]

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. Kovács, G. DeBell, L. Mott, A. Louderback, A. Tikhonravov, and M. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,” Appl. Phys. B 70, S51–S57 (2000).
[Crossref]

1999 (1)

G. Steinmeyer, “Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,” Science 286, 1507–1512 (1999).
[Crossref]

1998 (1)

1997 (3)

1996 (3)

A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493–5508 (1996).
[Crossref]

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

1995 (2)

S. Tsuda, W. H. Knox, E. A. De Souza, W. Y. Jan, and J. E. Cunningham, “Low-loss intracavity AlAs/AlGaAs saturable Bragg reflector for femtosecond mode locking in solid-state lasers,” Opt. Lett. 20, 1406–1408 (1995).
[Crossref]

G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, “Enhanced nonlinear optical response of composite materials,” Phys. Rev. Lett. 74, 1871–1874 (1995).
[Crossref]

1994 (4)

R. Szipöcs, C. Spielmann, F. Krausz, and K. Ferencz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19, 201–203 (1994).
[Crossref]

R. W. Boyd and J. E. Sipe, “Nonlinear optical susceptibilities of layered composite materials,” J. Opt. Soc. Am. B 11, 297–303 (1994).
[Crossref]

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[Crossref]

U. Keller, “Ultrafast all-solid-state laser technology,” Appl. Phys. B 58, 347–363 (1994).
[Crossref]

1993 (1)

W. H. Loh, D. Atkinson, P. R. Morkel, M. Hopkinson, A. Rivers, A. J. Seeds, and D. N. Payne, “Passively mode-locked Er3+ fiber laser using a semiconductor nonlinear mirror,” IEEE Photon. Technol. Lett. 5, 35–37 (1993).
[Crossref]

1992 (1)

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[Crossref]

1991 (2)

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

J. I. Dadap, G. B. Focht, D. H. Reitze, and M. C. Downer, “Two-photon absorption in diamond and its application to ultraviolet femtosecond pulse-width measurement,” Opt. Lett. 16, 499–501 (1991).
[Crossref]

1990 (2)

U. Keller, W. H. Knox, and H. Roskos, “Coupled-cavity resonant passive mode-locked Ti:sapphire laser,” Opt. Lett. 15, 1377–1379 (1990).
[Crossref]

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
[Crossref]

1988 (1)

1985 (1)

Alismail, A.

Alsaif, B.

Anderson, O.

O. Anderson, “Silicon oxides,” in Thin Films on Glass, H. Bach and D. Krause, eds. (Springer, 1997), pp. 159–170.

Apai, P.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. Kovács, G. DeBell, L. Mott, A. Louderback, A. Tikhonravov, and M. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,” Appl. Phys. B 70, S51–S57 (2000).
[Crossref]

Arisholm, G.

Atkinson, D.

W. H. Loh, D. Atkinson, P. R. Morkel, M. Hopkinson, A. Rivers, A. J. Seeds, and D. N. Payne, “Passively mode-locked Er3+ fiber laser using a semiconductor nonlinear mirror,” IEEE Photon. Technol. Lett. 5, 35–37 (1993).
[Crossref]

Aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Austin, R. R.

Azzeer, A. M.

Barros, H. G.

Baumberg, J.

Bennink, R.

N. Lepeshkin, A. Schweinsberg, G. Piredda, R. Bennink, and R. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93, 123902 (2004).
[Crossref]

Bloemer, M. J.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[Crossref]

Bowden, C. M.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[Crossref]

Boyd, R.

N. Lepeshkin, A. Schweinsberg, G. Piredda, R. Bennink, and R. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93, 123902 (2004).
[Crossref]

Boyd, R. W.

G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, “Enhanced nonlinear optical response of composite materials,” Phys. Rev. Lett. 74, 1871–1874 (1995).
[Crossref]

R. W. Boyd and J. E. Sipe, “Nonlinear optical susceptibilities of layered composite materials,” J. Opt. Soc. Am. B 11, 297–303 (1994).
[Crossref]

Brabec, T.

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[Crossref]

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Brons, J.

Cattaneo, F.

Cerullo, G.

C. Manzoni, O. D. Mücke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser Photon. Rev. 9, 129–171 (2015).

Cheng, Z.

Ciappina, M.

