N. S. Abadeer, M. R. Brennan, W. L. Wilson, and C. J. Murphy, “Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods,” ACS Nano 8, 8392–8406 (2014).
[Crossref]
[PubMed]
D. Li, H. Ågren, and G. Chen, “Near infrared harvesting dye-sensitized solar cells enabled by rare-earth upconversion materials,” Dalton Transactions 47, 8526–8537 (2018).
Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8, 1058 (2017).
[Crossref]
[PubMed]
X. Wang, R. R. Valiev, T. Y. Ohulchanskyy, H. Ågren, C. Yang, and G. Chen, “Dye-sensitized lanthanide-doped upconversion nanoparticles,” Chem. Soc. Rev. 46, 4150–4167 (2017).
[Crossref]
[PubMed]
V. S. Gerasimov, A. E. Ershov, S. V. Karpov, A. P. Gavrilyuk, V. I. Zakomirnyi, I. L. Rasskazov, H. Ågren, and S. P. Polyutov, “Thermal effects in systems of colloidal plasmonic nanoparticles in high-intensity pulsed laser fields [Invited],” Opt. Mater. Express 7, 555 (2017).
[Crossref]
W. Park, D. Lu, and S. Ahn, “Plasmon enhancement of luminescence upconversion,” Chem. Soc. Rev. 44, 2940–2962 (2015).
[Crossref]
[PubMed]
D. Lu, S. K. Cho, S. Ahn, L. Brun, C. J. Summers, and W. Park, “Plasmon Enhancement Mechanism for the Upconversion Processes in NaYF 4 :Yb 3+, Er 3+ Nanoparticles: Maxwell versus Förster,” ACS Nano 8, 7780–7792 (2014).
[Crossref]
[PubMed]
W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref]
[PubMed]
P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref]
[PubMed]
P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref]
[PubMed]
D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, and P. J. Schuck, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12, 402–407 (2018).
[Crossref]
P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref]
[PubMed]
Y.-L. Wang, N. Mohammadi Estakhri, A. Johnson, H.-Y. Li, L.-X. Xu, Z. Zhang, A. Alù, Q.-Q. Wang, and C.-K. K. Shih, “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Nanocrystals,” Sci. Reports 5, 10196 (2015).
[Crossref]
F. Auzel, “Upconversion and Anti-Stokes Processes with f and d Ions in Solids,” Chem. Rev. 104, 139–174 (2004).
[Crossref]
[PubMed]
A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the Efficiency of Plasmonic Materials for Near-Field Enhancement and Photothermal Conversion,” The J. Phys. Chem. C 119, 25518–25528 (2015).
[Crossref]
D. Zhou, D. Liu, W. Xu, X. Chen, Z. Yin, X. Bai, B. Dong, L. Xu, and H. Song, “Synergistic Upconversion Enhancement Induced by Multiple Physical Effects and an Angle-Dependent Anticounterfeit Application,” Chem. Mater. 29, 6799–6809 (2017).
[Crossref]
W. Xu, S. Xu, Y. Zhu, T. Liu, X. Bai, B. Dong, L. Xu, and H. Song, “Ultra-broad plasma resonance enhanced multicolor emissions in an assembled Ag/NaYF4:Yb, Er nano-film,” Nanoscale 4, 6971 (2012).
[Crossref]
[PubMed]
L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. 100, 13549–13554 (2003).
[Crossref]
[PubMed]
D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, and P. J. Schuck, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12, 402–407 (2018).
[Crossref]
N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg, and O. Hess, “Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities,” ACS Photonics 5, 186–191 (2018).
[Crossref]
W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref]
[PubMed]
G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4, 1853–1857 (2004).
[Crossref]
N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg, and O. Hess, “Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities,” ACS Photonics 5, 186–191 (2018).
[Crossref]
P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1, 438 (2009).
[Crossref]
B. X. K. Chng, T. van Dijk, R. Bhargava, and P. S. Carney, “Enhancement and extinction effects in surface-enhanced stimulated Raman spectroscopy,” Phys. Chem. Chem. Phys. 17, 21348–21355 (2015).
[Crossref]
[PubMed]
S. T. Sivapalan, B. M. DeVetter, T. K. Yang, T. van Dijk, M. V. Schulmerich, P. S. Carney, R. Bhargava, and C. J. Murphy, “Off-Resonance Surface-Enhanced Raman Spectroscopy from Gold Nanorod Suspensions as a Function of Aspect Ratio: Not What We Thought,” ACS Nano 7, 2099–2105 (2013).
