Abstract

Reflective displays that rely on ambient light as opposed to an internal light source have been making inroads for a variety of important applications, especially those involving mobility where power usage must be aggressively controlled. The underlying color rendering strategies for both reflective and emissive displays have largely been the same, combining three fixed, primary color subpixels to compose the rich gamut that users expect. The result, for reflective color displays, is unfavorable brightness/gamut performance since each of the color subpixels absorbs roughly 2/3 of the incident white light. We demonstrate a new technology that we call the single mirror interferometric display that overcomes such limitations with pixels whose reflectance properties can tune through a continuum of colors, including high contrast black and white reflectance states. We use an effect that we call interferometric absorption in which a thin absorbing metal layer in front of a highly reflective mirror surface selectively absorbs different colors, depending on the gap that separates the two. The gap is controlled by electrostatic actuation in a relatively simple micro-electro-mechanical-system structure. We describe this elegant and powerful color rendering principle and present experimental results for the basic pixel device as well as early system demonstrations.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bright color reflective displays with interlayer reflectors

Stephen Kitson, Adrian Geisow, John Rudin, and Tim Taphouse
Opt. Express 19(16) 15404-15414 (2011)

Enlarging the color gamut of liquid crystal displays with a functional reflective polarizer

Haiwei Chen, Ruidong Zhu, Guanjun Tan, Ming-Chun Li, Seok-Lyul Lee, and Shin-Tson Wu
Opt. Express 25(1) 102-111 (2017)

Generating vivid colors on red-green-blue-white electonic-paper display

Youngshin Kwak, Juyong Park, and Du-Sik Park
Appl. Opt. 47(25) 4491-4500 (2008)

References

  • View by:
  • |
  • |
  • |

  1. M. Miles, E. Larson, C. Chui, M. Kothari, B. Gally, and J. Batey, “Digital paper™ for reflective displays,” J. Soc. Inf. Disp. 11, 209–215 (2003).
    [Crossref]
  2. P. Drzaic, B. Comiskey, J. D. Albert, L. Zhang, A. Loxley, R. Feeney, and J. Jacobson, “A printed and rollable bistable electronic display,” SID Symp. Dig. Tech. Pap. 29, 1131–1134 (1998).
  3. Y. Nakajima, Y. Teranishi, Y. Kida, and Y. Maki, “Ultra-low-power LTPS TFT-LCD technology using a multi-bit pixel memory circuit,” SID Symp. Dig. Tech. Pap. 37, 1185–1188 (2006).
  4. M. Dong and L. Zhong, “Chameleon: a color-adaptive Web browser for mobile OLED displays,” IEEE Trans. Mob. Comput. 11, 724–738 (2012).
  5. B.-W. Lee, C. Park, S. Kim, T. Kim, Y. Yang, J. Oh, J. Choi, M. Hong, D. Sakong, K. Chung, S. Lee, and C. Kim, “TFT-LCD with RGBW color system,” SID Symp. Dig. Tech. Pap. 34, 1212–1215 (2003).
  6. H. A. Macleod, Thin-Film Optical Filters (CRC Press, 2001).
  7. “Standard test method for haze and luminous transmittance of transparent plastics,” (ASTM International, 2013).
  8. J.-D. Park, J.-W. Jang, Y.-S. Kim, S.-H. Jeong, and Y.-M. Ha, “Implementation of 2.2 In. QVGA LTPS TFT-LCDs with the integration of p-type driving circuitry,” in International Display Workshop (2003), pp. 479–482.
  9. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432, 488–492 (2004).
    [Crossref]
  10. C. K. Kang, Y. S. Park, S. I. Park, Y. G. Mo, B. H. Kim, and S. S. Kim, “Integrated scan driver with oxide TFTs using floating gate method,” SID Int. Symp. Dig. Tech. Pap. 42, 25–27 (2011).
  11. H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phys. Lett. 89, 112123 (2006).
    [Crossref]
  12. J. P. Allebach, Selected Papers on Digital Halftoning (SPIE Optical Engineering, 1999).
  13. J. Russ, The Image Processing Handbook, 5th ed. (CRC Press, 2006).
  14. V. V. Gogh, “Irises,” photograph downloaded from http://www.getty.edu/art/gettyguide/artObjectDetails?artobj=947 under the Getty Open Content Program.
  15. S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, 1984).

