Abstract

The optical properties of the α/β-BaTeMo2O9 (α/β-BTM) crystal in the terahertz range were characterized by the terahertz time domain spectroscopy (TDS) system. Frequency-dependent refractive indices and absorption coefficients of two crystals were measured from 0.2 to 2 THz, and discussions and comparisons were made on birefringence, absorption and phonon modes by referring to their structures. The Sellmeier equations for both crystals were also fitted in their transparent ranges. Based on the mode properties and parameters, a feasible scheme for terahertz generation via stimulated polariton scattering (SPS) with β-BTM was proposed and the angle tuning characteristics were calculated. Simulations show that β-BTM has great potential and should be more advantageous than LiNbO3 in generating high-frequency terahertz waves.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

BaTeMo2O9 (BTM) crystals, which were firstly grown in Shandong University, have anion groups with asymmetric structure and demonstrate outstanding performance as both second- and third-order nonlinear materials [1]. There are two transformable polymorphous phases of BTM crystal, α-BTM with orthorhombic structure and β-BTM with monoclinic structure, depending on the reaction temperature during the crystal growth process [2]. Both polymorphs of BTM crystals are good candidates for nonlinear frequency conversion. On one hand, both crystals are excellent Raman media with high Raman gain and appropriate Raman shift, and remarkable achievements have been made in the wavelength range from 1178 nm to 1531 nm [3,4]. On the other hand, the β-BTM crystal has a larger second-order nonlinearity (d31=-9.88 pm/V) than α-BTM, and it has been successfully used to achieve high-efficiency yellow lasers by self-frequency-doubled Raman conversion [5].

The superior performance of β-BTM crystals on Raman and second-order nonlinear frequency conversion promotes another potential application—terahertz generation based on stimulated polariton scattering (SPS), which requires the material to possess transverse optical phonon modes that are both Raman and infrared active, as well as good physical characteristics for high conversion efficiency. To date, only few practical materials are available for terahertz generation via SPS, and LiNbO3, KTP and their isomorphs are typical representatives [611]. The lack of material limits the terahertz power scaling and wavelength extension, therefore, seeking new materials have always been an urgent and challenging work. It has been shown that the BTM crystals have diversified vibration modes that are both Raman and infrared active [12,13]; Specially, the good physical properties of β-BTM, such as large nonlinear figure of merit (the $d_{\textrm{eff}}^2$/${\textrm{n}^3}$ value of β-BTM is 3.17 times of LiNbO3 for the second harmonic generation process from 1064 nm to 532 nm [1]), high Raman gain, wide transmission range (0.4–5.5 µm) and high damage threshold (>500 MW/cm2), make it a promising candidate for terahertz generation through the SPS process.

In this paper, the optical properties of BTM crystals in the terahertz range were studied by the terahertz time domain spectroscopy (TDS). The refractive indices and absorption coefficients of α- and β-BTM crystals in the terahertz range were measured, and the Sellmeier equations in the 0.2–2 THz region were fitted. Significant difference on dispersion and birefringence between two polymorphous phases was revealed from the comparison. Based on the characterizations, the scheme of terahertz generation via SPS in β-BTM was proposed and the tuning curves were given, laying the basis for realizing a practical terahertz source.

2. Measurement scheme and sample preparation

A commercial terahertz TDS system (TAS 7500TS, Advantest Corp.) was employed to measure the optical properties of the BTM samples, which consisted of two channels of ultrashort 1550-nm fiber lasers for terahertz generation and detection. Phase-modulated dual-laser-synchronized control technology without a mechanical optical delay line enabled extremely high-speed terahertz spectroscopy (8 ms per scan) and high frequency resolution (3.8 GHz). The whole optical path for terahertz wave, including the sample chamber, was purged by flowing dry air to eliminate the water vapor absorption. The maximum signal-to-noise ratio (SNR) reached over 40 dB averaged by 2048 times per measurement.

Both the α- and β-BTM crystals were grown by the top-seeded solution growth method [2]. The dielectric axes x, y and z of the orthorhombic α-BTM crystal coincide with the crystallographic axes b, c and a, respectively, but only one dielectric axes of the monoclinic β-BTM crystal (z) overlaps the crystallographic axis (b), and the other two orthorhombic refractive axes (x and y) of β-BTM locates in the a-c plane. The angle is 25.5° between y- and a-axis while it is 24.603° between x- and c-axis [12]. To characterize their optical properties in the terahertz range, thin wafers (∼ 1 mm for α-BTM and ∼ 0.6 mm for β-BTM) were cut from bulk single crystals and polished, with clear apertures of 7 mm × 9 mm to facilitate the measurements. Since the investigated crystals are biaxial, sample transmission directions along three dielectric principle axes (x, y and z) were prepared with detailed specifications given in Table 1.

Tables Icon

Table 1. Specifications of the α- and β-BTM samples

The sample was placed at the confocal plane of two parabolic mirrors of the TDS system, so that the terahertz beam was focused into the sample perpendicularly. The transmitted terahertz wave that carried the sample information was collected by a spherical silicon lens and converted into current signal by the photoconductive switch, giving the time-domain curve via optical sampling and amplifying. After performing Fourier transforms, the refractive index n and the absorption coefficient α was obtained from the complex transmission coefficient by comparing the signal and reference electric fields. As the terahertz field was linearly polarized, it could be arranged parallel to all the three principle axes, so as to discuss the interactions between the terahertz wave and phonon modes.

3. Measurement results and discussions

The time-domain signals for all the samples in Table 1 and the corresponding references are shown in Fig. 1. Since the terahertz polarizations along two axes could be measured for each sample, e.g., it was possible to measure the transmitted signal for x- and y-polarizations for a z-cut sample, there were 6 time-domain signal curves in total for both the α- and β-BTM crystals. Identical curves were recorded when the terahertz polarization was along a certain axis even if the crystal orientation was different (neglecting the thickness difference), which meant that the crystal dielectric response depends on the field polarization rather than the propagation direction. Thereupon, the characterization could be accomplished with any two samples with different orientations for each crystal. The overall time delays of β-BTM samples were smaller because they were much thinner. It should also be noted that the time delays of the α-BTM samples in x- and y-polarization were similar, both much smaller than that in z-polarization, indicating group indices follow nαxnαy<nαz. However, the time delays in x-, y- and z-polarizations were all significantly different for the β-BTM samples and the maximum delay occurred for y-polarization, which denote that nβx<nβz<nβy. These conclusions provide proof that the orthorhombic α-BTM crystal is more symmetric than the monoclinic β-BTM crystal, and it can be verified by the refractive-index calculations in the following text.

 

Fig. 1. Terahertz time-domain signals of the α- (a) and β-BTM (b) samples. The minor peaks were resulted from the internal reflections between two parallel faces of the samples.

Download Full Size | PPT Slide | PDF

The frequency-domain transmission spectra were obtained by Fourier transform to time-domain signals, as shown in Fig. 2. Although the TDS bandwidth exceeded 3 THz, the signal above 2 THz was seriously affected due to strong crystal absorption. Reliable transmission ranges for x-, y- and z-axes of the α-BTM crystal were 0.2–1.3 THz, 0.2–1.5 THz and 0.2–1.0 THz, respectively, while for the β-BTM crystal they were 0.2–1.8 THz, 0.2–1.2 THz and 0.2–1.5 THz, respectively. The distinct transmission difference along different axes came from the anisotropy of refractive-index and absorption. At the low-frequency end, the transmission is mainly decided by surface reflection related to refractive-index, while it depends on the absorption from the optical phonons at the high-frequency part. Two noticeable dips in the y-polarization transmission curve locating at 1.04 and 1.22 THz for α-BTM corresponds to two phonon modes in this range which cause strong absorption.

 

Fig. 2. Frequency-domain transmissions of α- (a) and β-BTM (b) samples.

Download Full Size | PPT Slide | PDF

By dividing the complex electric fields and the reference, the refractive index was extracted from the phase [13]. The results are given in Fig. 3. Consistent with the predictions from the time-domain signals given in Fig. 1(a), the difference was minor between the x- and y-polarizations (nαy-nαx=0.13 at 0.6 THz) for α-BTM, while the birefringence was huge (nαz-nαy=1.75 at 0.6 THz) between y- and z-polarizations. In contrast, large birefringence existed among all three polarizations (nβy-nβx=1.93 and nβz-nβy=-0.97 at 0.6 THz) for β-BTM. The difference between nx and ny for two crystals is also illustrated in Fig. 4, where two z-cut samples were used and the terahertz polarization had a certain angle to the principle axes x or y. The apparent splitting (∼4.1 ps) of the time-domain signal after transmitting through the β-BTM sample accorded well with the phase difference calculated by the birefringence (ny-nx) and sample thickness (Fig. 4(b)), while the signal splitting was negligible for α-BTM with much smaller birefringence (Fig. 4(a)). Generally, the values of refractive indices and birefringence for both crystals are much larger than that in the visible to mid-infrared range, which favors their use as phase retarders and wave plates. A noticeable point here is that the relative value of nβz and nβy reverses across the reststrahlen band from mid-infrared to the terahertz band.

 

Fig. 3. Refractive indices of α- (a) and β-BTM (b) crystals. The solid lines were experimental results and the dashed lines were calculated from the fitted model.

Download Full Size | PPT Slide | PDF

 

Fig. 4. Terahertz time domain signals transmitted through z-cut α- (a) and β-BTM (b) samples when the polarization was 75° to the x-axis in the x-y plane. The large birefringence of β-BTM induced obvious phase difference between x- and y-axes.

Download Full Size | PPT Slide | PDF

As the existing equations in the visible to mid-infrared range become inapplicable in the terahertz range [12,14], the dispersion equations for α- and β-BTM crystals were fitted in the terahertz transparent range, using the empirical Sellmeier model [15]

$$n_i^2 = A + \frac{{B{\lambda ^2}}}{{{\lambda ^2} - C}} + \frac{{D{\lambda ^2}}}{{{\lambda ^2} - E}}$$
where i denotes three principle axes x, y and z, λ is the wavelength in µm. The Sellmeier parameters A, B, C, D and E, and the corresponding validity ranges are given in Table 2. The comparison of the fitted curves and measured results is shown in Fig. 3. The discrepancy for y-polarization of α-BTM is resulted from two phonon modes at 1.04 and 1.22 THz, which lead to leaps in the dielectric curves.

Tables Icon

Table 2. Sellmeier Coefficients and the corresponding validity ranges for α- and β-BTM crystals.