[Crossref]
[PubMed]
T. van Dijk, S. T. Sivapalan, B. M. DeVetter, T. K. Yang, M. V. Schulmerich, C. J. Murphy, R. Bhargava, and P. S. Carney, “Competition Between Extinction and Enhancement in Surface-Enhanced Raman Spectroscopy,” The J. Phys. Chem. Lett. 4, 1193–1196 (2013).
[Crossref]
A. K. Kodali, X. Llora, and R. Bhargava, “Optimally designed nanolayered metal-dielectric particles as probes for massively multiplexed and ultrasensitive molecular assays,” Proc. Natl. Acad. Sci. 107, 13620–13625 (2010).
[Crossref]
[PubMed]
X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10, 1060–1066 (2016).
[Crossref]
[PubMed]
S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions: Errata,” Opt. Express 21, 10606 (2013).
[Crossref]
[PubMed]
S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions,” Opt. Express 20, 271 (2012).
[Crossref]
[PubMed]
C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH, Weinheim, Germany, 1998).
[Crossref]
G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]
[PubMed]
G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478 (2012).
[Crossref]
W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref]
[PubMed]
D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, and P. J. Schuck, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12, 402–407 (2018).
[Crossref]
N. S. Abadeer, M. R. Brennan, W. L. Wilson, and C. J. Murphy, “Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods,” ACS Nano 8, 8392–8406 (2014).
[Crossref]
[PubMed]
G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4, 1853–1857 (2004).
[Crossref]
D. Lu, S. K. Cho, S. Ahn, L. Brun, C. J. Summers, and W. Park, “Plasmon Enhancement Mechanism for the Upconversion Processes in NaYF 4 :Yb 3+, Er 3+ Nanoparticles: Maxwell versus Förster,” ACS Nano 8, 7780–7792 (2014).
[Crossref]
[PubMed]
H. Xing, W. Bu, S. Zhang, X. Zheng, M. Li, F. Chen, Q. He, L. Zhou, W. Peng, Y. Hua, and J. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33, 1079–1089 (2012).
[Crossref]
F. Meng, Y. Luo, Y. Zhou, J. Zhang, Y. Zheng, G. Cao, and X. Tao, “Integrated plasmonic and upconversion starlike Y2O3:Er/Au@TiO2 composite for enhanced photon harvesting in dye-sensitized solar cells,” J. Power Sources 316, 207–214 (2016).
[Crossref]
B. X. K. Chng, T. van Dijk, R. Bhargava, and P. S. Carney, “Enhancement and extinction effects in surface-enhanced stimulated Raman spectroscopy,” Phys. Chem. Chem. Phys. 17, 21348–21355 (2015).
[Crossref]
[PubMed]
T. van Dijk, S. T. Sivapalan, B. M. DeVetter, T. K. Yang, M. V. Schulmerich, C. J. Murphy, R. Bhargava, and P. S. Carney, “Competition Between Extinction and Enhancement in Surface-Enhanced Raman Spectroscopy,” The J. Phys. Chem. Lett. 4, 1193–1196 (2013).
[Crossref]
S. T. Sivapalan, B. M. DeVetter, T. K. Yang, T. van Dijk, M. V. Schulmerich, P. S. Carney, R. Bhargava, and C. J. Murphy, “Off-Resonance Surface-Enhanced Raman Spectroscopy from Gold Nanorod Suspensions as a Function of Aspect Ratio: Not What We Thought,” ACS Nano 7, 2099–2105 (2013).
[Crossref]
[PubMed]
P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref]
[PubMed]
D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, and P. J. Schuck, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12, 402–407 (2018).
[Crossref]
X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10, 1060–1066 (2016).
[Crossref]
[PubMed]
C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF 4 :Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]
C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF 4 :Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]
C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF 4 :Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]
H. Xing, W. Bu, S. Zhang, X. Zheng, M. Li, F. Chen, Q. He, L. Zhou, W. Peng, Y. Hua, and J. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33, 1079–1089 (2012).
[Crossref]
D. Li, H. Ågren, and G. Chen, “Near infrared harvesting dye-sensitized solar cells enabled by rare-earth upconversion materials,” Dalton Transactions 47, 8526–8537 (2018).
X. Wang, R. R. Valiev, T. Y. Ohulchanskyy, H. Ågren, C. Yang, and G. Chen, “Dye-sensitized lanthanide-doped upconversion nanoparticles,” Chem. Soc. Rev. 46, 4150–4167 (2017).
[Crossref]
[PubMed]
G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics,” Chem. Rev. 114, 5161–5214 (2014).
