Abstract

We report the feasibility of a MAX-phase material for implementation as a saturable absorber. Our saturable absorber was fabricated as a composite of Ti2AlC particles and polyvinyl alcohol (PVA) using a sandwich-structured fiber-ferrule platform. The saturation intensity and modulation depth of the prepared SA were measured at ∼31.5 MW/cm2 and ∼6.3%, respectively. Using the Ti2AlC/PVA composite-based SA within an erbium-doped fiber laser ring cavity, stable Q-switched pulses were readily obtained at a wavelength of 1.56 µm. This experimental demonstration unveils the potential of micrometer-sized MAX-phase particles for implementation as low-cost, practical, saturable absorbers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Saturable absorption is a nonlinear optical phenomenon of semiconducting materials in which absorption decreases as incident light intensity increases due to the Pauli’s blocking principle [1]. This is an important phenomenon, as “saturable absorbers (SA)” are key passive components of ultrafast pulsed lasers. Commercial-grade SAs have most commonly been fabricated with III-V compound semiconductors [2]. Despite wide-spread implementation of III-V semiconductor-based saturable absorbers, there remain quite a few technical and practical issues with these materials, such as their narrow operating bandwidths, and complicated and expensive fabrication processes. To overcome these drawbacks, alternative saturable absorption materials have been intensively investigated. To date, carbon nanotubes (CNTs) [35], graphene [68], graphene oxide (GO) [9,10], graphite [11,12], topological insulators (TIs) [1320], transition metal dichalcogenides (TMDs) [2133], gold nanoparticles [3436], black phosphorus (BP) [3739], skutterudites [40,41], and MXenes [4245] have been identified as efficient saturable absorption materials.

Recently, a new family of 2D materials called MXenes has been extensively investigated for various applications, including electrochemical capacitors, catalysts, biosensors, and water purification, due to their superb photonic and/or electronic properties [4649]. The chemical formula of MXenes is Mn+1XnTx (n = 1–3), where M is an early transition metal (i.e., Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, etc.), X is carbon and/or nitrogen and Tx represents surface terminations. In the typical structure of a MXene, n + 1 layers of M cover n layers of X in the form of [MX]nM. MXenes are produced by etching MAX-phases with strong etching solutions that contain fluoride ions [50,51]. For instance, a MXene of Ti3C2Tx can be obtained by selectively removing the aluminum (Al) atoms from the MAX-phase Ti3AlC2 using a HF solution [52]. Recently, the saturable absorption properties of MXenes, such as Ti3CTx and Ti3C2Tx, have been extensively investigated and their excellent performance comparable to those of other 2-dimensional (2-D) materials has been well demonstrated [4245].

However, there remains a technically interesting question as to whether or not a MAX-phase, the seed material for MXene synthesis, by itself possesses saturable absorption properties suitable for implementation as practical passive Q-switches or mode-lockers. MAX-phases are polycrystalline materials of hexagonal ternary layered carbides and nitrides. The general formula of MAX-phases is Mn+1AXn, where M is an early transition metal, A is an A-group element, and X denotes either nitrogen or carbon [5356]. MAX-phases can be divided into three categories based on integer number n and are referred to as 211, 312, and 413 phases [54, 57]. These nanolaminate materials possess the combined properties of metallic and ceramic materials since their energy band structure depends on crystal direction [58]. Bulk MAX phases are typically polycrystalline compounds with randomly-oriented, micrometer-sized grains, which therefore have very complicated energy band structures. MAX phases have been useful materials in the fields of aerospace, nuclear engineering, and high-temperature applications [55, 5961] due to their low density, high modulus of elasticity at room temperature, good oxidation resistance, and high melting point [6264], even if their crystalline purity is much lower than that of MXenes.

There have been a number of investigations on new satuarable absorption materials including graphene, transition metal dichalcogenides, topological insulators, and so on, as aforementioned. Note that most of the investigations have been focused on 2-D materials. In terms of nanoscience, 2-D materials are interesting media for the implementation of high performance electronic or photonic devices. However, the fundamental question is whether or not 2-D materials are really essential to saturable absorbers [30, 32]. The associated question is if it is possible to realize saturable absorbers based on low-cost, bulk materials, which exhibit performance comparable to the ones based on 2-D materials. It should be noticed that MXenes are 2-D materials, while MAX-phases are bulk.

Herein, we report the experimental investigation of the saturable absorption properties of the MAX-phase Ti2AlC. More specifically, we demonstrate the use of a composite of Ti2AlC particles and polyvinyl alcohol (PVA) for implementation of a fiberized SA that can operate at 1.5-µm wavelengths. A Ti2AlC/PVA composite-based saturable absorber was fabricated in a sandwich-structured fiber-ferrule platform through deposition of the Ti2AlC/PVA composite onto the flat surface at the end of a fiber ferrule. Using the Ti2AlC/PVA composite-based SA within an erbium (Er)-doped fiber laser ring cavity, stable Q-switched pulses were readily obtained at a wavelength of 1.56 µm. The temporal width of the output pulses was measured at 4.88 µs at the maximum pulse-repetition rate of 27.45 kHz.

2. Characterization and fabrication of Ti2AlC/PVA-based saturable absorber

To fabricate a saturable absorber for this experimental demonstration, commercially available Ti2AlC powder (99.9%, Carbon-Ukraine ltd.) was used with PVA to form a composite. Ti2AlC powder (50 mg) and 10 mg of PVA were added to 20 ml of distilled water in a vial, as shown in Fig. 1(a). After stirring this solution for 30 min, a small amount of the composite solution was directly dropped onto the surface of the flat-end of a FC/APC fiber ferrule using a pipette. Subsequently, the ferrule was heated in an oven at a temperature of 60 oC for 30 minutes to dry the dropped solution. Another FC/APC fiber ferrule was then connected to the ferrule with the deposited Ti2AlC/PVA to form a sandwich-structured saturable absorber. The insertion loss of our prepared SA was ∼4.4 dB.

 

Fig. 1. (a) Photograph of our prepared Ti2AlC/PVA solution. (b) Measured SEM image of the Ti2AlC particles. (c) Measured SEM image of the Ti2AlC/PVA film deposited onto the flat surface of a fiber ferrule. Inset: Magnified SEM image around the core region.

Download Full Size | PPT Slide | PDF

The material properties of the Ti2AlC particles, were investigated using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). Figure 1(b) shows SEM image of the Ti2AlC particles. The sizes of the Ti2AlC particles range from a few micrometers to tens of micrometers. It is obvious from the SEM image that the Ti2AlC particles are bulk-structured grains as expected. An SEM image of the Ti2AlC/PVA film deposited onto the end surface of a fiber ferrule was also measured as shown in Fig. 1(c). Quite a few particles were observed to exist in the core region. The large particles could be the reason why our prepared SA exhibited such a high insertion loss (∼4.4 dB). The EDS spectrum of the Ti2AlC particles is shown in Fig. 2. Strong peaks that correspond to titanium (Ti), aluminum (Al), and carbon (C) were clearly observed [65].

 

Fig. 2. Measured EDS spectrum of the Ti2AlC particles.

Download Full Size | PPT Slide | PDF

The XPS measurements were subsequently conducted to discern the stoichiometry of the particles, as shown in Fig. 3. From the spectra, we determined that the energies of Ti 2p3/2, Al 2p3/2, and C 1s were 453.3 eV, 71.3 eV, and 281 eV, respectively [66]. The additional peaks at ∼458 and ∼464 eV in the Ti 2p region correspond to titanium dioxide (TiO2) [66,67], and the additional peak at ∼74 eV in the Al 2p region corresponds to aluminum oxide (Al2O3) [66,67]. Figure 3(c) shows additional peaks at 284.4 eV (C-C/C-H bond) and ∼288.4 eV (O = C-O bond) [66]. The XPS measurement clearly shows that the Ti2AlC particles were substantially oxidized during this fabrication process.

 

Fig. 3. X-ray photoelectron spectroscopy (XPS) profiles of (a) Ti 2p, (b) Al 2p, and (c) C 1s spectra from the Ti2AlC particles.

Download Full Size | PPT Slide | PDF

The linear absorption of a Ti2AlC/PVA film was measured using a spectrophotometer (UV-3600PLUS, Shimadzu). For this linear absorption measurement, a Ti2AlC/PVA film was deposited onto a glass slide. As shown in the linear absorption spectrum in Fig. 4(a), the Ti2AlC/PVA film can be readily used in implementations requiring 1.5 µm band saturable absorbers. Next, we measured the nonlinear transmission curve of the prepared Ti2AlC/PVA-based SA as a function of peak intensity of the incident beam. A 1560 nm mode-locked fiber laser with a temporal width of ∼780 fs at a repetition rate of ∼22.26 MHz was used as the input light source. Figure 4(b) shows the measured nonlinear transmission curve together with a fitted curve defined by [68]:

$$T(I) = 1 - \Delta T \cdot \exp (\frac{{ - I}}{{{I_{sat}}}}) - {T_{ns}}$$
where $T(I)$ is the transmission, $\Delta I$ is the modulation depth, I is the input-pulse energy, ${I_{sat}}$ is the saturation energy, and ${T_{ns}}$ is the nonsaturable loss. The measured modulation depth and the saturation intensity were ∼6.3% and ∼31.2 MW/cm2, respectively.

 

Fig. 4. (a) Linear optical absorption spectrum of the Ti2AlC/PVA composite and (b) nonlinear transmission curve of our prepared Ti2AlC/PVA-based SA.

Download Full Size | PPT Slide | PDF

3. Passively Q-switched fiber laser setup and results

 Figure 5 shows the experimental schematic of our Q-switched fiber laser configuration. For the laser cavity, 2.3-m length of Er-doped fiber (EDF) was used as a gain medium (LIEKKI Er20-4/125, nLight). A 980-nm laser diode was used as a pumping source that was coupled into the gain medium through a 980/1550 nm wavelength division multiplexer (WDM). To obtain unidirectional light propagation, an optical isolator was used after the EDF. The laser output was extracted via the 10% port of a 90:10 optical coupler. The Ti2AlC/PVA-based SA was placed after the optical isolator.

 

Fig. 5. Passively Q-switched fiber laser configuration.

Download Full Size | PPT Slide | PDF

Using the fiber laser setup, we measured the output pulse characteristics as a function of pump power. When the pump power was increased to ∼30 mW, stable Q-switched pulses were readily obtained and were maintained up to a maximum pump power of ∼74 mW. Figure 6(a) shows the measured optical spectrum of the output Q-switched pulses at a pump power of ∼74 mW. The center wavelength and 3-dB bandwidth were measured to be ∼1559.4 and ∼1.6 nm, respectively. Figure 6(b) shows the measured oscilloscope traces of the output pulses using various pump powers. Clear changes to pulse repetition rate were observed as a function of pump power. Above 74 mW pump power, Q-switched pulses became unstable and disappeared. Mode-locking did not occur in this experiment. With our prepared SA it was impossible to induce mode-locking. From our experience, it is very difficult to induce mode-locking at such a high insertion loss level of ∼4.4 dB when a sandwich-structured fiber-ferrule platform is employed for the implementation of an SA. Now we are making every effort to reduce the insertion loss of the Ti2AlC-based SA for mode-locking of a fiber laser. If we use an optimized laser cavity incorporating a Ti2AlC-based SA with a reduced insertion loss, it should be possible to produce mode-locked pulses.

 

Fig. 6. (a) Optical spectrum of the output pulse at a pump power of 74 mW. (b) Oscilloscope traces of the output pulses at a range of pump powers.

Download Full Size | PPT Slide | PDF

Next, we investigated the output characteristics of repetition rate, temporal width, pulse energy and average output power as functions of pump power, and the results are summarized in Fig. 7. Figure 7(a) shows the measured repetition rate and pulse width as a function of pump power. With increasing pump power, the repetition rate increased from 16.14 kHz to 27.45 kHz, whereas the pulse width decreased from 9.24 µs to 4.88 µs due to a strong pumping-induced gain compression effect [17,38]. Note that this phenomenon has been commonly reported in SA-based passively Q-switched fiber lasers [12,18,26]. Figure 7(b) shows that both pulse energy and average output power increased with increase to pump power. The maximum values of average output power and single pulse energy at maximum pump power were ∼0.62 mW and ∼22.58 nJ, respectively.

 

Fig. 7. (a) Repetition rate and temporal width of the output pulses as a function of pump power. (b) Pulse energy and average output power as a function of pump power.

Download Full Size | PPT Slide | PDF

In order to check the repeatability of the sample preaparation process, we fabricated around 20 samples and measured the insertion loss of each sample. We found that Ti2AlC-based SAs properly worked as a Q-switch in the case that their insertion losses were in a range from 4 to 7 dB. Each sample was found to have slightly different properties such as insertion loss and modulation depth due to non-uniform distribution of Ti2AlC particles.

We also investigated the long-term stability of the Q-switched fiber laser by measuring the optical spectrum every 10 minutes for 1 hour, as shown in Fig. 8. Stable operation of the laser over this duration was clearly observed. Furthermore, the oscilloscope traces of the output pulses, which correspond to the pulse spectra, were also measured to investigate the temporal stability. No temporal fluctuations of the output pulses were observed.

 

Fig. 8. Optical spectrum of the output pulses measured every 10 min for 1 hour.

Download Full Size | PPT Slide | PDF

Lastly, the output performance of the passively Q-switched fiber laser proposed in this study was compared with that of recently demonstrated, passively Q-switched erbium-doped fiber lasers using other saturable absorption materials. The results are summarized in Table 1. The prepared Ti2AlC-based SA exhibited a modulation depth larger than those measured from Bi2Te3, WS2, WSe2, and In0.2Co4Sb12-based SAs but smaller than the superlative modulation depth of the BP-based SA (∼18.55%). However, our fiber laser had a maximum output power smaller than those achieved with graphene, Bi2Se3, Sb2Te3, TMDs, gold nanorods, and BP. We believe that further optimization of the fiber cavity parameters and a higher pump power are required to increase the output power performance of our fiber laser. It is evident from this comparison table that our prepared Ti2AlC-based SA exhibits performance comparable to other 2-D material-based ones.

Tables Icon

Table 1. Performance comparison of the present work to previous Q-switched Er-doped fiber lasers incorporating other saturable absorption materials

4. Conclusion

In conclusion, the feasibility of implementing micrometer-sized particles of bulk MAX phase Ti2AlC as saturable absorber was investigated. This saturable absorber was fabricated by drop-casting a Ti2AlC/PVA solution onto the top surface of an FC/APC fiber ferrule and, drying in an oven. Using the prepared Ti2AlC/PVA-based SA, stable Q-switched pulses were obtained from an erbium-doped fiber ring cavity. The minimum pulse width of the output pulses was ∼4.88 µs at a pump power of ∼74 mW.

We believe that this experimental demonstration reveals the significant potential of micrometer-sized MAX-phase particles in the field of pulsed fiber laser technology. It must be noted that low-cost bulk materials could be a preferred option for implementation of practical saturable absorber as they do not require the complicated and sophisticated fabrication processes required for nano-structured 2-D materials. Since the laser performance of this demonstration does not outperform, those previously demonstrated with other nanomaterials, further optimization of the fiber laser parameters should be conducted. Furthermore, more detailed investigations into the recovery time of MAX phase materials are required to determine whether or not their saturable absorption performance is applicable to ultra-fast mode-locking.

