Abstract

The capacity of free-space optical (FSO) communication links could potentially be increased by the simultaneous transmission of multiple orbital angular momentum (OAM) beams. For such an OAM multiplexing approach, one requires the collection of adequate power as well as proportion of the phase front for a system with minimal crosstalk. Here we study the design considerations for an OAM-multiplexed free-space data link, analyzing the power loss, channel crosstalk, and power penalty of the link in the case of limited-size receiver apertures and misalignment between the transmitter and the receiver. We describe the trade-offs for different transmitted beam sizes, receiver aperture sizes, and mode spacing of the transmitted OAM beams under given lateral displacements or receiver angular errors. Through simulations and some experiments, we show that (1) a system with a larger transmitted beam size and a larger receiver aperture is more tolerant to lateral displacement but less tolerant to the receiver angular error, and (2) a system with a larger mode spacing, which uses larger OAM charges, suffers more system power loss but less channel crosstalk; thus, a system with a small mode spacing shows a lower system power penalty when system power loss dominates (e.g., a small lateral displacement or receiver angular error), whereas that with a larger mode spacing shows a lower power penalty when channel crosstalk dominates (e.g., a larger lateral displacement or receiver angular error). This work could be beneficial to the practical implementation of OAM-multiplexed FSO links.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Orbital-angular-momentum-multiplexed free-space optical communication link using transmitter lenses

Long Li, Guodong Xie, Yongxiong Ren, Nisar Ahmed, Hao Huang, Zhe Zhao, Peicheng Liao, Martin P. J. Lavery, Yan Yan, ChangJing Bao, Zhe Wang, Asher J. Willner, Nima Ashrafi, Solyman Ashrafi, Moshe Tur, and Alan E. Willner
Appl. Opt. 55(8) 2098-2103 (2016)

Power loss mitigation of orbital-angular-momentum-multiplexed free-space optical links using nonzero radial index Laguerre–Gaussian beams

Long Li, Guodong Xie, Yan Yan, Yongxiong Ren, Peicheng Liao, Zhe Zhao, Nisar Ahmed, Zhe Wang, Changjing Bao, Asher J. Willner, Solyman Ashrafi, Moshe Tur, and Alan E. Willner
J. Opt. Soc. Am. B 34(1) 1-6 (2017)

Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link

Jaime A. Anguita, Mark A. Neifeld, and Bane V. Vasic
Appl. Opt. 47(13) 2414-2429 (2008)

References

  • View by:
  • |
  • |
  • |

  1. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
    [Crossref]
  2. I. Djordjevic, “Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation,” Opt. Express 19, 14277–14289 (2011).
    [Crossref]
  3. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
    [Crossref]
  4. A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
    [Crossref]
  5. F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 1–17 (2012).
  6. Y. Yan, G. Xie, M. P. Lavery, H. Huang, N. Ahmed, C. Bao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
    [Crossref]
  7. S. Saghafi, C. Sheppard, J. Piper, “Characterising elegant and standard Hermite–Gaussian beam modes,” Opt. Commun. 191, 173–179 (2001).
    [Crossref]
  8. M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
    [Crossref]
  9. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
    [Crossref]
  10. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
    [Crossref]
  11. J. Anguita, M. Neifeld, B. Vasic, “Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link,” Appl. Opt. 47, 2414–2429 (2008).
    [Crossref]
  12. G. Xie, L. Li, Y. Ren, H. Huang, Y. Yan, N. Ahmed, Z. Zhao, M. P. J. Lavery, N. Ashrafi, S. Ashrafi, M. Tur, A. F. Molisch, A. E. Willner, “Performance metrics and design parameters for an FSO communications link based on multiplexing of multiple orbital-angular-momentum beams,” in IEEE Globecom Workshop (IEEE, 2014), pp. 481–486.
  13. J. Torres, C. Osorio, L. Torner, “Orbital angular momentum of entangled counter propagating photon,” Opt. Lett. 29, 1939–1941 (2004).
    [Crossref]
  14. H. Qassim, F. M. Miatto, J. P. Torres, M. J. Padgett, E. Karimi, R. W. Boyd, “Limitations to the determination of a Laguerre–Gauss spectrum via projective, phase-flattening measurement,” J. Opt. Soc. Am. B 31, A20–A23 (2014).
    [Crossref]
  15. G. Turnbull, D. Robertson, G. Smith, “The generation of free-space Laguerre–Gaussian modes at millimetre-wave frequencies by use of a spiral phase plate,” Opt. Commun. 127, 183–188 (1996).
    [Crossref]
  16. R. Edgar, “The Fresnel diffraction images of periodic structures,” J. Mod. Opt. 16, 281–287 (1969).
  17. R. Phillips, L. Andrews, “Spot size and divergence for Laguerre–Gaussian beams of any order,” Appl. Opt. 22, 643–644 (1983).
    [Crossref]
  18. X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
    [Crossref]
  19. T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler, X. Cai, S. J. B. Yoo, “Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices,” Opt. Express 20, 145–156 (2012).
  20. N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, T. Hara, “Generation of high-quality higher-order Laguerre–Gaussian beams using liquid-crystal-on-silicon spatial light modulators,” J. Opt. Soc. Am. A 25, 1642–1651 (2008).
    [Crossref]
  21. A. Yao, M. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161–204 (2011).
  22. H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, A. E. Willner, “100  Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39, 197–200 (2014).
    [Crossref]
  23. A. Farid, S. Hranilovic, “Outage capacity optimization for free space optical links with pointing errors,” J. Lightwave Technol. 25, 1702–1710 (2007).
    [Crossref]
  24. http://photonic.ws/Free_Space_Optical_Communication_Tip-Tilt-Mirror_Brochure.pdf , 2014, pp. 6–7.
  25. S. Franke-Arnold, S. M. Barnett, E. Yao, J. Leach, J. Courtial, M. Padgett, “Uncertainty principle for angular position and angular momentum,” New J. Phys. 6, 103 (2004).
    [Crossref]
  26. J. Proakis, M. Salehi, Digital Communications, 5th ed. (McGraw-Hill Higher Education, 2007).
  27. International Telecommunication Union, “Forward error correction for high bit-rate DWDM submarine systems,” , Appendix I.9 (2004).
  28. A. Molisch, Wireless Communications, 2nd ed. (Wiley, 2010).
  29. X. Zhu, J. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
    [Crossref]
  30. L. Andrews, R. Phillips, Laser Beam Propagation through Random Media (SPIE, 2005).
  31. N. Chandrasekaran, J. Shapiro, “Photon information efficient communication through atmospheric turbulence—part I: channel model and propagation statistics,” J. Lightwave Technol. 32, 1075–1087 (2014).
    [Crossref]
  32. Y. Ren, H. Huang, G. Xie, N. Ahmed, Y. Yan, B. I. Erkmen, N. Chandrasekaran, M. P. J. Lavery, N. K. Steinhoff, M. Tur, S. Dolinar, M. Neifeld, M. J. Padgett, R. W. Boyd, J. H. Shapiro, A. E. Willner, “Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing,” Opt. Lett. 38, 4062–4065 (2013).
    [Crossref]
  33. Q. Spencer, A. Swindlehurst, M. Haardt, “Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels,” IEEE Trans. Signal Process. 52, 461–471 (2004).
    [Crossref]
  34. A. Goldsmith, S. A. Jafar, N. Jindal, S. Vishwanath, “Capacity limits of MIMO channels,” IEEE J. Sel. Areas Commun. 21, 684–702 (2003).
    [Crossref]
  35. B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99, 087701 (2007).
    [Crossref]
  36. M. Tamagnone, C. Craeye, J. Perruisseau-Carrier, “Comment on ‘Encoding many channels on the same frequency through radio vorticity: first experimental test’,” New J. Phys. 14, 118001 (2012).
    [Crossref]
  37. L. Li, G. Xie, Y. Ren, N. Ahmed, H. Huang, Z. Zhao, P. Liao, M. P. J. Lavery, Y. Yan, C. Bao, Z. Wang, N. Ashrafi, S. Ashrafi, R. D. Linquist, M. Tur, A. E. Willner, “Performance enhancement of an orbital angular momentum based free-space optical communication link through beam divergence controlling,” in Optical Fiber Communication (Optical Society of America, 2015), paper M2F.6.