The absorption coefficient was obtained from the terahertz field complex amplitude and refractive index [13], as shown in Fig. 5. Since the thickness of the α-BTM samples (∼ 1 mm) were obviously larger than that of the β-BTM samples (∼ 0.6 mm), the maximum measurable absorption coefficient for α-BTM was only 110 cm-1, while it was 160 cm-1 for β-BTM [16]. Due to the far wings of the massive phonon modes in the high-frequency range, the absorption increases with frequency. Ostensibly it is random among different dielectric axes (generally ααz>ααx>ααy for α-BTM, and αβy>αβz>αβx for β-BTM), however, both crystals show good consistency from the aspect of crystallographic axis (αa>αb>αc for both α- and β-BTM crystals), referring to the relationship between two coordinate systems given in Part 2. The terahertz polarization along the c-axis has the widest transmission range because both crystals are c-oriented two-dimensional layered structures [12,14], where the coupling between the electric field and the chemical bonds is the weakest.

 

Fig. 5. Absorption coefficients of α-(a) and β-BTM (b) crystals.

Download Full Size | PPT Slide | PDF

The absorption spectrum shows the properties of molecular vibrational mode. On one hand, α-BTM crystallizes in the orthorhombic Pca21 ($\textrm{C}_{2\textrm{v}}^5$) structure, and group theory predicts 78A1+78B1+78A2+78B2 Brillouin zone center modes, in which A1, B1 and B2 mode are both Raman and infrared active [17]. Restricted by the bandwidth and SNR of the TDS system, most of the modes are not reflected in Fig. 5(a). However, two A1 modes at 1.04 THz and 1.22 THz, respectively, was observed with y-polarized terahertz field, which denote that the dipole generated by the vibration is along the y-axis (c-axis). It should be noted these two modes haven’t been reported or predicted by first-principle calculations to date. On the other hand, β-BTM crystallizes in the monoclinic P21 (C2) structure and 39A + 39B Brillouin zone center modes were predicted, where A and B modes are both Raman and infrared active [18]. When the terahertz field is along the z-axis A modes are excited. However, since the vibration of B modes locates in the x-y plane but not affiliated to a certain axis, these phonon states cannot be directly reflected in Fig. 5(b), even if absorption peaks are recorded for x- and y-polarizations.

4. Terahertz generation in β-BTM: a theoretical simulation

Compared with the uniaxial (e.g., LiNbO3) and orthorhombic (e.g., KTP) crystals used for terahertz generation via SPS, the monoclinic β-BTM involves more dielectric tensor components and are more complicated [1]. Although both the A and B modes can be adopted in SPS, the B-modes are in the x-y plane and their polarization is unknown, as discussed in the former part. Thus, only the A-modes which coincide with a certain dielectric axis (z-axis) are considered to avoid the angle-dependent issues and facilitate the experiment. Figure 6 shows the classical model of SPS in β-BTM with a noncollinear phase-matching (PM) scheme. To guarantee a large effective nonlinear coefficient and sufficient Raman scattering efficiency, three interaction waves (pump ωP, Stokes ωS and terahertz ωT) were all z-polarized. θ is the angle between the pump and Stokes wave vectors, and it plays an important role in wavelength tuning.

 

Fig. 6. Schematic diagram of terahertz generation via SPS in β-BTM with a noncollinear PM scheme. $\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}} \over k} $p, $\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}} \over k} $s, and $\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}} \over k} $T are the wave vectors of the pump, Stokes and terahertz waves, respectively.

Download Full Size | PPT Slide | PDF

The dispersion and absorption of phonon modes in the β-BTM crystal were simulated using the Lorentz oscillator model [19,20]

$${(n + i\lambda )^2} = \varepsilon (\nu ) = {\varepsilon _\infty } + \frac{{\rho {\nu _{TO}}}}{{{\nu _{TO}} - {\nu ^2} - i\gamma \nu }}$$
where ɛ(ν) is the complex dielectric constant, ν is the wavenumber, νTO is the eigen frequency of the corresponding polariton mode, ɛ is the high-frequency dielectric constant, ρ is the oscillator strength, and γ is the damping coefficient. According to the crystal lattice vibration parameters provided in 18, the dispersion and absorption of all the phonon modes were calculated and given in Fig. 7(a). For a certain resonant mode (e.g., νTO=272 cm-1), the dispersion shows phonon characteristics at large wave vectors (ν>νTO) with resonance enhanced absorption, while the absorption loss reduces rapidly at small wave vectors (ν<νTO) and the dispersion shows electromagnetic radiation characteristics (parametric characteristics), resulting in terahertz radiation via the SPS process [21].

 

Fig. 7. Properties of the stimulated polaritons for the A transverse vibration modes in β-BTM. (a) The dispersion and absorption curves. The shaded area in the inset gives potential terahertz range for the 272 cm-1 mode; (b) The angle tuning characteristics of terahertz generation pumped at 1064 nm. The smooth curves are the PM relations at different angles.

Download Full Size | PPT Slide | PDF

The PM condition should be fulfilled for the parametric process

$${\omega _P} = {\omega _S} + {\omega _T}$$
$${\mathop k \limits^{\rightharpoonup}}_{P} = {\mathop k \limits^{\rightharpoonup}}_{S} + {\mathop k \limits^{\rightharpoonup}}_{T}$$
where a scalar form of Eq. (4) for the noncollinear PM case shown in Fig. 6 can be written into
$$k_T^2 = k_P^2 + k_P^2 - 2{k_P}{k_S}\cos \theta $$
By substituting Eq. (3) into Eq. (5) the PM curves pumped at 1064 nm were obtained, as shown in Fig. 7(b), where the dispersion of the polariton modes was also given. Obviously, the intersection of the PM and dispersion curve varies when θ is changed, thereby tunable terahertz waves are realized. The terahertz tuning range depends on the frequency range of the intersections. As to the vibrational mode νTO=272 cm-1, the intersection of the PM curve and the low-frequency branch of the dispersion curve can be changed from ν=239.5 cm-1 (7.25 THz) to ν=272 cm-1 (8.24 THz) when θ is changed from 0° to 4.7°, yielding a continuous tuning range of 7.25–8.24 THz. Various vibrations modes at higher frequency, e.g., those centering at 320 cm-1, 599.4 cm-1, and 801 cm-1, enables the output frequency range extending to 9.36–10.23 THz, 12.06–18.31 THz and 23.69–25.05 THz, respectively, far beyond the universal definition of terahertz band (0.1–10 THz) and entering the infrared range.

To evaluate the performance of terahertz generation in β-BTM via SPS, a theoretical comparison was made on the absorption coefficients in the terahertz range between β-BTM and a commonly used material LiNbO3 [10], using the equation [19,20]

$${\alpha _T} = 2\frac{{{\nu _T}}}{c}Im({\varepsilon _\infty } + \sum\limits_j^{} {\frac{{{S_j}\nu _{oj}^2}}{{\nu _{oj}^2 - \nu _T^2 - i{\nu _T}{\Gamma _j}}}} )$$
where αT is the absorption coefficient, νoj and Sj are the eigen frequency and the oscillator strength of each polariton mode. As shown in Fig. 8, β-BTM generally has relatively weaker absorption than LiNbO3 from 5 to 24 THz, especially within the tuning ranges mentioned above. Although the absorption coefficients from 0.2 to 1.5 THz (Fig. 5(b), y-pol) were higher than the calculated results given in Fig. 8, because of the inaccuracy of the low-frequency phonon-mode parameters during characterization [18], the calculations in the high-frequency part (above 50 cm-1 or 1.5 THz) were reliable. It is known to all that absorption is the main factor that limits the available output frequency range to be lower than 4.9 THz in LiNbO3 [22]. The advantage of β-BTM makes it a promising material for the generation of high-frequency terahertz and long-wave infrared radiation via SPS. Furthermore, compared with LiNbO3, there are intersections between the PM and dispersion curves when θ=0° (Fig. 7(b)), indicating collinear terahertz generation is possible.

 

Fig. 8. The calculated absorption coefficients of β-BTM and LiNbO3 at room temperature.

Download Full Size | PPT Slide | PDF

5. Conclusion

The optical properties of the α- and β-BTM crystals in the frequency range of 0.2–2 THz were studied by TDS. The refractive indices of both crystals were measured and the Sellmeier equations in their transparent frequency ranges were obtained by fitting the measurement data. It was found that the β-BTM crystal has much larger birefringence in the x-y plane than the α-BTM crystal. The characteristics accurately reflected the structural differences between the orthorhombic and monoclinic crystals. Two lattice vibration modes at 1.04 and 1.22 THz along the y-axis of α-BTM were discovered by analyzing the absorption coefficients. Moreover, the lowest absorption was obtained for both crystals along the c-axis, as predicted by their c-oriented two-dimensional layered structure. Based on the optical properties of β-BTM in the terahertz range, its potential performance in terahertz generation by SPS was investigated. The absorption and dispersion characteristics of its A vibration modes were calculated with the Lorentz oscillator model. The results show that by changing the angle θ between pump and Stokes waves, main tuning ranges of 7.25–8.24 THz, 9.36–10.23 THz, 12.06–18.31 THz, and 23.69–25.05 THz can be covered, extending from terahertz to infrared waves. Simulations also show that the absorption coefficients of β-BTM are lower than that of LiNbO3 in most of the tuning ranges. It is believed that the β-BTM crystal has great potential to enhance the output and extend the frequency range from terahertz to infrared.

Funding

National Natural Science Foundation of China (61675146); Natural Science Foundation of Tianjin City (18JCYBJC16700).

Disclosures

The authors declare no conflicts of interest.

References

1. Q. X. Yu, Z. L. Gao, S. J. Zhang, W. G. Zhang, S. P. Wang, and X. T. Tao, “Second order nonlinear properties of monoclinic single crystal BaTeMo2O9,” J. Appl. Phys. 111(1), 013506 (2012). [CrossRef]  

2. Z. L. Gao, X. X. Tian, J. J. Zhang, Q. Wu, Q. M. Lu, and X. T. Tao, “Large-Sized Crystal Growth and Electric-Elastic Properties of α-BaTeMo2O9 Single Crystal,” Cryst. Growth Des. 15(2), 759–763 (2015). [CrossRef]  

3. F. Bai, Q. P. Wang, X. T. Tao, P. Li, X. Y. Zhang, Z. J. Liu, H. B. Shen, W. X. Lan, L. Gao, Z. L. Gao, J. J. Zhang, and J. X. Fang, “Eye-safe Raman laser based on BaTeMo2O9 crystal,” Appl. Phys. B: Lasers Opt. 116(2), 501–505 (2014). [CrossRef]  

4. S. D. Liu, J. J. Zhang, Z. L. Gao, L. Wei, S. J. Zhang, J. L. He, and X. T. Tao, “Generation of 1.3 µm and 1.5 µm high-energy Raman radiations in α-BTM,” Opt. Mater. 36(4), 760–763 (2014). [CrossRef]  

5. Z. L. Gao, S. D. Liu, J. J. Zhang, S. J. Zhang, W. G. Zhang, J. L. He, and X. T. Tao, “Self-frequency-doubled BaTeMo2O9 Raman laser emitting at 589 nm,” Opt. Express 21(6), 7821–7827 (2013). [CrossRef]  