Cirmi, G.

C. Manzoni, O. D. Mücke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser Photon. Rev. 9, 129–171 (2015).

Cunningham, J. E.

Dadap, J. I.

De Souza, E. A.

DeBell, G.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. Kovács, G. DeBell, L. Mott, A. Louderback, A. Tikhonravov, and M. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,” Appl. Phys. B 70, S51–S57 (2000).
[Crossref]

DeBell, G. W.

DeSalvo, R.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[Crossref]

DeVries, M. J.

E. Franke, C. L. Trimble, M. J. DeVries, J. A. Woollam, M. Schubert, and F. Frost, “Dielectric function of amorphous tantalum oxide from the far infrared to the deep ultraviolet spectral region measured by spectroscopic ellipsometry,” J. Appl. Phys. 88, 5166–5174 (2000).
[Crossref]

Diddams, S. A.

Dowling, J. P.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[Crossref]

Downer, M. C.

Fang, S.

C. Manzoni, O. D. Mücke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser Photon. Rev. 9, 129–171 (2015).

Fattahi, H.

Fedorov, V.

Ferencz, K.

Finlayson, C.

Fischer, G. L.

G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, “Enhanced nonlinear optical response of composite materials,” Phys. Rev. Lett. 74, 1871–1874 (1995).
[Crossref]

Fittinghoff, D. N.

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Focht, G. B.

Franke, E.

E. Franke, C. L. Trimble, M. J. DeVries, J. A. Woollam, M. Schubert, and F. Frost, “Dielectric function of amorphous tantalum oxide from the far infrared to the deep ultraviolet spectral region measured by spectroscopic ellipsometry,” J. Appl. Phys. 88, 5166–5174 (2000).
[Crossref]

Frost, F.

E. Franke, C. L. Trimble, M. J. DeVries, J. A. Woollam, M. Schubert, and F. Frost, “Dielectric function of amorphous tantalum oxide from the far infrared to the deep ultraviolet spectral region measured by spectroscopic ellipsometry,” J. Appl. Phys. 88, 5166–5174 (2000).
[Crossref]

Furman, S. F.

S. F. Furman and A. V. Tikhonravov, Basics of Optics of Multilayer Systems (Editions Frontieres, 1992).

Gaeta, A. L.

Gehr, R. J.

G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, “Enhanced nonlinear optical response of composite materials,” Phys. Rev. Lett. 74, 1871–1874 (1995).
[Crossref]

Geng, X. T.

Golubovic, B.

Gorjan, M.

Haefner, M.

Hagan, D. J.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[Crossref]

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[Crossref]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
[Crossref]

E. W. Van Stryland, Y.-Y. Wu, D. J. Hagan, M. J. Soileau, and K. Mansour, “Optical limiting with semiconductors,” J. Opt. Soc. Am. B 5, 1980–1988 (1988).
[Crossref]

D. J. Hagan, “Optical limiting,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, 2008).

Homann, C.

C. Homann, N. Krebs, and E. Riedle, “Convenient pulse length measurement of sub-20-fs pulses down to the deep UV via two-photon absorption in bulk material,” Appl. Phys. B 104, 783–791 (2011).
[Crossref]

Hong, K.-H.

C. Manzoni, O. D. Mücke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser Photon. Rev. 9, 129–171 (2015).

Honninger, C.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Hopkinson, M.

W. H. Loh, D. Atkinson, P. R. Morkel, M. Hopkinson, A. Rivers, A. J. Seeds, and D. N. Payne, “Passively mode-locked Er3+ fiber laser using a semiconductor nonlinear mirror,” IEEE Photon. Technol. Lett. 5, 35–37 (1993).
[Crossref]

Huang, S.-W.

C. Manzoni, O. D. Mücke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser Photon. Rev. 9, 129–171 (2015).

Hutchings, D. C.

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[Crossref]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

Jan, W. Y.

Jenekhe, S. A.

G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, “Enhanced nonlinear optical response of composite materials,” Phys. Rev. Lett. 74, 1871–1874 (1995).
[Crossref]

Joannopoulos, J. D.

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[Crossref]

Jones, D. J.

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Karpowicz, N.

Kartner, F. X.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Kärtner, F. X.