2014 (5)

2013 (1)

2012 (5)

M. Tamagnone, C. Craeye, J. Perruisseau-Carrier, “Comment on ‘Encoding many channels on the same frequency through radio vorticity: first experimental test’,” New J. Phys. 14, 118001 (2012).
[Crossref]

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 1–17 (2012).

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler, X. Cai, S. J. B. Yoo, “Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices,” Opt. Express 20, 145–156 (2012).

2011 (2)

2008 (2)

2007 (2)

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99, 087701 (2007).
[Crossref]

A. Farid, S. Hranilovic, “Outage capacity optimization for free space optical links with pointing errors,” J. Lightwave Technol. 25, 1702–1710 (2007).
[Crossref]

2004 (4)

J. Torres, C. Osorio, L. Torner, “Orbital angular momentum of entangled counter propagating photon,” Opt. Lett. 29, 1939–1941 (2004).
[Crossref]

G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
[Crossref]

S. Franke-Arnold, S. M. Barnett, E. Yao, J. Leach, J. Courtial, M. Padgett, “Uncertainty principle for angular position and angular momentum,” New J. Phys. 6, 103 (2004).
[Crossref]

Q. Spencer, A. Swindlehurst, M. Haardt, “Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels,” IEEE Trans. Signal Process. 52, 461–471 (2004).
[Crossref]

2003 (1)

A. Goldsmith, S. A. Jafar, N. Jindal, S. Vishwanath, “Capacity limits of MIMO channels,” IEEE J. Sel. Areas Commun. 21, 684–702 (2003).
[Crossref]

2002 (2)

X. Zhu, J. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref]

2001 (2)

A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref]

S. Saghafi, C. Sheppard, J. Piper, “Characterising elegant and standard Hermite–Gaussian beam modes,” Opt. Commun. 191, 173–179 (2001).
[Crossref]

1996 (1)

G. Turnbull, D. Robertson, G. Smith, “The generation of free-space Laguerre–Gaussian modes at millimetre-wave frequencies by use of a spiral phase plate,” Opt. Commun. 127, 183–188 (1996).
[Crossref]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

1983 (1)

1969 (1)

R. Edgar, “The Fresnel diffraction images of periodic structures,” J. Mod. Opt. 16, 281–287 (1969).

Ahmed, N.

Y. Yan, G. Xie, M. P. Lavery, H. Huang, N. Ahmed, C. Bao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, A. E. Willner, “100  Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39, 197–200 (2014).
[Crossref]

Y. Ren, H. Huang, G. Xie, N. Ahmed, Y. Yan, B. I. Erkmen, N. Chandrasekaran, M. P. J. Lavery, N. K. Steinhoff, M. Tur, S. Dolinar, M. Neifeld, M. J. Padgett, R. W. Boyd, J. H. Shapiro, A. E. Willner, “Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing,” Opt. Lett. 38, 4062–4065 (2013).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

G. Xie, L. Li, Y. Ren, H. Huang, Y. Yan, N. Ahmed, Z. Zhao, M. P. J. Lavery, N. Ashrafi, S. Ashrafi, M. Tur, A. F. Molisch, A. E. Willner, “Performance metrics and design parameters for an FSO communications link based on multiplexing of multiple orbital-angular-momentum beams,” in IEEE Globecom Workshop (IEEE, 2014), pp. 481–486.

L. Li, G. Xie, Y. Ren, N. Ahmed, H. Huang, Z. Zhao, P. Liao, M. P. J. Lavery, Y. Yan, C. Bao, Z. Wang, N. Ashrafi, S. Ashrafi, R. D. Linquist, M. Tur, A. E. Willner, “Performance enhancement of an orbital angular momentum based free-space optical communication link through beam divergence controlling,” in Optical Fiber Communication (Optical Society of America, 2015), paper M2F.6.

