Abstract

Chirped-pulse amplification (CPA) is an integral part of present-day ultra-intense laser systems that normally employ near-infrared (1μm) solid-state lasers. The recently revived interest in expanding the reach of strong-field laser physics into the mid-infrared (mid-IR) spectral domain directs our attention to 9–11 μm carbon-dioxide (CO2) lasers for which progress to reaching high peak intensities has been limited so far. We propose that employing the CPA technique will allow us to realize a new breakthrough toward multiterawatt, ultrafast mid-IR lasers; here we report, to our knowledge, the first implementation of this method for a CO2 laser. Our stretching of a 1 ps, 9 μm pulse to 80 ps improved energy extraction from a regenerative CO2 laser amplifier by 1 order of magnitude. We explain this accomplishment by the reduction in nonlinear absorption and refraction on the amplifier’s optical elements. We consider these findings as being a pivotal step toward establishing next-generation ultra-intense CO2 CPA laser systems for strong-field mid-IR research and its applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of a 2 ps, 5 TW peak power, long-wave infrared laser based on chirped-pulse amplification with mixed-isotope CO2 amplifiers

Mikhail N. Polyanskiy, Igor V. Pogorelsky, Marcus Babzien, and Mark A. Palmer
OSA Continuum 3(3) 459-472 (2020)

Amplification of multi-gigawatt 3 ps pulses in an atmospheric CO2 laser using ac Stark effect

S. Ya. Tochitsky, J. J. Pigeon, D. J. Haberberger, C. Gong, and C. Joshi
Opt. Express 20(13) 13762-13768 (2012)

Picosecond pulse amplification in isotopic CO2 active medium

Mikhail N. Polyanskiy, Igor V. Pogorelsky, and Vitaly Yakimenko
Opt. Express 19(8) 7717-7725 (2011)

References

  • View by:
  • |
  • |
  • |

  1. G. Mourou and T. Tajima, “More intense, shorter pulses,” Science 331, 41–42 (2011).
    [Crossref]
  2. C. Joshi and T. Katsouleas, “Plasma accelerators at the energy frontier and on tabletop,” Phys. Today 56(6), 47–53 (2003).
    [Crossref]
  3. C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, 1–14 (2015).
    [Crossref]
  4. I. V. Pogorelsky and I. Ben-Zvi, “Brookhaven National Laboratory’s accelerator test facility: research highlights and plans,” Plasma Phys. Control. Fusion 56, 084017 (2014).
    [Crossref]
  5. P. B. Corkum, “Amplification of picosecond 10  μm pulses in multiatmosphere CO2 lasers,” IEEE J. Quantum Electron. 21, 216–232 (1985).
    [Crossref]
  6. D. Haberberger, S. Tochitsky, and C. Joshi, “Fifteen terawatt picosecond CO2 laser system,” Opt. Express 18, 17865–17875 (2010).
    [Crossref]
  7. M. N. Polyanskiy, I. V. Pogorelsky, and V. Yakimenko, “Picosecond pulse amplification in isotopic CO2 active medium,” Opt. Express 19, 7717–7725 (2011).
    [Crossref]
  8. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
    [Crossref]
  9. M. N. Polyanskiy and M. Babzien, “Ultrashort pulses,” in CO2 Laser—Optimisation and Application, D. C. Dumitras, ed. (InTech, 2012), pp. 139–162.
  10. O. E. Martinez, J. P. Gordon, and R. L. Fork, “Negative group-velocity dispersion using refraction,” J. Opt. Soc. Am. A 1, 1003–1006 (1984).
    [Crossref]
  11. M. N. Polyanskiy, “co2amp: a software program for modeling the dynamics of ultrashort pulses in optical systems with CO2 amplifiers,” Appl. Opt. 54, 5136–5142 (2015).
    [Crossref]
  12. L. W. Casperson and A. Yariv, “Spectral narrowing in high-gain lasers,” IEEE J. Quantum Electron. 8, 80–85 (1972).
    [Crossref]
  13. A. J. Alcock and P. B. Corkum, “Ultra-fast switching of infrared radiation by laser-produced carriers in semiconductors,” Can. J. Phys. 57, 1280–1290 (1979).
    [Crossref]
  14. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5, 454–458 (1969).
    [Crossref]
  15. M. Sheik Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
    [Crossref]
  16. V. M. Gordienko and V. T. Platonenko, “Regenerative amplification of picosecond 10-μm pulses in a high-pressure optically pumped CO2 laser,” Quantum Electron. 40, 1118–1122 (2011).
    [Crossref]
  17. S. Y. Yuen, R. L. Aggarwal, N. Lee, and B. Lax, “Nonlinear absorption of CO2 laser radiation by nonequilibrium carriers in germanium,” Opt. Commun. 28, 237–240 (1979).
    [Crossref]
  18. C. J. Hutchinson, C. Lewis, J. A. Savage, and A. Pitt, “Surface and bulk absorption in germanium at 10.6-μm,” Appl. Opt. 21, 1490–1495 (1982).
    [Crossref]