Compared to MXenes, which demand a complicate fabrication process including dangerous fluoride ion-based chemical etching, MAX-phases have self-evident advantages in terms of fabrication and handling in the particular application of saturable absorbers. We believe that our work could be a useful database for material science since this is a first time report on saturable absorption properties of a family of MAX-phases.

Funding

National Research Foundation of Korea (NRF) (2018R1A2B6001641); Ministry of Trade, Industry and Energy (MOTIE) (10048726).

References

1. R. N. Zitter, “Saturated optical absorption through band filling in semiconductors,” Appl. Phys. Lett. 14(2), 73–74 (1969). [CrossRef]  

2. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996). [CrossRef]  

3. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22(1), 51–56 (2004). [CrossRef]  

4. Y.-W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers,” Opt. Lett. 32(2), 148–150 (2007). [CrossRef]  

5. D.-P. Zhou, L. Wei, B. Dong, and W.-K. Liu, “Tunable passively Q-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photonics Technol. Lett. 22(1), 9–11 (2010). [CrossRef]  

6. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009). [CrossRef]  

7. D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98(7), 073106 (2011). [CrossRef]  

8. A. Martinez and Z. Sun, “Nanotube and graphene saturable absorber for fibre lasers,” Nat. Photonics 7(11), 842–845 (2013). [CrossRef]  

9. J. Xu, J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20(14), 15474–15480 (2012). [CrossRef]  

10. S. Ko, J. Lee, J. Koo, B. S. Joo, M. Gu, and J. H. Lee, “Chemical wet etching of an optical fiber using a hydrogen fluoride-free solution for a saturable absorber based on the evanescent field interaction,” J. Lightwave Technol. 34(16), 3776–3784 (2016). [CrossRef]  

11. G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett. 8(12), 880–886 (2011). [CrossRef]  

12. J. Lee, J. Lee, J. Koo, and J. H. Lee, “Graphite saturable absorber based on the pencil-sketching method for Q-switching of an erbium fiber laser,” Appl. Opt. 55(2), 303–309 (2016). [CrossRef]  

13. C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012). [CrossRef]  

14. M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(7), 7865–7874 (2014). [CrossRef]  

15. J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express 4(1), 1–6 (2014). [CrossRef]  

16. Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2 µm wavelength,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902708 (2014). [CrossRef]  

17. H. Ahmad, M. R. K. Soltanian, L. Narimani, I. S. Amiri, A. Khodaei, and S. W. Harun, “Tunable S-band Q-switched fiber laser using Bi2Se3 as the saturable absorber,” IEEE Photonics J. 7(3), 1–8 (2015). [CrossRef]  

18. J. Lee, J. Lee, J. Koo, H. Chung, and J. H. Lee, “Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber,” Opt. Eng. 55(7), 076109 (2016). [CrossRef]  

19. J. Bogusławski, G. Sobon, K. Tarnowski, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “All-polarization-maintaining-fiber laser Q-switched by evanescent field interaction with Sb2Te3 saturable absorber,” Opt. Eng. 55(8), 081316 (2016). [CrossRef]  

20. Y. I. Jhon, J. Lee, Y. M. Jhon, and J. H. Lee, “Topological insulator for mode-locking of 2-µm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1102208 (2018). [CrossRef]  

21. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014). [CrossRef]  

22. Y. Huang, Z. Luo, Y. Li, M. Zhong, B. Xu, K. Che, H. Xu, Z. Cai, J. Peng, and J. Weng, “Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber,” Opt. Express 22(21), 25258–25266 (2014). [CrossRef]  

23. D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015). [CrossRef]  

24. M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Mode-locked, 1.94-µm, all-fiberized laser using WS2 based evanescent field interaction,” Opt. Express 23(15), 19996–20006 (2015). [CrossRef]  

25. M. Zhang, G. Hu, G. Hu, R. C. T. Howe, L. Chen, Z. Zheng, and T. Hasan, “Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber,” Sci. Rep. 5(1), 17482 (2015). [CrossRef]  

26. B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2,” Opt. Express 23(20), 26723–26737 (2015). [CrossRef]  

27. R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber,” Opt. Express 23(15), 20051–20061 (2015). [CrossRef]  

28. D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6(1), 23583 (2016). [CrossRef]  

29. B. Chen, X. Zhang, C. Guo, K. Wu, J. Chen, and J. Wang, “Tungsten diselenide Q-switched erbium-doped fiber laser,” Opt. Eng. 55(8), 081306 (2016). [CrossRef]  

30. J. Lee, J. Koo, J. Lee, Y. M. Jhon, and J. H. Lee, “All-fiberized, femtosecond laser at 1912 nm using a bulk-like MoSe2 saturable absorber,” Opt. Mater. Express 7(8), 2968–2979 (2017). [CrossRef]  

31. D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12(11), 1489–1497 (2016). [CrossRef]  

32. J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26(41), 7454–7461 (2016). [CrossRef]  

33. B. Huang, L. Du, Q. Yi, L. Yang, J. Li, L. Miao, C. Zhao, and S. Wen, “Bulk-structured PtSe2 for femtosecond fiber laser mode-locking,” Opt. Express 27(3), 2604–2611 (2019). [CrossRef]  

34. Z. Kang, X. Guo, Z. Jia, Y. Xu, L. Liu, D. Zhao, G. Qin, and W. Qin, “Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser,” Opt. Mater. Express 3(11), 1986–1991 (2013). [CrossRef]  

35. X.-D. Wang, Z.-C. Luo, H. Liu, M. Liu, A.-P. Luo, and W.-C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014). [CrossRef]  

36. J. Lee, J. Koo, J. Lee, and J. H. Lee, “End-to-end self-assembly of gold nanorods in water solution for absorption enhancement at a 1-to-2 µm band for a broadband saturable absorber,” J. Lightwave Technol. 34(22), 5250–5257 (2016). [CrossRef]  

37. Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015). [CrossRef]  

38. H. Yu, X. Zheng, K. Yin, X. Cheng, and T. Jiang, “Nanosecond passively Q-switched thulium/holmium-doped fiber laser based on black phosphorus nanoplatelets,” Opt. Mater. Express 6(2), 603–609 (2016). [CrossRef]  

39. K. Park, J. Lee, Y. T. Lee, W.-K. Choi, J. H. Lee, and Y.-W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527(11-12), 770–776 (2015). [CrossRef]  

40. J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5(11), 1700096 (2017). [CrossRef]  

41. J. Lee, Y. Kim, K. Lee, and J. H. Lee, “Femtosecond mode-locking of a fiber laser using a CoSb3-skutterudite-based saturable absorber,” Photonics Res. 6(10), C36–C43 (2018). [CrossRef]  

42. Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29(40), 1702496 (2017). [CrossRef]  

43. X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018). [CrossRef]  

44. Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes,” Adv. Mater. 30(10), 1705714 (2018). [CrossRef]  

45. X. Sun, B. Zhang, B. Yan, G. Li, H. Nie, K. Yang, C. Zhang, and J. He, “Few-layer Ti3C2Tx (T = O, OH, or F) saturable absorber for a femtosecond bulk laser,” Opt. Lett. 43(16), 3862–3865 (2018). [CrossRef]  

46. O. Mashtalir, M. R. Lukatskaya, M.-Q. Zhao, M. W. Barsoum, and Y. Gogotsi, “Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices,” Adv. Mater. 27(23), 3501–3506 (2015). [CrossRef]  

47. X. Xie, Y. Xue, L. Li, S. Chen, Y. Nie, W. Ding, and Z. Wei, “Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system,” Nanoscale 6(19), 11035–11040 (2014). [CrossRef]  

48. H. Liu, C. Duan, C. Yang, W. Shen, F. Wang, and Z. Zhu, “A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2,” Sens. Actuators, B 218, 60–66 (2015). [CrossRef]  

49. Q. Peng, J. Guo, Q. Zhang, J. Xiang, B. Liu, A. Zhou, R. Liu, and Y. Tian, “Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide,” J. Am. Chem. Soc. 136(11), 4113–4116 (2014). [CrossRef]  

50. J. Halim, M. R. Lukatskaya, K. M. Code, J. Lu, C. R. Smith, L-Å. Näslund, S. J. May, L. Hultman, Y. Gogotsi, P. Eklund, and M. W. Barsoum, “Transparent conductive two-dimensional titanium carbide epitaxial thin films,” Chem. Mater. 26(7), 2374–2381 (2014). [CrossRef]  

51. M. Ghidiu, M. R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, and M. W. Barsoum, “Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance,” Nature 516(7529), 78–81 (2014). [CrossRef]  

52. J. Halim, K. M. Cook, M. Naguib, P. Eklund, Y. Gogotsi, J. Rosen, and M. W. Barsoum, “X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes),” Appl. Surf. Sci. 362, 406–417 (2016). [CrossRef]  

53. M. W. Barsoum and T. El-Raghy, “The MAX phases: unique new carbide and nitride materials,” Am. Sci. 89(4), 334–343 (2001). [CrossRef]  

54. Z. M. Sun, “Progress in research and development on MAX phases: a family of layered ternary compounds,” Int. Mater. Rev. 56(3), 143–166 (2011). [CrossRef]  

55. M. Haftani, M. S. Heydari, H. R. Baharvandi, and N. Ehsani, “Studying the oxidation of Ti2AlC MAX phase in atmosphere: A review,” Int. J. Refract. Hard Met. 61, 51–60 (2016). [CrossRef]  

56. M. Krinitcyn, Z. Fu, J. Harris, K. Kostikov, G. A. Pribytkov, P. Greil, and N. Travitzky, “Laminated object manufacturing of in-situ synthesized MAX-phase composites,” Ceram. Int. 43(12), 9241–9245 (2017). [CrossRef]  

57. X. H. Wang and Y. C. Zhou, “Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review,” J. Mater. Sci. Technol. 26(5), 385–416 (2010). [CrossRef]  

58. C. Q. Chen, Y. T. Pei, K. P. Shaha, J. Th, and M. De Hosson, “Tunable self-organization of nanocomposite multilayers,” Appl. Phys. Lett. 96(7), 073103 (2010). [CrossRef]  

59. Z. Wang, J. Liu, L. Wang, X. Li, P. Ke, and A. Wang, “Dense and high-stability Ti2AlN MAX phase coatings prepared by the combined cathodic arc/sputter technique,” Appl. Surf. Sci. 396, 1435–1442 (2017). [CrossRef]  

60. E. N. Hoffman, D. W. Vinson, R. L. Sindelar, D. J. Tallman, G. Kohse, and M. W. Barsoum, “MAX phase carbides and nitrides: properties for future nuclear power plant in-core applications and neutron transmutation analysis,” Nucl. Eng. Des. 244, 17–24 (2012). [CrossRef]  

61. J. W. Byeon, J. Liu, M. Hopkins, W. Fishcer, N. Garimella, K. B. Park, M. P. Brady, M. Radovic, T. El-Raghy, and Y. H. Sohn, “Microstructure and residual stress of alumina scale formed on Ti2AlC at high temperature in air,” Oxid. Met. 68(1-2), 97–111 (2007). [CrossRef]  

62. X. H. Wang and Y. C. Zhou, “High-temperature oxidation behavior of Ti2AlC in air,” Oxid. Met. 59(3-4), 303–320 (2003). [CrossRef]  

63. T. Thomas and C. R. Bowen, “Effect of particle size on the formation of Ti2AlC using combustion synthesis,” Ceram. Int. 42(3), 4150–4157 (2016). [CrossRef]  

64. Y. Du, J.-X. Liu, Y. Gu, X.-G. Wang, F. Xu, and G.-J. Zhang, “Anisotropic corrosion of Ti2AlC and Ti3AlC2 in supercritical water at 500°C,” Ceram. Int. 43(9), 7166–7171 (2017). [CrossRef]  

65. S. Shu, C. Tong, F. Qiu, and Q. Jiang, “Effect of ceramic content on the compression properties of TiB2-Ti2AlC/TiAl composites,” Metals 5(4), 2200–2209 (2015). [CrossRef]  

66. Z. Zhang, S. H. Lim, D. M. Y. Lai, S. Y. Tan, X. Q. Koh, J. Chai, S. J. Wang, H. Jin, and J. S. Pan, “Probing the oxidation behavior of Ti2AlC MAX phase powders between 200 and 1000°C,” J. Eur. Ceram. Soc. 37(1), 43–51 (2017). [CrossRef]  

67. F. Kong, K. Feng, Y. Bai, N. Li, X. Qi, Y. Zheng, R. Wang, and X. He, “Oxidation behavior of high-purity nonstoichiometric Ti2AlC powders in flowing air,” J. Mater. Res. 32(14), 2747–2754 (2017). [CrossRef]  