C. Manzoni, O. D. Mücke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser Photon. Rev. 9, 129–171 (2015).

Keller, U.

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

U. Keller, “Ultrafast all-solid-state laser technology,” Appl. Phys. B 58, 347–363 (1994).
[Crossref]

U. Keller, W. H. Knox, and H. Roskos, “Coupled-cavity resonant passive mode-locked Ti:sapphire laser,” Opt. Lett. 15, 1377–1379 (1990).
[Crossref]

Kim, D.-E.

Knox, W. H.

Köházi-Kis, A.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. Kovács, G. DeBell, L. Mott, A. Louderback, A. Tikhonravov, and M. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,” Appl. Phys. B 70, S51–S57 (2000).
[Crossref]

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Kovács, A.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. Kovács, G. DeBell, L. Mott, A. Louderback, A. Tikhonravov, and M. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,” Appl. Phys. B 70, S51–S57 (2000).
[Crossref]

Krausz, F.

Krebs, N.

C. Homann, N. Krebs, and E. Riedle, “Convenient pulse length measurement of sub-20-fs pulses down to the deep UV via two-photon absorption in bulk material,” Appl. Phys. B 104, 783–791 (2011).
[Crossref]

Lakó, S.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. Kovács, G. DeBell, L. Mott, A. Louderback, A. Tikhonravov, and M. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,” Appl. Phys. B 70, S51–S57 (2000).
[Crossref]

Laude, V.

Lepeshkin, N.

N. Lepeshkin, A. Schweinsberg, G. Piredda, R. Bennink, and R. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93, 123902 (2004).
[Crossref]

Lepkowicz, R.

R. Lepkowicz, “Nonlinear photonic crystals for passive switches,” SPIE Newsroom, doi: 10.1117/2.1200805.1144 (2008).

Li, Z.-Y.

Z.-M. Meng, F. Qin, and Z.-Y. Li, “Ultrafast all-optical switching in one-dimensional semiconductor-polymer hybrid nonlinear photonic crystals with relaxing Kerr nonlinearity,” J. Opt. 14, 065003 (2012).
[Crossref]

Loh, W. H.

W. H. Loh, D. Atkinson, P. R. Morkel, M. Hopkinson, A. Rivers, A. J. Seeds, and D. N. Payne, “Passively mode-locked Er3+ fiber laser using a semiconductor nonlinear mirror,” IEEE Photon. Technol. Lett. 5, 35–37 (1993).
[Crossref]

Louderback, A.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. Kovács, G. DeBell, L. Mott, A. Louderback, A. Tikhonravov, and M. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,” Appl. Phys. B 70, S51–S57 (2000).
[Crossref]

Macleod, H. A.

H. A. Macleod, “Thin-film optical filters,” in Thin-Film Optical Filter, E. R. Pike and R. G. W. Brown, eds., 4th ed. (CRC Press, 2010), pp. 5–10.

Major, Z.

Mansour, K.

Manzoni, C.

C. Manzoni, O. D. Mücke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser Photon. Rev. 9, 129–171 (2015).

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Meng, Z.-M.

Z.-M. Meng, F. Qin, and Z.-Y. Li, “Ultrafast all-optical switching in one-dimensional semiconductor-polymer hybrid nonlinear photonic crystals with relaxing Kerr nonlinearity,” J. Opt. 14, 065003 (2012).
[Crossref]

Metzger, T.

Morkel, P. R.

W. H. Loh, D. Atkinson, P. R. Morkel, M. Hopkinson, A. Rivers, A. J. Seeds, and D. N. Payne, “Passively mode-locked Er3+ fiber laser using a semiconductor nonlinear mirror,” IEEE Photon. Technol. Lett. 5, 35–37 (1993).
[Crossref]

Moses, J.

C. Manzoni, O. D. Mücke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser Photon. Rev. 9, 129–171 (2015).

Mott, L.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. Kovács, G. DeBell, L. Mott, A. Louderback, A. Tikhonravov, and M. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,” Appl. Phys. B 70, S51–S57 (2000).
[Crossref]

Mücke, O. D.

C. Manzoni, O. D. Mücke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser Photon. Rev. 9, 129–171 (2015).

Netti, C.

Nubbemeyer, T.

Osaheni, J. A.

