Abstract

One inherent characteristic of quadratic nonlinear interaction is that it allows both forward and backward energy transfer among the three interacting waves. This backconversion effect, universal in all the parametric processes, is detrimental when a unidirectional energy transfer is desired and limits the conversion efficiency. We report a family of quadratic nonlinear interactions, quasi-parametric amplification (QPA), in which the idler wave is depleted by the introduction of a material loss and only the signal is amplified. In contrast to optical parametric amplification (OPA), the QPA scheme can inhibit the backconversion effect and thus enable ideal chirped-pulse amplification with high conversion efficiency and broad gain bandwidth. We have numerically proved the feasibility of this new scheme, and experimentally realized it by using a Sm3+-doped yttrium calcium oxyborate crystal that is highly absorptive at the idler wavelength and transparent at the pump and signal wavelengths. Amplification of broadband chirped pulses, corresponding to a pump depletion of 70% and a signal efficiency of 41%, has been achieved in a typical Gaussian pump case, exceeding the results of the previously reported state-of-the-art OPA. The proposed QPA scheme will be a promising approach for efficiently amplifying chirped pulses to unprecedented powers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental demonstration of joule-level non-collinear optical parametric chirped-pulse amplification in yttrium calcium oxyborate

Lianghong Yu, Xiaoyan Liang, Jinfeng Li, Anhua Wu, Yanqing Zheng, Xiaoming Lu, Cheng Wang, Yuxin Leng, Jun Xu, Ruxin Li, and Zhizhan Xu
Opt. Lett. 37(10) 1712-1714 (2012)

Energy and average power scalable optical parametric chirped-pulse amplification in yttrium calcium oxyborate

Zhi M. Liao, Igor Jovanovic, Chris A. Ebbers, Yiting Fei, and Bruce Chai
Opt. Lett. 31(9) 1277-1279 (2006)

Broadband, efficient, and robust quasi-parametric chirped-pulse amplification

Jingui Ma, Jing Wang, Bingjie Zhou, Peng Yuan, Guoqiang Xie, Kainan Xiong, Yanqing Zheng, Heyuan Zhu, and Liejia Qian
Opt. Express 25(21) 25149-25164 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. D. Perry and G. Mourou, Science 264, 917 (1994).
    [Crossref]
  2. D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, Opt. Lett. 34, 2459 (2009).
    [Crossref]
  3. D. Strickland and G. Mourou, Opt. Commun. 55, 447 (1985).
    [Crossref]
  4. A. Dubietis, G. Jonuauskas, and A. Piskarskas, Opt. Commun. 88, 437 (1992).
    [Crossref]
  5. H. Fattahi, H. G. Barros, M. Gorjan, T. Nubbemeyer, B. Alsaif, C. Y. Teisset, M. Schultze, S. Prinz, M. Haefner, M. Ueffing, A. Alismail, L. Vámos, A. Schwarz, O. Pronin, J. Brons, X. T. Geng, G. Arisholm, M. Ciappina, V. S. Yakovlev, D.-E. Kim, A. M. Azzeer, N. Karpowicz, D. Sutter, Z. Major, T. Metzger, and F. Krausz, Optica 1, 45 (2014).
    [Crossref]
  6. B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, Nat. Commun. 5, 3643 (2014).
  7. I. N. Ross, P. Matousek, G. H. New, and K. Osvay, J. Opt. Soc. Am. B 19, 2945 (2002).
    [Crossref]
  8. G. Cerullo, M. Nisoli, and S. De Silvestri, Appl. Phys. Lett. 71, 3616 (1997).
    [Crossref]
  9. C. Phillips, C. Langrock, D. Chang, Y. Lin, L. Gallmann, and M. Fejer, J. Opt. Soc. Am. B 30, 1551 (2013).
    [Crossref]
  10. G. Baxter, J. Haub, and B. Orr, J. Opt. Soc. Am. B 14, 2723 (1997).
    [Crossref]
  11. J. Moses and S.-W. Huang, J. Opt. Soc. Am. B 28, 812 (2011).
    [Crossref]
  12. M. Guardalben, J. Keegan, L. Waxer, V. Bagnoud, I. Begishev, J. Puth, and J. Zuegel, Opt. Express 11, 2511 (2003).
    [Crossref]
  13. V. Bagnoud, I. A. Begishev, M. J. Guardalben, J. Puth, and J. D. Zuegel, Opt. Lett. 30, 1843 (2005).
    [Crossref]
  14. R. Won, Nat. Photonics 4, 207 (2010).
    [Crossref]
  15. L. M. Frantz and J. S. Nodvik, J. Appl. Phys. 34, 2346 (1963).
    [Crossref]
  16. A. Zaukevičius, V. Jukna, R. Antipenkov, V. Martinėnaitė, A. Varanavičius, A. P. Piskarskas, and G. Valiulis, J. Opt. Soc. Am. B 28, 2902 (2011).
    [Crossref]
  17. X. Guo, C. Wang, Y. Leng, and R. Li, J. Opt. Soc. Am. B 31, 2615 (2014).
    [Crossref]
  18. X. Tu, Y. Zheng, K. Xiong, Y. Shi, and E. Shi, J. Cryst. Growth 401, 160 (2014).
    [Crossref]
  19. S. Zhang, H. Yang, Z. Cheng, X. Liu, and H. Chen, J. Cryst. Growth 208, 482 (2000).
    [Crossref]
  20. M. S. Webb, D. Eimerl, and S. P. Velsko, J. Opt. Soc. Am. B 9, 1118 (1992).
    [Crossref]
  21. M. H. Dunn and M. Ebrahimzadeh, Science 286, 1513 (1999).
    [Crossref]
  22. J. Moses and F. W. Wise, Phys. Rev. Lett. 97, 073903 (2006).
    [Crossref]