68. K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. R. N. Zitter, “Saturated optical absorption through band filling in semiconductors,” Appl. Phys. Lett. 14(2), 73–74 (1969).
    [Crossref]
  2. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
    [Crossref]
  3. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22(1), 51–56 (2004).
    [Crossref]
  4. Y.-W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers,” Opt. Lett. 32(2), 148–150 (2007).
    [Crossref]
  5. D.-P. Zhou, L. Wei, B. Dong, and W.-K. Liu, “Tunable passively Q-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photonics Technol. Lett. 22(1), 9–11 (2010).
    [Crossref]
  6. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
    [Crossref]
  7. D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98(7), 073106 (2011).
    [Crossref]
  8. A. Martinez and Z. Sun, “Nanotube and graphene saturable absorber for fibre lasers,” Nat. Photonics 7(11), 842–845 (2013).
    [Crossref]
  9. J. Xu, J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20(14), 15474–15480 (2012).
    [Crossref]
  10. S. Ko, J. Lee, J. Koo, B. S. Joo, M. Gu, and J. H. Lee, “Chemical wet etching of an optical fiber using a hydrogen fluoride-free solution for a saturable absorber based on the evanescent field interaction,” J. Lightwave Technol. 34(16), 3776–3784 (2016).
    [Crossref]
  11. G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett. 8(12), 880–886 (2011).
    [Crossref]
  12. J. Lee, J. Lee, J. Koo, and J. H. Lee, “Graphite saturable absorber based on the pencil-sketching method for Q-switching of an erbium fiber laser,” Appl. Opt. 55(2), 303–309 (2016).
    [Crossref]
  13. C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
    [Crossref]
  14. M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(7), 7865–7874 (2014).
    [Crossref]
  15. J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express 4(1), 1–6 (2014).
    [Crossref]
  16. Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2 µm wavelength,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902708 (2014).
    [Crossref]
  17. H. Ahmad, M. R. K. Soltanian, L. Narimani, I. S. Amiri, A. Khodaei, and S. W. Harun, “Tunable S-band Q-switched fiber laser using Bi2Se3 as the saturable absorber,” IEEE Photonics J. 7(3), 1–8 (2015).
    [Crossref]
  18. J. Lee, J. Lee, J. Koo, H. Chung, and J. H. Lee, “Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber,” Opt. Eng. 55(7), 076109 (2016).
    [Crossref]
  19. J. Bogusławski, G. Sobon, K. Tarnowski, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “All-polarization-maintaining-fiber laser Q-switched by evanescent field interaction with Sb2Te3 saturable absorber,” Opt. Eng. 55(8), 081316 (2016).
    [Crossref]
  20. Y. I. Jhon, J. Lee, Y. M. Jhon, and J. H. Lee, “Topological insulator for mode-locking of 2-µm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1102208 (2018).
    [Crossref]
  21. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
    [Crossref]
  22. Y. Huang, Z. Luo, Y. Li, M. Zhong, B. Xu, K. Che, H. Xu, Z. Cai, J. Peng, and J. Weng, “Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber,” Opt. Express 22(21), 25258–25266 (2014).
    [Crossref]
  23. D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
    [Crossref]
  24. M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Mode-locked, 1.94-µm, all-fiberized laser using WS2 based evanescent field interaction,” Opt. Express 23(15), 19996–20006 (2015).
    [Crossref]
  25. M. Zhang, G. Hu, G. Hu, R. C. T. Howe, L. Chen, Z. Zheng, and T. Hasan, “Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber,” Sci. Rep. 5(1), 17482 (2015).
    [Crossref]
  26. B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2,” Opt. Express 23(20), 26723–26737 (2015).
    [Crossref]
  27. R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber,” Opt. Express 23(15), 20051–20061 (2015).
    [Crossref]
  28. D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6(1), 23583 (2016).
    [Crossref]
  29. B. Chen, X. Zhang, C. Guo, K. Wu, J. Chen, and J. Wang, “Tungsten diselenide Q-switched erbium-doped fiber laser,” Opt. Eng. 55(8), 081306 (2016).
    [Crossref]
  30. J. Lee, J. Koo, J. Lee, Y. M. Jhon, and J. H. Lee, “All-fiberized, femtosecond laser at 1912 nm using a bulk-like MoSe2 saturable absorber,” Opt. Mater. Express 7(8), 2968–2979 (2017).
    [Crossref]
  31. D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12(11), 1489–1497 (2016).
    [Crossref]
  32. J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26(41), 7454–7461 (2016).
    [Crossref]
  33. B. Huang, L. Du, Q. Yi, L. Yang, J. Li, L. Miao, C. Zhao, and S. Wen, “Bulk-structured PtSe2 for femtosecond fiber laser mode-locking,” Opt. Express 27(3), 2604–2611 (2019).
    [Crossref]
  34. Z. Kang, X. Guo, Z. Jia, Y. Xu, L. Liu, D. Zhao, G. Qin, and W. Qin, “Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser,” Opt. Mater. Express 3(11), 1986–1991 (2013).
    [Crossref]
  35. X.-D. Wang, Z.-C. Luo, H. Liu, M. Liu, A.-P. Luo, and W.-C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
    [Crossref]
  36. J. Lee, J. Koo, J. Lee, and J. H. Lee, “End-to-end self-assembly of gold nanorods in water solution for absorption enhancement at a 1-to-2 µm band for a broadband saturable absorber,” J. Lightwave Technol. 34(22), 5250–5257 (2016).
    [Crossref]
  37. Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
    [Crossref]
  38. H. Yu, X. Zheng, K. Yin, X. Cheng, and T. Jiang, “Nanosecond passively Q-switched thulium/holmium-doped fiber laser based on black phosphorus nanoplatelets,” Opt. Mater. Express 6(2), 603–609 (2016).
    [Crossref]
  39. K. Park, J. Lee, Y. T. Lee, W.-K. Choi, J. H. Lee, and Y.-W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527(11-12), 770–776 (2015).
    [Crossref]
  40. J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5(11), 1700096 (2017).
    [Crossref]
  41. J. Lee, Y. Kim, K. Lee, and J. H. Lee, “Femtosecond mode-locking of a fiber laser using a CoSb3-skutterudite-based saturable absorber,” Photonics Res. 6(10), C36–C43 (2018).
    [Crossref]
  42. Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29(40), 1702496 (2017).
    [Crossref]
  43. X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
    [Crossref]
  44. Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes,” Adv. Mater. 30(10), 1705714 (2018).
    [Crossref]
  45. X. Sun, B. Zhang, B. Yan, G. Li, H. Nie, K. Yang, C. Zhang, and J. He, “Few-layer Ti3C2Tx (T = O, OH, or F) saturable absorber for a femtosecond bulk laser,” Opt. Lett. 43(16), 3862–3865 (2018).
    [Crossref]
  46. O. Mashtalir, M. R. Lukatskaya, M.-Q. Zhao, M. W. Barsoum, and Y. Gogotsi, “Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices,” Adv. Mater. 27(23), 3501–3506 (2015).
    [Crossref]
  47. X. Xie, Y. Xue, L. Li, S. Chen, Y. Nie, W. Ding, and Z. Wei, “Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system,” Nanoscale 6(19), 11035–11040 (2014).
    [Crossref]
  48. H. Liu, C. Duan, C. Yang, W. Shen, F. Wang, and Z. Zhu, “A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2,” Sens. Actuators, B 218, 60–66 (2015).
    [Crossref]
  49. Q. Peng, J. Guo, Q. Zhang, J. Xiang, B. Liu, A. Zhou, R. Liu, and Y. Tian, “Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide,” J. Am. Chem. Soc. 136(11), 4113–4116 (2014).
    [Crossref]
  50. J. Halim, M. R. Lukatskaya, K. M. Code, J. Lu, C. R. Smith, L-Å. Näslund, S. J. May, L. Hultman, Y. Gogotsi, P. Eklund, and M. W. Barsoum, “Transparent conductive two-dimensional titanium carbide epitaxial thin films,” Chem. Mater. 26(7), 2374–2381 (2014).
    [Crossref]
  51. M. Ghidiu, M. R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, and M. W. Barsoum, “Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance,” Nature 516(7529), 78–81 (2014).
    [Crossref]
  52. J. Halim, K. M. Cook, M. Naguib, P. Eklund, Y. Gogotsi, J. Rosen, and M. W. Barsoum, “X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes),” Appl. Surf. Sci. 362, 406–417 (2016).
    [Crossref]
  53. M. W. Barsoum and T. El-Raghy, “The MAX phases: unique new carbide and nitride materials,” Am. Sci. 89(4), 334–343 (2001).
    [Crossref]
  54. Z. M. Sun, “Progress in research and development on MAX phases: a family of layered ternary compounds,” Int. Mater. Rev. 56(3), 143–166 (2011).
    [Crossref]
  55. M. Haftani, M. S. Heydari, H. R. Baharvandi, and N. Ehsani, “Studying the oxidation of Ti2AlC MAX phase in atmosphere: A review,” Int. J. Refract. Hard Met. 61, 51–60 (2016).
    [Crossref]
  56. M. Krinitcyn, Z. Fu, J. Harris, K. Kostikov, G. A. Pribytkov, P. Greil, and N. Travitzky, “Laminated object manufacturing of in-situ synthesized MAX-phase composites,” Ceram. Int. 43(12), 9241–9245 (2017).
    [Crossref]
  57. X. H. Wang and Y. C. Zhou, “Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review,” J. Mater. Sci. Technol. 26(5), 385–416 (2010).
    [Crossref]
  58. C. Q. Chen, Y. T. Pei, K. P. Shaha, J. Th, and M. De Hosson, “Tunable self-organization of nanocomposite multilayers,” Appl. Phys. Lett. 96(7), 073103 (2010).
    [Crossref]
  59. Z. Wang, J. Liu, L. Wang, X. Li, P. Ke, and A. Wang, “Dense and high-stability Ti2AlN MAX phase coatings prepared by the combined cathodic arc/sputter technique,” Appl. Surf. Sci. 396, 1435–1442 (2017).
    [Crossref]
  60. E. N. Hoffman, D. W. Vinson, R. L. Sindelar, D. J. Tallman, G. Kohse, and M. W. Barsoum, “MAX phase carbides and nitrides: properties for future nuclear power plant in-core applications and neutron transmutation analysis,” Nucl. Eng. Des. 244, 17–24 (2012).
    [Crossref]
  61. J. W. Byeon, J. Liu, M. Hopkins, W. Fishcer, N. Garimella, K. B. Park, M. P. Brady, M. Radovic, T. El-Raghy, and Y. H. Sohn, “Microstructure and residual stress of alumina scale formed on Ti2AlC at high temperature in air,” Oxid. Met. 68(1-2), 97–111 (2007).
    [Crossref]
  62. X. H. Wang and Y. C. Zhou, “High-temperature oxidation behavior of Ti2AlC in air,” Oxid. Met. 59(3-4), 303–320 (2003).
    [Crossref]
  63. T. Thomas and C. R. Bowen, “Effect of particle size on the formation of Ti2AlC using combustion synthesis,” Ceram. Int. 42(3), 4150–4157 (2016).
    [Crossref]
  64. Y. Du, J.-X. Liu, Y. Gu, X.-G. Wang, F. Xu, and G.-J. Zhang, “Anisotropic corrosion of Ti2AlC and Ti3AlC2 in supercritical water at 500°C,” Ceram. Int. 43(9), 7166–7171 (2017).
    [Crossref]
  65. S. Shu, C. Tong, F. Qiu, and Q. Jiang, “Effect of ceramic content on the compression properties of TiB2-Ti2AlC/TiAl composites,” Metals 5(4), 2200–2209 (2015).
    [Crossref]
  66. Z. Zhang, S. H. Lim, D. M. Y. Lai, S. Y. Tan, X. Q. Koh, J. Chai, S. J. Wang, H. Jin, and J. S. Pan, “Probing the oxidation behavior of Ti2AlC MAX phase powders between 200 and 1000°C,” J. Eur. Ceram. Soc. 37(1), 43–51 (2017).
    [Crossref]
  67. F. Kong, K. Feng, Y. Bai, N. Li, X. Qi, Y. Zheng, R. Wang, and X. He, “Oxidation behavior of high-purity nonstoichiometric Ti2AlC powders in flowing air,” J. Mater. Res. 32(14), 2747–2754 (2017).
    [Crossref]
  68. K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
    [Crossref]

2019 (1)

2018 (6)

Y. I. Jhon, J. Lee, Y. M. Jhon, and J. H. Lee, “Topological insulator for mode-locking of 2-µm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1102208 (2018).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref]

X. Sun, B. Zhang, B. Yan, G. Li, H. Nie, K. Yang, C. Zhang, and J. He, “Few-layer Ti3C2Tx (T = O, OH, or F) saturable absorber for a femtosecond bulk laser,” Opt. Lett. 43(16), 3862–3865 (2018).
[Crossref]

J. Lee, Y. Kim, K. Lee, and J. H. Lee, “Femtosecond mode-locking of a fiber laser using a CoSb3-skutterudite-based saturable absorber,” Photonics Res. 6(10), C36–C43 (2018).
[Crossref]

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

2017 (8)

Y. Du, J.-X. Liu, Y. Gu, X.-G. Wang, F. Xu, and G.-J. Zhang, “Anisotropic corrosion of Ti2AlC and Ti3AlC2 in supercritical water at 500°C,” Ceram. Int. 43(9), 7166–7171 (2017).
[Crossref]

Z. Zhang, S. H. Lim, D. M. Y. Lai, S. Y. Tan, X. Q. Koh, J. Chai, S. J. Wang, H. Jin, and J. S. Pan, “Probing the oxidation behavior of Ti2AlC MAX phase powders between 200 and 1000°C,” J. Eur. Ceram. Soc. 37(1), 43–51 (2017).
[Crossref]

F. Kong, K. Feng, Y. Bai, N. Li, X. Qi, Y. Zheng, R. Wang, and X. He, “Oxidation behavior of high-purity nonstoichiometric Ti2AlC powders in flowing air,” J. Mater. Res. 32(14), 2747–2754 (2017).
[Crossref]

M. Krinitcyn, Z. Fu, J. Harris, K. Kostikov, G. A. Pribytkov, P. Greil, and N. Travitzky, “Laminated object manufacturing of in-situ synthesized MAX-phase composites,” Ceram. Int. 43(12), 9241–9245 (2017).
[Crossref]

Z. Wang, J. Liu, L. Wang, X. Li, P. Ke, and A. Wang, “Dense and high-stability Ti2AlN MAX phase coatings prepared by the combined cathodic arc/sputter technique,” Appl. Surf. Sci. 396, 1435–1442 (2017).
[Crossref]

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref]

J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5(11), 1700096 (2017).
[Crossref]

J. Lee, J. Koo, J. Lee, Y. M. Jhon, and J. H. Lee, “All-fiberized, femtosecond laser at 1912 nm using a bulk-like MoSe2 saturable absorber,” Opt. Mater. Express 7(8), 2968–2979 (2017).
[Crossref]

2016 (13)

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26(41), 7454–7461 (2016).
[Crossref]

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6(1), 23583 (2016).
[Crossref]

B. Chen, X. Zhang, C. Guo, K. Wu, J. Chen, and J. Wang, “Tungsten diselenide Q-switched erbium-doped fiber laser,” Opt. Eng. 55(8), 081306 (2016).
[Crossref]

J. Lee, J. Koo, J. Lee, and J. H. Lee, “End-to-end self-assembly of gold nanorods in water solution for absorption enhancement at a 1-to-2 µm band for a broadband saturable absorber,” J. Lightwave Technol. 34(22), 5250–5257 (2016).
[Crossref]

J. Lee, J. Lee, J. Koo, H. Chung, and J. H. Lee, “Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber,” Opt. Eng. 55(7), 076109 (2016).
[Crossref]

J. Bogusławski, G. Sobon, K. Tarnowski, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “All-polarization-maintaining-fiber laser Q-switched by evanescent field interaction with Sb2Te3 saturable absorber,” Opt. Eng. 55(8), 081316 (2016).
[Crossref]

S. Ko, J. Lee, J. Koo, B. S. Joo, M. Gu, and J. H. Lee, “Chemical wet etching of an optical fiber using a hydrogen fluoride-free solution for a saturable absorber based on the evanescent field interaction,” J. Lightwave Technol. 34(16), 3776–3784 (2016).
[Crossref]

J. Lee, J. Lee, J. Koo, and J. H. Lee, “Graphite saturable absorber based on the pencil-sketching method for Q-switching of an erbium fiber laser,” Appl. Opt. 55(2), 303–309 (2016).
[Crossref]

H. Yu, X. Zheng, K. Yin, X. Cheng, and T. Jiang, “Nanosecond passively Q-switched thulium/holmium-doped fiber laser based on black phosphorus nanoplatelets,” Opt. Mater. Express 6(2), 603–609 (2016).
[Crossref]

J. Halim, K. M. Cook, M. Naguib, P. Eklund, Y. Gogotsi, J. Rosen, and M. W. Barsoum, “X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes),” Appl. Surf. Sci. 362, 406–417 (2016).
[Crossref]

M. Haftani, M. S. Heydari, H. R. Baharvandi, and N. Ehsani, “Studying the oxidation of Ti2AlC MAX phase in atmosphere: A review,” Int. J. Refract. Hard Met. 61, 51–60 (2016).
[Crossref]

T. Thomas and C. R. Bowen, “Effect of particle size on the formation of Ti2AlC using combustion synthesis,” Ceram. Int. 42(3), 4150–4157 (2016).
[Crossref]

2015 (11)

S. Shu, C. Tong, F. Qiu, and Q. Jiang, “Effect of ceramic content on the compression properties of TiB2-Ti2AlC/TiAl composites,” Metals 5(4), 2200–2209 (2015).
[Crossref]

H. Liu, C. Duan, C. Yang, W. Shen, F. Wang, and Z. Zhu, “A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2,” Sens. Actuators, B 218, 60–66 (2015).
[Crossref]

K. Park, J. Lee, Y. T. Lee, W.-K. Choi, J. H. Lee, and Y.-W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527(11-12), 770–776 (2015).
[Crossref]

O. Mashtalir, M. R. Lukatskaya, M.-Q. Zhao, M. W. Barsoum, and Y. Gogotsi, “Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices,” Adv. Mater. 27(23), 3501–3506 (2015).
[Crossref]