G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, “Enhanced nonlinear optical response of composite materials,” Phys. Rev. Lett. 74, 1871–1874 (1995).
[Crossref]

Payne, D. N.

W. H. Loh, D. Atkinson, P. R. Morkel, M. Hopkinson, A. Rivers, A. J. Seeds, and D. N. Payne, “Passively mode-locked Er3+ fiber laser using a semiconductor nonlinear mirror,” IEEE Photon. Technol. Lett. 5, 35–37 (1993).
[Crossref]

Perney, N.

Pervak, V.

Pervak, Y. A.

Piredda, G.

N. Lepeshkin, A. Schweinsberg, G. Piredda, R. Bennink, and R. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93, 123902 (2004).
[Crossref]

Prinz, S.

Pronin, O.

Qin, F.

Z.-M. Meng, F. Qin, and Z.-Y. Li, “Ultrafast all-optical switching in one-dimensional semiconductor-polymer hybrid nonlinear photonic crystals with relaxing Kerr nonlinearity,” J. Opt. 14, 065003 (2012).
[Crossref]

Ranka, J. K.

Reed, M. K.

Reitze, D. H.

Riedle, E.

C. Homann, N. Krebs, and E. Riedle, “Convenient pulse length measurement of sub-20-fs pulses down to the deep UV via two-photon absorption in bulk material,” Appl. Phys. B 104, 783–791 (2011).
[Crossref]

Rivers, A.

W. H. Loh, D. Atkinson, P. R. Morkel, M. Hopkinson, A. Rivers, A. J. Seeds, and D. N. Payne, “Passively mode-locked Er3+ fiber laser using a semiconductor nonlinear mirror,” IEEE Photon. Technol. Lett. 5, 35–37 (1993).
[Crossref]

Roskos, H.

Said, A. A.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[Crossref]

Scalora, M.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[Crossref]

Schirmer, R. W.

Schubert, M.

E. Franke, C. L. Trimble, M. J. DeVries, J. A. Woollam, M. Schubert, and F. Frost, “Dielectric function of amorphous tantalum oxide from the far infrared to the deep ultraviolet spectral region measured by spectroscopic ellipsometry,” J. Appl. Phys. 88, 5166–5174 (2000).
[Crossref]

Schultze, M.

Schwarz, A.

Schweinsberg, A.

N. Lepeshkin, A. Schweinsberg, G. Piredda, R. Bennink, and R. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93, 123902 (2004).
[Crossref]

Seeds, A. J.

W. H. Loh, D. Atkinson, P. R. Morkel, M. Hopkinson, A. Rivers, A. J. Seeds, and D. N. Payne, “Passively mode-locked Er3+ fiber laser using a semiconductor nonlinear mirror,” IEEE Photon. Technol. Lett. 5, 35–37 (1993).
[Crossref]

Sheik-Bahae, M.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[Crossref]

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[Crossref]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
[Crossref]

Sipe, J. E.

G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, “Enhanced nonlinear optical response of composite materials,” Phys. Rev. Lett. 74, 1871–1874 (1995).
[Crossref]

R. W. Boyd and J. E. Sipe, “Nonlinear optical susceptibilities of layered composite materials,” J. Opt. Soc. Am. B 11, 297–303 (1994).
[Crossref]

Soileau, M. J.

Soljacic, M.

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[Crossref]

Spielmann, C.

Steiner-Shepard, M. K.

Steinmeyer, G.

G. Steinmeyer, “Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,” Science 286, 1507–1512 (1999).
[Crossref]

Streltsov, A. M.

Sutherland, R. L.

R. L. Sutherland, Handbook of Nonlinear Optics, 2nd ed., Vol. 82 of Optical Engineering (Dekker, 2003).

Sutter, D.

Sweetser, J. N.

Szipöcs, R.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. Kovács, G. DeBell, L. Mott, A. Louderback, A. Tikhonravov, and M. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,” Appl. Phys. B 70, S51–S57 (2000).
[Crossref]

R. Szipöcs, C. Spielmann, F. Krausz, and K. Ferencz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19, 201–203 (1994).
[Crossref]

R. Szipöcs, “Dispersive properties of dielectric laser mirrors and their use in femtosecond pulse lasers,” Ph.D. dissertation (SZTE TTK, 2000).

Tai, C.-Y.