2014 (4)

2013 (1)

2011 (2)

2010 (1)

R. Won, Nat. Photonics 4, 207 (2010).
[Crossref]

2009 (1)

2006 (1)

J. Moses and F. W. Wise, Phys. Rev. Lett. 97, 073903 (2006).
[Crossref]

2005 (1)

2003 (1)

2002 (1)

2000 (1)

S. Zhang, H. Yang, Z. Cheng, X. Liu, and H. Chen, J. Cryst. Growth 208, 482 (2000).
[Crossref]

1999 (1)

M. H. Dunn and M. Ebrahimzadeh, Science 286, 1513 (1999).
[Crossref]

1997 (2)

G. Cerullo, M. Nisoli, and S. De Silvestri, Appl. Phys. Lett. 71, 3616 (1997).
[Crossref]

G. Baxter, J. Haub, and B. Orr, J. Opt. Soc. Am. B 14, 2723 (1997).
[Crossref]

1994 (1)

M. D. Perry and G. Mourou, Science 264, 917 (1994).
[Crossref]

1992 (2)

A. Dubietis, G. Jonuauskas, and A. Piskarskas, Opt. Commun. 88, 437 (1992).
[Crossref]

M. S. Webb, D. Eimerl, and S. P. Velsko, J. Opt. Soc. Am. B 9, 1118 (1992).
[Crossref]

1985 (1)

D. Strickland and G. Mourou, Opt. Commun. 55, 447 (1985).
[Crossref]

1963 (1)

L. M. Frantz and J. S. Nodvik, J. Appl. Phys. 34, 2346 (1963).
[Crossref]

Alismail, A.

Alsaif, B.

Antipenkov, R.

Arisholm, G.

Azzeer, A. M.

Bagnoud, V.

Barros, H. G.

Baxter, G.

Begishev, I.

Begishev, I. A.

Boivin, M.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, Nat. Commun. 5, 3643 (2014).

Brons, J.

Cerullo, G.

G. Cerullo, M. Nisoli, and S. De Silvestri, Appl. Phys. Lett. 71, 3616 (1997).
[Crossref]

Chang, D.

Chen, H.

S. Zhang, H. Yang, Z. Cheng, X. Liu, and H. Chen, J. Cryst. Growth 208, 482 (2000).
[Crossref]

Cheng, Z.

S. Zhang, H. Yang, Z. Cheng, X. Liu, and H. Chen, J. Cryst. Growth 208, 482 (2000).
[Crossref]

Ciappina, M.

De Silvestri, S.

G. Cerullo, M. Nisoli, and S. De Silvestri, Appl. Phys. Lett. 71, 3616 (1997).
[Crossref]

Dubietis, A.

A. Dubietis, G. Jonuauskas, and A. Piskarskas, Opt. Commun. 88, 437 (1992).
[Crossref]

Dunn, M. H.

M. H. Dunn and M. Ebrahimzadeh, Science 286, 1513 (1999).
[Crossref]

Ebrahimzadeh, M.

M. H. Dunn and M. Ebrahimzadeh, Science 286, 1513 (1999).
[Crossref]

Eimerl, D.