H. Ahmad, M. R. K. Soltanian, L. Narimani, I. S. Amiri, A. Khodaei, and S. W. Harun, “Tunable S-band Q-switched fiber laser using Bi2Se3 as the saturable absorber,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref]

M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Mode-locked, 1.94-µm, all-fiberized laser using WS2 based evanescent field interaction,” Opt. Express 23(15), 19996–20006 (2015).
[Crossref]

M. Zhang, G. Hu, G. Hu, R. C. T. Howe, L. Chen, Z. Zheng, and T. Hasan, “Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber,” Sci. Rep. 5(1), 17482 (2015).
[Crossref]

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2,” Opt. Express 23(20), 26723–26737 (2015).
[Crossref]

R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber,” Opt. Express 23(15), 20051–20061 (2015).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref]

2014 (10)

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref]

Y. Huang, Z. Luo, Y. Li, M. Zhong, B. Xu, K. Che, H. Xu, Z. Cai, J. Peng, and J. Weng, “Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber,” Opt. Express 22(21), 25258–25266 (2014).
[Crossref]

M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(7), 7865–7874 (2014).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express 4(1), 1–6 (2014).
[Crossref]

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2 µm wavelength,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902708 (2014).
[Crossref]

X. Xie, Y. Xue, L. Li, S. Chen, Y. Nie, W. Ding, and Z. Wei, “Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system,” Nanoscale 6(19), 11035–11040 (2014).
[Crossref]

X.-D. Wang, Z.-C. Luo, H. Liu, M. Liu, A.-P. Luo, and W.-C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

Q. Peng, J. Guo, Q. Zhang, J. Xiang, B. Liu, A. Zhou, R. Liu, and Y. Tian, “Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide,” J. Am. Chem. Soc. 136(11), 4113–4116 (2014).
[Crossref]

J. Halim, M. R. Lukatskaya, K. M. Code, J. Lu, C. R. Smith, L-Å. Näslund, S. J. May, L. Hultman, Y. Gogotsi, P. Eklund, and M. W. Barsoum, “Transparent conductive two-dimensional titanium carbide epitaxial thin films,” Chem. Mater. 26(7), 2374–2381 (2014).
[Crossref]

M. Ghidiu, M. R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, and M. W. Barsoum, “Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance,” Nature 516(7529), 78–81 (2014).
[Crossref]

2013 (2)

2012 (3)

J. Xu, J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20(14), 15474–15480 (2012).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

E. N. Hoffman, D. W. Vinson, R. L. Sindelar, D. J. Tallman, G. Kohse, and M. W. Barsoum, “MAX phase carbides and nitrides: properties for future nuclear power plant in-core applications and neutron transmutation analysis,” Nucl. Eng. Des. 244, 17–24 (2012).
[Crossref]

2011 (3)

Z. M. Sun, “Progress in research and development on MAX phases: a family of layered ternary compounds,” Int. Mater. Rev. 56(3), 143–166 (2011).
[Crossref]

G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett. 8(12), 880–886 (2011).
[Crossref]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98(7), 073106 (2011).
[Crossref]

2010 (3)

D.-P. Zhou, L. Wei, B. Dong, and W.-K. Liu, “Tunable passively Q-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photonics Technol. Lett. 22(1), 9–11 (2010).
[Crossref]

X. H. Wang and Y. C. Zhou, “Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review,” J. Mater. Sci. Technol. 26(5), 385–416 (2010).
[Crossref]

C. Q. Chen, Y. T. Pei, K. P. Shaha, J. Th, and M. De Hosson, “Tunable self-organization of nanocomposite multilayers,” Appl. Phys. Lett. 96(7), 073103 (2010).
[Crossref]

2009 (1)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

2007 (2)

Y.-W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers,” Opt. Lett. 32(2), 148–150 (2007).
[Crossref]

J. W. Byeon, J. Liu, M. Hopkins, W. Fishcer, N. Garimella, K. B. Park, M. P. Brady, M. Radovic, T. El-Raghy, and Y. H. Sohn, “Microstructure and residual stress of alumina scale formed on Ti2AlC at high temperature in air,” Oxid. Met. 68(1-2), 97–111 (2007).
[Crossref]

2004 (1)

2003 (1)

X. H. Wang and Y. C. Zhou, “High-temperature oxidation behavior of Ti2AlC in air,” Oxid. Met. 59(3-4), 303–320 (2003).
[Crossref]

2001 (1)

M. W. Barsoum and T. El-Raghy, “The MAX phases: unique new carbide and nitride materials,” Am. Sci. 89(4), 334–343 (2001).
[Crossref]

1996 (1)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

1969 (1)

R. N. Zitter, “Saturated optical absorption through band filling in semiconductors,” Appl. Phys. Lett. 14(2), 73–74 (1969).
[Crossref]

Abramski, K. M.

J. Bogusławski, G. Sobon, K. Tarnowski, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “All-polarization-maintaining-fiber laser Q-switched by evanescent field interaction with Sb2Te3 saturable absorber,” Opt. Eng. 55(8), 081316 (2016).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express 4(1), 1–6 (2014).
[Crossref]

Ahmad, H.

H. Ahmad, M. R. K. Soltanian, L. Narimani, I. S. Amiri, A. Khodaei, and S. W. Harun, “Tunable S-band Q-switched fiber laser using Bi2Se3 as the saturable absorber,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

Amiri, I. S.

H. Ahmad, M. R. K. Soltanian, L. Narimani, I. S. Amiri, A. Khodaei, and S. W. Harun, “Tunable S-band Q-switched fiber laser using Bi2Se3 as the saturable absorber,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

Anasori, B.

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref]

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref]

Baharvandi, H. R.

M. Haftani, M. S. Heydari, H. R. Baharvandi, and N. Ehsani, “Studying the oxidation of Ti2AlC MAX phase in atmosphere: A review,” Int. J. Refract. Hard Met. 61, 51–60 (2016).
[Crossref]

Bai, Y.

F. Kong, K. Feng, Y. Bai, N. Li, X. Qi, Y. Zheng, R. Wang, and X. He, “Oxidation behavior of high-purity nonstoichiometric Ti2AlC powders in flowing air,” J. Mater. Res. 32(14), 2747–2754 (2017).
[Crossref]

Bao, Q.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Barsoum, M. W.

J. Halim, K. M. Cook, M. Naguib, P. Eklund, Y. Gogotsi, J. Rosen, and M. W. Barsoum, “X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes),” Appl. Surf. Sci. 362, 406–417 (2016).
[Crossref]

O. Mashtalir, M. R. Lukatskaya, M.-Q. Zhao, M. W. Barsoum, and Y. Gogotsi, “Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices,” Adv. Mater. 27(23), 3501–3506 (2015).
[Crossref]

M. Ghidiu, M. R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, and M. W. Barsoum, “Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance,” Nature 516(7529), 78–81 (2014).
[Crossref]

J. Halim, M. R. Lukatskaya, K. M. Code, J. Lu, C. R. Smith, L-Å. Näslund, S. J. May, L. Hultman, Y. Gogotsi, P. Eklund, and M. W. Barsoum, “Transparent conductive two-dimensional titanium carbide epitaxial thin films,” Chem. Mater. 26(7), 2374–2381 (2014).
[Crossref]

E. N. Hoffman, D. W. Vinson, R. L. Sindelar, D. J. Tallman, G. Kohse, and M. W. Barsoum, “MAX phase carbides and nitrides: properties for future nuclear power plant in-core applications and neutron transmutation analysis,” Nucl. Eng. Des. 244, 17–24 (2012).
[Crossref]

M. W. Barsoum and T. El-Raghy, “The MAX phases: unique new carbide and nitride materials,” Am. Sci. 89(4), 334–343 (2001).
[Crossref]

Bhattacharya, S.

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref]

Boguslawski, J.

J. Bogusławski, G. Sobon, K. Tarnowski, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “All-polarization-maintaining-fiber laser Q-switched by evanescent field interaction with Sb2Te3 saturable absorber,” Opt. Eng. 55(8), 081316 (2016).
[Crossref]

Bowen, C. R.

T. Thomas and C. R. Bowen, “Effect of particle size on the formation of Ti2AlC using combustion synthesis,” Ceram. Int. 42(3), 4150–4157 (2016).
[Crossref]

Brady, M. P.

J. W. Byeon, J. Liu, M. Hopkins, W. Fishcer, N. Garimella, K. B. Park, M. P. Brady, M. Radovic, T. El-Raghy, and Y. H. Sohn, “Microstructure and residual stress of alumina scale formed on Ti2AlC at high temperature in air,” Oxid. Met. 68(1-2), 97–111 (2007).
[Crossref]

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Byeon, J. W.

J. W. Byeon, J. Liu, M. Hopkins, W. Fishcer, N. Garimella, K. B. Park, M. P. Brady, M. Radovic, T. El-Raghy, and Y. H. Sohn, “Microstructure and residual stress of alumina scale formed on Ti2AlC at high temperature in air,” Oxid. Met. 68(1-2), 97–111 (2007).
[Crossref]

Cai, Z.

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2 µm wavelength,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902708 (2014).
[Crossref]

Y. Huang, Z. Luo, Y. Li, M. Zhong, B. Xu, K. Che, H. Xu, Z. Cai, J. Peng, and J. Weng, “Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber,” Opt. Express 22(21), 25258–25266 (2014).
[Crossref]

Cao, R.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Chai, J.

Z. Zhang, S. H. Lim, D. M. Y. Lai, S. Y. Tan, X. Q. Koh, J. Chai, S. J. Wang, H. Jin, and J. S. Pan, “Probing the oxidation behavior of Ti2AlC MAX phase powders between 200 and 1000°C,” J. Eur. Ceram. Soc. 37(1), 43–51 (2017).
[Crossref]

Che, K.

Chen, B.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

B. Chen, X. Zhang, C. Guo, K. Wu, J. Chen, and J. Wang, “Tungsten diselenide Q-switched erbium-doped fiber laser,” Opt. Eng. 55(8), 081306 (2016).
[Crossref]

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2,” Opt. Express 23(20), 26723–26737 (2015).
[Crossref]

Chen, C. Q.

C. Q. Chen, Y. T. Pei, K. P. Shaha, J. Th, and M. De Hosson, “Tunable self-organization of nanocomposite multilayers,” Appl. Phys. Lett. 96(7), 073103 (2010).
[Crossref]

Chen, J.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

B. Chen, X. Zhang, C. Guo, K. Wu, J. Chen, and J. Wang, “Tungsten diselenide Q-switched erbium-doped fiber laser,” Opt. Eng. 55(8), 081306 (2016).
[Crossref]

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2,” Opt. Express 23(20), 26723–26737 (2015).
[Crossref]

Chen, L.

M. Zhang, G. Hu, G. Hu, R. C. T. Howe, L. Chen, Z. Zheng, and T. Hasan, “Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber,” Sci. Rep. 5(1), 17482 (2015).
[Crossref]

Chen, S.

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref]

X. Xie, Y. Xue, L. Li, S. Chen, Y. Nie, W. Ding, and Z. Wei, “Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system,” Nanoscale 6(19), 11035–11040 (2014).
[Crossref]

Chen, Y.

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Cheng, H.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

Cheng, X.

Chertopalov, S.

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref]

Choi, W.-K.

K. Park, J. Lee, Y. T. Lee, W.-K. Choi, J. H. Lee, and Y.-W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527(11-12), 770–776 (2015).
[Crossref]

Chung, H.

J. Lee, J. Lee, J. Koo, H. Chung, and J. H. Lee, “Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber,” Opt. Eng. 55(7), 076109 (2016).
[Crossref]

Code, K. M.

J. Halim, M. R. Lukatskaya, K. M. Code, J. Lu, C. R. Smith, L-Å. Näslund, S. J. May, L. Hultman, Y. Gogotsi, P. Eklund, and M. W. Barsoum, “Transparent conductive two-dimensional titanium carbide epitaxial thin films,” Chem. Mater. 26(7), 2374–2381 (2014).
[Crossref]

Cook, K. M.

J. Halim, K. M. Cook, M. Naguib, P. Eklund, Y. Gogotsi, J. Rosen, and M. W. Barsoum, “X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes),” Appl. Surf. Sci. 362, 406–417 (2016).
[Crossref]

Cui, X.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6(1), 23583 (2016).
[Crossref]

De Hosson, M.

C. Q. Chen, Y. T. Pei, K. P. Shaha, J. Th, and M. De Hosson, “Tunable self-organization of nanocomposite multilayers,” Appl. Phys. Lett. 96(7), 073103 (2010).
[Crossref]

der Au, J. A.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Ding, W.

X. Xie, Y. Xue, L. Li, S. Chen, Y. Nie, W. Ding, and Z. Wei, “Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system,” Nanoscale 6(19), 11035–11040 (2014).
[Crossref]

Dong, B.

D.-P. Zhou, L. Wei, B. Dong, and W.-K. Liu, “Tunable passively Q-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photonics Technol. Lett. 22(1), 9–11 (2010).
[Crossref]

Dong, Y.

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref]

Du, B.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6(1), 23583 (2016).
[Crossref]

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

Du, J.

Du, L.

Du, Y.

Y. Du, J.-X. Liu, Y. Gu, X.-G. Wang, F. Xu, and G.-J. Zhang, “Anisotropic corrosion of Ti2AlC and Ti3AlC2 in supercritical water at 500°C,” Ceram. Int. 43(9), 7166–7171 (2017).
[Crossref]

Duan, C.

H. Liu, C. Duan, C. Yang, W. Shen, F. Wang, and Z. Zhu, “A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2,” Sens. Actuators, B 218, 60–66 (2015).
[Crossref]

Ehsani, N.

M. Haftani, M. S. Heydari, H. R. Baharvandi, and N. Ehsani, “Studying the oxidation of Ti2AlC MAX phase in atmosphere: A review,” Int. J. Refract. Hard Met. 61, 51–60 (2016).
[Crossref]

Eklund, P.

J. Halim, K. M. Cook, M. Naguib, P. Eklund, Y. Gogotsi, J. Rosen, and M. W. Barsoum, “X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes),” Appl. Surf. Sci. 362, 406–417 (2016).
[Crossref]

J. Halim, M. R. Lukatskaya, K. M. Code, J. Lu, C. R. Smith, L-Å. Näslund, S. J. May, L. Hultman, Y. Gogotsi, P. Eklund, and M. W. Barsoum, “Transparent conductive two-dimensional titanium carbide epitaxial thin films,” Chem. Mater. 26(7), 2374–2381 (2014).
[Crossref]

El-Raghy, T.

J. W. Byeon, J. Liu, M. Hopkins, W. Fishcer, N. Garimella, K. B. Park, M. P. Brady, M. Radovic, T. El-Raghy, and Y. H. Sohn, “Microstructure and residual stress of alumina scale formed on Ti2AlC at high temperature in air,” Oxid. Met. 68(1-2), 97–111 (2007).
[Crossref]

M. W. Barsoum and T. El-Raghy, “The MAX phases: unique new carbide and nitride materials,” Am. Sci. 89(4), 334–343 (2001).
[Crossref]

Fan, D.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref]

Feng, K.

F. Kong, K. Feng, Y. Bai, N. Li, X. Qi, Y. Zheng, R. Wang, and X. He, “Oxidation behavior of high-purity nonstoichiometric Ti2AlC powders in flowing air,” J. Mater. Res. 32(14), 2747–2754 (2017).
[Crossref]

Ferrari, A. C.