2012 (1)

M. Dong and L. Zhong, “Chameleon: a color-adaptive Web browser for mobile OLED displays,” IEEE Trans. Mob. Comput. 11, 724–738 (2012).

2011 (1)

C. K. Kang, Y. S. Park, S. I. Park, Y. G. Mo, B. H. Kim, and S. S. Kim, “Integrated scan driver with oxide TFTs using floating gate method,” SID Int. Symp. Dig. Tech. Pap. 42, 25–27 (2011).

2006 (2)

H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phys. Lett. 89, 112123 (2006).
[Crossref]

Y. Nakajima, Y. Teranishi, Y. Kida, and Y. Maki, “Ultra-low-power LTPS TFT-LCD technology using a multi-bit pixel memory circuit,” SID Symp. Dig. Tech. Pap. 37, 1185–1188 (2006).

2004 (1)

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432, 488–492 (2004).
[Crossref]

2003 (2)

B.-W. Lee, C. Park, S. Kim, T. Kim, Y. Yang, J. Oh, J. Choi, M. Hong, D. Sakong, K. Chung, S. Lee, and C. Kim, “TFT-LCD with RGBW color system,” SID Symp. Dig. Tech. Pap. 34, 1212–1215 (2003).

M. Miles, E. Larson, C. Chui, M. Kothari, B. Gally, and J. Batey, “Digital paper™ for reflective displays,” J. Soc. Inf. Disp. 11, 209–215 (2003).
[Crossref]

1998 (1)

P. Drzaic, B. Comiskey, J. D. Albert, L. Zhang, A. Loxley, R. Feeney, and J. Jacobson, “A printed and rollable bistable electronic display,” SID Symp. Dig. Tech. Pap. 29, 1131–1134 (1998).

Abe, K.

H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phys. Lett. 89, 112123 (2006).
[Crossref]

Aiba, T.

H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phys. Lett. 89, 112123 (2006).
[Crossref]

Albert, J. D.

P. Drzaic, B. Comiskey, J. D. Albert, L. Zhang, A. Loxley, R. Feeney, and J. Jacobson, “A printed and rollable bistable electronic display,” SID Symp. Dig. Tech. Pap. 29, 1131–1134 (1998).

Allebach, J. P.

J. P. Allebach, Selected Papers on Digital Halftoning (SPIE Optical Engineering, 1999).

Batey, J.

M. Miles, E. Larson, C. Chui, M. Kothari, B. Gally, and J. Batey, “Digital paper™ for reflective displays,” J. Soc. Inf. Disp. 11, 209–215 (2003).
[Crossref]

Choi, J.

B.-W. Lee, C. Park, S. Kim, T. Kim, Y. Yang, J. Oh, J. Choi, M. Hong, D. Sakong, K. Chung, S. Lee, and C. Kim, “TFT-LCD with RGBW color system,” SID Symp. Dig. Tech. Pap. 34, 1212–1215 (2003).

Chui, C.

M. Miles, E. Larson, C. Chui, M. Kothari, B. Gally, and J. Batey, “Digital paper™ for reflective displays,” J. Soc. Inf. Disp. 11, 209–215 (2003).
[Crossref]

Chung, K.

B.-W. Lee, C. Park, S. Kim, T. Kim, Y. Yang, J. Oh, J. Choi, M. Hong, D. Sakong, K. Chung, S. Lee, and C. Kim, “TFT-LCD with RGBW color system,” SID Symp. Dig. Tech. Pap. 34, 1212–1215 (2003).

Comiskey, B.