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Ando, T.

Andrews, L.

Anguita, J.

Ashrafi, N.

G. Xie, L. Li, Y. Ren, H. Huang, Y. Yan, N. Ahmed, Z. Zhao, M. P. J. Lavery, N. Ashrafi, S. Ashrafi, M. Tur, A. F. Molisch, A. E. Willner, “Performance metrics and design parameters for an FSO communications link based on multiplexing of multiple orbital-angular-momentum beams,” in IEEE Globecom Workshop (IEEE, 2014), pp. 481–486.

L. Li, G. Xie, Y. Ren, N. Ahmed, H. Huang, Z. Zhao, P. Liao, M. P. J. Lavery, Y. Yan, C. Bao, Z. Wang, N. Ashrafi, S. Ashrafi, R. D. Linquist, M. Tur, A. E. Willner, “Performance enhancement of an orbital angular momentum based free-space optical communication link through beam divergence controlling,” in Optical Fiber Communication (Optical Society of America, 2015), paper M2F.6.

Ashrafi, S.

L. Li, G. Xie, Y. Ren, N. Ahmed, H. Huang, Z. Zhao, P. Liao, M. P. J. Lavery, Y. Yan, C. Bao, Z. Wang, N. Ashrafi, S. Ashrafi, R. D. Linquist, M. Tur, A. E. Willner, “Performance enhancement of an orbital angular momentum based free-space optical communication link through beam divergence controlling,” in Optical Fiber Communication (Optical Society of America, 2015), paper M2F.6.

G. Xie, L. Li, Y. Ren, H. Huang, Y. Yan, N. Ahmed, Z. Zhao, M. P. J. Lavery, N. Ashrafi, S. Ashrafi, M. Tur, A. F. Molisch, A. E. Willner, “Performance metrics and design parameters for an FSO communications link based on multiplexing of multiple orbital-angular-momentum beams,” in IEEE Globecom Workshop (IEEE, 2014), pp. 481–486.

Bao, C.

Y. Yan, G. Xie, M. P. Lavery, H. Huang, N. Ahmed, C. Bao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

L. Li, G. Xie, Y. Ren, N. Ahmed, H. Huang, Z. Zhao, P. Liao, M. P. J. Lavery, Y. Yan, C. Bao, Z. Wang, N. Ashrafi, S. Ashrafi, R. D. Linquist, M. Tur, A. E. Willner, “Performance enhancement of an orbital angular momentum based free-space optical communication link through beam divergence controlling,” in Optical Fiber Communication (Optical Society of America, 2015), paper M2F.6.

Barnett, S.

Barnett, S. M.

S. Franke-Arnold, S. M. Barnett, E. Yao, J. Leach, J. Courtial, M. Padgett, “Uncertainty principle for angular position and angular momentum,” New J. Phys. 6, 103 (2004).
[Crossref]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Bergman, J.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99, 087701 (2007).
[Crossref]

Bianchini, A.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 1–17 (2012).

Birnbaum, K. M.

Boyd, R. W.

Cai, X.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler, X. Cai, S. J. B. Yoo, “Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices,” Opt. Express 20, 145–156 (2012).

Carozzi, T. D.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99, 087701 (2007).
[Crossref]

Chandrasekaran, N.

Courtial, J.

G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
[Crossref]

S. Franke-Arnold, S. M. Barnett, E. Yao, J. Leach, J. Courtial, M. Padgett, “Uncertainty principle for angular position and angular momentum,” New J. Phys. 6, 103 (2004).
[Crossref]

Craeye, C.

M. Tamagnone, C. Craeye, J. Perruisseau-Carrier, “Comment on ‘Encoding many channels on the same frequency through radio vorticity: first experimental test’,” New J. Phys. 14, 118001 (2012).
[Crossref]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref]

Djordjevic, I.

Djordjevic, S. S.

T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler, X. Cai, S. J. B. Yoo, “Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices,” Opt. Express 20, 145–156 (2012).

Dolinar, S.

Dolinar, S. J.

Ebbesen, T. W.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref]

Edgar, R.

R. Edgar, “The Fresnel diffraction images of periodic structures,” J. Mod. Opt. 16, 281–287 (1969).

Erkmen, B. I.

Farid, A.

Fazal, I. M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Fickler, R.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
[Crossref]

Fink, M.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
[Crossref]

Fontaine, N. K.

T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler, X. Cai, S. J. B. Yoo, “Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices,” Opt. Express 20, 145–156 (2012).

Franke-Arnold, S.

S. Franke-Arnold, S. M. Barnett, E. Yao, J. Leach, J. Courtial, M. Padgett, “Uncertainty principle for angular position and angular momentum,” New J. Phys. 6, 103 (2004).
[Crossref]

G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
[Crossref]

Fukuchi, N.

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref]

Geisler, D. J.

T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler, X. Cai, S. J. B. Yoo, “Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices,” Opt. Express 20, 145–156 (2012).

Gibson, G.

Goldsmith, A.

A. Goldsmith, S. A. Jafar, N. Jindal, S. Vishwanath, “Capacity limits of MIMO channels,” IEEE J. Sel. Areas Commun. 21, 684–702 (2003).
[Crossref]

Haardt, M.

Q. Spencer, A. Swindlehurst, M. Haardt, “Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels,” IEEE Trans. Signal Process. 52, 461–471 (2004).
[Crossref]

Handsteiner, J.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
[Crossref]

Hara, T.

Hranilovic, S.

Huang, H.