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98(7), 073106 (2011).
[Crossref]

Fishcer, W.

J. W. Byeon, J. Liu, M. Hopkins, W. Fishcer, N. Garimella, K. B. Park, M. P. Brady, M. Radovic, T. El-Raghy, and Y. H. Sohn, “Microstructure and residual stress of alumina scale formed on Ti2AlC at high temperature in air,” Oxid. Met. 68(1-2), 97–111 (2007).
[Crossref]

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Fu, Z.

M. Krinitcyn, Z. Fu, J. Harris, K. Kostikov, G. A. Pribytkov, P. Greil, and N. Travitzky, “Laminated object manufacturing of in-situ synthesized MAX-phase composites,” Ceram. Int. 43(12), 9241–9245 (2017).
[Crossref]

Gan, X.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref]

Garimella, N.

J. W. Byeon, J. Liu, M. Hopkins, W. Fishcer, N. Garimella, K. B. Park, M. P. Brady, M. Radovic, T. El-Raghy, and Y. H. Sohn, “Microstructure and residual stress of alumina scale formed on Ti2AlC at high temperature in air,” Oxid. Met. 68(1-2), 97–111 (2007).
[Crossref]

Ge, Y.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Ghidiu, M.

M. Ghidiu, M. R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, and M. W. Barsoum, “Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance,” Nature 516(7529), 78–81 (2014).
[Crossref]

Gogotsi, Y.

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref]

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref]

J. Halim, K. M. Cook, M. Naguib, P. Eklund, Y. Gogotsi, J. Rosen, and M. W. Barsoum, “X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes),” Appl. Surf. Sci. 362, 406–417 (2016).
[Crossref]

O. Mashtalir, M. R. Lukatskaya, M.-Q. Zhao, M. W. Barsoum, and Y. Gogotsi, “Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices,” Adv. Mater. 27(23), 3501–3506 (2015).
[Crossref]

M. Ghidiu, M. R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, and M. W. Barsoum, “Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance,” Nature 516(7529), 78–81 (2014).
[Crossref]

J. Halim, M. R. Lukatskaya, K. M. Code, J. Lu, C. R. Smith, L-Å. Näslund, S. J. May, L. Hultman, Y. Gogotsi, P. Eklund, and M. W. Barsoum, “Transparent conductive two-dimensional titanium carbide epitaxial thin films,” Chem. Mater. 26(7), 2374–2381 (2014).
[Crossref]

Goh, C. S.

Greil, P.

M. Krinitcyn, Z. Fu, J. Harris, K. Kostikov, G. A. Pribytkov, P. Greil, and N. Travitzky, “Laminated object manufacturing of in-situ synthesized MAX-phase composites,” Ceram. Int. 43(12), 9241–9245 (2017).
[Crossref]

Grodecki, K.

Gu, M.

Gu, Y.

Y. Du, J.-X. Liu, Y. Gu, X.-G. Wang, F. Xu, and G.-J. Zhang, “Anisotropic corrosion of Ti2AlC and Ti3AlC2 in supercritical water at 500°C,” Ceram. Int. 43(9), 7166–7171 (2017).
[Crossref]

Guo, C.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

B. Chen, X. Zhang, C. Guo, K. Wu, J. Chen, and J. Wang, “Tungsten diselenide Q-switched erbium-doped fiber laser,” Opt. Eng. 55(8), 081306 (2016).
[Crossref]

Guo, J.

Q. Peng, J. Guo, Q. Zhang, J. Xiang, B. Liu, A. Zhou, R. Liu, and Y. Tian, “Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide,” J. Am. Chem. Soc. 136(11), 4113–4116 (2014).
[Crossref]

Guo, X.

Guo, Z.

Haftani, M.

M. Haftani, M. S. Heydari, H. R. Baharvandi, and N. Ehsani, “Studying the oxidation of Ti2AlC MAX phase in atmosphere: A review,” Int. J. Refract. Hard Met. 61, 51–60 (2016).
[Crossref]

Halim, J.

J. Halim, K. M. Cook, M. Naguib, P. Eklund, Y. Gogotsi, J. Rosen, and M. W. Barsoum, “X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes),” Appl. Surf. Sci. 362, 406–417 (2016).
[Crossref]

J. Halim, M. R. Lukatskaya, K. M. Code, J. Lu, C. R. Smith, L-Å. Näslund, S. J. May, L. Hultman, Y. Gogotsi, P. Eklund, and M. W. Barsoum, “Transparent conductive two-dimensional titanium carbide epitaxial thin films,” Chem. Mater. 26(7), 2374–2381 (2014).
[Crossref]

Han, L.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref]

Harris, J.

M. Krinitcyn, Z. Fu, J. Harris, K. Kostikov, G. A. Pribytkov, P. Greil, and N. Travitzky, “Laminated object manufacturing of in-situ synthesized MAX-phase composites,” Ceram. Int. 43(12), 9241–9245 (2017).
[Crossref]

Harun, S. W.

H. Ahmad, M. R. K. Soltanian, L. Narimani, I. S. Amiri, A. Khodaei, and S. W. Harun, “Tunable S-band Q-switched fiber laser using Bi2Se3 as the saturable absorber,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

Hasan, T.

R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber,” Opt. Express 23(15), 20051–20061 (2015).
[Crossref]

M. Zhang, G. Hu, G. Hu, R. C. T. Howe, L. Chen, Z. Zheng, and T. Hasan, “Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber,” Sci. Rep. 5(1), 17482 (2015).
[Crossref]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98(7), 073106 (2011).
[Crossref]

He, J.

He, X.

F. Kong, K. Feng, Y. Bai, N. Li, X. Qi, Y. Zheng, R. Wang, and X. He, “Oxidation behavior of high-purity nonstoichiometric Ti2AlC powders in flowing air,” J. Mater. Res. 32(14), 2747–2754 (2017).
[Crossref]

He, Z.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Heydari, M. S.

M. Haftani, M. S. Heydari, H. R. Baharvandi, and N. Ehsani, “Studying the oxidation of Ti2AlC MAX phase in atmosphere: A review,” Int. J. Refract. Hard Met. 61, 51–60 (2016).
[Crossref]

Hoffman, E. N.

E. N. Hoffman, D. W. Vinson, R. L. Sindelar, D. J. Tallman, G. Kohse, and M. W. Barsoum, “MAX phase carbides and nitrides: properties for future nuclear power plant in-core applications and neutron transmutation analysis,” Nucl. Eng. Des. 244, 17–24 (2012).
[Crossref]

Hönninger, C.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Hopkins, M.

J. W. Byeon, J. Liu, M. Hopkins, W. Fishcer, N. Garimella, K. B. Park, M. P. Brady, M. Radovic, T. El-Raghy, and Y. H. Sohn, “Microstructure and residual stress of alumina scale formed on Ti2AlC at high temperature in air,” Oxid. Met. 68(1-2), 97–111 (2007).
[Crossref]

Howe, R. C. T.

R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber,” Opt. Express 23(15), 20051–20061 (2015).
[Crossref]

M. Zhang, G. Hu, G. Hu, R. C. T. Howe, L. Chen, Z. Zheng, and T. Hasan, “Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber,” Sci. Rep. 5(1), 17482 (2015).
[Crossref]

Hu, G.

M. Zhang, G. Hu, G. Hu, R. C. T. Howe, L. Chen, Z. Zheng, and T. Hasan, “Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber,” Sci. Rep. 5(1), 17482 (2015).
[Crossref]

M. Zhang, G. Hu, G. Hu, R. C. T. Howe, L. Chen, Z. Zheng, and T. Hasan, “Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber,” Sci. Rep. 5(1), 17482 (2015).
[Crossref]

R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber,” Opt. Express 23(15), 20051–20061 (2015).
[Crossref]

Hu, L.

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref]

Hua, S.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref]

Huang, B.

Huang, Y.

Y. Huang, Z. Luo, Y. Li, M. Zhong, B. Xu, K. Che, H. Xu, Z. Cai, J. Peng, and J. Weng, “Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber,” Opt. Express 22(21), 25258–25266 (2014).
[Crossref]

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2 µm wavelength,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902708 (2014).
[Crossref]

Hultman, L.

J. Halim, M. R. Lukatskaya, K. M. Code, J. Lu, C. R. Smith, L-Å. Näslund, S. J. May, L. Hultman, Y. Gogotsi, P. Eklund, and M. W. Barsoum, “Transparent conductive two-dimensional titanium carbide epitaxial thin films,” Chem. Mater. 26(7), 2374–2381 (2014).
[Crossref]

Jablonski, M.

Jhon, Y. I.

Y. I. Jhon, J. Lee, Y. M. Jhon, and J. H. Lee, “Topological insulator for mode-locking of 2-µm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1102208 (2018).
[Crossref]

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref]

J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5(11), 1700096 (2017).
[Crossref]

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26(41), 7454–7461 (2016).
[Crossref]

Jhon, Y. M.

Y. I. Jhon, J. Lee, Y. M. Jhon, and J. H. Lee, “Topological insulator for mode-locking of 2-µm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1102208 (2018).
[Crossref]

J. Lee, J. Koo, J. Lee, Y. M. Jhon, and J. H. Lee, “All-fiberized, femtosecond laser at 1912 nm using a bulk-like MoSe2 saturable absorber,” Opt. Mater. Express 7(8), 2968–2979 (2017).
[Crossref]

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref]

J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5(11), 1700096 (2017).
[Crossref]

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26(41), 7454–7461 (2016).
[Crossref]

M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Mode-locked, 1.94-µm, all-fiberized laser using WS2 based evanescent field interaction,” Opt. Express 23(15), 19996–20006 (2015).
[Crossref]

Jia, Z.

Jiang, B.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6(1), 23583 (2016).
[Crossref]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref]

Jiang, G.

Jiang, Q.

S. Shu, C. Tong, F. Qiu, and Q. Jiang, “Effect of ceramic content on the compression properties of TiB2-Ti2AlC/TiAl composites,” Metals 5(4), 2200–2209 (2015).
[Crossref]

Jiang, T.

Jiang, X.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Jin, H.

Z. Zhang, S. H. Lim, D. M. Y. Lai, S. Y. Tan, X. Q. Koh, J. Chai, S. J. Wang, H. Jin, and J. S. Pan, “Probing the oxidation behavior of Ti2AlC MAX phase powders between 200 and 1000°C,” J. Eur. Ceram. Soc. 37(1), 43–51 (2017).
[Crossref]

Joo, B. S.

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Jung, M.

Kang, Z.

Kärtner, F. X.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Ke, P.

Z. Wang, J. Liu, L. Wang, X. Li, P. Ke, and A. Wang, “Dense and high-stability Ti2AlN MAX phase coatings prepared by the combined cathodic arc/sputter technique,” Appl. Surf. Sci. 396, 1435–1442 (2017).
[Crossref]

Kelleher, E. J. R.

Keller, U.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Khodaei, A.

H. Ahmad, M. R. K. Soltanian, L. Narimani, I. S. Amiri, A. Khodaei, and S. W. Harun, “Tunable S-band Q-switched fiber laser using Bi2Se3 as the saturable absorber,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

Kim, S. J.

J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5(11), 1700096 (2017).
[Crossref]

Kim, Y.

J. Lee, Y. Kim, K. Lee, and J. H. Lee, “Femtosecond mode-locking of a fiber laser using a CoSb3-skutterudite-based saturable absorber,” Photonics Res. 6(10), C36–C43 (2018).
[Crossref]

Ko, S.

Koh, X. Q.

Z. Zhang, S. H. Lim, D. M. Y. Lai, S. Y. Tan, X. Q. Koh, J. Chai, S. J. Wang, H. Jin, and J. S. Pan, “Probing the oxidation behavior of Ti2AlC MAX phase powders between 200 and 1000°C,” J. Eur. Ceram. Soc. 37(1), 43–51 (2017).
[Crossref]

Kohse, G.

E. N. Hoffman, D. W. Vinson, R. L. Sindelar, D. J. Tallman, G. Kohse, and M. W. Barsoum, “MAX phase carbides and nitrides: properties for future nuclear power plant in-core applications and neutron transmutation analysis,” Nucl. Eng. Des. 244, 17–24 (2012).
[Crossref]

Kong, F.

F. Kong, K. Feng, Y. Bai, N. Li, X. Qi, Y. Zheng, R. Wang, and X. He, “Oxidation behavior of high-purity nonstoichiometric Ti2AlC powders in flowing air,” J. Mater. Res. 32(14), 2747–2754 (2017).
[Crossref]

Koo, J.

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref]

J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5(11), 1700096 (2017).
[Crossref]

J. Lee, J. Koo, J. Lee, Y. M. Jhon, and J. H. Lee, “All-fiberized, femtosecond laser at 1912 nm using a bulk-like MoSe2 saturable absorber,” Opt. Mater. Express 7(8), 2968–2979 (2017).
[Crossref]

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26(41), 7454–7461 (2016).
[Crossref]

J. Lee, J. Koo, J. Lee, and J. H. Lee, “End-to-end self-assembly of gold nanorods in water solution for absorption enhancement at a 1-to-2 µm band for a broadband saturable absorber,” J. Lightwave Technol. 34(22), 5250–5257 (2016).
[Crossref]

S. Ko, J. Lee, J. Koo, B. S. Joo, M. Gu, and J. H. Lee, “Chemical wet etching of an optical fiber using a hydrogen fluoride-free solution for a saturable absorber based on the evanescent field interaction,” J. Lightwave Technol. 34(16), 3776–3784 (2016).
[Crossref]

J. Lee, J. Lee, J. Koo, and J. H. Lee, “Graphite saturable absorber based on the pencil-sketching method for Q-switching of an erbium fiber laser,” Appl. Opt. 55(2), 303–309 (2016).
[Crossref]

J. Lee, J. Lee, J. Koo, H. Chung, and J. H. Lee, “Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber,” Opt. Eng. 55(7), 076109 (2016).
[Crossref]

M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Mode-locked, 1.94-µm, all-fiberized laser using WS2 based evanescent field interaction,” Opt. Express 23(15), 19996–20006 (2015).
[Crossref]

M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(7), 7865–7874 (2014).
[Crossref]

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kostikov, K.

M. Krinitcyn, Z. Fu, J. Harris, K. Kostikov, G. A. Pribytkov, P. Greil, and N. Travitzky, “Laminated object manufacturing of in-situ synthesized MAX-phase composites,” Ceram. Int. 43(12), 9241–9245 (2017).
[Crossref]

Krinitcyn, M.

M. Krinitcyn, Z. Fu, J. Harris, K. Kostikov, G. A. Pribytkov, P. Greil, and N. Travitzky, “Laminated object manufacturing of in-situ synthesized MAX-phase composites,” Ceram. Int. 43(12), 9241–9245 (2017).
[Crossref]

Lai, D. M. Y.

Z. Zhang, S. H. Lim, D. M. Y. Lai, S. Y. Tan, X. Q. Koh, J. Chai, S. J. Wang, H. Jin, and J. S. Pan, “Probing the oxidation behavior of Ti2AlC MAX phase powders between 200 and 1000°C,” J. Eur. Ceram. Soc. 37(1), 43–51 (2017).
[Crossref]

Lee, J.