[Crossref]
[PubMed]
P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref]
[PubMed]
P. Kannan, F. A. Rahim, X. Teng, R. Chen, H. Sun, L. Huang, and D.-H. Kim, “Enhanced emission of NaYF4:Yb, Er/Tm nanoparticles by selective growth of Au and Ag nanoshells,” RSC Adv. 3, 7718 (2013).
[Crossref]
X. Chen, D. Zhou, W. Xu, J. Zhu, G. Pan, Z. Yin, H. Wang, Y. Zhu, C. Shaobo, and H. Song, “Fabrication of Au-Ag nanocage@NaYF4@NaYF4:Yb, Er Core-Shell Hybrid and its Tunable Upconversion Enhancement,” Sci. Reports 7, 41079 (2017).
[Crossref]
D. Zhou, D. Li, X. Zhou, W. Xu, X. Chen, D. Liu, Y. Zhu, and H. Song, “Semiconductor Plasmon Induced Up-Conversion Enhancement in mCu 2- x S@SiO 2 @Y 2 O 3 :Yb 3+ /Er 3+ Core-Shell Nanocomposites,” ACS Appl. Mater. & Interfaces 9, 35226–35233 (2017).
[Crossref]
D. Zhou, D. Liu, J. Jin, X. Chen, W. Xu, Z. Yin, G. Pan, D. Li, and H. Song, “Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells,” J. Mater. Chem. A 5, 16559–16567 (2017).
[Crossref]
D. Zhou, D. Liu, W. Xu, X. Chen, Z. Yin, X. Bai, B. Dong, L. Xu, and H. Song, “Synergistic Upconversion Enhancement Induced by Multiple Physical Effects and an Angle-Dependent Anticounterfeit Application,” Chem. Mater. 29, 6799–6809 (2017).
[Crossref]
W. Xu, X. Chen, and H. Song, “Upconversion manipulation by local electromagnetic field,” Nano Today 17, 54–78 (2017).
[Crossref]
Z. Yin, D. Zhou, W. Xu, S. Cui, X. Chen, H. Wang, S. Xu, and H. Song, “Plasmon-Enhanced Upconversion Luminescence on Vertically Aligned Gold Nanorod Monolayer Supercrystals,” ACS Appl. Mater. & Interfaces 8, 11667–11674 (2016).
[Crossref]
D. Zhou, D. Liu, W. Xu, Z. Yin, X. Chen, P. Zhou, S. Cui, Z. Chen, and H. Song, “Observation of Considerable Upconversion Enhancement Induced by Cu 2- x S Plasmon Nanoparticles,” ACS Nano 10, 5169–5179 (2016).
[Crossref]
[PubMed]
C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF 4 :Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]
G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics,” Chem. Rev. 114, 5161–5214 (2014).
[Crossref]
[PubMed]
D. Zhou, D. Liu, W. Xu, Z. Yin, X. Chen, P. Zhou, S. Cui, Z. Chen, and H. Song, “Observation of Considerable Upconversion Enhancement Induced by Cu 2- x S Plasmon Nanoparticles,” ACS Nano 10, 5169–5179 (2016).
[Crossref]
[PubMed]
M. Saboktakin, X. Ye, S. J. Oh, S.-H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-Enhanced Upconversion Luminescence Tunable through Metal Nanoparticle-Nanophosphor Separation,” ACS Nano 6, 8758–8766 (2012).
[Crossref]
[PubMed]
N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg, and O. Hess, “Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities,” ACS Photonics 5, 186–191 (2018).
[Crossref]
B. X. K. Chng, T. van Dijk, R. Bhargava, and P. S. Carney, “Enhancement and extinction effects in surface-enhanced stimulated Raman spectroscopy,” Phys. Chem. Chem. Phys. 17, 21348–21355 (2015).
[Crossref]
[PubMed]
D. Lu, S. K. Cho, S. Ahn, L. Brun, C. J. Summers, and W. Park, “Plasmon Enhancement Mechanism for the Upconversion Processes in NaYF 4 :Yb 3+, Er 3+ Nanoparticles: Maxwell versus Förster,” ACS Nano 8, 7780–7792 (2014).
[Crossref]
[PubMed]
P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]
Y. H. Jang, Y. J. Jang, S. Kim, L. N. Quan, K. Chung, and D. H. Kim, “Plasmonic Solar Cells: From Rational Design to Mechanism Overview,” Chem. Rev. 116, 14982–15034 (2016).