2015 (2)

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, 1–14 (2015).
[Crossref]

M. N. Polyanskiy, “co2amp: a software program for modeling the dynamics of ultrashort pulses in optical systems with CO2 amplifiers,” Appl. Opt. 54, 5136–5142 (2015).
[Crossref]

2014 (1)

I. V. Pogorelsky and I. Ben-Zvi, “Brookhaven National Laboratory’s accelerator test facility: research highlights and plans,” Plasma Phys. Control. Fusion 56, 084017 (2014).
[Crossref]

2011 (3)

G. Mourou and T. Tajima, “More intense, shorter pulses,” Science 331, 41–42 (2011).
[Crossref]

M. N. Polyanskiy, I. V. Pogorelsky, and V. Yakimenko, “Picosecond pulse amplification in isotopic CO2 active medium,” Opt. Express 19, 7717–7725 (2011).
[Crossref]

V. M. Gordienko and V. T. Platonenko, “Regenerative amplification of picosecond 10-μm pulses in a high-pressure optically pumped CO2 laser,” Quantum Electron. 40, 1118–1122 (2011).
[Crossref]

2010 (1)

2003 (1)

C. Joshi and T. Katsouleas, “Plasma accelerators at the energy frontier and on tabletop,” Phys. Today 56(6), 47–53 (2003).
[Crossref]

1991 (1)

M. Sheik Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

1985 (2)

P. B. Corkum, “Amplification of picosecond 10  μm pulses in multiatmosphere CO2 lasers,” IEEE J. Quantum Electron. 21, 216–232 (1985).
[Crossref]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[Crossref]

1984 (1)

1982 (1)

1979 (2)

S. Y. Yuen, R. L. Aggarwal, N. Lee, and B. Lax, “Nonlinear absorption of CO2 laser radiation by nonequilibrium carriers in germanium,” Opt. Commun. 28, 237–240 (1979).
[Crossref]

A. J. Alcock and P. B. Corkum, “Ultra-fast switching of infrared radiation by laser-produced carriers in semiconductors,” Can. J. Phys. 57, 1280–1290 (1979).
[Crossref]

1972 (1)

L. W. Casperson and A. Yariv, “Spectral narrowing in high-gain lasers,” IEEE J. Quantum Electron. 8, 80–85 (1972).
[Crossref]

1969 (1)

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5, 454–458 (1969).
[Crossref]

Aggarwal, R. L.

S. Y. Yuen, R. L. Aggarwal, N. Lee, and B. Lax, “Nonlinear absorption of CO2 laser radiation by nonequilibrium carriers in germanium,” Opt. Commun. 28, 237–240 (1979).
[Crossref]

Alcock, A. J.

A. J. Alcock and P. B. Corkum, “Ultra-fast switching of infrared radiation by laser-produced carriers in semiconductors,” Can. J. Phys. 57, 1280–1290 (1979).
[Crossref]

Babzien, M.

M. N. Polyanskiy and M. Babzien, “Ultrashort pulses,” in CO2 Laser—Optimisation and Application, D. C. Dumitras, ed. (InTech, 2012), pp. 139–162.

Ben-Zvi, I.

I. V. Pogorelsky and I. Ben-Zvi, “Brookhaven National Laboratory’s accelerator test facility: research highlights and plans,” Plasma Phys. Control. Fusion 56, 084017 (2014).
[Crossref]

Casperson, L. W.