Teisset, C. Y.

Tikhonravov, A.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. Kovács, G. DeBell, L. Mott, A. Louderback, A. Tikhonravov, and M. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,” Appl. Phys. B 70, S51–S57 (2000).
[Crossref]

Tikhonravov, A. V.

Tournois, P.

F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25, 575–577 (2000).
[Crossref]

P. Tournois, “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt. Commun. 140, 245–249 (1997).
[Crossref]

Trebino, R.

Trimble, C. L.

E. Franke, C. L. Trimble, M. J. DeVries, J. A. Woollam, M. Schubert, and F. Frost, “Dielectric function of amorphous tantalum oxide from the far infrared to the deep ultraviolet spectral region measured by spectroscopic ellipsometry,” J. Appl. Phys. 88, 5166–5174 (2000).
[Crossref]

Trubetskov, M.

V. Pervak, V. Fedorov, Y. A. Pervak, and M. Trubetskov, “Empirical study of the group delay dispersion achievable with multilayer mirrors,” Opt. Express 21, 18311–18316 (2013).
[Crossref]

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. Kovács, G. DeBell, L. Mott, A. Louderback, A. Tikhonravov, and M. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,” Appl. Phys. B 70, S51–S57 (2000).
[Crossref]

Trubetskov, M. K.

Tsuda, S.

Ueffing, M.

Vámos, L.

Van Engen, A. G.

Van Stryland, E. W.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[Crossref]

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[Crossref]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
[Crossref]

E. W. Van Stryland, Y.-Y. Wu, D. J. Hagan, M. J. Soileau, and K. Mansour, “Optical limiting with semiconductors,” J. Opt. Soc. Am. B 5, 1980–1988 (1988).
[Crossref]

E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett. 10, 490–492 (1985).
[Crossref]

Vanherzeele, H.

Verluise, F.

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Weller-Brophy, L. A.

G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, “Enhanced nonlinear optical response of composite materials,” Phys. Rev. Lett. 74, 1871–1874 (1995).
[Crossref]

Wilkinson, J.

Woodall, M. A.

Woollam, J. A.

E. Franke, C. L. Trimble, M. J. DeVries, J. A. Woollam, M. Schubert, and F. Frost, “Dielectric function of amorphous tantalum oxide from the far infrared to the deep ultraviolet spectral region measured by spectroscopic ellipsometry,” J. Appl. Phys. 88, 5166–5174 (2000).
[Crossref]

Wu, Y.-Y.

Yakovlev, V. S.

Appl. Opt. (4)

Appl. Phys. B (3)

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. Kovács, G. DeBell, L. Mott, A. Louderback, A. Tikhonravov, and M. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,” Appl. Phys. B 70, S51–S57 (2000).
[Crossref]

U. Keller, “Ultrafast all-solid-state laser technology,” Appl. Phys. B 58, 347–363 (1994).
[Crossref]

C. Homann, N. Krebs, and E. Riedle, “Convenient pulse length measurement of sub-20-fs pulses down to the deep UV via two-photon absorption in bulk material,” Appl. Phys. B 104, 783–791 (2011).
[Crossref]

IEEE J. Quantum Electron. (2)

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[Crossref]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

IEEE Photon. Technol. Lett. (1)

W. H. Loh, D. Atkinson, P. R. Morkel, M. Hopkinson, A. Rivers, A. J. Seeds, and D. N. Payne, “Passively mode-locked Er3+ fiber laser using a semiconductor nonlinear mirror,” IEEE Photon. Technol. Lett. 5, 35–37 (1993).
[Crossref]

J. Appl. Phys. (1)

E. Franke, C. L. Trimble, M. J. DeVries, J. A. Woollam, M. Schubert, and F. Frost, “Dielectric function of amorphous tantalum oxide from the far infrared to the deep ultraviolet spectral region measured by spectroscopic ellipsometry,” J. Appl. Phys. 88, 5166–5174 (2000).
[Crossref]

J. Opt. (1)

Z.-M. Meng, F. Qin, and Z.-Y. Li, “Ultrafast all-optical switching in one-dimensional semiconductor-polymer hybrid nonlinear photonic crystals with relaxing Kerr nonlinearity,” J. Opt. 14, 065003 (2012).
[Crossref]