[Crossref]
[PubMed]
J. Zhou, S. Wen, J. Liao, C. Clarke, S. A. Tawfik, W. Ren, C. Mi, F. Wang, and D. Jin, “Activation of the surface dark-layer to enhance upconversion in a thermal field,” Nat. Photonics 12, 154–158 (2018).
[Crossref]
D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, and P. J. Schuck, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12, 402–407 (2018).
[Crossref]
W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref]
[PubMed]
D. Zhou, D. Liu, W. Xu, Z. Yin, X. Chen, P. Zhou, S. Cui, Z. Chen, and H. Song, “Observation of Considerable Upconversion Enhancement Induced by Cu 2- x S Plasmon Nanoparticles,” ACS Nano 10, 5169–5179 (2016).
[Crossref]
[PubMed]
Z. Yin, D. Zhou, W. Xu, S. Cui, X. Chen, H. Wang, S. Xu, and H. Song, “Plasmon-Enhanced Upconversion Luminescence on Vertically Aligned Gold Nanorod Monolayer Supercrystals,” ACS Appl. Mater. & Interfaces 8, 11667–11674 (2016).
[Crossref]
J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref]
[PubMed]
N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg, and O. Hess, “Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities,” ACS Photonics 5, 186–191 (2018).
[Crossref]
P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1, 438 (2009).
[Crossref]
T. van Dijk, S. T. Sivapalan, B. M. DeVetter, T. K. Yang, M. V. Schulmerich, C. J. Murphy, R. Bhargava, and P. S. Carney, “Competition Between Extinction and Enhancement in Surface-Enhanced Raman Spectroscopy,” The J. Phys. Chem. Lett. 4, 1193–1196 (2013).
[Crossref]
S. T. Sivapalan, B. M. DeVetter, T. K. Yang, T. van Dijk, M. V. Schulmerich, P. S. Carney, R. Bhargava, and C. J. Murphy, “Off-Resonance Surface-Enhanced Raman Spectroscopy from Gold Nanorod Suspensions as a Function of Aspect Ratio: Not What We Thought,” ACS Nano 7, 2099–2105 (2013).
[Crossref]
[PubMed]
N. Sakamoto, T. Onodera, T. Dezawa, Y. Shibata, and H. Oikawa, “Highly Enhanced Emission of Visible Light from Core-Dual-Shell-Type Hybridized Nanoparticles,” Part. & Part. Syst. Charact. 34, 1700258 (2017).
[Crossref]
Y. Ding, X. Zhang, H. Gao, S. Xu, C. Wei, and Y. Zhao, “Plasmonic enhanced upconversion luminescence of β-NaYF4:Yb3+/Er3+ with Ag@SiO2 core-shell nanoparticles,” J. Lumin. 147, 72–76 (2014).
[Crossref]
D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” The J. Phys. Chem. Lett. 5, 4020–4031 (2014).
[Crossref]
D. Zhou, D. Liu, W. Xu, X. Chen, Z. Yin, X. Bai, B. Dong, L. Xu, and H. Song, “Synergistic Upconversion Enhancement Induced by Multiple Physical Effects and an Angle-Dependent Anticounterfeit Application,” Chem. Mater. 29, 6799–6809 (2017).
[Crossref]
W. Xu, S. Xu, Y. Zhu, T. Liu, X. Bai, B. Dong, L. Xu, and H. Song, “Ultra-broad plasma resonance enhanced multicolor emissions in an assembled Ag/NaYF4:Yb, Er nano-film,” Nanoscale 4, 6971 (2012).
[Crossref]
[PubMed]
Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4:Yb, Er@SiO2@Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]
X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10, 1060–1066 (2016).
[Crossref]
[PubMed]
H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, “Plasmonic Modulation of the Upconversion Fluorescence in NaYF4:Yb/Tm Hexaplate Nanocrystals Using Gold Nanoparticles or Nanoshells,” Angewandte Chemie Int. Ed. 49, 2865–2868 (2010).
[Crossref]
A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using Polyelectrolyte Multilayers as Tunable Spacers,” Sci. Reports 5, 7779 (2015).
[Crossref]
S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions: Errata,” Opt. Express 21, 10606 (2013).
[Crossref]
[PubMed]
S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions,” Opt. Express 20, 271 (2012).
[Crossref]
[PubMed]
M. Saboktakin, X. Ye, S. J. Oh, S.-H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-Enhanced Upconversion Luminescence Tunable through Metal Nanoparticle-Nanophosphor Separation,” ACS Nano 6, 8758–8766 (2012).