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, A. E. Willner, “100  Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39, 197–200 (2014).
[Crossref]

Y. Yan, G. Xie, M. P. Lavery, H. Huang, N. Ahmed, C. Bao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

Y. Ren, H. Huang, G. Xie, N. Ahmed, Y. Yan, B. I. Erkmen, N. Chandrasekaran, M. P. J. Lavery, N. K. Steinhoff, M. Tur, S. Dolinar, M. Neifeld, M. J. Padgett, R. W. Boyd, J. H. Shapiro, A. E. Willner, “Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing,” Opt. Lett. 38, 4062–4065 (2013).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

G. Xie, L. Li, Y. Ren, H. Huang, Y. Yan, N. Ahmed, Z. Zhao, M. P. J. Lavery, N. Ashrafi, S. Ashrafi, M. Tur, A. F. Molisch, A. E. Willner, “Performance metrics and design parameters for an FSO communications link based on multiplexing of multiple orbital-angular-momentum beams,” in IEEE Globecom Workshop (IEEE, 2014), pp. 481–486.

L. Li, G. Xie, Y. Ren, N. Ahmed, H. Huang, Z. Zhao, P. Liao, M. P. J. Lavery, Y. Yan, C. Bao, Z. Wang, N. Ashrafi, S. Ashrafi, R. D. Linquist, M. Tur, A. E. Willner, “Performance enhancement of an orbital angular momentum based free-space optical communication link through beam divergence controlling,” in Optical Fiber Communication (Optical Society of America, 2015), paper M2F.6.

Ibragimov, N. H.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99, 087701 (2007).
[Crossref]

Inoue, T.

Istomin, Y. N.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99, 087701 (2007).
[Crossref]

Jafar, S. A.

A. Goldsmith, S. A. Jafar, N. Jindal, S. Vishwanath, “Capacity limits of MIMO channels,” IEEE J. Sel. Areas Commun. 21, 684–702 (2003).
[Crossref]

Jindal, N.

A. Goldsmith, S. A. Jafar, N. Jindal, S. Vishwanath, “Capacity limits of MIMO channels,” IEEE J. Sel. Areas Commun. 21, 684–702 (2003).
[Crossref]

Johnson-Morris, B.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

Kahn, J.

X. Zhu, J. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
[Crossref]

Karimi, E.

Khamitova, R.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99, 087701 (2007).
[Crossref]

Krenn, M.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
[Crossref]

Lavery, M. P.

Y. Yan, G. Xie, M. P. Lavery, H. Huang, N. Ahmed, C. Bao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

Lavery, M. P. J.

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, A. E. Willner, “100  Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39, 197–200 (2014).
[Crossref]

Y. Ren, H. Huang, G. Xie, N. Ahmed, Y. Yan, B. I. Erkmen, N. Chandrasekaran, M. P. J. Lavery, N. K. Steinhoff, M. Tur, S. Dolinar, M. Neifeld, M. J. Padgett, R. W. Boyd, J. H. Shapiro, A. E. Willner, “Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing,” Opt. Lett. 38, 4062–4065 (2013).
[Crossref]

L. Li, G. Xie, Y. Ren, N. Ahmed, H. Huang, Z. Zhao, P. Liao, M. P. J. Lavery, Y. Yan, C. Bao, Z. Wang, N. Ashrafi, S. Ashrafi, R. D. Linquist, M. Tur, A. E. Willner, “Performance enhancement of an orbital angular momentum based free-space optical communication link through beam divergence controlling,” in Optical Fiber Communication (Optical Society of America, 2015), paper M2F.6.

G. Xie, L. Li, Y. Ren, H. Huang, Y. Yan, N. Ahmed, Z. Zhao, M. P. J. Lavery, N. Ashrafi, S. Ashrafi, M. Tur, A. F. Molisch, A. E. Willner, “Performance metrics and design parameters for an FSO communications link based on multiplexing of multiple orbital-angular-momentum beams,” in IEEE Globecom Workshop (IEEE, 2014), pp. 481–486.

Leach, J.

S. Franke-Arnold, S. M. Barnett, E. Yao, J. Leach, J. Courtial, M. Padgett, “Uncertainty principle for angular position and angular momentum,” New J. Phys. 6, 103 (2004).
[Crossref]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref]

Li, L.

Y. Yan, G. Xie, M. P. Lavery, H. Huang, N. Ahmed, C. Bao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

G. Xie, L. Li, Y. Ren, H. Huang, Y. Yan, N. Ahmed, Z. Zhao, M. P. J. Lavery, N. Ashrafi, S. Ashrafi, M. Tur, A. F. Molisch, A. E. Willner, “Performance metrics and design parameters for an FSO communications link based on multiplexing of multiple orbital-angular-momentum beams,” in IEEE Globecom Workshop (IEEE, 2014), pp. 481–486.

L. Li, G. Xie, Y. Ren, N. Ahmed, H. Huang, Z. Zhao, P. Liao, M. P. J. Lavery, Y. Yan, C. Bao, Z. Wang, N. Ashrafi, S. Ashrafi, R. D. Linquist, M. Tur, A. E. Willner, “Performance enhancement of an orbital angular momentum based free-space optical communication link through beam divergence controlling,” in Optical Fiber Communication (Optical Society of America, 2015), paper M2F.6.

Liao, P.

L. Li, G. Xie, Y. Ren, N. Ahmed, H. Huang, Z. Zhao, P. Liao, M. P. J. Lavery, Y. Yan, C. Bao, Z. Wang, N. Ashrafi, S. Ashrafi, R. D. Linquist, M. Tur, A. E. Willner, “Performance enhancement of an orbital angular momentum based free-space optical communication link through beam divergence controlling,” in Optical Fiber Communication (Optical Society of America, 2015), paper M2F.6.

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref]

Linquist, R. D.

L. Li, G. Xie, Y. Ren, N. Ahmed, H. Huang, Z. Zhao, P. Liao, M. P. J. Lavery, Y. Yan, C. Bao, Z. Wang, N. Ashrafi, S. Ashrafi, R. D. Linquist, M. Tur, A. E. Willner, “Performance enhancement of an orbital angular momentum based free-space optical communication link through beam divergence controlling,” in Optical Fiber Communication (Optical Society of America, 2015), paper M2F.6.

Mair, A.

A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref]

Malik, M.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
[Crossref]

Mari, E.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 1–17 (2012).

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref]

Matsumoto, N.