J. Opt. Soc. Am. B (3)

Laser Photon. Rev. (1)

C. Manzoni, O. D. Mücke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser Photon. Rev. 9, 129–171 (2015).

Nat. Mater. (1)

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[Crossref]

Nature (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref]

Opt. Commun. (1)

P. Tournois, “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt. Commun. 140, 245–249 (1997).
[Crossref]

Opt. Express (2)

Opt. Lett. (9)

J. N. Sweetser, D. N. Fittinghoff, and R. Trebino, “Transient-grating frequency-resolved optical gating,” Opt. Lett. 22, 519–521 (1997).
[Crossref]

A. M. Streltsov, J. K. Ranka, and A. L. Gaeta, “Femtosecond ultraviolet autocorrelation measurements based on two-photon conductivity in fused silica,” Opt. Lett. 23, 798–800 (1998).
[Crossref]

B. Golubovic, R. R. Austin, M. K. Steiner-Shepard, M. K. Reed, S. A. Diddams, D. J. Jones, and A. G. Van Engen, “Double Gires-Tournois interferometer negative-dispersion mirrors for use in tunable mode-locked lasers,” Opt. Lett. 25, 275–277 (2000).
[Crossref]

F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25, 575–577 (2000).
[Crossref]

E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett. 10, 490–492 (1985).
[Crossref]

U. Keller, W. H. Knox, and H. Roskos, “Coupled-cavity resonant passive mode-locked Ti:sapphire laser,” Opt. Lett. 15, 1377–1379 (1990).
[Crossref]

J. I. Dadap, G. B. Focht, D. H. Reitze, and M. C. Downer, “Two-photon absorption in diamond and its application to ultraviolet femtosecond pulse-width measurement,” Opt. Lett. 16, 499–501 (1991).
[Crossref]

R. Szipöcs, C. Spielmann, F. Krausz, and K. Ferencz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19, 201–203 (1994).
[Crossref]

S. Tsuda, W. H. Knox, E. A. De Souza, W. Y. Jan, and J. E. Cunningham, “Low-loss intracavity AlAs/AlGaAs saturable Bragg reflector for femtosecond mode locking in solid-state lasers,” Opt. Lett. 20, 1406–1408 (1995).
[Crossref]

Opt. Quantum Electron. (1)

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[Crossref]

Optica (1)

Phys. Rev. Lett. (4)

N. Lepeshkin, A. Schweinsberg, G. Piredda, R. Bennink, and R. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93, 123902 (2004).
[Crossref]

G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, “Enhanced nonlinear optical response of composite materials,” Phys. Rev. Lett. 74, 1871–1874 (1995).
[Crossref]

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[Crossref]

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
[Crossref]

Rev. Mod. Phys. (1)

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[Crossref]

Science (1)

G. Steinmeyer, “Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,” Science 286, 1507–1512 (1999).
[Crossref]

Other (9)

R. Szipöcs, “Dispersive properties of dielectric laser mirrors and their use in femtosecond pulse lasers,” Ph.D. dissertation (SZTE TTK, 2000).

R. Lepkowicz, “Nonlinear photonic crystals for passive switches,” SPIE Newsroom, doi: 10.1117/2.1200805.1144 (2008).

A. V. Tikhonravov and M. K. Trubetskov, “Optilayer software,” http://optilayer.com .

S. F. Furman and A. V. Tikhonravov, Basics of Optics of Multilayer Systems (Editions Frontieres, 1992).

O. Anderson, “Silicon oxides,” in Thin Films on Glass, H. Bach and D. Krause, eds. (Springer, 1997), pp. 159–170.

H. A. Macleod, “Thin-film optical filters,” in Thin-Film Optical Filter, E. R. Pike and R. G. W. Brown, eds., 4th ed. (CRC Press, 2010), pp. 5–10.

R. L. Sutherland, Handbook of Nonlinear Optics, 2nd ed., Vol. 82 of Optical Engineering (Dekker, 2003).

R. W. Cahn, K. H. Jürgen Buschow, and M. C. Flemings, eds., “Thin-film optical filter,” in Encyclopedia of Materials: Science and Technology (Elsevier, 2001).