P. Drzaic, B. Comiskey, J. D. Albert, L. Zhang, A. Loxley, R. Feeney, and J. Jacobson, “A printed and rollable bistable electronic display,” SID Symp. Dig. Tech. Pap. 29, 1131–1134 (1998).

Den, T.

H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phys. Lett. 89, 112123 (2006).
[Crossref]

Dong, M.

M. Dong and L. Zhong, “Chameleon: a color-adaptive Web browser for mobile OLED displays,” IEEE Trans. Mob. Comput. 11, 724–738 (2012).

Drzaic, P.

P. Drzaic, B. Comiskey, J. D. Albert, L. Zhang, A. Loxley, R. Feeney, and J. Jacobson, “A printed and rollable bistable electronic display,” SID Symp. Dig. Tech. Pap. 29, 1131–1134 (1998).

Feeney, R.

P. Drzaic, B. Comiskey, J. D. Albert, L. Zhang, A. Loxley, R. Feeney, and J. Jacobson, “A printed and rollable bistable electronic display,” SID Symp. Dig. Tech. Pap. 29, 1131–1134 (1998).

Gally, B.

M. Miles, E. Larson, C. Chui, M. Kothari, B. Gally, and J. Batey, “Digital paper™ for reflective displays,” J. Soc. Inf. Disp. 11, 209–215 (2003).
[Crossref]

Ha, Y.-M.

J.-D. Park, J.-W. Jang, Y.-S. Kim, S.-H. Jeong, and Y.-M. Ha, “Implementation of 2.2 In. QVGA LTPS TFT-LCDs with the integration of p-type driving circuitry,” in International Display Workshop (2003), pp. 479–482.

Hirano, M.

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432, 488–492 (2004).
[Crossref]

Hong, M.

B.-W. Lee, C. Park, S. Kim, T. Kim, Y. Yang, J. Oh, J. Choi, M. Hong, D. Sakong, K. Chung, S. Lee, and C. Kim, “TFT-LCD with RGBW color system,” SID Symp. Dig. Tech. Pap. 34, 1212–1215 (2003).

Hosono, H.

H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phys. Lett. 89, 112123 (2006).
[Crossref]

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432, 488–492 (2004).
[Crossref]

Jacobson, J.

P. Drzaic, B. Comiskey, J. D. Albert, L. Zhang, A. Loxley, R. Feeney, and J. Jacobson, “A printed and rollable bistable electronic display,” SID Symp. Dig. Tech. Pap. 29, 1131–1134 (1998).

Jang, J.-W.

J.-D. Park, J.-W. Jang, Y.-S. Kim, S.-H. Jeong, and Y.-M. Ha, “Implementation of 2.2 In. QVGA LTPS TFT-LCDs with the integration of p-type driving circuitry,” in International Display Workshop (2003), pp. 479–482.

Jeong, S.-H.

J.-D. Park, J.-W. Jang, Y.-S. Kim, S.-H. Jeong, and Y.-M. Ha, “Implementation of 2.2 In. QVGA LTPS TFT-LCDs with the integration of p-type driving circuitry,” in International Display Workshop (2003), pp. 479–482.

Kamiya, T.

H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phys. Lett. 89, 112123 (2006).
[Crossref]

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432, 488–492 (2004).
[Crossref]

Kang, C. K.

C. K. Kang, Y. S. Park, S. I. Park, Y. G. Mo, B. H. Kim, and S. S. Kim, “Integrated scan driver with oxide TFTs using floating gate method,” SID Int. Symp. Dig. Tech. Pap. 42, 25–27 (2011).

Kida, Y.

Y. Nakajima, Y. Teranishi, Y. Kida, and Y. Maki, “Ultra-low-power LTPS TFT-LCD technology using a multi-bit pixel memory circuit,” SID Symp. Dig. Tech. Pap. 37, 1185–1188 (2006).

Kim, B. H.