Y. I. Jhon, J. Lee, Y. M. Jhon, and J. H. Lee, “Topological insulator for mode-locking of 2-µm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1102208 (2018).
[Crossref]

J. Lee, Y. Kim, K. Lee, and J. H. Lee, “Femtosecond mode-locking of a fiber laser using a CoSb3-skutterudite-based saturable absorber,” Photonics Res. 6(10), C36–C43 (2018).
[Crossref]

J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5(11), 1700096 (2017).
[Crossref]

J. Lee, J. Koo, J. Lee, Y. M. Jhon, and J. H. Lee, “All-fiberized, femtosecond laser at 1912 nm using a bulk-like MoSe2 saturable absorber,” Opt. Mater. Express 7(8), 2968–2979 (2017).
[Crossref]

J. Lee, J. Koo, J. Lee, Y. M. Jhon, and J. H. Lee, “All-fiberized, femtosecond laser at 1912 nm using a bulk-like MoSe2 saturable absorber,” Opt. Mater. Express 7(8), 2968–2979 (2017).
[Crossref]

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26(41), 7454–7461 (2016).
[Crossref]

J. Lee, J. Koo, J. Lee, and J. H. Lee, “End-to-end self-assembly of gold nanorods in water solution for absorption enhancement at a 1-to-2 µm band for a broadband saturable absorber,” J. Lightwave Technol. 34(22), 5250–5257 (2016).
[Crossref]

J. Lee, J. Koo, J. Lee, and J. H. Lee, “End-to-end self-assembly of gold nanorods in water solution for absorption enhancement at a 1-to-2 µm band for a broadband saturable absorber,” J. Lightwave Technol. 34(22), 5250–5257 (2016).
[Crossref]

J. Lee, J. Lee, J. Koo, H. Chung, and J. H. Lee, “Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber,” Opt. Eng. 55(7), 076109 (2016).
[Crossref]

J. Lee, J. Lee, J. Koo, H. Chung, and J. H. Lee, “Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber,” Opt. Eng. 55(7), 076109 (2016).
[Crossref]

J. Lee, J. Lee, J. Koo, and J. H. Lee, “Graphite saturable absorber based on the pencil-sketching method for Q-switching of an erbium fiber laser,” Appl. Opt. 55(2), 303–309 (2016).
[Crossref]

J. Lee, J. Lee, J. Koo, and J. H. Lee, “Graphite saturable absorber based on the pencil-sketching method for Q-switching of an erbium fiber laser,” Appl. Opt. 55(2), 303–309 (2016).
[Crossref]

S. Ko, J. Lee, J. Koo, B. S. Joo, M. Gu, and J. H. Lee, “Chemical wet etching of an optical fiber using a hydrogen fluoride-free solution for a saturable absorber based on the evanescent field interaction,” J. Lightwave Technol. 34(16), 3776–3784 (2016).
[Crossref]

M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Mode-locked, 1.94-µm, all-fiberized laser using WS2 based evanescent field interaction,” Opt. Express 23(15), 19996–20006 (2015).
[Crossref]

K. Park, J. Lee, Y. T. Lee, W.-K. Choi, J. H. Lee, and Y.-W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527(11-12), 770–776 (2015).
[Crossref]

M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(7), 7865–7874 (2014).
[Crossref]

Lee, J. H.

Y. I. Jhon, J. Lee, Y. M. Jhon, and J. H. Lee, “Topological insulator for mode-locking of 2-µm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1102208 (2018).
[Crossref]

J. Lee, Y. Kim, K. Lee, and J. H. Lee, “Femtosecond mode-locking of a fiber laser using a CoSb3-skutterudite-based saturable absorber,” Photonics Res. 6(10), C36–C43 (2018).
[Crossref]

J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5(11), 1700096 (2017).
[Crossref]

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref]

J. Lee, J. Koo, J. Lee, Y. M. Jhon, and J. H. Lee, “All-fiberized, femtosecond laser at 1912 nm using a bulk-like MoSe2 saturable absorber,” Opt. Mater. Express 7(8), 2968–2979 (2017).
[Crossref]

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26(41), 7454–7461 (2016).
[Crossref]

J. Lee, J. Koo, J. Lee, and J. H. Lee, “End-to-end self-assembly of gold nanorods in water solution for absorption enhancement at a 1-to-2 µm band for a broadband saturable absorber,” J. Lightwave Technol. 34(22), 5250–5257 (2016).
[Crossref]

J. Lee, J. Lee, J. Koo, H. Chung, and J. H. Lee, “Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber,” Opt. Eng. 55(7), 076109 (2016).
[Crossref]

J. Lee, J. Lee, J. Koo, and J. H. Lee, “Graphite saturable absorber based on the pencil-sketching method for Q-switching of an erbium fiber laser,” Appl. Opt. 55(2), 303–309 (2016).
[Crossref]

S. Ko, J. Lee, J. Koo, B. S. Joo, M. Gu, and J. H. Lee, “Chemical wet etching of an optical fiber using a hydrogen fluoride-free solution for a saturable absorber based on the evanescent field interaction,” J. Lightwave Technol. 34(16), 3776–3784 (2016).
[Crossref]

M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Mode-locked, 1.94-µm, all-fiberized laser using WS2 based evanescent field interaction,” Opt. Express 23(15), 19996–20006 (2015).
[Crossref]

K. Park, J. Lee, Y. T. Lee, W.-K. Choi, J. H. Lee, and Y.-W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527(11-12), 770–776 (2015).
[Crossref]

M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(7), 7865–7874 (2014).
[Crossref]

Lee, K.

J. Lee, Y. Kim, K. Lee, and J. H. Lee, “Femtosecond mode-locking of a fiber laser using a CoSb3-skutterudite-based saturable absorber,” Photonics Res. 6(10), C36–C43 (2018).
[Crossref]

M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(7), 7865–7874 (2014).
[Crossref]

Lee, S.

Lee, Y. T.

K. Park, J. Lee, Y. T. Lee, W.-K. Choi, J. H. Lee, and Y.-W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527(11-12), 770–776 (2015).
[Crossref]

Li, C.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

Li, G.

Li, J.

B. Huang, L. Du, Q. Yi, L. Yang, J. Li, L. Miao, C. Zhao, and S. Wen, “Bulk-structured PtSe2 for femtosecond fiber laser mode-locking,” Opt. Express 27(3), 2604–2611 (2019).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Li, L.

X. Xie, Y. Xue, L. Li, S. Chen, Y. Nie, W. Ding, and Z. Wei, “Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system,” Nanoscale 6(19), 11035–11040 (2014).
[Crossref]

Li, N.

F. Kong, K. Feng, Y. Bai, N. Li, X. Qi, Y. Zheng, R. Wang, and X. He, “Oxidation behavior of high-purity nonstoichiometric Ti2AlC powders in flowing air,” J. Mater. Res. 32(14), 2747–2754 (2017).
[Crossref]

Li, X.

Z. Wang, J. Liu, L. Wang, X. Li, P. Ke, and A. Wang, “Dense and high-stability Ti2AlN MAX phase coatings prepared by the combined cathodic arc/sputter technique,” Appl. Surf. Sci. 396, 1435–1442 (2017).
[Crossref]

Li, Y.

Liang, W.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Lim, S. H.

Z. Zhang, S. H. Lim, D. M. Y. Lai, S. Y. Tan, X. Q. Koh, J. Chai, S. J. Wang, H. Jin, and J. S. Pan, “Probing the oxidation behavior of Ti2AlC MAX phase powders between 200 and 1000°C,” J. Eur. Ceram. Soc. 37(1), 43–51 (2017).
[Crossref]

Lin, G.-R.

G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett. 8(12), 880–886 (2011).
[Crossref]

Lin, Y.-C.

G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett. 8(12), 880–886 (2011).
[Crossref]

Lin, Z.

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2 µm wavelength,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902708 (2014).
[Crossref]

Liu, B.

Q. Peng, J. Guo, Q. Zhang, J. Xiang, B. Liu, A. Zhou, R. Liu, and Y. Tian, “Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide,” J. Am. Chem. Soc. 136(11), 4113–4116 (2014).
[Crossref]

Liu, C.

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2 µm wavelength,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902708 (2014).
[Crossref]

Liu, H.

H. Liu, C. Duan, C. Yang, W. Shen, F. Wang, and Z. Zhu, “A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2,” Sens. Actuators, B 218, 60–66 (2015).
[Crossref]

X.-D. Wang, Z.-C. Luo, H. Liu, M. Liu, A.-P. Luo, and W.-C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

Liu, J.

Z. Wang, J. Liu, L. Wang, X. Li, P. Ke, and A. Wang, “Dense and high-stability Ti2AlN MAX phase coatings prepared by the combined cathodic arc/sputter technique,” Appl. Surf. Sci. 396, 1435–1442 (2017).
[Crossref]

J. Xu, J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20(14), 15474–15480 (2012).
[Crossref]

J. W. Byeon, J. Liu, M. Hopkins, W. Fishcer, N. Garimella, K. B. Park, M. P. Brady, M. Radovic, T. El-Raghy, and Y. H. Sohn, “Microstructure and residual stress of alumina scale formed on Ti2AlC at high temperature in air,” Oxid. Met. 68(1-2), 97–111 (2007).
[Crossref]

Liu, J.-X.

Y. Du, J.-X. Liu, Y. Gu, X.-G. Wang, F. Xu, and G.-J. Zhang, “Anisotropic corrosion of Ti2AlC and Ti3AlC2 in supercritical water at 500°C,” Ceram. Int. 43(9), 7166–7171 (2017).
[Crossref]

Liu, L.

Liu, M.

X.-D. Wang, Z.-C. Luo, H. Liu, M. Liu, A.-P. Luo, and W.-C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

Liu, R.

Q. Peng, J. Guo, Q. Zhang, J. Xiang, B. Liu, A. Zhou, R. Liu, and Y. Tian, “Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide,” J. Am. Chem. Soc. 136(11), 4113–4116 (2014).
[Crossref]

Liu, S.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Liu, W.-K.

D.-P. Zhou, L. Wei, B. Dong, and W.-K. Liu, “Tunable passively Q-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photonics Technol. Lett. 22(1), 9–11 (2010).
[Crossref]

Loh, K. P.

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Lu, J.

J. Halim, M. R. Lukatskaya, K. M. Code, J. Lu, C. R. Smith, L-Å. Näslund, S. J. May, L. Hultman, Y. Gogotsi, P. Eklund, and M. W. Barsoum, “Transparent conductive two-dimensional titanium carbide epitaxial thin films,” Chem. Mater. 26(7), 2374–2381 (2014).
[Crossref]

Lu, S. B.

Lukatskaya, M. R.

O. Mashtalir, M. R. Lukatskaya, M.-Q. Zhao, M. W. Barsoum, and Y. Gogotsi, “Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices,” Adv. Mater. 27(23), 3501–3506 (2015).
[Crossref]

M. Ghidiu, M. R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, and M. W. Barsoum, “Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance,” Nature 516(7529), 78–81 (2014).
[Crossref]

J. Halim, M. R. Lukatskaya, K. M. Code, J. Lu, C. R. Smith, L-Å. Näslund, S. J. May, L. Hultman, Y. Gogotsi, P. Eklund, and M. W. Barsoum, “Transparent conductive two-dimensional titanium carbide epitaxial thin films,” Chem. Mater. 26(7), 2374–2381 (2014).
[Crossref]

Luo, A.-P.

X.-D. Wang, Z.-C. Luo, H. Liu, M. Liu, A.-P. Luo, and W.-C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

Luo, S.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Luo, Z.

Y. Huang, Z. Luo, Y. Li, M. Zhong, B. Xu, K. Che, H. Xu, Z. Cai, J. Peng, and J. Weng, “Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber,” Opt. Express 22(21), 25258–25266 (2014).
[Crossref]

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2 µm wavelength,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902708 (2014).
[Crossref]

Luo, Z.-C.

X.-D. Wang, Z.-C. Luo, H. Liu, M. Liu, A.-P. Luo, and W.-C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

Ma, C.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref]

Macherzynski, W.

Maleski, K.

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref]

Mao, D.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6(1), 23583 (2016).
[Crossref]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref]

Mars, K.

J. Bogusławski, G. Sobon, K. Tarnowski, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “All-polarization-maintaining-fiber laser Q-switched by evanescent field interaction with Sb2Te3 saturable absorber,” Opt. Eng. 55(8), 081316 (2016).
[Crossref]

Martinez, A.

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorber for fibre lasers,” Nat. Photonics 7(11), 842–845 (2013).
[Crossref]

Mashtalir, O.

O. Mashtalir, M. R. Lukatskaya, M.-Q. Zhao, M. W. Barsoum, and Y. Gogotsi, “Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices,” Adv. Mater. 27(23), 3501–3506 (2015).
[Crossref]

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

May, S. J.

J. Halim, M. R. Lukatskaya, K. M. Code, J. Lu, C. R. Smith, L-Å. Näslund, S. J. May, L. Hultman, Y. Gogotsi, P. Eklund, and M. W. Barsoum, “Transparent conductive two-dimensional titanium carbide epitaxial thin films,” Chem. Mater. 26(7), 2374–2381 (2014).
[Crossref]

Mei, T.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref]

Miao, L.

Mikula, A.

J. Bogusławski, G. Sobon, K. Tarnowski, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “All-polarization-maintaining-fiber laser Q-switched by evanescent field interaction with Sb2Te3 saturable absorber,” Opt. Eng. 55(8), 081316 (2016).
[Crossref]

Mochalin, V. N.

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref]

Naguib, M.

J. Halim, K. M. Cook, M. Naguib, P. Eklund, Y. Gogotsi, J. Rosen, and M. W. Barsoum, “X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes),” Appl. Surf. Sci. 362, 406–417 (2016).
[Crossref]

Narimani, L.

H. Ahmad, M. R. K. Soltanian, L. Narimani, I. S. Amiri, A. Khodaei, and S. W. Harun, “Tunable S-band Q-switched fiber laser using Bi2Se3 as the saturable absorber,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

Näslund, L-Å.

J. Halim, M. R. Lukatskaya, K. M. Code, J. Lu, C. R. Smith, L-Å. Näslund, S. J. May, L. Hultman, Y. Gogotsi, P. Eklund, and M. W. Barsoum, “Transparent conductive two-dimensional titanium carbide epitaxial thin films,” Chem. Mater. 26(7), 2374–2381 (2014).
[Crossref]

Ni, Z.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Nie, H.

Nie, Y.

X. Xie, Y. Xue, L. Li, S. Chen, Y. Nie, W. Ding, and Z. Wei, “Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system,” Nanoscale 6(19), 11035–11040 (2014).
[Crossref]

Paletko, P.

Pan, J. S.

Z. Zhang, S. H. Lim, D. M. Y. Lai, S. Y. Tan, X. Q. Koh, J. Chai, S. J. Wang, H. Jin, and J. S. Pan, “Probing the oxidation behavior of Ti2AlC MAX phase powders between 200 and 1000°C,” J. Eur. Ceram. Soc. 37(1), 43–51 (2017).
[Crossref]

Park, J.

Park, K.

K. Park, J. Lee, Y. T. Lee, W.-K. Choi, J. H. Lee, and Y.-W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527(11-12), 770–776 (2015).
[Crossref]

Park, K. B.

J. W. Byeon, J. Liu, M. Hopkins, W. Fishcer, N. Garimella, K. B. Park, M. P. Brady, M. Radovic, T. El-Raghy, and Y. H. Sohn, “Microstructure and residual stress of alumina scale formed on Ti2AlC at high temperature in air,” Oxid. Met. 68(1-2), 97–111 (2007).
[Crossref]

Pei, Y. T.