[Crossref]
[PubMed]
V. S. Gerasimov, A. E. Ershov, S. V. Karpov, A. P. Gavrilyuk, V. I. Zakomirnyi, I. L. Rasskazov, H. Ågren, and S. P. Polyutov, “Thermal effects in systems of colloidal plasmonic nanoparticles in high-intensity pulsed laser fields [Invited],” Opt. Mater. Express 7, 555 (2017).
[Crossref]
W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref]
[PubMed]
R. Esteban, M. Laroche, and J.-J. Greffet, “Influence of metallic nanoparticles on upconversion processes,” J. Appl. Phys. 105, 033107 (2009).
[Crossref]
M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8, 834–840 (2014).
[Crossref]
M. Saboktakin, X. Ye, S. J. Oh, S.-H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-Enhanced Upconversion Luminescence Tunable through Metal Nanoparticle-Nanophosphor Separation,” ACS Nano 6, 8758–8766 (2012).
[Crossref]
[PubMed]
R. Faggiani, J. Yang, and P. Lalanne, “Quenching, Plasmonic, and Radiative Decays in Nanogap Emitting Devices,” ACS Photonics 2, 1739–1744 (2015).
[Crossref]
X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10, 1060–1066 (2016).
[Crossref]
[PubMed]
G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4, 1853–1857 (2004).
[Crossref]
A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using Polyelectrolyte Multilayers as Tunable Spacers,” Sci. Reports 5, 7779 (2015).
[Crossref]
G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4, 1853–1857 (2004).
[Crossref]
S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions: Errata,” Opt. Express 21, 10606 (2013).
[Crossref]
[PubMed]
S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions,” Opt. Express 20, 271 (2012).
[Crossref]
[PubMed]
R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-Photonic Hybrid Modes Excited on a Titanium Nitride Nanoparticle Array in the Visible Region,” ACS Photonics 4, 815–822 (2017).
[Crossref]
Y. Ding, X. Zhang, H. Gao, S. Xu, C. Wei, and Y. Zhao, “Plasmonic enhanced upconversion luminescence of β-NaYF4:Yb3+/Er3+ with Ag@SiO2 core-shell nanoparticles,” J. Lumin. 147, 72–76 (2014).
[Crossref]
Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4:Yb, Er@SiO2@Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]
L. Meng, R. Yu, M. Qiu, and F. J. García de Abajo, “Plasmonic Nano-Oven by Concatenation of Multishell Photothermal Enhancement,” ACS Nano 11, 7915–7924 (2017).
[Crossref]
[PubMed]
D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” The J. Phys. Chem. Lett. 5, 4020–4031 (2014).
[Crossref]
D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, and P. J. Schuck, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12, 402–407 (2018).
[Crossref]
V. S. Gerasimov, A. E. Ershov, S. V. Karpov, A. P. Gavrilyuk, V. I. Zakomirnyi, I. L. Rasskazov, H. Ågren, and S. P. Polyutov, “Thermal effects in systems of colloidal plasmonic nanoparticles in high-intensity pulsed laser fields [Invited],” Opt. Mater. Express 7, 555 (2017).
[Crossref]
Y. S. Kim, P. Leung, and T. F. George, “Classical decay rates for molecules in the presence of a spherical surface: A complete treatment,” Surf. Sci. 195, 1–14 (1988).
[Crossref]
V. S. Gerasimov, A. E. Ershov, S. V. Karpov, A. P. Gavrilyuk, V. I. Zakomirnyi, I. L. Rasskazov, H. Ågren, and S. P. Polyutov, “Thermal effects in systems of colloidal plasmonic nanoparticles in high-intensity pulsed laser fields [Invited],” Opt. Mater. Express 7, 555 (2017).
[Crossref]
P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q.-H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb, Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4, 5132 (2012).
[Crossref]
[PubMed]
S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions: Errata,” Opt. Express 21, 10606 (2013).
[Crossref]
[PubMed]
S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions,” Opt. Express 20, 271 (2012).
[Crossref]
[PubMed]
J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref]
[PubMed]
P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref]
[PubMed]
C. G. Granqvist and O. Hunderi, “Optical absorption of ultrafine metal spheres with dielectric cores,” Zeitschrift fur Physik B Condens. Matter Quanta 30, 47–51 (1978).
[Crossref]
R. Esteban, M. Laroche, and J.-J. Greffet, “Influence of metallic nanoparticles on upconversion processes,” J. Appl. Phys. 105, 033107 (2009).
[Crossref]
N. L. Gruenke, M. O. McAnally, G. C. Schatz, and R. P. Van Duyne, “Balancing the Effects of Extinction and Enhancement for Optimal Signal in Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy,” The J. Phys. Chem. C 120, 29449–29454 (2016).