Miatto, F. M.

Molisch, A.

A. Molisch, Wireless Communications, 2nd ed. (Wiley, 2010).

Molisch, A. F.

Y. Yan, G. Xie, M. P. Lavery, H. Huang, N. Ahmed, C. Bao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

G. Xie, L. Li, Y. Ren, H. Huang, Y. Yan, N. Ahmed, Z. Zhao, M. P. J. Lavery, N. Ashrafi, S. Ashrafi, M. Tur, A. F. Molisch, A. E. Willner, “Performance metrics and design parameters for an FSO communications link based on multiplexing of multiple orbital-angular-momentum beams,” in IEEE Globecom Workshop (IEEE, 2014), pp. 481–486.

Neifeld, M.

O’Brien, J. L.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

Ohtake, Y.

Osorio, C.

Padgett, M.

Padgett, M. J.

Palmer, K.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99, 087701 (2007).
[Crossref]

Pas’ko, V.

Perruisseau-Carrier, J.

M. Tamagnone, C. Craeye, J. Perruisseau-Carrier, “Comment on ‘Encoding many channels on the same frequency through radio vorticity: first experimental test’,” New J. Phys. 14, 118001 (2012).
[Crossref]

Phillips, R.

Piper, J.

S. Saghafi, C. Sheppard, J. Piper, “Characterising elegant and standard Hermite–Gaussian beam modes,” Opt. Commun. 191, 173–179 (2001).
[Crossref]

Proakis, J.

J. Proakis, M. Salehi, Digital Communications, 5th ed. (McGraw-Hill Higher Education, 2007).

Qassim, H.

Ren, Y.

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, A. E. Willner, “100  Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39, 197–200 (2014).
[Crossref]

Y. Ren, H. Huang, G. Xie, N. Ahmed, Y. Yan, B. I. Erkmen, N. Chandrasekaran, M. P. J. Lavery, N. K. Steinhoff, M. Tur, S. Dolinar, M. Neifeld, M. J. Padgett, R. W. Boyd, J. H. Shapiro, A. E. Willner, “Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing,” Opt. Lett. 38, 4062–4065 (2013).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

G. Xie, L. Li, Y. Ren, H. Huang, Y. Yan, N. Ahmed, Z. Zhao, M. P. J. Lavery, N. Ashrafi, S. Ashrafi, M. Tur, A. F. Molisch, A. E. Willner, “Performance metrics and design parameters for an FSO communications link based on multiplexing of multiple orbital-angular-momentum beams,” in IEEE Globecom Workshop (IEEE, 2014), pp. 481–486.

L. Li, G. Xie, Y. Ren, N. Ahmed, H. Huang, Z. Zhao, P. Liao, M. P. J. Lavery, Y. Yan, C. Bao, Z. Wang, N. Ashrafi, S. Ashrafi, R. D. Linquist, M. Tur, A. E. Willner, “Performance enhancement of an orbital angular momentum based free-space optical communication link through beam divergence controlling,” in Optical Fiber Communication (Optical Society of America, 2015), paper M2F.6.

Robertson, D.

G. Turnbull, D. Robertson, G. Smith, “The generation of free-space Laguerre–Gaussian modes at millimetre-wave frequencies by use of a spiral phase plate,” Opt. Commun. 127, 183–188 (1996).
[Crossref]

Rogawski, D.

Romanato, F.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 1–17 (2012).

Saghafi, S.

S. Saghafi, C. Sheppard, J. Piper, “Characterising elegant and standard Hermite–Gaussian beam modes,” Opt. Commun. 191, 173–179 (2001).
[Crossref]

Salehi, M.

J. Proakis, M. Salehi, Digital Communications, 5th ed. (McGraw-Hill Higher Education, 2007).

Scheidl, T.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
[Crossref]

Scott, R. P.

T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler, X. Cai, S. J. B. Yoo, “Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices,” Opt. Express 20, 145–156 (2012).

Shapiro, J.

Shapiro, J. H.

Sheppard, C.

S. Saghafi, C. Sheppard, J. Piper, “Characterising elegant and standard Hermite–Gaussian beam modes,” Opt. Commun. 191, 173–179 (2001).
[Crossref]

Sjöholm, J.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99, 087701 (2007).
[Crossref]

Smith, G.

G. Turnbull, D. Robertson, G. Smith, “The generation of free-space Laguerre–Gaussian modes at millimetre-wave frequencies by use of a spiral phase plate,” Opt. Commun. 127, 183–188 (1996).
[Crossref]

Sorel, M.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

Spencer, Q.

Q. Spencer, A. Swindlehurst, M. Haardt, “Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels,” IEEE Trans. Signal Process. 52, 461–471 (2004).
[Crossref]

Sponselli, A.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 1–17 (2012).

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Steinhoff, N. K.

Strain, M. J.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

Su, T.

T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler, X. Cai, S. J. B. Yoo, “Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices,” Opt. Express 20, 145–156 (2012).

Swindlehurst, A.

Q. Spencer, A. Swindlehurst, M. Haardt, “Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels,” IEEE Trans. Signal Process. 52, 461–471 (2004).
[Crossref]

Tamagnone, M.

M. Tamagnone, C. Craeye, J. Perruisseau-Carrier, “Comment on ‘Encoding many channels on the same frequency through radio vorticity: first experimental test’,” New J. Phys. 14, 118001 (2012).
[Crossref]

Tamburini, F.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 1–17 (2012).

Then, H.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99, 087701 (2007).
[Crossref]

Thidé, B.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 1–17 (2012).

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99, 087701 (2007).
[Crossref]

Thompson, M. G.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

Torner, L.

Torres, J.

Torres, J. P.

Tur, M.