D. J. Hagan, “Optical limiting,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Intensity-dependent reflectance of the series of nonoptimized DMs. (a) Relevant design data of the tested DMs. Mx refers to nonoptimized DM, MMx-2PA-optimized design. Red bar, total optical thickness of the multilayer stack in nanometers; light gray bar, sum optical thickness of H-index layers in nanometers; dark gray bar, sum optical thickness of H-index layers contained in upper 1/3 of the multilayer stack only. Dispersive properties are represented by the value of introduced GD per reflection (in frame). (b) Nonlinear response of the reflectance of the nonoptimized DM. Solid lines are provided as guidance to the eye. Error bars represent instrumental error of the measurement.
Fig. 2.
Fig. 2. Reversibility of nonlinear response of the mirror M1. The error bars represent instrumental error of the measurement.
Fig. 3.
Fig. 3. Electric field distribution at central wavelength of 400 nm, angle of incidence (AOI)=45deg, and s polarization in different types of the coatings. Values of the electric field are normalized to the amplitude of the incident electric field, Ea. (a) In DM M1. Due to the structure of the DM itself the electric field is enhanced. (b) In quarter-wave high reflector (QWHR). (c) In single layer of high-index coating material of identical optical thickness.
Fig. 4.
Fig. 4. Impact of different types of nonlinearities on dispersive performance of mirror M1. Green bold line, simulated GDD curve in the range from 380 to 420 nm without impact of either changing nonlinear refractive index or 2PA; red dotted line, simulated GDD curve with the impact of 2PA (estimated spectrally averaged induced absorption is Δα15.2·102cm1); blue dotted line, simulated GDD curve with impact of nonlinear refractive index Δn0.0025 at corresponding intensity Ip=(3.5±0.7)·1011W/cm2.
Fig. 5.
Fig. 5. Thermal tests of nonoptimized designs. Blue bold line, surface temperature of irradiated mirror M1; pink bold line, surface temperature of QWHR. Incident intensity is Ip=(3.5±0.7)·1011W/cm2.
Fig. 6.
Fig. 6. Simulated intensity-dependent reflectance of the mirror M2 at different wavelengths. Blue, dashed-magenta, and dashed-green curves are reflectance at 400, 410, and 390 nm, respectively. Black curve is the effective reflectance integrated with respect to Gaussian spectrum with the center at 400 nm. For comparison the effective reflectance of a 35-layer quarter-wave mirror with central wavelength of 400 nm is also shown (red curve). Top x scale is relevant peak intensity in SI units calculated via multiplication of peak intensity in arb.u. by G2=(3.2±0.3)·107 fitting factor.
Fig. 7.
Fig. 7. Distributions of the induced extinction coefficient β|E|2 in the mirror M2 cross section for wavelength values: 390, 400, and 410 nm.
Fig. 8.
Fig. 8. Optimization of 2PA in dielectric coating. (a) The 2PA parameter β has been estimated by fit of the experimental curve for the mirror M2. Theoretical curves related to the single layer of Ta2O5, M1, and MM1 have been calculated with the same 2PA parameter β without additional fitting. Solid lines connecting actual measured data points are provided as a guidance to the eye. Error bars represent the instrumental error of the measurement. (b) Designed stack of nonoptimized M1. The coating contains approximately equal amounts of high-index and low-index material, and the materials are distributed homogeneously. (c) Designed stack of 2PA-optimized MM1. The presence of high-index material is decreased in favor of low-index material, and the high-index material is concentrated farther from the top layers of the stack.
Fig. 9.
Fig. 9. TG FROG. Reconstruction yields 19±1fs pulse duration at peak intensities in order of 1011W/cm2. Inset: actual and reconstructed TG FROG traces.
Fig. 10.
Fig. 10. Thermal tests of 2PA-optimized design.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

dudz=ikν,
dνdz=ik(n˜(z,u)α2)u,0<z<za,
n˜(z,u)=n(z)iβ|u(z)|2,
(νqsu)|z=0=0,
(ν+qau)|z=za=2qaEa.
R(k,Ea)=|qau(za,k)ν(za,k)qau(za,k)+ν(za,k)|2.
Ia(k)=I0Δ2πexp((kk0)22Δ2),
R(I0)=1Δ2πR(k,Ea)exp((kk0)22Δ2)dk,
α2=8πη0βsi/(nTa2O5λ).

Metrics