[Crossref]
P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q.-H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb, Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4, 5132 (2012).
[Crossref]
[PubMed]
J. Zhao, S. Ji, and H. Guo, “Triplet-triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields,” RSC Adv. 1, 937 (2011).
[Crossref]
M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8, 834–840 (2014).
[Crossref]
S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]
L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. 100, 13549–13554 (2003).
[Crossref]
[PubMed]
S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions: Errata,” Opt. Express 21, 10606 (2013).
[Crossref]
[PubMed]
S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions,” Opt. Express 20, 271 (2012).
[Crossref]
[PubMed]
D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, and P. J. Schuck, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12, 402–407 (2018).
[Crossref]
X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10, 1060–1066 (2016).
[Crossref]
[PubMed]
Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4:Yb, Er@SiO2@Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]
L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. 100, 13549–13554 (2003).
[Crossref]
[PubMed]
F. Wang, S. Wen, H. He, B. Wang, Z. Zhou, O. Shimoni, and D. Jin, “Microscopic inspection and tracking of single upconversion nanoparticles in living cells,” Light. Sci. & Appl. 7, 18007 (2018).
[Crossref]
H. Xing, W. Bu, S. Zhang, X. Zheng, M. Li, F. Chen, Q. He, L. Zhou, W. Peng, Y. Hua, and J. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33, 1079–1089 (2012).
[Crossref]
Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8, 1058 (2017).
[Crossref]
[PubMed]
Q. Zhan, X. Zhang, Y. Zhao, J. Liu, and S. He, “Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod,” Laser & Photonics Rev. 9, 479–487 (2015).
[Crossref]
S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions: Errata,” Opt. Express 21, 10606 (2013).
[Crossref]
[PubMed]
S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions,” Opt. Express 20, 271 (2012).
[Crossref]
[PubMed]
N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg, and O. Hess, “Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities,” ACS Photonics 5, 186–191 (2018).
[Crossref]
P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref]
[PubMed]
L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. 100, 13549–13554 (2003).
[Crossref]
[PubMed]
M. Saboktakin, X. Ye, S. J. Oh, S.-H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-Enhanced Upconversion Luminescence Tunable through Metal Nanoparticle-Nanophosphor Separation,” ACS Nano 6, 8758–8766 (2012).
[Crossref]
[PubMed]
C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF 4 :Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]
H. Xing, W. Bu, S. Zhang, X. Zheng, M. Li, F. Chen, Q. He, L. Zhou, W. Peng, Y. Hua, and J. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33, 1079–1089 (2012).
[Crossref]
Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8, 1058 (2017).
[Crossref]
[PubMed]
P. Kannan, F. A. Rahim, X. Teng, R. Chen, H. Sun, L. Huang, and D.-H. Kim, “Enhanced emission of NaYF4:Yb, Er/Tm nanoparticles by selective growth of Au and Ag nanoshells,” RSC Adv. 3, 7718 (2013).
[Crossref]
H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, “Plasmonic Modulation of the Upconversion Fluorescence in NaYF4:Yb/Tm Hexaplate Nanocrystals Using Gold Nanoparticles or Nanoshells,” Angewandte Chemie Int. Ed. 49, 2865–2868 (2010).
[Crossref]
P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref]
[PubMed]
P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref]
[PubMed]
C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH, Weinheim, Germany, 1998).
[Crossref]
W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6, 560–564 (2012).
[Crossref]
C. G. Granqvist and O. Hunderi, “Optical absorption of ultrafine metal spheres with dielectric cores,” Zeitschrift fur Physik B Condens. Matter Quanta 30, 47–51 (1978).
[Crossref]
R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-Photonic Hybrid Modes Excited on a Titanium Nitride Nanoparticle Array in the Visible Region,” ACS Photonics 4, 815–822 (2017).
[Crossref]
H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, “Plasmonic Modulation of the Upconversion Fluorescence in NaYF4:Yb/Tm Hexaplate Nanocrystals Using Gold Nanoparticles or Nanoshells,” Angewandte Chemie Int. Ed. 49, 2865–2868 (2010).
[Crossref]
Y. H. Jang, Y. J. Jang, S. Kim, L. N. Quan, K. Chung, and D. H. Kim, “Plasmonic Solar Cells: From Rational Design to Mechanism Overview,” Chem. Rev. 116, 14982–15034 (2016).
[Crossref]
[PubMed]
Y. H. Jang, Y. J. Jang, S. Kim, L. N. Quan, K. Chung, and D. H. Kim, “Plasmonic Solar Cells: From Rational Design to Mechanism Overview,” Chem. Rev. 116, 14982–15034 (2016).