6. K. Zhong, W. Shi, D. G. Xu, P. X. Liu, Y. Y. Wang, C. Yan, S. J. Fu, and J. Q. Yao, “Optically pumped terahertz sources,” Sci. China: Technol. Sci. 60(12), 1801–1818 (2017). [CrossRef]  

7. A. J. Lee and H. M. Pask, “Cascaded stimulated polariton scattering in a MgLiNbO3 terahertz laser,” Opt. Express 23(7), 8687–8698 (2015). [CrossRef]  

8. C. Yan, Y. Y. Wang, D. G. Xu, W. T. Xu, P. X. Liu, D. X. Yan, P. Duan, K. Zhong, W. Shi, and J. Q. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric,” Appl. Phys. Lett. 108(1), 011107 (2016). [CrossRef]  

9. F. L. Gao, X. Y. Zhang, Z. H. Cong, Z. G. Qin, X. H. Chen, Z. J. Liu, J. R. Lu, Y. Li, J. Zang, D. Wu, C. Y. Jia, Y. Jiao, and S. J. Zhang, “Terahertz parametric oscillator with the surface-emitted configuration in RbTiOPO4 crystal,” Opt. Laser Technol. 104, 37–42 (2018). [CrossRef]  

10. J. M. Yarborough, S. S. Sussman, H. E. Purhoff, R. H. Pantell, and B. C. Johnson, “Efficient, tunable optical emission from LiNbO3 without a resonator,” Appl. Phys. Lett. 15(3), 102–105 (1969). [CrossRef]  

11. W. T. Wang, Z. H. Cong, Z. J. Liu, X. Y. Zhang, Z. G. Qin, G. Q. Tang, N. Li, Y. G. Zhang, and Q. M. Lu, “THz-wave generation via stimulated polariton scattering in KTiOAsO4 crystal,” Opt. Express 22(14), 17092–17098 (2014). [CrossRef]  

12. W. G. Zhang, X. T. Tao, C. Q. Zhang, Z. L. Gao, Y. Z. Zhang, W. T. Yu, X. F. Cheng, X. S. Liu, and M. H. Jiang, “Bulk growth and characterization of a novel nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 8(1), 304–307 (2008). [CrossRef]  

13. K. Zhong, C. Liu, M. R. Wang, J. Shi, B. Kang, Z. R. Yuan, J. N. Li, D. G. Xu, W. Shi, and J. Q. Yao, “Linear optical properties of ZnGeP2 in the terahertz range,” Opt. Mater. Express 7(10), 3571–3579 (2017). [CrossRef]  

14. J. J. Zhang, Z. H. Zhang, Y. X. Sun, C. Q. Zhang, and X. T. Tao, “Bulk crystal growth and characterization of a new polar polymorph of BaTeMo2O9: α-BaTeMo2O9,” CrystEngComm 13(23), 6985–6990 (2011). [CrossRef]  

15. B. Tatian, “Fitting refractive-index data with the Sellmeier dispersion formula,” Appl. Opt. 23(24), 4477–4485 (1984). [CrossRef]  

16. P. U. Jepsen and B. M. Fischer, “Dynamic range in terahertz time-domain transmission and reflection spectroscopy,” Opt. Lett. 30(1), 29–31 (2005). [CrossRef]  

17. M. Maczka, W. Paraguassu, P. T. C. Freire, A. Majchrowski, and P. S. Pizani, “Lattice dynamics and pressure-induced phase transitions in α-BaTeMo2O9,” J. Phys.: Condens. Matter 25(12), 125404 (2013). [CrossRef]  

18. S. T. Zhou, Y. Huang, W. Y. Qiu, Y. L. Li, S. M. He, J. J. Zhang, B. Zhang, X. S. Chen, X. T. Tao, and W. Lu, “Effects of structure distortion on optical phonon properties of crystalline β-BaTeMo2O9—A novel nonlinear optical material-Infrared and Raman spectra as well as first-principles calculations,” J. Appl. Phys. 114(23), 233505 (2013). [CrossRef]  

19. W. G. Spitzer and D. A. Kleinman, “Infrared lattice bands of quartz,” Phys. Rev. 121(5), 1324–1335 (1961). [CrossRef]  

20. A. S. Barker Jr. and R. Loudon, “Dielectric Properties and Optical Phonons in LiNbO3,” Phys. Rev. 158(2), 433–445 (1967). [CrossRef]  

21. H. E. Puthoff, R. H. Pantell, B. G. Huth, and M. A. Chacon, “Near-Forward Raman Scattering in LiNbO3,” J. Appl. Phys. 39(4), 2144–2146 (1968). [CrossRef]  

22. Y. C. Chiu, T. D. Wang, P. C. Wang, and Y. C. Huang, “Off-axis terahertz parametric oscillator,” J. Opt. Soc. Am. B 36(1), 42–47 (2019). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. Q. X. Yu, Z. L. Gao, S. J. Zhang, W. G. Zhang, S. P. Wang, and X. T. Tao, “Second order nonlinear properties of monoclinic single crystal BaTeMo2O9,” J. Appl. Phys. 111(1), 013506 (2012).
    [Crossref]
  2. Z. L. Gao, X. X. Tian, J. J. Zhang, Q. Wu, Q. M. Lu, and X. T. Tao, “Large-Sized Crystal Growth and Electric-Elastic Properties of α-BaTeMo2O9 Single Crystal,” Cryst. Growth Des. 15(2), 759–763 (2015).
    [Crossref]
  3. F. Bai, Q. P. Wang, X. T. Tao, P. Li, X. Y. Zhang, Z. J. Liu, H. B. Shen, W. X. Lan, L. Gao, Z. L. Gao, J. J. Zhang, and J. X. Fang, “Eye-safe Raman laser based on BaTeMo2O9 crystal,” Appl. Phys. B: Lasers Opt. 116(2), 501–505 (2014).
    [Crossref]
  4. S. D. Liu, J. J. Zhang, Z. L. Gao, L. Wei, S. J. Zhang, J. L. He, and X. T. Tao, “Generation of 1.3 µm and 1.5 µm high-energy Raman radiations in α-BTM,” Opt. Mater. 36(4), 760–763 (2014).
    [Crossref]
  5. Z. L. Gao, S. D. Liu, J. J. Zhang, S. J. Zhang, W. G. Zhang, J. L. He, and X. T. Tao, “Self-frequency-doubled BaTeMo2O9 Raman laser emitting at 589 nm,” Opt. Express 21(6), 7821–7827 (2013).
    [Crossref]
  6. K. Zhong, W. Shi, D. G. Xu, P. X. Liu, Y. Y. Wang, C. Yan, S. J. Fu, and J. Q. Yao, “Optically pumped terahertz sources,” Sci. China: Technol. Sci. 60(12), 1801–1818 (2017).
    [Crossref]
  7. A. J. Lee and H. M. Pask, “Cascaded stimulated polariton scattering in a MgLiNbO3 terahertz laser,” Opt. Express 23(7), 8687–8698 (2015).
    [Crossref]
  8. C. Yan, Y. Y. Wang, D. G. Xu, W. T. Xu, P. X. Liu, D. X. Yan, P. Duan, K. Zhong, W. Shi, and J. Q. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric,” Appl. Phys. Lett. 108(1), 011107 (2016).
    [Crossref]
  9. F. L. Gao, X. Y. Zhang, Z. H. Cong, Z. G. Qin, X. H. Chen, Z. J. Liu, J. R. Lu, Y. Li, J. Zang, D. Wu, C. Y. Jia, Y. Jiao, and S. J. Zhang, “Terahertz parametric oscillator with the surface-emitted configuration in RbTiOPO4 crystal,” Opt. Laser Technol. 104, 37–42 (2018).
    [Crossref]
  10. J. M. Yarborough, S. S. Sussman, H. E. Purhoff, R. H. Pantell, and B. C. Johnson, “Efficient, tunable optical emission from LiNbO3 without a resonator,” Appl. Phys. Lett. 15(3), 102–105 (1969).
    [Crossref]
  11. W. T. Wang, Z. H. Cong, Z. J. Liu, X. Y. Zhang, Z. G. Qin, G. Q. Tang, N. Li, Y. G. Zhang, and Q. M. Lu, “THz-wave generation via stimulated polariton scattering in KTiOAsO4 crystal,” Opt. Express 22(14), 17092–17098 (2014).
    [Crossref]
  12. W. G. Zhang, X. T. Tao, C. Q. Zhang, Z. L. Gao, Y. Z. Zhang, W. T. Yu, X. F. Cheng, X. S. Liu, and M. H. Jiang, “Bulk growth and characterization of a novel nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 8(1), 304–307 (2008).
    [Crossref]
  13. K. Zhong, C. Liu, M. R. Wang, J. Shi, B. Kang, Z. R. Yuan, J. N. Li, D. G. Xu, W. Shi, and J. Q. Yao, “Linear optical properties of ZnGeP2 in the terahertz range,” Opt. Mater. Express 7(10), 3571–3579 (2017).
    [Crossref]
  14. J. J. Zhang, Z. H. Zhang, Y. X. Sun, C. Q. Zhang, and X. T. Tao, “Bulk crystal growth and characterization of a new polar polymorph of BaTeMo2O9: α-BaTeMo2O9,” CrystEngComm 13(23), 6985–6990 (2011).
    [Crossref]
  15. B. Tatian, “Fitting refractive-index data with the Sellmeier dispersion formula,” Appl. Opt. 23(24), 4477–4485 (1984).
    [Crossref]
  16. P. U. Jepsen and B. M. Fischer, “Dynamic range in terahertz time-domain transmission and reflection spectroscopy,” Opt. Lett. 30(1), 29–31 (2005).
    [Crossref]
  17. M. Maczka, W. Paraguassu, P. T. C. Freire, A. Majchrowski, and P. S. Pizani, “Lattice dynamics and pressure-induced phase transitions in α-BaTeMo2O9,” J. Phys.: Condens. Matter 25(12), 125404 (2013).
    [Crossref]
  18. S. T. Zhou, Y. Huang, W. Y. Qiu, Y. L. Li, S. M. He, J. J. Zhang, B. Zhang, X. S. Chen, X. T. Tao, and W. Lu, “Effects of structure distortion on optical phonon properties of crystalline β-BaTeMo2O9—A novel nonlinear optical material-Infrared and Raman spectra as well as first-principles calculations,” J. Appl. Phys. 114(23), 233505 (2013).
    [Crossref]
  19. W. G. Spitzer and D. A. Kleinman, “Infrared lattice bands of quartz,” Phys. Rev. 121(5), 1324–1335 (1961).
    [Crossref]
  20. A. S. Barker and R. Loudon, “Dielectric Properties and Optical Phonons in LiNbO3,” Phys. Rev. 158(2), 433–445 (1967).
    [Crossref]
  21. H. E. Puthoff, R. H. Pantell, B. G. Huth, and M. A. Chacon, “Near-Forward Raman Scattering in LiNbO3,” J. Appl. Phys. 39(4), 2144–2146 (1968).
    [Crossref]
  22. Y. C. Chiu, T. D. Wang, P. C. Wang, and Y. C. Huang, “Off-axis terahertz parametric oscillator,” J. Opt. Soc. Am. B 36(1), 42–47 (2019).
    [Crossref]