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, A. E. Willner, “100  Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39, 197–200 (2014).
[Crossref]

Y. Yan, G. Xie, M. P. Lavery, H. Huang, N. Ahmed, C. Bao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

Y. Ren, H. Huang, G. Xie, N. Ahmed, Y. Yan, B. I. Erkmen, N. Chandrasekaran, M. P. J. Lavery, N. K. Steinhoff, M. Tur, S. Dolinar, M. Neifeld, M. J. Padgett, R. W. Boyd, J. H. Shapiro, A. E. Willner, “Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing,” Opt. Lett. 38, 4062–4065 (2013).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

L. Li, G. Xie, Y. Ren, N. Ahmed, H. Huang, Z. Zhao, P. Liao, M. P. J. Lavery, Y. Yan, C. Bao, Z. Wang, N. Ashrafi, S. Ashrafi, R. D. Linquist, M. Tur, A. E. Willner, “Performance enhancement of an orbital angular momentum based free-space optical communication link through beam divergence controlling,” in Optical Fiber Communication (Optical Society of America, 2015), paper M2F.6.

G. Xie, L. Li, Y. Ren, H. Huang, Y. Yan, N. Ahmed, Z. Zhao, M. P. J. Lavery, N. Ashrafi, S. Ashrafi, M. Tur, A. F. Molisch, A. E. Willner, “Performance metrics and design parameters for an FSO communications link based on multiplexing of multiple orbital-angular-momentum beams,” in IEEE Globecom Workshop (IEEE, 2014), pp. 481–486.

Turnbull, G.

G. Turnbull, D. Robertson, G. Smith, “The generation of free-space Laguerre–Gaussian modes at millimetre-wave frequencies by use of a spiral phase plate,” Opt. Commun. 127, 183–188 (1996).
[Crossref]

Ursin, R.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
[Crossref]

Vasic, B.

Vasnetsov, M.

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref]

Vishwanath, S.

A. Goldsmith, S. A. Jafar, N. Jindal, S. Vishwanath, “Capacity limits of MIMO channels,” IEEE J. Sel. Areas Commun. 21, 684–702 (2003).
[Crossref]

Wang, J.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

Wang, Z.

L. Li, G. Xie, Y. Ren, N. Ahmed, H. Huang, Z. Zhao, P. Liao, M. P. J. Lavery, Y. Yan, C. Bao, Z. Wang, N. Ashrafi, S. Ashrafi, R. D. Linquist, M. Tur, A. E. Willner, “Performance enhancement of an orbital angular momentum based free-space optical communication link through beam divergence controlling,” in Optical Fiber Communication (Optical Society of America, 2015), paper M2F.6.

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref]

Willner, A. E.

Y. Yan, G. Xie, M. P. Lavery, H. Huang, N. Ahmed, C. Bao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, A. E. Willner, “100  Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39, 197–200 (2014).
[Crossref]

Y. Ren, H. Huang, G. Xie, N. Ahmed, Y. Yan, B. I. Erkmen, N. Chandrasekaran, M. P. J. Lavery, N. K. Steinhoff, M. Tur, S. Dolinar, M. Neifeld, M. J. Padgett, R. W. Boyd, J. H. Shapiro, A. E. Willner, “Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing,” Opt. Lett. 38, 4062–4065 (2013).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

L. Li, G. Xie, Y. Ren, N. Ahmed, H. Huang, Z. Zhao, P. Liao, M. P. J. Lavery, Y. Yan, C. Bao, Z. Wang, N. Ashrafi, S. Ashrafi, R. D. Linquist, M. Tur, A. E. Willner, “Performance enhancement of an orbital angular momentum based free-space optical communication link through beam divergence controlling,” in Optical Fiber Communication (Optical Society of America, 2015), paper M2F.6.

G. Xie, L. Li, Y. Ren, H. Huang, Y. Yan, N. Ahmed, Z. Zhao, M. P. J. Lavery, N. Ashrafi, S. Ashrafi, M. Tur, A. F. Molisch, A. E. Willner, “Performance metrics and design parameters for an FSO communications link based on multiplexing of multiple orbital-angular-momentum beams,” in IEEE Globecom Workshop (IEEE, 2014), pp. 481–486.

Willner, M. J.

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Xie, G.

Y. Yan, G. Xie, M. P. Lavery, H. Huang, N. Ahmed, C. Bao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, A. E. Willner, “100  Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39, 197–200 (2014).
[Crossref]

Y. Ren, H. Huang, G. Xie, N. Ahmed, Y. Yan, B. I. Erkmen, N. Chandrasekaran, M. P. J. Lavery, N. K. Steinhoff, M. Tur, S. Dolinar, M. Neifeld, M. J. Padgett, R. W. Boyd, J. H. Shapiro, A. E. Willner, “Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing,” Opt. Lett. 38, 4062–4065 (2013).
[Crossref]

G. Xie, L. Li, Y. Ren, H. Huang, Y. Yan, N. Ahmed, Z. Zhao, M. P. J. Lavery, N. Ashrafi, S. Ashrafi, M. Tur, A. F. Molisch, A. E. Willner, “Performance metrics and design parameters for an FSO communications link based on multiplexing of multiple orbital-angular-momentum beams,” in IEEE Globecom Workshop (IEEE, 2014), pp. 481–486.

L. Li, G. Xie, Y. Ren, N. Ahmed, H. Huang, Z. Zhao, P. Liao, M. P. J. Lavery, Y. Yan, C. Bao, Z. Wang, N. Ashrafi, S. Ashrafi, R. D. Linquist, M. Tur, A. E. Willner, “Performance enhancement of an orbital angular momentum based free-space optical communication link through beam divergence controlling,” in Optical Fiber Communication (Optical Society of America, 2015), paper M2F.6.

Yan, Y.

Y. Yan, G. Xie, M. P. Lavery, H. Huang, N. Ahmed, C. Bao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, A. E. Willner, “100  Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39, 197–200 (2014).
[Crossref]

Y. Ren, H. Huang, G. Xie, N. Ahmed, Y. Yan, B. I. Erkmen, N. Chandrasekaran, M. P. J. Lavery, N. K. Steinhoff, M. Tur, S. Dolinar, M. Neifeld, M. J. Padgett, R. W. Boyd, J. H. Shapiro, A. E. Willner, “Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing,” Opt. Lett. 38, 4062–4065 (2013).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

L. Li, G. Xie, Y. Ren, N. Ahmed, H. Huang, Z. Zhao, P. Liao, M. P. J. Lavery, Y. Yan, C. Bao, Z. Wang, N. Ashrafi, S. Ashrafi, R. D. Linquist, M. Tur, A. E. Willner, “Performance enhancement of an orbital angular momentum based free-space optical communication link through beam divergence controlling,” in Optical Fiber Communication (Optical Society of America, 2015), paper M2F.6.