[Crossref]
[PubMed]
J. Zhao, S. Ji, and H. Guo, “Triplet-triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields,” RSC Adv. 1, 937 (2011).
[Crossref]
F. Wang, S. Wen, H. He, B. Wang, Z. Zhou, O. Shimoni, and D. Jin, “Microscopic inspection and tracking of single upconversion nanoparticles in living cells,” Light. Sci. & Appl. 7, 18007 (2018).
[Crossref]
J. Zhou, S. Wen, J. Liao, C. Clarke, S. A. Tawfik, W. Ren, C. Mi, F. Wang, and D. Jin, “Activation of the surface dark-layer to enhance upconversion in a thermal field,” Nat. Photonics 12, 154–158 (2018).
[Crossref]
Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]
[PubMed]
B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10, 924–936 (2015).
[Crossref]
[PubMed]
J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref]
[PubMed]
D. Zhou, D. Liu, J. Jin, X. Chen, W. Xu, Z. Yin, G. Pan, D. Li, and H. Song, “Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells,” J. Mater. Chem. A 5, 16559–16567 (2017).
[Crossref]
J. Wang, T. Ming, Z. Jin, J. Wang, L.-D. Sun, and C.-H. Yan, “Photon energy upconversion through thermal radiation with the power efficiency reaching 16%,” Nat. Commun. 5, 5669 (2014).
[Crossref]
Y.-L. Wang, N. Mohammadi Estakhri, A. Johnson, H.-Y. Li, L.-X. Xu, Z. Zhang, A. Alù, Q.-Q. Wang, and C.-K. K. Shih, “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Nanocrystals,” Sci. Reports 5, 10196 (2015).
[Crossref]
P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]
M. Saboktakin, X. Ye, S. J. Oh, S.-H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-Enhanced Upconversion Luminescence Tunable through Metal Nanoparticle-Nanophosphor Separation,” ACS Nano 6, 8758–8766 (2012).
[Crossref]
[PubMed]
R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-Photonic Hybrid Modes Excited on a Titanium Nitride Nanoparticle Array in the Visible Region,” ACS Photonics 4, 815–822 (2017).
[Crossref]
P. Kannan, F. A. Rahim, X. Teng, R. Chen, H. Sun, L. Huang, and D.-H. Kim, “Enhanced emission of NaYF4:Yb, Er/Tm nanoparticles by selective growth of Au and Ag nanoshells,” RSC Adv. 3, 7718 (2013).
[Crossref]
V. S. Gerasimov, A. E. Ershov, S. V. Karpov, A. P. Gavrilyuk, V. I. Zakomirnyi, I. L. Rasskazov, H. Ågren, and S. P. Polyutov, “Thermal effects in systems of colloidal plasmonic nanoparticles in high-intensity pulsed laser fields [Invited],” Opt. Mater. Express 7, 555 (2017).
[Crossref]
V. I. Zakomirnyi, I. L. Rasskazov, S. V. Karpov, and S. P. Polyutov, “New ideally absorbing Au plasmonic nanostructures for biomedical applications,” J. Quant. Spectrosc. Radiat. Transf. 187, 54–61 (2017).
[Crossref]
N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg, and O. Hess, “Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities,” ACS Photonics 5, 186–191 (2018).
[Crossref]
B. N. Khlebtsov and N. G. Khlebtsov, “Biosensing potential of silica/gold nanoshells: Sensitivity of plasmon resonance to the local dielectric environment,” J. Quant. Spectrosc. Radiat. Transf. 106, 154–169 (2007).
[Crossref]
B. N. Khlebtsov and N. G. Khlebtsov, “Biosensing potential of silica/gold nanoshells: Sensitivity of plasmon resonance to the local dielectric environment,” J. Quant. Spectrosc. Radiat. Transf. 106, 154–169 (2007).
[Crossref]
Y. H. Jang, Y. J. Jang, S. Kim, L. N. Quan, K. Chung, and D. H. Kim, “Plasmonic Solar Cells: From Rational Design to Mechanism Overview,” Chem. Rev. 116, 14982–15034 (2016).
[Crossref]
[PubMed]
P. Kannan, F. A. Rahim, X. Teng, R. Chen, H. Sun, L. Huang, and D.-H. Kim, “Enhanced emission of NaYF4:Yb, Er/Tm nanoparticles by selective growth of Au and Ag nanoshells,” RSC Adv. 3, 7718 (2013).