Fattahi, H.

Fejer, M.

Frantz, L. M.

L. M. Frantz and J. S. Nodvik, J. Appl. Phys. 34, 2346 (1963).
[Crossref]

Gallmann, L.

Geng, X. T.

Gorjan, M.

Guardalben, M.

Guardalben, M. J.

Guo, X.

Haefner, M.

Haub, J.

Herrmann, D.

Huang, S.-W.

Ibrahim, H.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, Nat. Commun. 5, 3643 (2014).

Jonuauskas, G.

A. Dubietis, G. Jonuauskas, and A. Piskarskas, Opt. Commun. 88, 437 (1992).
[Crossref]

Jukna, V.

Karpowicz, N.

Keegan, J.

Kim, D.-E.

Krausz, F.

Langrock, C.

Laramée, A.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, Nat. Commun. 5, 3643 (2014).

Lebrun, G.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, Nat. Commun. 5, 3643 (2014).

Légaré, F.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, Nat. Commun. 5, 3643 (2014).

Leng, Y.

Li, R.

Lin, Y.

Liu, X.

S. Zhang, H. Yang, Z. Cheng, X. Liu, and H. Chen, J. Cryst. Growth 208, 482 (2000).
[Crossref]

Major, Z.

Martinenaite, V.

Matousek, P.

Metzger, T.

Moses, J.

J. Moses and S.-W. Huang, J. Opt. Soc. Am. B 28, 812 (2011).
[Crossref]

J. Moses and F. W. Wise, Phys. Rev. Lett. 97, 073903 (2006).
[Crossref]

Mourou, G.

M. D. Perry and G. Mourou, Science 264, 917 (1994).
[Crossref]

D. Strickland and G. Mourou, Opt. Commun. 55, 447 (1985).
[Crossref]

New, G. H.

Nisoli, M.

G. Cerullo, M. Nisoli, and S. De Silvestri, Appl. Phys. Lett. 71, 3616 (1997).
[Crossref]

Nodvik, J. S.

L. M. Frantz and J. S. Nodvik, J. Appl. Phys. 34, 2346 (1963).
[Crossref]

Nubbemeyer, T.

Orr, B.

Osvay, K.

Ozaki, T.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, Nat. Commun. 5, 3643 (2014).

Perry, M. D.

M. D. Perry and G. Mourou, Science 264, 917 (1994).
[Crossref]

Pervak, V.

Phillips, C.

Piskarskas, A.

A. Dubietis, G. Jonuauskas, and A. Piskarskas, Opt. Commun. 88, 437 (1992).
[Crossref]

Piskarskas, A. P.

Poitras, F.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, Nat. Commun. 5, 3643 (2014).

Prinz, S.

Pronin, O.

Puth, J.

Ross, I. N.

Schmid, K.

Schmidt, B. E.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, Nat. Commun. 5, 3643 (2014).

Schultze, M.

Schwarz, A.

Shi, E.

X. Tu, Y. Zheng, K. Xiong, Y. Shi, and E. Shi, J. Cryst. Growth 401, 160 (2014).
[Crossref]

Shi, Y.

X. Tu, Y. Zheng, K. Xiong, Y. Shi, and E. Shi, J. Cryst. Growth 401, 160 (2014).
[Crossref]

Strickland, D.

D. Strickland and G. Mourou, Opt. Commun. 55, 447 (1985).
[Crossref]

Sutter, D.

Tautz, R.

Tavella, F.

Teisset, C. Y.

Thiré, N.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, Nat. Commun. 5, 3643 (2014).

Tu, X.

X. Tu, Y. Zheng, K. Xiong, Y. Shi, and E. Shi, J. Cryst. Growth 401, 160 (2014).
[Crossref]

Ueffing, M.

Valiulis, G.

Vámos, L.

Varanavicius, A.

Veisz, L.

Velsko, S. P.

Wang, C.

Waxer, L.

Webb, M. S.

Wise, F. W.

J. Moses and F. W. Wise, Phys. Rev. Lett. 97, 073903 (2006).
[Crossref]

Won, R.

R. Won, Nat. Photonics 4, 207 (2010).
[Crossref]

Xiong, K.

X. Tu, Y. Zheng, K. Xiong, Y. Shi, and E. Shi, J. Cryst. Growth 401, 160 (2014).
[Crossref]

Yakovlev, V. S.

Yang, H.

S. Zhang, H. Yang, Z. Cheng, X. Liu, and H. Chen, J. Cryst. Growth 208, 482 (2000).
[Crossref]

Zaukevicius, A.