2019 (1)

2018 (1)

F. L. Gao, X. Y. Zhang, Z. H. Cong, Z. G. Qin, X. H. Chen, Z. J. Liu, J. R. Lu, Y. Li, J. Zang, D. Wu, C. Y. Jia, Y. Jiao, and S. J. Zhang, “Terahertz parametric oscillator with the surface-emitted configuration in RbTiOPO4 crystal,” Opt. Laser Technol. 104, 37–42 (2018).
[Crossref]

2017 (2)

K. Zhong, C. Liu, M. R. Wang, J. Shi, B. Kang, Z. R. Yuan, J. N. Li, D. G. Xu, W. Shi, and J. Q. Yao, “Linear optical properties of ZnGeP2 in the terahertz range,” Opt. Mater. Express 7(10), 3571–3579 (2017).
[Crossref]

K. Zhong, W. Shi, D. G. Xu, P. X. Liu, Y. Y. Wang, C. Yan, S. J. Fu, and J. Q. Yao, “Optically pumped terahertz sources,” Sci. China: Technol. Sci. 60(12), 1801–1818 (2017).
[Crossref]

2016 (1)

C. Yan, Y. Y. Wang, D. G. Xu, W. T. Xu, P. X. Liu, D. X. Yan, P. Duan, K. Zhong, W. Shi, and J. Q. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

2015 (2)

A. J. Lee and H. M. Pask, “Cascaded stimulated polariton scattering in a MgLiNbO3 terahertz laser,” Opt. Express 23(7), 8687–8698 (2015).
[Crossref]

Z. L. Gao, X. X. Tian, J. J. Zhang, Q. Wu, Q. M. Lu, and X. T. Tao, “Large-Sized Crystal Growth and Electric-Elastic Properties of α-BaTeMo2O9 Single Crystal,” Cryst. Growth Des. 15(2), 759–763 (2015).
[Crossref]

2014 (3)

F. Bai, Q. P. Wang, X. T. Tao, P. Li, X. Y. Zhang, Z. J. Liu, H. B. Shen, W. X. Lan, L. Gao, Z. L. Gao, J. J. Zhang, and J. X. Fang, “Eye-safe Raman laser based on BaTeMo2O9 crystal,” Appl. Phys. B: Lasers Opt. 116(2), 501–505 (2014).
[Crossref]

S. D. Liu, J. J. Zhang, Z. L. Gao, L. Wei, S. J. Zhang, J. L. He, and X. T. Tao, “Generation of 1.3 µm and 1.5 µm high-energy Raman radiations in α-BTM,” Opt. Mater. 36(4), 760–763 (2014).
[Crossref]

W. T. Wang, Z. H. Cong, Z. J. Liu, X. Y. Zhang, Z. G. Qin, G. Q. Tang, N. Li, Y. G. Zhang, and Q. M. Lu, “THz-wave generation via stimulated polariton scattering in KTiOAsO4 crystal,” Opt. Express 22(14), 17092–17098 (2014).
[Crossref]

2013 (3)

M. Maczka, W. Paraguassu, P. T. C. Freire, A. Majchrowski, and P. S. Pizani, “Lattice dynamics and pressure-induced phase transitions in α-BaTeMo2O9,” J. Phys.: Condens. Matter 25(12), 125404 (2013).
[Crossref]

S. T. Zhou, Y. Huang, W. Y. Qiu, Y. L. Li, S. M. He, J. J. Zhang, B. Zhang, X. S. Chen, X. T. Tao, and W. Lu, “Effects of structure distortion on optical phonon properties of crystalline β-BaTeMo2O9—A novel nonlinear optical material-Infrared and Raman spectra as well as first-principles calculations,” J. Appl. Phys. 114(23), 233505 (2013).
[Crossref]

Z. L. Gao, S. D. Liu, J. J. Zhang, S. J. Zhang, W. G. Zhang, J. L. He, and X. T. Tao, “Self-frequency-doubled BaTeMo2O9 Raman laser emitting at 589 nm,” Opt. Express 21(6), 7821–7827 (2013).
[Crossref]

2012 (1)

Q. X. Yu, Z. L. Gao, S. J. Zhang, W. G. Zhang, S. P. Wang, and X. T. Tao, “Second order nonlinear properties of monoclinic single crystal BaTeMo2O9,” J. Appl. Phys. 111(1), 013506 (2012).
[Crossref]

2011 (1)

J. J. Zhang, Z. H. Zhang, Y. X. Sun, C. Q. Zhang, and X. T. Tao, “Bulk crystal growth and characterization of a new polar polymorph of BaTeMo2O9: α-BaTeMo2O9,” CrystEngComm 13(23), 6985–6990 (2011).
[Crossref]

2008 (1)

W. G. Zhang, X. T. Tao, C. Q. Zhang, Z. L. Gao, Y. Z. Zhang, W. T. Yu, X. F. Cheng, X. S. Liu, and M. H. Jiang, “Bulk growth and characterization of a novel nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 8(1), 304–307 (2008).
[Crossref]

2005 (1)

1984 (1)

1969 (1)

J. M. Yarborough, S. S. Sussman, H. E. Purhoff, R. H. Pantell, and B. C. Johnson, “Efficient, tunable optical emission from LiNbO3 without a resonator,” Appl. Phys. Lett. 15(3), 102–105 (1969).
[Crossref]

1968 (1)

H. E. Puthoff, R. H. Pantell, B. G. Huth, and M. A. Chacon, “Near-Forward Raman Scattering in LiNbO3,” J. Appl. Phys. 39(4), 2144–2146 (1968).
[Crossref]

1967 (1)

A. S. Barker and R. Loudon, “Dielectric Properties and Optical Phonons in LiNbO3,” Phys. Rev. 158(2), 433–445 (1967).
[Crossref]

1961 (1)

W. G. Spitzer and D. A. Kleinman, “Infrared lattice bands of quartz,” Phys. Rev. 121(5), 1324–1335 (1961).
[Crossref]

Bai, F.

F. Bai, Q. P. Wang, X. T. Tao, P. Li, X. Y. Zhang, Z. J. Liu, H. B. Shen, W. X. Lan, L. Gao, Z. L. Gao, J. J. Zhang, and J. X. Fang, “Eye-safe Raman laser based on BaTeMo2O9 crystal,” Appl. Phys. B: Lasers Opt. 116(2), 501–505 (2014).
[Crossref]

Barker, A. S.

A. S. Barker and R. Loudon, “Dielectric Properties and Optical Phonons in LiNbO3,” Phys. Rev. 158(2), 433–445 (1967).
[Crossref]

Chacon, M. A.

H. E. Puthoff, R. H. Pantell, B. G. Huth, and M. A. Chacon, “Near-Forward Raman Scattering in LiNbO3,” J. Appl. Phys. 39(4), 2144–2146 (1968).
[Crossref]

Chen, X. H.

F. L. Gao, X. Y. Zhang, Z. H. Cong, Z. G. Qin, X. H. Chen, Z. J. Liu, J. R. Lu, Y. Li, J. Zang, D. Wu, C. Y. Jia, Y. Jiao, and S. J. Zhang, “Terahertz parametric oscillator with the surface-emitted configuration in RbTiOPO4 crystal,” Opt. Laser Technol. 104, 37–42 (2018).
[Crossref]

Chen, X. S.

S. T. Zhou, Y. Huang, W. Y. Qiu, Y. L. Li, S. M. He, J. J. Zhang, B. Zhang, X. S. Chen, X. T. Tao, and W. Lu, “Effects of structure distortion on optical phonon properties of crystalline β-BaTeMo2O9—A novel nonlinear optical material-Infrared and Raman spectra as well as first-principles calculations,” J. Appl. Phys. 114(23), 233505 (2013).
[Crossref]

Cheng, X. F.

W. G. Zhang, X. T. Tao, C. Q. Zhang, Z. L. Gao, Y. Z. Zhang, W. T. Yu, X. F. Cheng, X. S. Liu, and M. H. Jiang, “Bulk growth and characterization of a novel nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 8(1), 304–307 (2008).
[Crossref]

Chiu, Y. C.

Cong, Z. H.

F. L. Gao, X. Y. Zhang, Z. H. Cong, Z. G. Qin, X. H. Chen, Z. J. Liu, J. R. Lu, Y. Li, J. Zang, D. Wu, C. Y. Jia, Y. Jiao, and S. J. Zhang, “Terahertz parametric oscillator with the surface-emitted configuration in RbTiOPO4 crystal,” Opt. Laser Technol. 104, 37–42 (2018).
[Crossref]

W. T. Wang, Z. H. Cong, Z. J. Liu, X. Y. Zhang, Z. G. Qin, G. Q. Tang, N. Li, Y. G. Zhang, and Q. M. Lu, “THz-wave generation via stimulated polariton scattering in KTiOAsO4 crystal,” Opt. Express 22(14), 17092–17098 (2014).
[Crossref]

Duan, P.

C. Yan, Y. Y. Wang, D. G. Xu, W. T. Xu, P. X. Liu, D. X. Yan, P. Duan, K. Zhong, W. Shi, and J. Q. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

Fang, J. X.

F. Bai, Q. P. Wang, X. T. Tao, P. Li, X. Y. Zhang, Z. J. Liu, H. B. Shen, W. X. Lan, L. Gao, Z. L. Gao, J. J. Zhang, and J. X. Fang, “Eye-safe Raman laser based on BaTeMo2O9 crystal,” Appl. Phys. B: Lasers Opt. 116(2), 501–505 (2014).
[Crossref]

Fischer, B. M.

Freire, P. T. C.

M. Maczka, W. Paraguassu, P. T. C. Freire, A. Majchrowski, and P. S. Pizani, “Lattice dynamics and pressure-induced phase transitions in α-BaTeMo2O9,” J. Phys.: Condens. Matter 25(12), 125404 (2013).
[Crossref]

Fu, S. J.

K. Zhong, W. Shi, D. G. Xu, P. X. Liu, Y. Y. Wang, C. Yan, S. J. Fu, and J. Q. Yao, “Optically pumped terahertz sources,” Sci. China: Technol. Sci. 60(12), 1801–1818 (2017).
[Crossref]

Gao, F. L.