C. Q. Chen, Y. T. Pei, K. P. Shaha, J. Th, and M. De Hosson, “Tunable self-organization of nanocomposite multilayers,” Appl. Phys. Lett. 96(7), 073103 (2010).
[Crossref]

Peng, J.

Peng, Q.

Q. Peng, J. Guo, Q. Zhang, J. Xiang, B. Liu, A. Zhou, R. Liu, and Y. Tian, “Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide,” J. Am. Chem. Soc. 136(11), 4113–4116 (2014).
[Crossref]

Peng, T.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6(1), 23583 (2016).
[Crossref]

Podila, R.

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref]

Popa, D.

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98(7), 073106 (2011).
[Crossref]

Pribytkov, G. A.

M. Krinitcyn, Z. Fu, J. Harris, K. Kostikov, G. A. Pribytkov, P. Greil, and N. Travitzky, “Laminated object manufacturing of in-situ synthesized MAX-phase composites,” Ceram. Int. 43(12), 9241–9245 (2017).
[Crossref]

Qi, X.

F. Kong, K. Feng, Y. Bai, N. Li, X. Qi, Y. Zheng, R. Wang, and X. He, “Oxidation behavior of high-purity nonstoichiometric Ti2AlC powders in flowing air,” J. Mater. Res. 32(14), 2747–2754 (2017).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Qin, G.

Qin, W.

Qiu, F.

S. Shu, C. Tong, F. Qiu, and Q. Jiang, “Effect of ceramic content on the compression properties of TiB2-Ti2AlC/TiAl composites,” Metals 5(4), 2200–2209 (2015).
[Crossref]

Radovic, M.

J. W. Byeon, J. Liu, M. Hopkins, W. Fishcer, N. Garimella, K. B. Park, M. P. Brady, M. Radovic, T. El-Raghy, and Y. H. Sohn, “Microstructure and residual stress of alumina scale formed on Ti2AlC at high temperature in air,” Oxid. Met. 68(1-2), 97–111 (2007).
[Crossref]

Rao, A. M.

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref]

Rosen, J.

J. Halim, K. M. Cook, M. Naguib, P. Eklund, Y. Gogotsi, J. Rosen, and M. W. Barsoum, “X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes),” Appl. Surf. Sci. 362, 406–417 (2016).
[Crossref]

Runcorn, T. H.

Seo, M.

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref]

Set, S. Y.

Shaha, K. P.

C. Q. Chen, Y. T. Pei, K. P. Shaha, J. Th, and M. De Hosson, “Tunable self-organization of nanocomposite multilayers,” Appl. Phys. Lett. 96(7), 073103 (2010).
[Crossref]

She, X.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6(1), 23583 (2016).
[Crossref]

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

Shen, W.

H. Liu, C. Duan, C. Yang, W. Shen, F. Wang, and Z. Zhu, “A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2,” Sens. Actuators, B 218, 60–66 (2015).
[Crossref]

Shen, Z. X.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Shu, S.

S. Shu, C. Tong, F. Qiu, and Q. Jiang, “Effect of ceramic content on the compression properties of TiB2-Ti2AlC/TiAl composites,” Metals 5(4), 2200–2209 (2015).
[Crossref]

Sindelar, R. L.

E. N. Hoffman, D. W. Vinson, R. L. Sindelar, D. J. Tallman, G. Kohse, and M. W. Barsoum, “MAX phase carbides and nitrides: properties for future nuclear power plant in-core applications and neutron transmutation analysis,” Nucl. Eng. Des. 244, 17–24 (2012).
[Crossref]

Smith, C. R.

J. Halim, M. R. Lukatskaya, K. M. Code, J. Lu, C. R. Smith, L-Å. Näslund, S. J. May, L. Hultman, Y. Gogotsi, P. Eklund, and M. W. Barsoum, “Transparent conductive two-dimensional titanium carbide epitaxial thin films,” Chem. Mater. 26(7), 2374–2381 (2014).
[Crossref]

Sobon, G.

J. Bogusławski, G. Sobon, K. Tarnowski, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “All-polarization-maintaining-fiber laser Q-switched by evanescent field interaction with Sb2Te3 saturable absorber,” Opt. Eng. 55(8), 081316 (2016).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express 4(1), 1–6 (2014).
[Crossref]

Sohn, Y. H.

J. W. Byeon, J. Liu, M. Hopkins, W. Fishcer, N. Garimella, K. B. Park, M. P. Brady, M. Radovic, T. El-Raghy, and Y. H. Sohn, “Microstructure and residual stress of alumina scale formed on Ti2AlC at high temperature in air,” Oxid. Met. 68(1-2), 97–111 (2007).
[Crossref]

Soltanian, M. R. K.

H. Ahmad, M. R. K. Soltanian, L. Narimani, I. S. Amiri, A. Khodaei, and S. W. Harun, “Tunable S-band Q-switched fiber laser using Bi2Se3 as the saturable absorber,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

Song, K.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6(1), 23583 (2016).
[Crossref]

Song, Y.-W.

Sotor, J.

J. Bogusławski, G. Sobon, K. Tarnowski, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “All-polarization-maintaining-fiber laser Q-switched by evanescent field interaction with Sb2Te3 saturable absorber,” Opt. Eng. 55(8), 081316 (2016).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express 4(1), 1–6 (2014).
[Crossref]

Sun, L.

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2 µm wavelength,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902708 (2014).
[Crossref]

Sun, X.

Sun, Z.

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorber for fibre lasers,” Nat. Photonics 7(11), 842–845 (2013).
[Crossref]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98(7), 073106 (2011).
[Crossref]

Sun, Z. M.

Z. M. Sun, “Progress in research and development on MAX phases: a family of layered ternary compounds,” Int. Mater. Rev. 56(3), 143–166 (2011).
[Crossref]

Tallman, D. J.

E. N. Hoffman, D. W. Vinson, R. L. Sindelar, D. J. Tallman, G. Kohse, and M. W. Barsoum, “MAX phase carbides and nitrides: properties for future nuclear power plant in-core applications and neutron transmutation analysis,” Nucl. Eng. Des. 244, 17–24 (2012).
[Crossref]

Tan, S. Y.

Z. Zhang, S. H. Lim, D. M. Y. Lai, S. Y. Tan, X. Q. Koh, J. Chai, S. J. Wang, H. Jin, and J. S. Pan, “Probing the oxidation behavior of Ti2AlC MAX phase powders between 200 and 1000°C,” J. Eur. Ceram. Soc. 37(1), 43–51 (2017).
[Crossref]

Tanaka, Y.

Tang, D.

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Tang, D. Y.

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Tarnowski, K.

J. Bogusławski, G. Sobon, K. Tarnowski, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “All-polarization-maintaining-fiber laser Q-switched by evanescent field interaction with Sb2Te3 saturable absorber,” Opt. Eng. 55(8), 081316 (2016).
[Crossref]

Th, J.

C. Q. Chen, Y. T. Pei, K. P. Shaha, J. Th, and M. De Hosson, “Tunable self-organization of nanocomposite multilayers,” Appl. Phys. Lett. 96(7), 073103 (2010).
[Crossref]

Thomas, T.

T. Thomas and C. R. Bowen, “Effect of particle size on the formation of Ti2AlC using combustion synthesis,” Ceram. Int. 42(3), 4150–4157 (2016).
[Crossref]

Tian, Y.

Q. Peng, J. Guo, Q. Zhang, J. Xiang, B. Liu, A. Zhou, R. Liu, and Y. Tian, “Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide,” J. Am. Chem. Soc. 136(11), 4113–4116 (2014).
[Crossref]

Tong, C.

S. Shu, C. Tong, F. Qiu, and Q. Jiang, “Effect of ceramic content on the compression properties of TiB2-Ti2AlC/TiAl composites,” Metals 5(4), 2200–2209 (2015).
[Crossref]

Torrisi, F.

Travitzky, N.

M. Krinitcyn, Z. Fu, J. Harris, K. Kostikov, G. A. Pribytkov, P. Greil, and N. Travitzky, “Laminated object manufacturing of in-situ synthesized MAX-phase composites,” Ceram. Int. 43(12), 9241–9245 (2017).
[Crossref]

Vinson, D. W.

E. N. Hoffman, D. W. Vinson, R. L. Sindelar, D. J. Tallman, G. Kohse, and M. W. Barsoum, “MAX phase carbides and nitrides: properties for future nuclear power plant in-core applications and neutron transmutation analysis,” Nucl. Eng. Des. 244, 17–24 (2012).
[Crossref]

Wang, A.

Z. Wang, J. Liu, L. Wang, X. Li, P. Ke, and A. Wang, “Dense and high-stability Ti2AlN MAX phase coatings prepared by the combined cathodic arc/sputter technique,” Appl. Surf. Sci. 396, 1435–1442 (2017).
[Crossref]

Wang, F.

H. Liu, C. Duan, C. Yang, W. Shen, F. Wang, and Z. Zhu, “A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2,” Sens. Actuators, B 218, 60–66 (2015).
[Crossref]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98(7), 073106 (2011).
[Crossref]

Wang, H.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2,” Opt. Express 23(20), 26723–26737 (2015).
[Crossref]

Wang, J.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

B. Chen, X. Zhang, C. Guo, K. Wu, J. Chen, and J. Wang, “Tungsten diselenide Q-switched erbium-doped fiber laser,” Opt. Eng. 55(8), 081306 (2016).
[Crossref]

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2,” Opt. Express 23(20), 26723–26737 (2015).
[Crossref]

Wang, L.

Z. Wang, J. Liu, L. Wang, X. Li, P. Ke, and A. Wang, “Dense and high-stability Ti2AlN MAX phase coatings prepared by the combined cathodic arc/sputter technique,” Appl. Surf. Sci. 396, 1435–1442 (2017).
[Crossref]

Wang, P.

Wang, R.

F. Kong, K. Feng, Y. Bai, N. Li, X. Qi, Y. Zheng, R. Wang, and X. He, “Oxidation behavior of high-purity nonstoichiometric Ti2AlC powders in flowing air,” J. Mater. Res. 32(14), 2747–2754 (2017).
[Crossref]

Wang, S. J.

Z. Zhang, S. H. Lim, D. M. Y. Lai, S. Y. Tan, X. Q. Koh, J. Chai, S. J. Wang, H. Jin, and J. S. Pan, “Probing the oxidation behavior of Ti2AlC MAX phase powders between 200 and 1000°C,” J. Eur. Ceram. Soc. 37(1), 43–51 (2017).
[Crossref]

Wang, X. H.

X. H. Wang and Y. C. Zhou, “Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review,” J. Mater. Sci. Technol. 26(5), 385–416 (2010).
[Crossref]

X. H. Wang and Y. C. Zhou, “High-temperature oxidation behavior of Ti2AlC in air,” Oxid. Met. 59(3-4), 303–320 (2003).
[Crossref]

Wang, X.-D.

X.-D. Wang, Z.-C. Luo, H. Liu, M. Liu, A.-P. Luo, and W.-C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

Wang, X.-G.

Y. Du, J.-X. Liu, Y. Gu, X.-G. Wang, F. Xu, and G.-J. Zhang, “Anisotropic corrosion of Ti2AlC and Ti3AlC2 in supercritical water at 500°C,” Ceram. Int. 43(9), 7166–7171 (2017).
[Crossref]

Wang, Y.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Wang, Z.

Z. Wang, J. Liu, L. Wang, X. Li, P. Ke, and A. Wang, “Dense and high-stability Ti2AlN MAX phase coatings prepared by the combined cathodic arc/sputter technique,” Appl. Surf. Sci. 396, 1435–1442 (2017).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Wei, L.

D.-P. Zhou, L. Wei, B. Dong, and W.-K. Liu, “Tunable passively Q-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photonics Technol. Lett. 22(1), 9–11 (2010).
[Crossref]

Wei, Z.

X. Xie, Y. Xue, L. Li, S. Chen, Y. Nie, W. Ding, and Z. Wei, “Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system,” Nanoscale 6(19), 11035–11040 (2014).
[Crossref]

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Wen, Q.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Wen, S.

Wen, S. C.

Weng, J.

Y. Huang, Z. Luo, Y. Li, M. Zhong, B. Xu, K. Che, H. Xu, Z. Cai, J. Peng, and J. Weng, “Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber,” Opt. Express 22(21), 25258–25266 (2014).
[Crossref]

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2 µm wavelength,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902708 (2014).
[Crossref]

Woodward, R. I.

Wu, D.

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2 µm wavelength,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902708 (2014).
[Crossref]

Wu, J.

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2 µm wavelength,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902708 (2014).
[Crossref]

Wu, K.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

B. Chen, X. Zhang, C. Guo, K. Wu, J. Chen, and J. Wang, “Tungsten diselenide Q-switched erbium-doped fiber laser,” Opt. Eng. 55(8), 081306 (2016).
[Crossref]

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2,” Opt. Express 23(20), 26723–26737 (2015).
[Crossref]

Wu, S.

Xiang, J.

Q. Peng, J. Guo, Q. Zhang, J. Xiang, B. Liu, A. Zhou, R. Liu, and Y. Tian, “Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide,” J. Am. Chem. Soc. 136(11), 4113–4116 (2014).
[Crossref]

Xiao, P.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

Xie, X.

X. Xie, Y. Xue, L. Li, S. Chen, Y. Nie, W. Ding, and Z. Wei, “Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system,” Nanoscale 6(19), 11035–11040 (2014).
[Crossref]

Xu, B.

Xu, F.

Y. Du, J.-X. Liu, Y. Gu, X.-G. Wang, F. Xu, and G.-J. Zhang, “Anisotropic corrosion of Ti2AlC and Ti3AlC2 in supercritical water at 500°C,” Ceram. Int. 43(9), 7166–7171 (2017).
[Crossref]

Xu, H.

Y. Huang, Z. Luo, Y. Li, M. Zhong, B. Xu, K. Che, H. Xu, Z. Cai, J. Peng, and J. Weng, “Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber,” Opt. Express 22(21), 25258–25266 (2014).
[Crossref]

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2 µm wavelength,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902708 (2014).
[Crossref]

Xu, J.

Xu, W.-C.

X.-D. Wang, Z.-C. Luo, H. Liu, M. Liu, A.-P. Luo, and W.-C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

Xu, Y.

Xue, Y.

X. Xie, Y. Xue, L. Li, S. Chen, Y. Nie, W. Ding, and Z. Wei, “Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system,” Nanoscale 6(19), 11035–11040 (2014).
[Crossref]

Yaguchi, H.

Yamashita, S.

Yan, B.

Yang, C.

H. Liu, C. Duan, C. Yang, W. Shen, F. Wang, and Z. Zhu, “A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2,” Sens. Actuators, B 218, 60–66 (2015).
[Crossref]

Yang, D.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6(1), 23583 (2016).
[Crossref]

Yang, K.

Yang, L.

Yang, Q.-H.

Yang, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Yi, Q.

Yin, K.

Yu, B.-K.

J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5(11), 1700096 (2017).
[Crossref]

Yu, H.

Yu, X.

Zeng, H.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

Zhang, B.

Zhang, C.

Zhang, F.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Zhang, G.-J.

Y. Du, J.-X. Liu, Y. Gu, X.-G. Wang, F. Xu, and G.-J. Zhang, “Anisotropic corrosion of Ti2AlC and Ti3AlC2 in supercritical water at 500°C,” Ceram. Int. 43(9), 7166–7171 (2017).
[Crossref]

Zhang, H.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Zhang, M.