L. W. Casperson and A. Yariv, “Spectral narrowing in high-gain lasers,” IEEE J. Quantum Electron. 8, 80–85 (1972).
[Crossref]

Corkum, P. B.

P. B. Corkum, “Amplification of picosecond 10  μm pulses in multiatmosphere CO2 lasers,” IEEE J. Quantum Electron. 21, 216–232 (1985).
[Crossref]

A. J. Alcock and P. B. Corkum, “Ultra-fast switching of infrared radiation by laser-produced carriers in semiconductors,” Can. J. Phys. 57, 1280–1290 (1979).
[Crossref]

Danson, C.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, 1–14 (2015).
[Crossref]

Fork, R. L.

Gordienko, V. M.

V. M. Gordienko and V. T. Platonenko, “Regenerative amplification of picosecond 10-μm pulses in a high-pressure optically pumped CO2 laser,” Quantum Electron. 40, 1118–1122 (2011).
[Crossref]

Gordon, J. P.

Haberberger, D.

Hagan, D. J.

M. Sheik Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

Hillier, D.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, 1–14 (2015).
[Crossref]

Hopps, N.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, 1–14 (2015).
[Crossref]

Hutchings, D. C.

M. Sheik Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

Hutchinson, C. J.

Joshi, C.

D. Haberberger, S. Tochitsky, and C. Joshi, “Fifteen terawatt picosecond CO2 laser system,” Opt. Express 18, 17865–17875 (2010).
[Crossref]

C. Joshi and T. Katsouleas, “Plasma accelerators at the energy frontier and on tabletop,” Phys. Today 56(6), 47–53 (2003).
[Crossref]

Katsouleas, T.

C. Joshi and T. Katsouleas, “Plasma accelerators at the energy frontier and on tabletop,” Phys. Today 56(6), 47–53 (2003).
[Crossref]

Lax, B.

S. Y. Yuen, R. L. Aggarwal, N. Lee, and B. Lax, “Nonlinear absorption of CO2 laser radiation by nonequilibrium carriers in germanium,” Opt. Commun. 28, 237–240 (1979).
[Crossref]

Lee, N.

S. Y. Yuen, R. L. Aggarwal, N. Lee, and B. Lax, “Nonlinear absorption of CO2 laser radiation by nonequilibrium carriers in germanium,” Opt. Commun. 28, 237–240 (1979).
[Crossref]

Lewis, C.

Martinez, O. E.

Mourou, G.

G. Mourou and T. Tajima, “More intense, shorter pulses,” Science 331, 41–42 (2011).
[Crossref]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[Crossref]

Neely, D.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, 1–14 (2015).
[Crossref]

Pitt, A.

Platonenko, V. T.

V. M. Gordienko and V. T. Platonenko, “Regenerative amplification of picosecond 10-μm pulses in a high-pressure optically pumped CO2 laser,” Quantum Electron. 40, 1118–1122 (2011).
[Crossref]

Pogorelsky, I. V.

I. V. Pogorelsky and I. Ben-Zvi, “Brookhaven National Laboratory’s accelerator test facility: research highlights and plans,” Plasma Phys. Control. Fusion 56, 084017 (2014).
[Crossref]

M. N. Polyanskiy, I. V. Pogorelsky, and V. Yakimenko, “Picosecond pulse amplification in isotopic CO2 active medium,” Opt. Express 19, 7717–7725 (2011).
[Crossref]

Polyanskiy, M. N.

Savage, J. A.

Sheik Bahae, M.

M. Sheik Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[Crossref]

Tajima, T.

G. Mourou and T. Tajima, “More intense, shorter pulses,” Science 331, 41–42 (2011).
[Crossref]

Tochitsky, S.

Treacy, E. B.

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5, 454–458 (1969).
[Crossref]

Van Stryland, E. W.

M. Sheik Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

Yakimenko, V.

Yariv, A.

L. W. Casperson and A. Yariv, “Spectral narrowing in high-gain lasers,” IEEE J. Quantum Electron. 8, 80–85 (1972).
[Crossref]

Yuen, S. Y.