F. L. Gao, X. Y. Zhang, Z. H. Cong, Z. G. Qin, X. H. Chen, Z. J. Liu, J. R. Lu, Y. Li, J. Zang, D. Wu, C. Y. Jia, Y. Jiao, and S. J. Zhang, “Terahertz parametric oscillator with the surface-emitted configuration in RbTiOPO4 crystal,” Opt. Laser Technol. 104, 37–42 (2018).
[Crossref]

Gao, L.

F. Bai, Q. P. Wang, X. T. Tao, P. Li, X. Y. Zhang, Z. J. Liu, H. B. Shen, W. X. Lan, L. Gao, Z. L. Gao, J. J. Zhang, and J. X. Fang, “Eye-safe Raman laser based on BaTeMo2O9 crystal,” Appl. Phys. B: Lasers Opt. 116(2), 501–505 (2014).
[Crossref]

Gao, Z. L.

Z. L. Gao, X. X. Tian, J. J. Zhang, Q. Wu, Q. M. Lu, and X. T. Tao, “Large-Sized Crystal Growth and Electric-Elastic Properties of α-BaTeMo2O9 Single Crystal,” Cryst. Growth Des. 15(2), 759–763 (2015).
[Crossref]

F. Bai, Q. P. Wang, X. T. Tao, P. Li, X. Y. Zhang, Z. J. Liu, H. B. Shen, W. X. Lan, L. Gao, Z. L. Gao, J. J. Zhang, and J. X. Fang, “Eye-safe Raman laser based on BaTeMo2O9 crystal,” Appl. Phys. B: Lasers Opt. 116(2), 501–505 (2014).
[Crossref]

S. D. Liu, J. J. Zhang, Z. L. Gao, L. Wei, S. J. Zhang, J. L. He, and X. T. Tao, “Generation of 1.3 µm and 1.5 µm high-energy Raman radiations in α-BTM,” Opt. Mater. 36(4), 760–763 (2014).
[Crossref]

Z. L. Gao, S. D. Liu, J. J. Zhang, S. J. Zhang, W. G. Zhang, J. L. He, and X. T. Tao, “Self-frequency-doubled BaTeMo2O9 Raman laser emitting at 589 nm,” Opt. Express 21(6), 7821–7827 (2013).
[Crossref]

Q. X. Yu, Z. L. Gao, S. J. Zhang, W. G. Zhang, S. P. Wang, and X. T. Tao, “Second order nonlinear properties of monoclinic single crystal BaTeMo2O9,” J. Appl. Phys. 111(1), 013506 (2012).
[Crossref]

W. G. Zhang, X. T. Tao, C. Q. Zhang, Z. L. Gao, Y. Z. Zhang, W. T. Yu, X. F. Cheng, X. S. Liu, and M. H. Jiang, “Bulk growth and characterization of a novel nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 8(1), 304–307 (2008).
[Crossref]

He, J. L.

S. D. Liu, J. J. Zhang, Z. L. Gao, L. Wei, S. J. Zhang, J. L. He, and X. T. Tao, “Generation of 1.3 µm and 1.5 µm high-energy Raman radiations in α-BTM,” Opt. Mater. 36(4), 760–763 (2014).
[Crossref]

Z. L. Gao, S. D. Liu, J. J. Zhang, S. J. Zhang, W. G. Zhang, J. L. He, and X. T. Tao, “Self-frequency-doubled BaTeMo2O9 Raman laser emitting at 589 nm,” Opt. Express 21(6), 7821–7827 (2013).
[Crossref]

He, S. M.

S. T. Zhou, Y. Huang, W. Y. Qiu, Y. L. Li, S. M. He, J. J. Zhang, B. Zhang, X. S. Chen, X. T. Tao, and W. Lu, “Effects of structure distortion on optical phonon properties of crystalline β-BaTeMo2O9—A novel nonlinear optical material-Infrared and Raman spectra as well as first-principles calculations,” J. Appl. Phys. 114(23), 233505 (2013).
[Crossref]

Huang, Y.

S. T. Zhou, Y. Huang, W. Y. Qiu, Y. L. Li, S. M. He, J. J. Zhang, B. Zhang, X. S. Chen, X. T. Tao, and W. Lu, “Effects of structure distortion on optical phonon properties of crystalline β-BaTeMo2O9—A novel nonlinear optical material-Infrared and Raman spectra as well as first-principles calculations,” J. Appl. Phys. 114(23), 233505 (2013).
[Crossref]

Huang, Y. C.

Huth, B. G.

H. E. Puthoff, R. H. Pantell, B. G. Huth, and M. A. Chacon, “Near-Forward Raman Scattering in LiNbO3,” J. Appl. Phys. 39(4), 2144–2146 (1968).
[Crossref]

Jepsen, P. U.

Jia, C. Y.

F. L. Gao, X. Y. Zhang, Z. H. Cong, Z. G. Qin, X. H. Chen, Z. J. Liu, J. R. Lu, Y. Li, J. Zang, D. Wu, C. Y. Jia, Y. Jiao, and S. J. Zhang, “Terahertz parametric oscillator with the surface-emitted configuration in RbTiOPO4 crystal,” Opt. Laser Technol. 104, 37–42 (2018).
[Crossref]

Jiang, M. H.

W. G. Zhang, X. T. Tao, C. Q. Zhang, Z. L. Gao, Y. Z. Zhang, W. T. Yu, X. F. Cheng, X. S. Liu, and M. H. Jiang, “Bulk growth and characterization of a novel nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 8(1), 304–307 (2008).
[Crossref]

Jiao, Y.

F. L. Gao, X. Y. Zhang, Z. H. Cong, Z. G. Qin, X. H. Chen, Z. J. Liu, J. R. Lu, Y. Li, J. Zang, D. Wu, C. Y. Jia, Y. Jiao, and S. J. Zhang, “Terahertz parametric oscillator with the surface-emitted configuration in RbTiOPO4 crystal,” Opt. Laser Technol. 104, 37–42 (2018).
[Crossref]

Johnson, B. C.

J. M. Yarborough, S. S. Sussman, H. E. Purhoff, R. H. Pantell, and B. C. Johnson, “Efficient, tunable optical emission from LiNbO3 without a resonator,” Appl. Phys. Lett. 15(3), 102–105 (1969).
[Crossref]

Kang, B.

Kleinman, D. A.

W. G. Spitzer and D. A. Kleinman, “Infrared lattice bands of quartz,” Phys. Rev. 121(5), 1324–1335 (1961).
[Crossref]

Lan, W. X.

F. Bai, Q. P. Wang, X. T. Tao, P. Li, X. Y. Zhang, Z. J. Liu, H. B. Shen, W. X. Lan, L. Gao, Z. L. Gao, J. J. Zhang, and J. X. Fang, “Eye-safe Raman laser based on BaTeMo2O9 crystal,” Appl. Phys. B: Lasers Opt. 116(2), 501–505 (2014).
[Crossref]

Lee, A. J.

Li, J. N.

Li, N.

Li, P.

F. Bai, Q. P. Wang, X. T. Tao, P. Li, X. Y. Zhang, Z. J. Liu, H. B. Shen, W. X. Lan, L. Gao, Z. L. Gao, J. J. Zhang, and J. X. Fang, “Eye-safe Raman laser based on BaTeMo2O9 crystal,” Appl. Phys. B: Lasers Opt. 116(2), 501–505 (2014).
[Crossref]

Li, Y.

F. L. Gao, X. Y. Zhang, Z. H. Cong, Z. G. Qin, X. H. Chen, Z. J. Liu, J. R. Lu, Y. Li, J. Zang, D. Wu, C. Y. Jia, Y. Jiao, and S. J. Zhang, “Terahertz parametric oscillator with the surface-emitted configuration in RbTiOPO4 crystal,” Opt. Laser Technol. 104, 37–42 (2018).
[Crossref]

Li, Y. L.

S. T. Zhou, Y. Huang, W. Y. Qiu, Y. L. Li, S. M. He, J. J. Zhang, B. Zhang, X. S. Chen, X. T. Tao, and W. Lu, “Effects of structure distortion on optical phonon properties of crystalline β-BaTeMo2O9—A novel nonlinear optical material-Infrared and Raman spectra as well as first-principles calculations,” J. Appl. Phys. 114(23), 233505 (2013).
[Crossref]

Liu, C.

Liu, P. X.

K. Zhong, W. Shi, D. G. Xu, P. X. Liu, Y. Y. Wang, C. Yan, S. J. Fu, and J. Q. Yao, “Optically pumped terahertz sources,” Sci. China: Technol. Sci. 60(12), 1801–1818 (2017).
[Crossref]

C. Yan, Y. Y. Wang, D. G. Xu, W. T. Xu, P. X. Liu, D. X. Yan, P. Duan, K. Zhong, W. Shi, and J. Q. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

Liu, S. D.

S. D. Liu, J. J. Zhang, Z. L. Gao, L. Wei, S. J. Zhang, J. L. He, and X. T. Tao, “Generation of 1.3 µm and 1.5 µm high-energy Raman radiations in α-BTM,” Opt. Mater. 36(4), 760–763 (2014).
[Crossref]

Z. L. Gao, S. D. Liu, J. J. Zhang, S. J. Zhang, W. G. Zhang, J. L. He, and X. T. Tao, “Self-frequency-doubled BaTeMo2O9 Raman laser emitting at 589 nm,” Opt. Express 21(6), 7821–7827 (2013).
[Crossref]

Liu, X. S.

W. G. Zhang, X. T. Tao, C. Q. Zhang, Z. L. Gao, Y. Z. Zhang, W. T. Yu, X. F. Cheng, X. S. Liu, and M. H. Jiang, “Bulk growth and characterization of a novel nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 8(1), 304–307 (2008).
[Crossref]

Liu, Z. J.

F. L. Gao, X. Y. Zhang, Z. H. Cong, Z. G. Qin, X. H. Chen, Z. J. Liu, J. R. Lu, Y. Li, J. Zang, D. Wu, C. Y. Jia, Y. Jiao, and S. J. Zhang, “Terahertz parametric oscillator with the surface-emitted configuration in RbTiOPO4 crystal,” Opt. Laser Technol. 104, 37–42 (2018).
[Crossref]

F. Bai, Q. P. Wang, X. T. Tao, P. Li, X. Y. Zhang, Z. J. Liu, H. B. Shen, W. X. Lan, L. Gao, Z. L. Gao, J. J. Zhang, and J. X. Fang, “Eye-safe Raman laser based on BaTeMo2O9 crystal,” Appl. Phys. B: Lasers Opt. 116(2), 501–505 (2014).
[Crossref]

W. T. Wang, Z. H. Cong, Z. J. Liu, X. Y. Zhang, Z. G. Qin, G. Q. Tang, N. Li, Y. G. Zhang, and Q. M. Lu, “THz-wave generation via stimulated polariton scattering in KTiOAsO4 crystal,” Opt. Express 22(14), 17092–17098 (2014).
[Crossref]

Loudon, R.