G. Xie, L. Li, Y. Ren, H. Huang, Y. Yan, N. Ahmed, Z. Zhao, M. P. J. Lavery, N. Ashrafi, S. Ashrafi, M. Tur, A. F. Molisch, A. E. Willner, “Performance metrics and design parameters for an FSO communications link based on multiplexing of multiple orbital-angular-momentum beams,” in IEEE Globecom Workshop (IEEE, 2014), pp. 481–486.

Yang, J. Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Yao, A.

Yao, E.

S. Franke-Arnold, S. M. Barnett, E. Yao, J. Leach, J. Courtial, M. Padgett, “Uncertainty principle for angular position and angular momentum,” New J. Phys. 6, 103 (2004).
[Crossref]

Yoo, S. J. B.

T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler, X. Cai, S. J. B. Yoo, “Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices,” Opt. Express 20, 145–156 (2012).

Yu, S.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

Yue, Y.

Zeilinger, A.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
[Crossref]

A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref]

Zhao, Z.

Y. Yan, G. Xie, M. P. Lavery, H. Huang, N. Ahmed, C. Bao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

G. Xie, L. Li, Y. Ren, H. Huang, Y. Yan, N. Ahmed, Z. Zhao, M. P. J. Lavery, N. Ashrafi, S. Ashrafi, M. Tur, A. F. Molisch, A. E. Willner, “Performance metrics and design parameters for an FSO communications link based on multiplexing of multiple orbital-angular-momentum beams,” in IEEE Globecom Workshop (IEEE, 2014), pp. 481–486.

L. Li, G. Xie, Y. Ren, N. Ahmed, H. Huang, Z. Zhao, P. Liao, M. P. J. Lavery, Y. Yan, C. Bao, Z. Wang, N. Ashrafi, S. Ashrafi, R. D. Linquist, M. Tur, A. E. Willner, “Performance enhancement of an orbital angular momentum based free-space optical communication link through beam divergence controlling,” in Optical Fiber Communication (Optical Society of America, 2015), paper M2F.6.

Zhu, J.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

Zhu, X.

X. Zhu, J. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Opt. (2)

IEEE J. Sel. Areas Commun. (1)

A. Goldsmith, S. A. Jafar, N. Jindal, S. Vishwanath, “Capacity limits of MIMO channels,” IEEE J. Sel. Areas Commun. 21, 684–702 (2003).
[Crossref]

IEEE Trans. Commun. (1)

X. Zhu, J. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
[Crossref]

IEEE Trans. Signal Process. (1)

Q. Spencer, A. Swindlehurst, M. Haardt, “Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels,” IEEE Trans. Signal Process. 52, 461–471 (2004).
[Crossref]

J. Lightwave Technol. (2)

J. Mod. Opt. (1)

R. Edgar, “The Fresnel diffraction images of periodic structures,” J. Mod. Opt. 16, 281–287 (1969).

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

Y. Yan, G. Xie, M. P. Lavery, H. Huang, N. Ahmed, C. Bao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

Nat. Photonics (1)

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Nature (1)

A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref]

New J. Phys. (4)

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 1–17 (2012).

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
[Crossref]

S. Franke-Arnold, S. M. Barnett, E. Yao, J. Leach, J. Courtial, M. Padgett, “Uncertainty principle for angular position and angular momentum,” New J. Phys. 6, 103 (2004).
[Crossref]

M. Tamagnone, C. Craeye, J. Perruisseau-Carrier, “Comment on ‘Encoding many channels on the same frequency through radio vorticity: first experimental test’,” New J. Phys. 14, 118001 (2012).
[Crossref]

Opt. Commun. (2)

S. Saghafi, C. Sheppard, J. Piper, “Characterising elegant and standard Hermite–Gaussian beam modes,” Opt. Commun. 191, 173–179 (2001).
[Crossref]

G. Turnbull, D. Robertson, G. Smith, “The generation of free-space Laguerre–Gaussian modes at millimetre-wave frequencies by use of a spiral phase plate,” Opt. Commun. 127, 183–188 (1996).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Phys. Rev. Lett. (1)

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99, 087701 (2007).
[Crossref]

Science (2)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref]

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

Other (7)

G. Xie, L. Li, Y. Ren, H. Huang, Y. Yan, N. Ahmed, Z. Zhao, M. P. J. Lavery, N. Ashrafi, S. Ashrafi, M. Tur, A. F. Molisch, A. E. Willner, “Performance metrics and design parameters for an FSO communications link based on multiplexing of multiple orbital-angular-momentum beams,” in IEEE Globecom Workshop (IEEE, 2014), pp. 481–486.

http://photonic.ws/Free_Space_Optical_Communication_Tip-Tilt-Mirror_Brochure.pdf , 2014, pp. 6–7.

L. Andrews, R. Phillips, Laser Beam Propagation through Random Media (SPIE, 2005).

J. Proakis, M. Salehi, Digital Communications, 5th ed. (McGraw-Hill Higher Education, 2007).

International Telecommunication Union, “Forward error correction for high bit-rate DWDM submarine systems,” , Appendix I.9 (2004).

A. Molisch, Wireless Communications, 2nd ed. (Wiley, 2010).

L. Li, G. Xie, Y. Ren, N. Ahmed, H. Huang, Z. Zhao, P. Liao, M. P. J. Lavery, Y. Yan, C. Bao, Z. Wang, N. Ashrafi, S. Ashrafi, R. D. Linquist, M. Tur, A. E. Willner, “Performance enhancement of an orbital angular momentum based free-space optical communication link through beam divergence controlling,” in Optical Fiber Communication (Optical Society of America, 2015), paper M2F.6.