S. Y. Yuen, R. L. Aggarwal, N. Lee, and B. Lax, “Nonlinear absorption of CO2 laser radiation by nonequilibrium carriers in germanium,” Opt. Commun. 28, 237–240 (1979).
[Crossref]

Appl. Opt. (2)

Can. J. Phys. (1)

A. J. Alcock and P. B. Corkum, “Ultra-fast switching of infrared radiation by laser-produced carriers in semiconductors,” Can. J. Phys. 57, 1280–1290 (1979).
[Crossref]

High Power Laser Sci. Eng. (1)

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, 1–14 (2015).
[Crossref]

IEEE J. Quantum Electron. (4)

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5, 454–458 (1969).
[Crossref]

M. Sheik Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

P. B. Corkum, “Amplification of picosecond 10  μm pulses in multiatmosphere CO2 lasers,” IEEE J. Quantum Electron. 21, 216–232 (1985).
[Crossref]

L. W. Casperson and A. Yariv, “Spectral narrowing in high-gain lasers,” IEEE J. Quantum Electron. 8, 80–85 (1972).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Commun. (2)

S. Y. Yuen, R. L. Aggarwal, N. Lee, and B. Lax, “Nonlinear absorption of CO2 laser radiation by nonequilibrium carriers in germanium,” Opt. Commun. 28, 237–240 (1979).
[Crossref]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[Crossref]

Opt. Express (2)

Phys. Today (1)

C. Joshi and T. Katsouleas, “Plasma accelerators at the energy frontier and on tabletop,” Phys. Today 56(6), 47–53 (2003).
[Crossref]

Plasma Phys. Control. Fusion (1)

I. V. Pogorelsky and I. Ben-Zvi, “Brookhaven National Laboratory’s accelerator test facility: research highlights and plans,” Plasma Phys. Control. Fusion 56, 084017 (2014).
[Crossref]

Quantum Electron. (1)

V. M. Gordienko and V. T. Platonenko, “Regenerative amplification of picosecond 10-μm pulses in a high-pressure optically pumped CO2 laser,” Quantum Electron. 40, 1118–1122 (2011).
[Crossref]

Science (1)

G. Mourou and T. Tajima, “More intense, shorter pulses,” Science 331, 41–42 (2011).
[Crossref]

Other (1)

M. N. Polyanskiy and M. Babzien, “Ultrashort pulses,” in CO2 Laser—Optimisation and Application, D. C. Dumitras, ed. (InTech, 2012), pp. 139–162.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Principal diagram of the experimental setup.
Fig. 2.
Fig. 2. Optical schematic of the stretcher (top), and the compressor (bottom).
Fig. 3.
Fig. 3. Principal diagram of a single-pulse autocorrelator.
Fig. 4.
Fig. 4. Top curves: pulse spectrum before (black) and after (red) the stretcher. Bottom curve: simulated gain spectrum (10 bar, CO 2 N 2 He = 0.35 0.4 9.25 ; O 16 O 18 = 50 50 ). The vertical scale is linear.
Fig. 5.
Fig. 5. Top curve: pulse spectrum measured after the compressor. Bottom curve: simulated gain spectrum. The vertical scale is linear.
Fig. 6.
Fig. 6. Autocorrelation of the recompressed amplified pulse. The width of the measured curve corresponds to a 1.6-ps (FWHM) Gaussian pulse.
Fig. 7.
Fig. 7. Pulse train in the regenerative amplifier without extraction. The vertical scale is linear.
Fig. 8.
Fig. 8. Simulated energy of the pulse circulating in the cavity of the regenerative amplifier for transform-limited (circles) and chirped (diamonds) pulses. Red: model including nonlinear refraction. Gray: nonlinear refraction neglected. The seed pulse is injected in the amplifier at t = 0 .
Fig. 9.
Fig. 9. Transmission of a 5 ps pulse by a 0.5 mm thick Brewster Ge plate. Circles, measured data; line, model data.
Fig. 10.
Fig. 10. Simulated energy of the pulse circulating in the cavity of the regenerative amplifier for a transform-limited pulse (open circles), and a chirped (open diamonds) one. The seed pulse is injected in the amplifier at t = 0 .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α ( t ) = α 0 + 0 t α 2 I ( τ ) χ d τ ,

Metrics