A. S. Barker and R. Loudon, “Dielectric Properties and Optical Phonons in LiNbO3,” Phys. Rev. 158(2), 433–445 (1967).
[Crossref]

Lu, J. R.

F. L. Gao, X. Y. Zhang, Z. H. Cong, Z. G. Qin, X. H. Chen, Z. J. Liu, J. R. Lu, Y. Li, J. Zang, D. Wu, C. Y. Jia, Y. Jiao, and S. J. Zhang, “Terahertz parametric oscillator with the surface-emitted configuration in RbTiOPO4 crystal,” Opt. Laser Technol. 104, 37–42 (2018).
[Crossref]

Lu, Q. M.

Z. L. Gao, X. X. Tian, J. J. Zhang, Q. Wu, Q. M. Lu, and X. T. Tao, “Large-Sized Crystal Growth and Electric-Elastic Properties of α-BaTeMo2O9 Single Crystal,” Cryst. Growth Des. 15(2), 759–763 (2015).
[Crossref]

W. T. Wang, Z. H. Cong, Z. J. Liu, X. Y. Zhang, Z. G. Qin, G. Q. Tang, N. Li, Y. G. Zhang, and Q. M. Lu, “THz-wave generation via stimulated polariton scattering in KTiOAsO4 crystal,” Opt. Express 22(14), 17092–17098 (2014).
[Crossref]

Lu, W.

S. T. Zhou, Y. Huang, W. Y. Qiu, Y. L. Li, S. M. He, J. J. Zhang, B. Zhang, X. S. Chen, X. T. Tao, and W. Lu, “Effects of structure distortion on optical phonon properties of crystalline β-BaTeMo2O9—A novel nonlinear optical material-Infrared and Raman spectra as well as first-principles calculations,” J. Appl. Phys. 114(23), 233505 (2013).
[Crossref]

Maczka, M.

M. Maczka, W. Paraguassu, P. T. C. Freire, A. Majchrowski, and P. S. Pizani, “Lattice dynamics and pressure-induced phase transitions in α-BaTeMo2O9,” J. Phys.: Condens. Matter 25(12), 125404 (2013).
[Crossref]

Majchrowski, A.

M. Maczka, W. Paraguassu, P. T. C. Freire, A. Majchrowski, and P. S. Pizani, “Lattice dynamics and pressure-induced phase transitions in α-BaTeMo2O9,” J. Phys.: Condens. Matter 25(12), 125404 (2013).
[Crossref]

Pantell, R. H.

J. M. Yarborough, S. S. Sussman, H. E. Purhoff, R. H. Pantell, and B. C. Johnson, “Efficient, tunable optical emission from LiNbO3 without a resonator,” Appl. Phys. Lett. 15(3), 102–105 (1969).
[Crossref]

H. E. Puthoff, R. H. Pantell, B. G. Huth, and M. A. Chacon, “Near-Forward Raman Scattering in LiNbO3,” J. Appl. Phys. 39(4), 2144–2146 (1968).
[Crossref]

Paraguassu, W.

M. Maczka, W. Paraguassu, P. T. C. Freire, A. Majchrowski, and P. S. Pizani, “Lattice dynamics and pressure-induced phase transitions in α-BaTeMo2O9,” J. Phys.: Condens. Matter 25(12), 125404 (2013).
[Crossref]

Pask, H. M.

Pizani, P. S.

M. Maczka, W. Paraguassu, P. T. C. Freire, A. Majchrowski, and P. S. Pizani, “Lattice dynamics and pressure-induced phase transitions in α-BaTeMo2O9,” J. Phys.: Condens. Matter 25(12), 125404 (2013).
[Crossref]

Purhoff, H. E.

J. M. Yarborough, S. S. Sussman, H. E. Purhoff, R. H. Pantell, and B. C. Johnson, “Efficient, tunable optical emission from LiNbO3 without a resonator,” Appl. Phys. Lett. 15(3), 102–105 (1969).
[Crossref]

Puthoff, H. E.

H. E. Puthoff, R. H. Pantell, B. G. Huth, and M. A. Chacon, “Near-Forward Raman Scattering in LiNbO3,” J. Appl. Phys. 39(4), 2144–2146 (1968).
[Crossref]

Qin, Z. G.

F. L. Gao, X. Y. Zhang, Z. H. Cong, Z. G. Qin, X. H. Chen, Z. J. Liu, J. R. Lu, Y. Li, J. Zang, D. Wu, C. Y. Jia, Y. Jiao, and S. J. Zhang, “Terahertz parametric oscillator with the surface-emitted configuration in RbTiOPO4 crystal,” Opt. Laser Technol. 104, 37–42 (2018).
[Crossref]

W. T. Wang, Z. H. Cong, Z. J. Liu, X. Y. Zhang, Z. G. Qin, G. Q. Tang, N. Li, Y. G. Zhang, and Q. M. Lu, “THz-wave generation via stimulated polariton scattering in KTiOAsO4 crystal,” Opt. Express 22(14), 17092–17098 (2014).
[Crossref]

Qiu, W. Y.

S. T. Zhou, Y. Huang, W. Y. Qiu, Y. L. Li, S. M. He, J. J. Zhang, B. Zhang, X. S. Chen, X. T. Tao, and W. Lu, “Effects of structure distortion on optical phonon properties of crystalline β-BaTeMo2O9—A novel nonlinear optical material-Infrared and Raman spectra as well as first-principles calculations,” J. Appl. Phys. 114(23), 233505 (2013).
[Crossref]

Shen, H. B.

F. Bai, Q. P. Wang, X. T. Tao, P. Li, X. Y. Zhang, Z. J. Liu, H. B. Shen, W. X. Lan, L. Gao, Z. L. Gao, J. J. Zhang, and J. X. Fang, “Eye-safe Raman laser based on BaTeMo2O9 crystal,” Appl. Phys. B: Lasers Opt. 116(2), 501–505 (2014).
[Crossref]

Shi, J.

Shi, W.

K. Zhong, C. Liu, M. R. Wang, J. Shi, B. Kang, Z. R. Yuan, J. N. Li, D. G. Xu, W. Shi, and J. Q. Yao, “Linear optical properties of ZnGeP2 in the terahertz range,” Opt. Mater. Express 7(10), 3571–3579 (2017).
[Crossref]

K. Zhong, W. Shi, D. G. Xu, P. X. Liu, Y. Y. Wang, C. Yan, S. J. Fu, and J. Q. Yao, “Optically pumped terahertz sources,” Sci. China: Technol. Sci. 60(12), 1801–1818 (2017).
[Crossref]

C. Yan, Y. Y. Wang, D. G. Xu, W. T. Xu, P. X. Liu, D. X. Yan, P. Duan, K. Zhong, W. Shi, and J. Q. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

Spitzer, W. G.

W. G. Spitzer and D. A. Kleinman, “Infrared lattice bands of quartz,” Phys. Rev. 121(5), 1324–1335 (1961).
[Crossref]

Sun, Y. X.

J. J. Zhang, Z. H. Zhang, Y. X. Sun, C. Q. Zhang, and X. T. Tao, “Bulk crystal growth and characterization of a new polar polymorph of BaTeMo2O9: α-BaTeMo2O9,” CrystEngComm 13(23), 6985–6990 (2011).
[Crossref]

Sussman, S. S.

J. M. Yarborough, S. S. Sussman, H. E. Purhoff, R. H. Pantell, and B. C. Johnson, “Efficient, tunable optical emission from LiNbO3 without a resonator,” Appl. Phys. Lett. 15(3), 102–105 (1969).
[Crossref]

Tang, G. Q.

Tao, X. T.

Z. L. Gao, X. X. Tian, J. J. Zhang, Q. Wu, Q. M. Lu, and X. T. Tao, “Large-Sized Crystal Growth and Electric-Elastic Properties of α-BaTeMo2O9 Single Crystal,” Cryst. Growth Des. 15(2), 759–763 (2015).
[Crossref]

S. D. Liu, J. J. Zhang, Z. L. Gao, L. Wei, S. J. Zhang, J. L. He, and X. T. Tao, “Generation of 1.3 µm and 1.5 µm high-energy Raman radiations in α-BTM,” Opt. Mater. 36(4), 760–763 (2014).
[Crossref]

F. Bai, Q. P. Wang, X. T. Tao, P. Li, X. Y. Zhang, Z. J. Liu, H. B. Shen, W. X. Lan, L. Gao, Z. L. Gao, J. J. Zhang, and J. X. Fang, “Eye-safe Raman laser based on BaTeMo2O9 crystal,” Appl. Phys. B: Lasers Opt. 116(2), 501–505 (2014).
[Crossref]

Z. L. Gao, S. D. Liu, J. J. Zhang, S. J. Zhang, W. G. Zhang, J. L. He, and X. T. Tao, “Self-frequency-doubled BaTeMo2O9 Raman laser emitting at 589 nm,” Opt. Express 21(6), 7821–7827 (2013).
[Crossref]

S. T. Zhou, Y. Huang, W. Y. Qiu, Y. L. Li, S. M. He, J. J. Zhang, B. Zhang, X. S. Chen, X. T. Tao, and W. Lu, “Effects of structure distortion on optical phonon properties of crystalline β-BaTeMo2O9—A novel nonlinear optical material-Infrared and Raman spectra as well as first-principles calculations,” J. Appl. Phys. 114(23), 233505 (2013).
[Crossref]

Q. X. Yu, Z. L. Gao, S. J. Zhang, W. G. Zhang, S. P. Wang, and X. T. Tao, “Second order nonlinear properties of monoclinic single crystal BaTeMo2O9,” J. Appl. Phys. 111(1), 013506 (2012).
[Crossref]

J. J. Zhang, Z. H. Zhang, Y. X. Sun, C. Q. Zhang, and X. T. Tao, “Bulk crystal growth and characterization of a new polar polymorph of BaTeMo2O9: α-BaTeMo2O9,” CrystEngComm 13(23), 6985–6990 (2011).
[Crossref]

W. G. Zhang, X. T. Tao, C. Q. Zhang, Z. L. Gao, Y. Z. Zhang, W. T. Yu, X. F. Cheng, X. S. Liu, and M. H. Jiang, “Bulk growth and characterization of a novel nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 8(1), 304–307 (2008).
[Crossref]

Tatian, B.

Tian, X. X.

Z. L. Gao, X. X. Tian, J. J. Zhang, Q. Wu, Q. M. Lu, and X. T. Tao, “Large-Sized Crystal Growth and Electric-Elastic Properties of α-BaTeMo2O9 Single Crystal,” Cryst. Growth Des. 15(2), 759–763 (2015).
[Crossref]

Wang, M. R.

Wang, P. C.

Wang, Q. P.

F. Bai, Q. P. Wang, X. T. Tao, P. Li, X. Y. Zhang, Z. J. Liu, H. B. Shen, W. X. Lan, L. Gao, Z. L. Gao, J. J. Zhang, and J. X. Fang, “Eye-safe Raman laser based on BaTeMo2O9 crystal,” Appl. Phys. B: Lasers Opt. 116(2), 501–505 (2014).
[Crossref]

Wang, S. P.