M. Zhang, G. Hu, G. Hu, R. C. T. Howe, L. Chen, Z. Zheng, and T. Hasan, “Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber,” Sci. Rep. 5(1), 17482 (2015).
[Crossref]

Zhang, Q.

Q. Peng, J. Guo, Q. Zhang, J. Xiang, B. Liu, A. Zhou, R. Liu, and Y. Tian, “Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide,” J. Am. Chem. Soc. 136(11), 4113–4116 (2014).
[Crossref]

Zhang, S.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

Zhang, W.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6(1), 23583 (2016).
[Crossref]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref]

Zhang, X.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

B. Chen, X. Zhang, C. Guo, K. Wu, J. Chen, and J. Wang, “Tungsten diselenide Q-switched erbium-doped fiber laser,” Opt. Eng. 55(8), 081306 (2016).
[Crossref]

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2,” Opt. Express 23(20), 26723–26737 (2015).
[Crossref]

Zhang, Z.

Z. Zhang, S. H. Lim, D. M. Y. Lai, S. Y. Tan, X. Q. Koh, J. Chai, S. J. Wang, H. Jin, and J. S. Pan, “Probing the oxidation behavior of Ti2AlC MAX phase powders between 200 and 1000°C,” J. Eur. Ceram. Soc. 37(1), 43–51 (2017).
[Crossref]

Zhao, C.

Zhao, D.

Zhao, J.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6(1), 23583 (2016).
[Crossref]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref]

Zhao, M.-Q.

O. Mashtalir, M. R. Lukatskaya, M.-Q. Zhao, M. W. Barsoum, and Y. Gogotsi, “Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices,” Adv. Mater. 27(23), 3501–3506 (2015).
[Crossref]

M. Ghidiu, M. R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, and M. W. Barsoum, “Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance,” Nature 516(7529), 78–81 (2014).
[Crossref]

Zheng, J.

Zheng, X.

Zheng, Y.

F. Kong, K. Feng, Y. Bai, N. Li, X. Qi, Y. Zheng, R. Wang, and X. He, “Oxidation behavior of high-purity nonstoichiometric Ti2AlC powders in flowing air,” J. Mater. Res. 32(14), 2747–2754 (2017).
[Crossref]

Zheng, Z.

M. Zhang, G. Hu, G. Hu, R. C. T. Howe, L. Chen, Z. Zheng, and T. Hasan, “Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber,” Sci. Rep. 5(1), 17482 (2015).
[Crossref]

Zhong, M.

Zhou, A.

Q. Peng, J. Guo, Q. Zhang, J. Xiang, B. Liu, A. Zhou, R. Liu, and Y. Tian, “Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide,” J. Am. Chem. Soc. 136(11), 4113–4116 (2014).
[Crossref]

Zhou, D.-P.

D.-P. Zhou, L. Wei, B. Dong, and W.-K. Liu, “Tunable passively Q-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photonics Technol. Lett. 22(1), 9–11 (2010).
[Crossref]

Zhou, L.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

Zhou, Y. C.

X. H. Wang and Y. C. Zhou, “Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review,” J. Mater. Sci. Technol. 26(5), 385–416 (2010).
[Crossref]

X. H. Wang and Y. C. Zhou, “High-temperature oxidation behavior of Ti2AlC in air,” Oxid. Met. 59(3-4), 303–320 (2003).
[Crossref]

Zhu, Z.

H. Liu, C. Duan, C. Yang, W. Shen, F. Wang, and Z. Zhu, “A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2,” Sens. Actuators, B 218, 60–66 (2015).
[Crossref]

Zitter, R. N.

R. N. Zitter, “Saturated optical absorption through band filling in semiconductors,” Appl. Phys. Lett. 14(2), 73–74 (1969).
[Crossref]

Zou, W.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

Zybala, R.

J. Bogusławski, G. Sobon, K. Tarnowski, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “All-polarization-maintaining-fiber laser Q-switched by evanescent field interaction with Sb2Te3 saturable absorber,” Opt. Eng. 55(8), 081316 (2016).
[Crossref]

Adv. Funct. Mater. (2)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26(41), 7454–7461 (2016).
[Crossref]

Adv. Mater. (3)

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref]

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref]

O. Mashtalir, M. R. Lukatskaya, M.-Q. Zhao, M. W. Barsoum, and Y. Gogotsi, “Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices,” Adv. Mater. 27(23), 3501–3506 (2015).
[Crossref]

Adv. Opt. Mater. (1)

J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5(11), 1700096 (2017).
[Crossref]

Am. Sci. (1)

M. W. Barsoum and T. El-Raghy, “The MAX phases: unique new carbide and nitride materials,” Am. Sci. 89(4), 334–343 (2001).
[Crossref]

Ann. Phys. (1)

K. Park, J. Lee, Y. T. Lee, W.-K. Choi, J. H. Lee, and Y.-W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527(11-12), 770–776 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98(7), 073106 (2011).
[Crossref]

R. N. Zitter, “Saturated optical absorption through band filling in semiconductors,” Appl. Phys. Lett. 14(2), 73–74 (1969).
[Crossref]

X.-D. Wang, Z.-C. Luo, H. Liu, M. Liu, A.-P. Luo, and W.-C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

C. Q. Chen, Y. T. Pei, K. P. Shaha, J. Th, and M. De Hosson, “Tunable self-organization of nanocomposite multilayers,” Appl. Phys. Lett. 96(7), 073103 (2010).
[Crossref]

Appl. Surf. Sci. (2)

Z. Wang, J. Liu, L. Wang, X. Li, P. Ke, and A. Wang, “Dense and high-stability Ti2AlN MAX phase coatings prepared by the combined cathodic arc/sputter technique,” Appl. Surf. Sci. 396, 1435–1442 (2017).
[Crossref]

J. Halim, K. M. Cook, M. Naguib, P. Eklund, Y. Gogotsi, J. Rosen, and M. W. Barsoum, “X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes),” Appl. Surf. Sci. 362, 406–417 (2016).
[Crossref]

Ceram. Int. (3)

M. Krinitcyn, Z. Fu, J. Harris, K. Kostikov, G. A. Pribytkov, P. Greil, and N. Travitzky, “Laminated object manufacturing of in-situ synthesized MAX-phase composites,” Ceram. Int. 43(12), 9241–9245 (2017).
[Crossref]

T. Thomas and C. R. Bowen, “Effect of particle size on the formation of Ti2AlC using combustion synthesis,” Ceram. Int. 42(3), 4150–4157 (2016).
[Crossref]

Y. Du, J.-X. Liu, Y. Gu, X.-G. Wang, F. Xu, and G.-J. Zhang, “Anisotropic corrosion of Ti2AlC and Ti3AlC2 in supercritical water at 500°C,” Ceram. Int. 43(9), 7166–7171 (2017).
[Crossref]

Chem. Mater. (1)

J. Halim, M. R. Lukatskaya, K. M. Code, J. Lu, C. R. Smith, L-Å. Näslund, S. J. May, L. Hultman, Y. Gogotsi, P. Eklund, and M. W. Barsoum, “Transparent conductive two-dimensional titanium carbide epitaxial thin films,” Chem. Mater. 26(7), 2374–2381 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

Y. I. Jhon, J. Lee, Y. M. Jhon, and J. H. Lee, “Topological insulator for mode-locking of 2-µm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1102208 (2018).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2 µm wavelength,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902708 (2014).
[Crossref]

IEEE Photonics J. (1)

H. Ahmad, M. R. K. Soltanian, L. Narimani, I. S. Amiri, A. Khodaei, and S. W. Harun, “Tunable S-band Q-switched fiber laser using Bi2Se3 as the saturable absorber,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D.-P. Zhou, L. Wei, B. Dong, and W.-K. Liu, “Tunable passively Q-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photonics Technol. Lett. 22(1), 9–11 (2010).
[Crossref]

Int. J. Refract. Hard Met. (1)

M. Haftani, M. S. Heydari, H. R. Baharvandi, and N. Ehsani, “Studying the oxidation of Ti2AlC MAX phase in atmosphere: A review,” Int. J. Refract. Hard Met. 61, 51–60 (2016).
[Crossref]

Int. Mater. Rev. (1)

Z. M. Sun, “Progress in research and development on MAX phases: a family of layered ternary compounds,” Int. Mater. Rev. 56(3), 143–166 (2011).
[Crossref]

J. Am. Chem. Soc. (1)

Q. Peng, J. Guo, Q. Zhang, J. Xiang, B. Liu, A. Zhou, R. Liu, and Y. Tian, “Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide,” J. Am. Chem. Soc. 136(11), 4113–4116 (2014).
[Crossref]

J. Eur. Ceram. Soc. (1)

Z. Zhang, S. H. Lim, D. M. Y. Lai, S. Y. Tan, X. Q. Koh, J. Chai, S. J. Wang, H. Jin, and J. S. Pan, “Probing the oxidation behavior of Ti2AlC MAX phase powders between 200 and 1000°C,” J. Eur. Ceram. Soc. 37(1), 43–51 (2017).
[Crossref]

J. Lightwave Technol. (3)

J. Mater. Res. (1)

F. Kong, K. Feng, Y. Bai, N. Li, X. Qi, Y. Zheng, R. Wang, and X. He, “Oxidation behavior of high-purity nonstoichiometric Ti2AlC powders in flowing air,” J. Mater. Res. 32(14), 2747–2754 (2017).
[Crossref]

J. Mater. Sci. Technol. (1)

X. H. Wang and Y. C. Zhou, “Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review,” J. Mater. Sci. Technol. 26(5), 385–416 (2010).
[Crossref]

Laser Photonics Rev. (1)

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Laser Phys. Lett. (1)

G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett. 8(12), 880–886 (2011).
[Crossref]

Metals (1)

S. Shu, C. Tong, F. Qiu, and Q. Jiang, “Effect of ceramic content on the compression properties of TiB2-Ti2AlC/TiAl composites,” Metals 5(4), 2200–2209 (2015).
[Crossref]

Nanoscale (1)

X. Xie, Y. Xue, L. Li, S. Chen, Y. Nie, W. Ding, and Z. Wei, “Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system,” Nanoscale 6(19), 11035–11040 (2014).
[Crossref]

Nat. Photonics (1)

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorber for fibre lasers,” Nat. Photonics 7(11), 842–845 (2013).
[Crossref]

Nature (1)

M. Ghidiu, M. R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, and M. W. Barsoum, “Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance,” Nature 516(7529), 78–81 (2014).
[Crossref]

Nucl. Eng. Des. (1)

E. N. Hoffman, D. W. Vinson, R. L. Sindelar, D. J. Tallman, G. Kohse, and M. W. Barsoum, “MAX phase carbides and nitrides: properties for future nuclear power plant in-core applications and neutron transmutation analysis,” Nucl. Eng. Des. 244, 17–24 (2012).
[Crossref]

Opt. Commun. (1)

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

Opt. Eng. (3)

J. Lee, J. Lee, J. Koo, H. Chung, and J. H. Lee, “Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber,” Opt. Eng. 55(7), 076109 (2016).
[Crossref]

J. Bogusławski, G. Sobon, K. Tarnowski, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “All-polarization-maintaining-fiber laser Q-switched by evanescent field interaction with Sb2Te3 saturable absorber,” Opt. Eng. 55(8), 081316 (2016).
[Crossref]

B. Chen, X. Zhang, C. Guo, K. Wu, J. Chen, and J. Wang, “Tungsten diselenide Q-switched erbium-doped fiber laser,” Opt. Eng. 55(8), 081306 (2016).
[Crossref]

Opt. Express (9)

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2,” Opt. Express 23(20), 26723–26737 (2015).
[Crossref]

R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber,” Opt. Express 23(15), 20051–20061 (2015).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref]

M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Mode-locked, 1.94-µm, all-fiberized laser using WS2 based evanescent field interaction,” Opt. Express 23(15), 19996–20006 (2015).
[Crossref]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref]

Y. Huang, Z. Luo, Y. Li, M. Zhong, B. Xu, K. Che, H. Xu, Z. Cai, J. Peng, and J. Weng, “Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber,” Opt. Express 22(21), 25258–25266 (2014).
[Crossref]

M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(7), 7865–7874 (2014).
[Crossref]

J. Xu, J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20(14), 15474–15480 (2012).
[Crossref]

B. Huang, L. Du, Q. Yi, L. Yang, J. Li, L. Miao, C. Zhao, and S. Wen, “Bulk-structured PtSe2 for femtosecond fiber laser mode-locking,” Opt. Express 27(3), 2604–2611 (2019).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (4)

Oxid. Met. (2)

J. W. Byeon, J. Liu, M. Hopkins, W. Fishcer, N. Garimella, K. B. Park, M. P. Brady, M. Radovic, T. El-Raghy, and Y. H. Sohn, “Microstructure and residual stress of alumina scale formed on Ti2AlC at high temperature in air,” Oxid. Met. 68(1-2), 97–111 (2007).
[Crossref]

X. H. Wang and Y. C. Zhou, “High-temperature oxidation behavior of Ti2AlC in air,” Oxid. Met. 59(3-4), 303–320 (2003).
[Crossref]

Photonics Res. (1)

J. Lee, Y. Kim, K. Lee, and J. H. Lee, “Femtosecond mode-locking of a fiber laser using a CoSb3-skutterudite-based saturable absorber,” Photonics Res. 6(10), C36–C43 (2018).
[Crossref]

Sci. Rep. (3)

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6(1), 23583 (2016).
[Crossref]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref]

M. Zhang, G. Hu, G. Hu, R. C. T. Howe, L. Chen, Z. Zheng, and T. Hasan, “Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber,” Sci. Rep. 5(1), 17482 (2015).
[Crossref]

Sens. Actuators, B (1)

H. Liu, C. Duan, C. Yang, W. Shen, F. Wang, and Z. Zhu, “A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2,” Sens. Actuators, B 218, 60–66 (2015).
[Crossref]

Small (1)

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Photograph of our prepared Ti2AlC/PVA solution. (b) Measured SEM image of the Ti2AlC particles. (c) Measured SEM image of the Ti2AlC/PVA film deposited onto the flat surface of a fiber ferrule. Inset: Magnified SEM image around the core region.
Fig. 2.
Fig. 2. Measured EDS spectrum of the Ti2AlC particles.
Fig. 3.
Fig. 3. X-ray photoelectron spectroscopy (XPS) profiles of (a) Ti 2p, (b) Al 2p, and (c) C 1s spectra from the Ti2AlC particles.
Fig. 4.
Fig. 4. (a) Linear optical absorption spectrum of the Ti2AlC/PVA composite and (b) nonlinear transmission curve of our prepared Ti2AlC/PVA-based SA.
Fig. 5.
Fig. 5. Passively Q-switched fiber laser configuration.
Fig. 6.
Fig. 6. (a) Optical spectrum of the output pulse at a pump power of 74 mW. (b) Oscilloscope traces of the output pulses at a range of pump powers.
Fig. 7.
Fig. 7. (a) Repetition rate and temporal width of the output pulses as a function of pump power. (b) Pulse energy and average output power as a function of pump power.
Fig. 8.
Fig. 8. Optical spectrum of the output pulses measured every 10 min for 1 hour.

Tables (1)

Tables Icon

Table 1. Performance comparison of the present work to previous Q-switched Er-doped fiber lasers incorporating other saturable absorption materials

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T(I)=1ΔTexp(IIsat)Tns

Metrics