C. K. Kang, Y. S. Park, S. I. Park, Y. G. Mo, B. H. Kim, and S. S. Kim, “Integrated scan driver with oxide TFTs using floating gate method,” SID Int. Symp. Dig. Tech. Pap. 42, 25–27 (2011).

Kim, C.

B.-W. Lee, C. Park, S. Kim, T. Kim, Y. Yang, J. Oh, J. Choi, M. Hong, D. Sakong, K. Chung, S. Lee, and C. Kim, “TFT-LCD with RGBW color system,” SID Symp. Dig. Tech. Pap. 34, 1212–1215 (2003).

Kim, S.

B.-W. Lee, C. Park, S. Kim, T. Kim, Y. Yang, J. Oh, J. Choi, M. Hong, D. Sakong, K. Chung, S. Lee, and C. Kim, “TFT-LCD with RGBW color system,” SID Symp. Dig. Tech. Pap. 34, 1212–1215 (2003).

Kim, S. S.

C. K. Kang, Y. S. Park, S. I. Park, Y. G. Mo, B. H. Kim, and S. S. Kim, “Integrated scan driver with oxide TFTs using floating gate method,” SID Int. Symp. Dig. Tech. Pap. 42, 25–27 (2011).

Kim, T.

B.-W. Lee, C. Park, S. Kim, T. Kim, Y. Yang, J. Oh, J. Choi, M. Hong, D. Sakong, K. Chung, S. Lee, and C. Kim, “TFT-LCD with RGBW color system,” SID Symp. Dig. Tech. Pap. 34, 1212–1215 (2003).

Kim, Y.-S.

J.-D. Park, J.-W. Jang, Y.-S. Kim, S.-H. Jeong, and Y.-M. Ha, “Implementation of 2.2 In. QVGA LTPS TFT-LCDs with the integration of p-type driving circuitry,” in International Display Workshop (2003), pp. 479–482.

Kothari, M.

M. Miles, E. Larson, C. Chui, M. Kothari, B. Gally, and J. Batey, “Digital paper™ for reflective displays,” J. Soc. Inf. Disp. 11, 209–215 (2003).
[Crossref]

Kumomi, H.

H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phys. Lett. 89, 112123 (2006).
[Crossref]

Larson, E.

M. Miles, E. Larson, C. Chui, M. Kothari, B. Gally, and J. Batey, “Digital paper™ for reflective displays,” J. Soc. Inf. Disp. 11, 209–215 (2003).
[Crossref]

Lee, B.-W.

B.-W. Lee, C. Park, S. Kim, T. Kim, Y. Yang, J. Oh, J. Choi, M. Hong, D. Sakong, K. Chung, S. Lee, and C. Kim, “TFT-LCD with RGBW color system,” SID Symp. Dig. Tech. Pap. 34, 1212–1215 (2003).

Lee, S.

B.-W. Lee, C. Park, S. Kim, T. Kim, Y. Yang, J. Oh, J. Choi, M. Hong, D. Sakong, K. Chung, S. Lee, and C. Kim, “TFT-LCD with RGBW color system,” SID Symp. Dig. Tech. Pap. 34, 1212–1215 (2003).

Loxley, A.

P. Drzaic, B. Comiskey, J. D. Albert, L. Zhang, A. Loxley, R. Feeney, and J. Jacobson, “A printed and rollable bistable electronic display,” SID Symp. Dig. Tech. Pap. 29, 1131–1134 (1998).

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters (CRC Press, 2001).

Maki, Y.

Y. Nakajima, Y. Teranishi, Y. Kida, and Y. Maki, “Ultra-low-power LTPS TFT-LCD technology using a multi-bit pixel memory circuit,” SID Symp. Dig. Tech. Pap. 37, 1185–1188 (2006).

Miles, M.

M. Miles, E. Larson, C. Chui, M. Kothari, B. Gally, and J. Batey, “Digital paper™ for reflective displays,” J. Soc. Inf. Disp. 11, 209–215 (2003).
[Crossref]

Mo, Y. G.