Supplementary Material (1)

» Supplement 1: PDF (650 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. Concept of an OAM-multiplexed FSO communication link.
Fig. 2.
Fig. 2. (a) Simulation schematic of an OAM-multiplexed data link. (b) Conversion from a Gaussian beam into an OAM + 3 beam using an SPP + 3 , which causes a helical phase shift from 0 to 6 π . Mod., modulator; Tx, transmitter; Rx, receiver; SPP, spiral phase plate.
Fig. 3.
Fig. 3. Alignment between the transmitter and the receiver for (a) a perfectly aligned system, (b) a system with lateral displacement, (c) a system with a receiver angular error, and (d) a system with a transmitter pointing error. Tx, transmitter; Rx, receiver; z , transmission distance; d , lateral displacement; φ , receiver angular error; θ , pointing error.
Fig. 4.
Fig. 4. (a) Simulated spot sizes (diameters) of different orders of OAM beams as a function of transmitted beam size given a link distance of 100 m. (b) Minimum spot sizes of different orders of OAM beams at different transmission link distances. (c) Relative transmitted beam size to achieve the minimum spot size at the receiver. Note that for the analysis of this figure only, the size of the receiver aperture is not considered.
Fig. 5.
Fig. 5. Simulated power loss as a function of receiver aperture size (diameter) when only OAM + 3 is transmitted under perfect alignment for (a)  z = 100 m , (b)  z = 1 km , and (c)  z = 10 km . D t , transmitted beam size; z , transmission distance.
Fig. 6.
Fig. 6. (a) Simulated power distribution among different OAM modes as a function of lateral displacement over a 100 m link for which only the OAM + 3 mode is transmitted; the transmitted beam size D t = 3 cm and the receiver aperture size D a is 4.5 cm. (b, c) XT-1 and XT-2, respectively, as a function of lateral displacement for different transmission distances with different transmitted beam sizes. The receiver size is 1.5 times the transmitted beam size. XT-1, relative crosstalk to the nearest-neighboring mode ( OAM + 4 ). XT-2, relative crosstalk to the second-nearest-neighboring mode ( OAM + 5 ) .
Fig. 7.
Fig. 7. (a) Simulated power distribution among different OAM modes as a function of receiver angular error over a 100 m link for which only the OAM + 3 is transmitted; the transmitted beam size D t is 3 cm and the receiver aperture size D a is 4.5 cm. (b, c) XT-1 and XT-2, respectively, as a function of receiver angular error for different transmission distances and transmitted beam sizes. The receiver size is 1.5 times the transmitted beam size. XT-1, relative crosstalk to the nearest-neighboring mode ( OAM + 4 ) . XT-2, relative crosstalk to the second-nearest-neighboring mode ( OAM + 5 ) .
Fig. 8.
Fig. 8. (a) Simulated power distribution among different OAM modes as a function of transmitter pointing error over a 100 m link for which only OAM + 3 is transmitted; the transmitted beam size D t is 3 cm and the receiver aperture size D a is 4.5 cm. (b, c) XT-1 and XT-2, respectively, as a function of transmitter pointing error for different transmission distances and transmitted beam sizes. The receiver size is 1.5 times the transmitted beam size. XT-1, relative crosstalk to the nearest-neighboring mode ( OAM + 4 ) . XT-2, relative crosstalk to the second-nearest-neighboring mode ( OAM + 5 ).
Fig. 9.
Fig. 9. Simulated system power penalty as a function of lateral displacement when different sets of OAM beams are transmitted over a 100 m link. Mode spacing = 1 : OAM + 1 , + 2 , + 3 , and + 4 transmitted. Mode spacing = 2 : OAM + 1 , + 3 , + 5 , and + 7 transmitted. Mode spacing = 3 : OAM + 1 , + 4 , + 7 , and + 10 transmitted. (a) The transmitted beam size D t = 3 cm and the receiver aperture size D a = 4.5 cm . (b)  D t = 10 cm and D a = 15 cm .
Fig. 10.
Fig. 10. Simulated system power penalty as a function of receiver angular error when different sets of OAM beams are transmitted in a 100 m link. (a) The transmitted beam size D t = 3 cm and the receiver aperture size D a = 4.5 cm . (b)  D t = 10 cm and D a = 15 cm .
Fig. 11.
Fig. 11. Simulated system power penalty as a function of transmitter pointing error when different sets of OAM beams are transmitted in a 100 m link. (a) The transmitted beam size D t = 3 cm and the receiver aperture size D a = 4.5 cm . (b)  D t = 10 cm and D a = 15 cm .
Fig. 12.
Fig. 12. Simulated system power penalty as a function of (a) lateral displacement, (b) receiver angular error, and (c) transmitter pointing error when mode spacing is 2 and transmission distance is 100 m. D t , transmitted beam size. The receiver aperture size D a is three times the transmitted beam size ( D a = 1.5 D t ).
Fig. 13.
Fig. 13. (a) Comparison between the experimental and simulated power loss of different OAM beams as a function of receiver aperture size. The transmitter and receiver are perfectly aligned. (b) Comparison between experimental and simulated power distributions among different OAM modes as a function of receiver aperture size with a lateral displacement of 0.2 mm. Lines and symbols are simulation and experiment results, respectively.

Tables (1)

Tables Icon

Table 1. Parameters in the Model

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

h ( ϕ ) = ϕ λ / 2 π ( n 1 ) .
D = 2 2 0 2 π 0 r 2 I ( r , ϕ ) r d r d ϕ 0 2 π 0 I ( r , ϕ ) r d r d ϕ ,
P e , 16 - QAM = 3 Q ( 4 5 E avg N 0 ) [ 1 3 4 Q ( 4 5 E avg N 0 ) ] ,
P rq , m = P rq ( α β · P rq N 0 ) 1 ,
P penalty = 10 · log 10 ( P rq , m P rq ) dB .

Metrics