Q. X. Yu, Z. L. Gao, S. J. Zhang, W. G. Zhang, S. P. Wang, and X. T. Tao, “Second order nonlinear properties of monoclinic single crystal BaTeMo2O9,” J. Appl. Phys. 111(1), 013506 (2012).
[Crossref]

Wang, T. D.

Wang, W. T.

Wang, Y. Y.

K. Zhong, W. Shi, D. G. Xu, P. X. Liu, Y. Y. Wang, C. Yan, S. J. Fu, and J. Q. Yao, “Optically pumped terahertz sources,” Sci. China: Technol. Sci. 60(12), 1801–1818 (2017).
[Crossref]

C. Yan, Y. Y. Wang, D. G. Xu, W. T. Xu, P. X. Liu, D. X. Yan, P. Duan, K. Zhong, W. Shi, and J. Q. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

Wei, L.

S. D. Liu, J. J. Zhang, Z. L. Gao, L. Wei, S. J. Zhang, J. L. He, and X. T. Tao, “Generation of 1.3 µm and 1.5 µm high-energy Raman radiations in α-BTM,” Opt. Mater. 36(4), 760–763 (2014).
[Crossref]

Wu, D.

F. L. Gao, X. Y. Zhang, Z. H. Cong, Z. G. Qin, X. H. Chen, Z. J. Liu, J. R. Lu, Y. Li, J. Zang, D. Wu, C. Y. Jia, Y. Jiao, and S. J. Zhang, “Terahertz parametric oscillator with the surface-emitted configuration in RbTiOPO4 crystal,” Opt. Laser Technol. 104, 37–42 (2018).
[Crossref]

Wu, Q.

Z. L. Gao, X. X. Tian, J. J. Zhang, Q. Wu, Q. M. Lu, and X. T. Tao, “Large-Sized Crystal Growth and Electric-Elastic Properties of α-BaTeMo2O9 Single Crystal,” Cryst. Growth Des. 15(2), 759–763 (2015).
[Crossref]

Xu, D. G.

K. Zhong, W. Shi, D. G. Xu, P. X. Liu, Y. Y. Wang, C. Yan, S. J. Fu, and J. Q. Yao, “Optically pumped terahertz sources,” Sci. China: Technol. Sci. 60(12), 1801–1818 (2017).
[Crossref]

K. Zhong, C. Liu, M. R. Wang, J. Shi, B. Kang, Z. R. Yuan, J. N. Li, D. G. Xu, W. Shi, and J. Q. Yao, “Linear optical properties of ZnGeP2 in the terahertz range,” Opt. Mater. Express 7(10), 3571–3579 (2017).
[Crossref]

C. Yan, Y. Y. Wang, D. G. Xu, W. T. Xu, P. X. Liu, D. X. Yan, P. Duan, K. Zhong, W. Shi, and J. Q. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

Xu, W. T.

C. Yan, Y. Y. Wang, D. G. Xu, W. T. Xu, P. X. Liu, D. X. Yan, P. Duan, K. Zhong, W. Shi, and J. Q. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

Yan, C.

K. Zhong, W. Shi, D. G. Xu, P. X. Liu, Y. Y. Wang, C. Yan, S. J. Fu, and J. Q. Yao, “Optically pumped terahertz sources,” Sci. China: Technol. Sci. 60(12), 1801–1818 (2017).
[Crossref]

C. Yan, Y. Y. Wang, D. G. Xu, W. T. Xu, P. X. Liu, D. X. Yan, P. Duan, K. Zhong, W. Shi, and J. Q. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

Yan, D. X.

C. Yan, Y. Y. Wang, D. G. Xu, W. T. Xu, P. X. Liu, D. X. Yan, P. Duan, K. Zhong, W. Shi, and J. Q. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

Yao, J. Q.

K. Zhong, W. Shi, D. G. Xu, P. X. Liu, Y. Y. Wang, C. Yan, S. J. Fu, and J. Q. Yao, “Optically pumped terahertz sources,” Sci. China: Technol. Sci. 60(12), 1801–1818 (2017).
[Crossref]

K. Zhong, C. Liu, M. R. Wang, J. Shi, B. Kang, Z. R. Yuan, J. N. Li, D. G. Xu, W. Shi, and J. Q. Yao, “Linear optical properties of ZnGeP2 in the terahertz range,” Opt. Mater. Express 7(10), 3571–3579 (2017).
[Crossref]

C. Yan, Y. Y. Wang, D. G. Xu, W. T. Xu, P. X. Liu, D. X. Yan, P. Duan, K. Zhong, W. Shi, and J. Q. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

Yarborough, J. M.

J. M. Yarborough, S. S. Sussman, H. E. Purhoff, R. H. Pantell, and B. C. Johnson, “Efficient, tunable optical emission from LiNbO3 without a resonator,” Appl. Phys. Lett. 15(3), 102–105 (1969).
[Crossref]

Yu, Q. X.

Q. X. Yu, Z. L. Gao, S. J. Zhang, W. G. Zhang, S. P. Wang, and X. T. Tao, “Second order nonlinear properties of monoclinic single crystal BaTeMo2O9,” J. Appl. Phys. 111(1), 013506 (2012).
[Crossref]

Yu, W. T.

W. G. Zhang, X. T. Tao, C. Q. Zhang, Z. L. Gao, Y. Z. Zhang, W. T. Yu, X. F. Cheng, X. S. Liu, and M. H. Jiang, “Bulk growth and characterization of a novel nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 8(1), 304–307 (2008).
[Crossref]

Yuan, Z. R.

Zang, J.

F. L. Gao, X. Y. Zhang, Z. H. Cong, Z. G. Qin, X. H. Chen, Z. J. Liu, J. R. Lu, Y. Li, J. Zang, D. Wu, C. Y. Jia, Y. Jiao, and S. J. Zhang, “Terahertz parametric oscillator with the surface-emitted configuration in RbTiOPO4 crystal,” Opt. Laser Technol. 104, 37–42 (2018).
[Crossref]

Zhang, B.

S. T. Zhou, Y. Huang, W. Y. Qiu, Y. L. Li, S. M. He, J. J. Zhang, B. Zhang, X. S. Chen, X. T. Tao, and W. Lu, “Effects of structure distortion on optical phonon properties of crystalline β-BaTeMo2O9—A novel nonlinear optical material-Infrared and Raman spectra as well as first-principles calculations,” J. Appl. Phys. 114(23), 233505 (2013).
[Crossref]

Zhang, C. Q.

J. J. Zhang, Z. H. Zhang, Y. X. Sun, C. Q. Zhang, and X. T. Tao, “Bulk crystal growth and characterization of a new polar polymorph of BaTeMo2O9: α-BaTeMo2O9,” CrystEngComm 13(23), 6985–6990 (2011).
[Crossref]

W. G. Zhang, X. T. Tao, C. Q. Zhang, Z. L. Gao, Y. Z. Zhang, W. T. Yu, X. F. Cheng, X. S. Liu, and M. H. Jiang, “Bulk growth and characterization of a novel nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 8(1), 304–307 (2008).
[Crossref]

Zhang, J. J.

Z. L. Gao, X. X. Tian, J. J. Zhang, Q. Wu, Q. M. Lu, and X. T. Tao, “Large-Sized Crystal Growth and Electric-Elastic Properties of α-BaTeMo2O9 Single Crystal,” Cryst. Growth Des. 15(2), 759–763 (2015).
[Crossref]

S. D. Liu, J. J. Zhang, Z. L. Gao, L. Wei, S. J. Zhang, J. L. He, and X. T. Tao, “Generation of 1.3 µm and 1.5 µm high-energy Raman radiations in α-BTM,” Opt. Mater. 36(4), 760–763 (2014).
[Crossref]

F. Bai, Q. P. Wang, X. T. Tao, P. Li, X. Y. Zhang, Z. J. Liu, H. B. Shen, W. X. Lan, L. Gao, Z. L. Gao, J. J. Zhang, and J. X. Fang, “Eye-safe Raman laser based on BaTeMo2O9 crystal,” Appl. Phys. B: Lasers Opt. 116(2), 501–505 (2014).
[Crossref]

Z. L. Gao, S. D. Liu, J. J. Zhang, S. J. Zhang, W. G. Zhang, J. L. He, and X. T. Tao, “Self-frequency-doubled BaTeMo2O9 Raman laser emitting at 589 nm,” Opt. Express 21(6), 7821–7827 (2013).
[Crossref]

S. T. Zhou, Y. Huang, W. Y. Qiu, Y. L. Li, S. M. He, J. J. Zhang, B. Zhang, X. S. Chen, X. T. Tao, and W. Lu, “Effects of structure distortion on optical phonon properties of crystalline β-BaTeMo2O9—A novel nonlinear optical material-Infrared and Raman spectra as well as first-principles calculations,” J. Appl. Phys. 114(23), 233505 (2013).
[Crossref]

J. J. Zhang, Z. H. Zhang, Y. X. Sun, C. Q. Zhang, and X. T. Tao, “Bulk crystal growth and characterization of a new polar polymorph of BaTeMo2O9: α-BaTeMo2O9,” CrystEngComm 13(23), 6985–6990 (2011).
[Crossref]

Zhang, S. J.

F. L. Gao, X. Y. Zhang, Z. H. Cong, Z. G. Qin, X. H. Chen, Z. J. Liu, J. R. Lu, Y. Li, J. Zang, D. Wu, C. Y. Jia, Y. Jiao, and S. J. Zhang, “Terahertz parametric oscillator with the surface-emitted configuration in RbTiOPO4 crystal,” Opt. Laser Technol. 104, 37–42 (2018).
[Crossref]

S. D. Liu, J. J. Zhang, Z. L. Gao, L. Wei, S. J. Zhang, J. L. He, and X. T. Tao, “Generation of 1.3 µm and 1.5 µm high-energy Raman radiations in α-BTM,” Opt. Mater. 36(4), 760–763 (2014).
[Crossref]

Z. L. Gao, S. D. Liu, J. J. Zhang, S. J. Zhang, W. G. Zhang, J. L. He, and X. T. Tao, “Self-frequency-doubled BaTeMo2O9 Raman laser emitting at 589 nm,” Opt. Express 21(6), 7821–7827 (2013).
[Crossref]

Q. X. Yu, Z. L. Gao, S. J. Zhang, W. G. Zhang, S. P. Wang, and X. T. Tao, “Second order nonlinear properties of monoclinic single crystal BaTeMo2O9,” J. Appl. Phys. 111(1), 013506 (2012).
[Crossref]

Zhang, W. G.