C. K. Kang, Y. S. Park, S. I. Park, Y. G. Mo, B. H. Kim, and S. S. Kim, “Integrated scan driver with oxide TFTs using floating gate method,” SID Int. Symp. Dig. Tech. Pap. 42, 25–27 (2011).

Nakajima, Y.

Y. Nakajima, Y. Teranishi, Y. Kida, and Y. Maki, “Ultra-low-power LTPS TFT-LCD technology using a multi-bit pixel memory circuit,” SID Symp. Dig. Tech. Pap. 37, 1185–1188 (2006).

Nomura, K.

H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phys. Lett. 89, 112123 (2006).
[Crossref]

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432, 488–492 (2004).
[Crossref]

Oh, J.

B.-W. Lee, C. Park, S. Kim, T. Kim, Y. Yang, J. Oh, J. Choi, M. Hong, D. Sakong, K. Chung, S. Lee, and C. Kim, “TFT-LCD with RGBW color system,” SID Symp. Dig. Tech. Pap. 34, 1212–1215 (2003).

Ohta, H.

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432, 488–492 (2004).
[Crossref]

Park, C.

B.-W. Lee, C. Park, S. Kim, T. Kim, Y. Yang, J. Oh, J. Choi, M. Hong, D. Sakong, K. Chung, S. Lee, and C. Kim, “TFT-LCD with RGBW color system,” SID Symp. Dig. Tech. Pap. 34, 1212–1215 (2003).

Park, J.-D.

J.-D. Park, J.-W. Jang, Y.-S. Kim, S.-H. Jeong, and Y.-M. Ha, “Implementation of 2.2 In. QVGA LTPS TFT-LCDs with the integration of p-type driving circuitry,” in International Display Workshop (2003), pp. 479–482.

Park, S. I.

C. K. Kang, Y. S. Park, S. I. Park, Y. G. Mo, B. H. Kim, and S. S. Kim, “Integrated scan driver with oxide TFTs using floating gate method,” SID Int. Symp. Dig. Tech. Pap. 42, 25–27 (2011).

Park, Y. S.

C. K. Kang, Y. S. Park, S. I. Park, Y. G. Mo, B. H. Kim, and S. S. Kim, “Integrated scan driver with oxide TFTs using floating gate method,” SID Int. Symp. Dig. Tech. Pap. 42, 25–27 (2011).

Ramo, S.

S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, 1984).

Russ, J.

J. Russ, The Image Processing Handbook, 5th ed. (CRC Press, 2006).

Sakong, D.

B.-W. Lee, C. Park, S. Kim, T. Kim, Y. Yang, J. Oh, J. Choi, M. Hong, D. Sakong, K. Chung, S. Lee, and C. Kim, “TFT-LCD with RGBW color system,” SID Symp. Dig. Tech. Pap. 34, 1212–1215 (2003).

Sano, M.

H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phys. Lett. 89, 112123 (2006).
[Crossref]

Takagi, A.

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432, 488–492 (2004).
[Crossref]

Teranishi, Y.

Y. Nakajima, Y. Teranishi, Y. Kida, and Y. Maki, “Ultra-low-power LTPS TFT-LCD technology using a multi-bit pixel memory circuit,” SID Symp. Dig. Tech. Pap. 37, 1185–1188 (2006).

Van Duzer, T.

S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, 1984).

Whinnery, J. R.

S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, 1984).

Yabuta, H.

H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phys. Lett. 89, 112123 (2006).
[Crossref]

Yang, Y.

B.-W. Lee, C. Park, S. Kim, T. Kim, Y. Yang, J. Oh, J. Choi, M. Hong, D. Sakong, K. Chung, S. Lee, and C. Kim, “TFT-LCD with RGBW color system,” SID Symp. Dig. Tech. Pap. 34, 1212–1215 (2003).

Zhang, L.

P. Drzaic, B. Comiskey, J. D. Albert, L. Zhang, A. Loxley, R. Feeney, and J. Jacobson, “A printed and rollable bistable electronic display,” SID Symp. Dig. Tech. Pap. 29, 1131–1134 (1998).