Zhang, S.

S. Zhang, H. Yang, Z. Cheng, X. Liu, and H. Chen, J. Cryst. Growth 208, 482 (2000).
[Crossref]

Zheng, Y.

X. Tu, Y. Zheng, K. Xiong, Y. Shi, and E. Shi, J. Cryst. Growth 401, 160 (2014).
[Crossref]

Zuegel, J.

Zuegel, J. D.

Appl. Phys. Lett. (1)

G. Cerullo, M. Nisoli, and S. De Silvestri, Appl. Phys. Lett. 71, 3616 (1997).
[Crossref]

J. Appl. Phys. (1)

L. M. Frantz and J. S. Nodvik, J. Appl. Phys. 34, 2346 (1963).
[Crossref]

J. Cryst. Growth (2)

X. Tu, Y. Zheng, K. Xiong, Y. Shi, and E. Shi, J. Cryst. Growth 401, 160 (2014).
[Crossref]

S. Zhang, H. Yang, Z. Cheng, X. Liu, and H. Chen, J. Cryst. Growth 208, 482 (2000).
[Crossref]

J. Opt. Soc. Am. B (7)

Nat. Commun. (1)

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, Nat. Commun. 5, 3643 (2014).

Nat. Photonics (1)

R. Won, Nat. Photonics 4, 207 (2010).
[Crossref]

Opt. Commun. (2)

D. Strickland and G. Mourou, Opt. Commun. 55, 447 (1985).
[Crossref]

A. Dubietis, G. Jonuauskas, and A. Piskarskas, Opt. Commun. 88, 437 (1992).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Optica (1)

Phys. Rev. Lett. (1)

J. Moses and F. W. Wise, Phys. Rev. Lett. 97, 073903 (2006).
[Crossref]

Science (2)

M. D. Perry and G. Mourou, Science 264, 917 (1994).
[Crossref]

M. H. Dunn and M. Ebrahimzadeh, Science 286, 1513 (1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Signal efficiency η s versus crystal length z for a spatiotemporal Gaussian pump. The red (black) solid curve represents QPA (OPA) with idler absorption of α L n l = 2 (0). (b) Signal efficiency with a spatiotemporal fourth-order super-Gaussian pump. The red (black) solid curve represents QPA (OPA) with a phase mismatch of Δ k L nl = 2 (0). The horizontal dashed lines in (a) and (b) represent the theoretical efficiency limit ( ω s / ω p ). (c) Output signal energy E s for Δ k L nl = 800 . The red (black) curve represents QPA (OPA). Inset: Signal evolution of QPA over the first 0.2 mm. (d) Output signal energy versus input signal energy (square) and its fitting by the formula given in the text (red line). Inset: Signal efficiency versus idler absorption. (e) Normalized signal efficiency η s (red), idler efficiency η i (blue), and residual pump energy E p ( z ) (black). ω m is the angular frequency ( m = p , s , i ). All the parameters used in (d) and (e) were the same as those of QPA in (a).
Fig. 2.
Fig. 2. (a) Measured absorption spectrum of Sm:YCOB. The shaded area represents the wavelength range spanned by the idler wave in the experiments. Inset: A photograph of the as-grown Sm:YCOB. (b) Measured gain spectrum of a 30 mm long Sm:YCOB crystal at a pump intensity of 2.8 GW / cm 2 .
Fig. 3.
Fig. 3. (a) Schematic of the experimental configuration, (b) signal efficiency versus seed intensity for OPA (black circles) and QPA (red squares). The seed signal and pump were set to a similar beam size of 5.0 mm × 1.6 mm . (c) Normalized signal efficiency as a function of the phase mismatch Δ k L for OPA (black circles) and QPA (red squares), where both measurements were performed at their highest efficiencies. (d),(e) Recorded signal spectra of OPA (QPA). The black (red) curve corresponds to a seed intensity of 6.5 (325) kW / cm 2 ; the grey region represents the seed signal spectrum. (f),(g) The compressed and Fourier-limited pulses in OPA (QPA) for a seed intensity of 6.5 (325) kW / cm 2 .
Fig. 4.
Fig. 4. Measured signal (squares) and idler (circles) efficiency versus seed intensity for QPA. The black (blue) dashed line is the theoretically predicted signal (idler) efficiency. The seed signal (pump) beam was set to a 800 (620) μm diameter, and the pump intensity was fixed at 3.0 GW / cm 2 .

Metrics