Z. L. Gao, S. D. Liu, J. J. Zhang, S. J. Zhang, W. G. Zhang, J. L. He, and X. T. Tao, “Self-frequency-doubled BaTeMo2O9 Raman laser emitting at 589 nm,” Opt. Express 21(6), 7821–7827 (2013).
[Crossref]

Q. X. Yu, Z. L. Gao, S. J. Zhang, W. G. Zhang, S. P. Wang, and X. T. Tao, “Second order nonlinear properties of monoclinic single crystal BaTeMo2O9,” J. Appl. Phys. 111(1), 013506 (2012).
[Crossref]

W. G. Zhang, X. T. Tao, C. Q. Zhang, Z. L. Gao, Y. Z. Zhang, W. T. Yu, X. F. Cheng, X. S. Liu, and M. H. Jiang, “Bulk growth and characterization of a novel nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 8(1), 304–307 (2008).
[Crossref]

Zhang, X. Y.

F. L. Gao, X. Y. Zhang, Z. H. Cong, Z. G. Qin, X. H. Chen, Z. J. Liu, J. R. Lu, Y. Li, J. Zang, D. Wu, C. Y. Jia, Y. Jiao, and S. J. Zhang, “Terahertz parametric oscillator with the surface-emitted configuration in RbTiOPO4 crystal,” Opt. Laser Technol. 104, 37–42 (2018).
[Crossref]

F. Bai, Q. P. Wang, X. T. Tao, P. Li, X. Y. Zhang, Z. J. Liu, H. B. Shen, W. X. Lan, L. Gao, Z. L. Gao, J. J. Zhang, and J. X. Fang, “Eye-safe Raman laser based on BaTeMo2O9 crystal,” Appl. Phys. B: Lasers Opt. 116(2), 501–505 (2014).
[Crossref]

W. T. Wang, Z. H. Cong, Z. J. Liu, X. Y. Zhang, Z. G. Qin, G. Q. Tang, N. Li, Y. G. Zhang, and Q. M. Lu, “THz-wave generation via stimulated polariton scattering in KTiOAsO4 crystal,” Opt. Express 22(14), 17092–17098 (2014).
[Crossref]

Zhang, Y. G.

Zhang, Y. Z.

W. G. Zhang, X. T. Tao, C. Q. Zhang, Z. L. Gao, Y. Z. Zhang, W. T. Yu, X. F. Cheng, X. S. Liu, and M. H. Jiang, “Bulk growth and characterization of a novel nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 8(1), 304–307 (2008).
[Crossref]

Zhang, Z. H.

J. J. Zhang, Z. H. Zhang, Y. X. Sun, C. Q. Zhang, and X. T. Tao, “Bulk crystal growth and characterization of a new polar polymorph of BaTeMo2O9: α-BaTeMo2O9,” CrystEngComm 13(23), 6985–6990 (2011).
[Crossref]

Zhong, K.

K. Zhong, C. Liu, M. R. Wang, J. Shi, B. Kang, Z. R. Yuan, J. N. Li, D. G. Xu, W. Shi, and J. Q. Yao, “Linear optical properties of ZnGeP2 in the terahertz range,” Opt. Mater. Express 7(10), 3571–3579 (2017).
[Crossref]

K. Zhong, W. Shi, D. G. Xu, P. X. Liu, Y. Y. Wang, C. Yan, S. J. Fu, and J. Q. Yao, “Optically pumped terahertz sources,” Sci. China: Technol. Sci. 60(12), 1801–1818 (2017).
[Crossref]

C. Yan, Y. Y. Wang, D. G. Xu, W. T. Xu, P. X. Liu, D. X. Yan, P. Duan, K. Zhong, W. Shi, and J. Q. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

Zhou, S. T.

S. T. Zhou, Y. Huang, W. Y. Qiu, Y. L. Li, S. M. He, J. J. Zhang, B. Zhang, X. S. Chen, X. T. Tao, and W. Lu, “Effects of structure distortion on optical phonon properties of crystalline β-BaTeMo2O9—A novel nonlinear optical material-Infrared and Raman spectra as well as first-principles calculations,” J. Appl. Phys. 114(23), 233505 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B: Lasers Opt. (1)

F. Bai, Q. P. Wang, X. T. Tao, P. Li, X. Y. Zhang, Z. J. Liu, H. B. Shen, W. X. Lan, L. Gao, Z. L. Gao, J. J. Zhang, and J. X. Fang, “Eye-safe Raman laser based on BaTeMo2O9 crystal,” Appl. Phys. B: Lasers Opt. 116(2), 501–505 (2014).
[Crossref]

Appl. Phys. Lett. (2)

C. Yan, Y. Y. Wang, D. G. Xu, W. T. Xu, P. X. Liu, D. X. Yan, P. Duan, K. Zhong, W. Shi, and J. Q. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

J. M. Yarborough, S. S. Sussman, H. E. Purhoff, R. H. Pantell, and B. C. Johnson, “Efficient, tunable optical emission from LiNbO3 without a resonator,” Appl. Phys. Lett. 15(3), 102–105 (1969).
[Crossref]

Cryst. Growth Des. (2)

W. G. Zhang, X. T. Tao, C. Q. Zhang, Z. L. Gao, Y. Z. Zhang, W. T. Yu, X. F. Cheng, X. S. Liu, and M. H. Jiang, “Bulk growth and characterization of a novel nonlinear optical crystal BaTeMo2O9,” Cryst. Growth Des. 8(1), 304–307 (2008).
[Crossref]

Z. L. Gao, X. X. Tian, J. J. Zhang, Q. Wu, Q. M. Lu, and X. T. Tao, “Large-Sized Crystal Growth and Electric-Elastic Properties of α-BaTeMo2O9 Single Crystal,” Cryst. Growth Des. 15(2), 759–763 (2015).
[Crossref]

CrystEngComm (1)

J. J. Zhang, Z. H. Zhang, Y. X. Sun, C. Q. Zhang, and X. T. Tao, “Bulk crystal growth and characterization of a new polar polymorph of BaTeMo2O9: α-BaTeMo2O9,” CrystEngComm 13(23), 6985–6990 (2011).
[Crossref]

J. Appl. Phys. (3)

Q. X. Yu, Z. L. Gao, S. J. Zhang, W. G. Zhang, S. P. Wang, and X. T. Tao, “Second order nonlinear properties of monoclinic single crystal BaTeMo2O9,” J. Appl. Phys. 111(1), 013506 (2012).
[Crossref]

S. T. Zhou, Y. Huang, W. Y. Qiu, Y. L. Li, S. M. He, J. J. Zhang, B. Zhang, X. S. Chen, X. T. Tao, and W. Lu, “Effects of structure distortion on optical phonon properties of crystalline β-BaTeMo2O9—A novel nonlinear optical material-Infrared and Raman spectra as well as first-principles calculations,” J. Appl. Phys. 114(23), 233505 (2013).
[Crossref]

H. E. Puthoff, R. H. Pantell, B. G. Huth, and M. A. Chacon, “Near-Forward Raman Scattering in LiNbO3,” J. Appl. Phys. 39(4), 2144–2146 (1968).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys.: Condens. Matter (1)

M. Maczka, W. Paraguassu, P. T. C. Freire, A. Majchrowski, and P. S. Pizani, “Lattice dynamics and pressure-induced phase transitions in α-BaTeMo2O9,” J. Phys.: Condens. Matter 25(12), 125404 (2013).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

F. L. Gao, X. Y. Zhang, Z. H. Cong, Z. G. Qin, X. H. Chen, Z. J. Liu, J. R. Lu, Y. Li, J. Zang, D. Wu, C. Y. Jia, Y. Jiao, and S. J. Zhang, “Terahertz parametric oscillator with the surface-emitted configuration in RbTiOPO4 crystal,” Opt. Laser Technol. 104, 37–42 (2018).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (1)

S. D. Liu, J. J. Zhang, Z. L. Gao, L. Wei, S. J. Zhang, J. L. He, and X. T. Tao, “Generation of 1.3 µm and 1.5 µm high-energy Raman radiations in α-BTM,” Opt. Mater. 36(4), 760–763 (2014).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. (2)

W. G. Spitzer and D. A. Kleinman, “Infrared lattice bands of quartz,” Phys. Rev. 121(5), 1324–1335 (1961).
[Crossref]

A. S. Barker and R. Loudon, “Dielectric Properties and Optical Phonons in LiNbO3,” Phys. Rev. 158(2), 433–445 (1967).
[Crossref]

Sci. China: Technol. Sci. (1)

K. Zhong, W. Shi, D. G. Xu, P. X. Liu, Y. Y. Wang, C. Yan, S. J. Fu, and J. Q. Yao, “Optically pumped terahertz sources,” Sci. China: Technol. Sci. 60(12), 1801–1818 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Terahertz time-domain signals of the α- (a) and β-BTM (b) samples. The minor peaks were resulted from the internal reflections between two parallel faces of the samples.
Fig. 2.
Fig. 2. Frequency-domain transmissions of α- (a) and β-BTM (b) samples.
Fig. 3.
Fig. 3. Refractive indices of α- (a) and β-BTM (b) crystals. The solid lines were experimental results and the dashed lines were calculated from the fitted model.
Fig. 4.
Fig. 4. Terahertz time domain signals transmitted through z-cut α- (a) and β-BTM (b) samples when the polarization was 75° to the x-axis in the x-y plane. The large birefringence of β-BTM induced obvious phase difference between x- and y-axes.
Fig. 5.
Fig. 5. Absorption coefficients of α-(a) and β-BTM (b) crystals.
Fig. 6.
Fig. 6. Schematic diagram of terahertz generation via SPS in β-BTM with a noncollinear PM scheme. $\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}} \over k} $p, $\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}} \over k} $s, and $\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}} \over k} $T are the wave vectors of the pump, Stokes and terahertz waves, respectively.
Fig. 7.
Fig. 7. Properties of the stimulated polaritons for the A transverse vibration modes in β-BTM. (a) The dispersion and absorption curves. The shaded area in the inset gives potential terahertz range for the 272 cm-1 mode; (b) The angle tuning characteristics of terahertz generation pumped at 1064 nm. The smooth curves are the PM relations at different angles.
Fig. 8.
Fig. 8. The calculated absorption coefficients of β-BTM and LiNbO3 at room temperature.

Tables (2)

Tables Icon

Table 1. Specifications of the α- and β-BTM samples

Tables Icon

Table 2. Sellmeier Coefficients and the corresponding validity ranges for α- and β-BTM crystals.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n i 2 = A + B λ 2 λ 2 C + D λ 2 λ 2 E
( n + i λ ) 2 = ε ( ν ) = ε + ρ ν T O ν T O ν 2 i γ ν
ω P = ω S + ω T
k P = k S + k T
k T 2 = k P 2 + k P 2 2 k P k S cos θ
α T = 2 ν T c I m ( ε + j S j ν o j 2 ν o j 2 ν T 2 i ν T Γ j )

Metrics