Zhong, L.

M. Dong and L. Zhong, “Chameleon: a color-adaptive Web browser for mobile OLED displays,” IEEE Trans. Mob. Comput. 11, 724–738 (2012).

Appl. Phys. Lett. (1)

H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phys. Lett. 89, 112123 (2006).
[Crossref]

IEEE Trans. Mob. Comput. (1)

M. Dong and L. Zhong, “Chameleon: a color-adaptive Web browser for mobile OLED displays,” IEEE Trans. Mob. Comput. 11, 724–738 (2012).

J. Soc. Inf. Disp. (1)

M. Miles, E. Larson, C. Chui, M. Kothari, B. Gally, and J. Batey, “Digital paper™ for reflective displays,” J. Soc. Inf. Disp. 11, 209–215 (2003).
[Crossref]

Nature (1)

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432, 488–492 (2004).
[Crossref]

SID Int. Symp. Dig. Tech. Pap. (1)

C. K. Kang, Y. S. Park, S. I. Park, Y. G. Mo, B. H. Kim, and S. S. Kim, “Integrated scan driver with oxide TFTs using floating gate method,” SID Int. Symp. Dig. Tech. Pap. 42, 25–27 (2011).

SID Symp. Dig. Tech. Pap. (3)

P. Drzaic, B. Comiskey, J. D. Albert, L. Zhang, A. Loxley, R. Feeney, and J. Jacobson, “A printed and rollable bistable electronic display,” SID Symp. Dig. Tech. Pap. 29, 1131–1134 (1998).

Y. Nakajima, Y. Teranishi, Y. Kida, and Y. Maki, “Ultra-low-power LTPS TFT-LCD technology using a multi-bit pixel memory circuit,” SID Symp. Dig. Tech. Pap. 37, 1185–1188 (2006).

B.-W. Lee, C. Park, S. Kim, T. Kim, Y. Yang, J. Oh, J. Choi, M. Hong, D. Sakong, K. Chung, S. Lee, and C. Kim, “TFT-LCD with RGBW color system,” SID Symp. Dig. Tech. Pap. 34, 1212–1215 (2003).

Other (7)

H. A. Macleod, Thin-Film Optical Filters (CRC Press, 2001).

“Standard test method for haze and luminous transmittance of transparent plastics,” (ASTM International, 2013).

J.-D. Park, J.-W. Jang, Y.-S. Kim, S.-H. Jeong, and Y.-M. Ha, “Implementation of 2.2 In. QVGA LTPS TFT-LCDs with the integration of p-type driving circuitry,” in International Display Workshop (2003), pp. 479–482.

J. P. Allebach, Selected Papers on Digital Halftoning (SPIE Optical Engineering, 1999).

J. Russ, The Image Processing Handbook, 5th ed. (CRC Press, 2006).

V. V. Gogh, “Irises,” photograph downloaded from http://www.getty.edu/art/gettyguide/artObjectDetails?artobj=947 under the Getty Open Content Program.

S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (24)

Fig. 1.
Fig. 1. Display system architecture.
Fig. 2.
Fig. 2. RGB versus SMI color rendering.
Fig. 3.
Fig. 3. IMOD pixel—optical components to harness interferometric absorption.
Fig. 4.
Fig. 4. Standing-wave electric field diagram.
Fig. 5.
Fig. 5. Dielectric coatings to enhance the interferometric absorptive colors. The red/green/blue curves indicate the electric field intensities for 630, 530, and 440 nm light. Light enters from the right, and the mirror reflective surface (AlCu) is on the left side of the figure.
Fig. 6.
Fig. 6. Reflectivity at various gap values.
Fig. 7.
Fig. 7. Interferometric colors plotted on u v as a function of air gap (the trajectory starts near the X-marked location and spirals clockwise as the air gap is increased from 10 to 640 nm with a 5 nm step).
Fig. 8.
Fig. 8. Reflective color spiral with the application of a diffuser in a typical indoor illumination condition (50% diffused and 50% collimated light).
Fig. 9.
Fig. 9. Three-terminal configuration of SMI pixel. The mirror is in between the top (common) and bottom (bias) electrical terminals and driven through the TFT switch. Although not shown, the top terminal and absorber are fixed to a thick dielectric layer on the top and the substrate, respectively, and do not move, while the mirror is suspended by mechanical hinges to a quiescent position.
Fig. 10.
Fig. 10. Three-dimensional exploded view of the SMI MEMS. The mirror is suspended by four hinges and has a stiffener in the middle to maintain flatness. The top terminal consists of a metal layer covered by a thick dielectric to form a mechanical platform for TFT electronics.
Fig. 11.
Fig. 11. Mirror position as a function of voltage applied.
Fig. 12.
Fig. 12. Circuit to measure current flowing into SMI pixels as it is actuated. A ramp is applied to the positive terminal of the op-amp to drive the mirror through its entire range. The output of the analog-to-digital converter is the current drawn by the group of SMI pixels.
Fig. 13.
Fig. 13. SMI panel system architecture. IGZO TFT technology was developed to provide both the pixel switches as well as to implement an integrated row driver.
Fig. 14.
Fig. 14. Exploded view of the MEMS + IGZO TFT pixel built up starting from the viewing side.
Fig. 15.
Fig. 15. Bottom-gate configuration with etch stop layer (ESL). The ESL protects the IGZO surface (back-channel) from process damage during source and drain (S/D) metal etching.
Fig. 16.
Fig. 16. Typical device transfer curves. The device dimensions are W / L = 4 μm / 8 μm , and nine devices in 6 glass wafer are plotted together. The inset table summarizes the TFT parameters. The curves taken from different parts of the wafer are overlaid together.
Fig. 17.
Fig. 17. Computer simulation of a spatially dithered image using 16 SMI primary colors. This simulation used an error diffusion algorithm that included the splitting of the image into four subframes with equal duration to implement a spatio-temporal dither [14].
Fig. 18.
Fig. 18. Mirrors driven to several colors demonstrating the flatness and uniformity that is achievable.
Fig. 19.
Fig. 19. Close-up image of mirrors exhibiting a maximum mirror sag of less than 10 nm across the 74 μm pitch.
Fig. 20.
Fig. 20. Measured color gamut of 15 SMI colors.
Fig. 21.
Fig. 21. Initial SMI panel demonstrations. Both images and video were rendered at 60 Hz. The illumination used was the available light in an average, fluorescent lamp lit office environment.
Fig. 22.
Fig. 22. SMI off-axis viewing examples: (a) camera directed 10° off surface normal, (b) 20°, and (c) 40°.
Fig. 23.
Fig. 23. Transmission line model.
Fig. 24.
Fig. 24. ( n k ) for various metals. Vanadium (V) and the alloy molybdenum chromium (MoCr) exhibit the closest match between the real and imaginary parts of the refractive index across the visible spectrum.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

F = K ( x x 0 ) ( V d V b ) 2 2 ϵ A x 2 + V d 2 2 ϵ A ( d x ) 2 = 0 ,
0 > F x = K + ϵ A ( V d V b ) 2 x 3 + ϵ A V d 2 ( d x ) 3 ,
Z M = Z 0 n j k .
Z s = Z 0 n s .
Z M Q = Z M j tan ( β d a ) = Z 0 n j k j tan ( 2 π ( n j k ) d a λ ) Z 0 j 2 π ( n j k ) 2 d a λ = Z 0 ( 2 π d a λ ) 2 n k j ( n 2 k 2 ) ( n 2 + k 2 ) 2 ,
Z 0 ( 2 π d a λ ) 2 n k ( n 2 + k 2 ) 2 = Z 0 n s d a λ = n k n s π ( n 2 + k 2 ) 2 .

Metrics