[Crossref]
Y. H. Jang, Y. J. Jang, S. Kim, L. N. Quan, K. Chung, and D. H. Kim, “Plasmonic Solar Cells: From Rational Design to Mechanism Overview,” Chem. Rev. 116, 14982–15034 (2016).
[Crossref]
[PubMed]
Y. S. Kim, P. Leung, and T. F. George, “Classical decay rates for molecules in the presence of a spherical surface: A complete treatment,” Surf. Sci. 195, 1–14 (1988).
[Crossref]
M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8, 834–840 (2014).
[Crossref]
G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4, 1853–1857 (2004).
[Crossref]
M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8, 834–840 (2014).
[Crossref]
A. K. Kodali, X. Llora, and R. Bhargava, “Optimally designed nanolayered metal-dielectric particles as probes for massively multiplexed and ultrasensitive molecular assays,” Proc. Natl. Acad. Sci. 107, 13620–13625 (2010).
[Crossref]
[PubMed]
N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg, and O. Hess, “Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities,” ACS Photonics 5, 186–191 (2018).
[Crossref]
S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions: Errata,” Opt. Express 21, 10606 (2013).
[Crossref]
[PubMed]
S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions,” Opt. Express 20, 271 (2012).
[Crossref]
[PubMed]
U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, vol. 25 of Springer Series in Materials Science (Springer Berlin Heidelberg, Berlin, Heidelberg, 1995).
[Crossref]
G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4, 1853–1857 (2004).
[Crossref]
J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171–194 (2005).
[Crossref]
[PubMed]
S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]
R. Faggiani, J. Yang, and P. Lalanne, “Quenching, Plasmonic, and Radiative Decays in Nanogap Emitting Devices,” ACS Photonics 2, 1739–1744 (2015).
[Crossref]
A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the Efficiency of Plasmonic Materials for Near-Field Enhancement and Photothermal Conversion,” The J. Phys. Chem. C 119, 25518–25528 (2015).
[Crossref]
R. Esteban, M. Laroche, and J.-J. Greffet, “Influence of metallic nanoparticles on upconversion processes,” J. Appl. Phys. 105, 033107 (2009).
[Crossref]
X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10, 1060–1066 (2016).
[Crossref]
[PubMed]
C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF 4 :Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]
P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q.-H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb, Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4, 5132 (2012).
[Crossref]
[PubMed]
Y. S. Kim, P. Leung, and T. F. George, “Classical decay rates for molecules in the presence of a spherical surface: A complete treatment,” Surf. Sci. 195, 1–14 (1988).
[Crossref]
W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref]
[PubMed]
D. Li, H. Ågren, and G. Chen, “Near infrared harvesting dye-sensitized solar cells enabled by rare-earth upconversion materials,” Dalton Transactions 47, 8526–8537 (2018).
D. Zhou, D. Liu, J. Jin, X. Chen, W. Xu, Z. Yin, G. Pan, D. Li, and H. Song, “Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells,” J. Mater. Chem. A 5, 16559–16567 (2017).
[Crossref]
D. Zhou, D. Li, X. Zhou, W. Xu, X. Chen, D. Liu, Y. Zhu, and H. Song, “Semiconductor Plasmon Induced Up-Conversion Enhancement in mCu 2- x S@SiO 2 @Y 2 O 3 :Yb 3+ /Er 3+ Core-Shell Nanocomposites,” ACS Appl. Mater. & Interfaces 9, 35226–35233 (2017).
[Crossref]
X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10, 1060–1066 (2016).
[Crossref]
[PubMed]
Y.-L. Wang, N. Mohammadi Estakhri, A. Johnson, H.-Y. Li, L.-X. Xu, Z. Zhang, A. Alù, Q.-Q. Wang, and C.-K. K. Shih, “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Nanocrystals,” Sci. Reports 5, 10196 (2015).
[Crossref]
J. Li, Z. Yang, Z. Chai, J. Qiu, and Z. Song, “Preparation and upconversion emission enhancement of SiO_2 coated YbPO_4: Er^3+ inverse opals with Ag nanoparticles,” Opt. Mater. Express 7, 3503 (2017).
[Crossref]
B. Shao, Z. Yang, J. Li, J. Yang, Y. Wang, J. Qiu, and Z. Song, “Upconversion emission enhancement by porous silver films with ultra-broad plasmon absorption,” Opt. Mater. Express 7, 1188 (2017).
[Crossref]
H. Xing, W. Bu, S. Zhang, X. Zheng, M. Li, F. Chen, Q. He, L. Zhou, W. Peng, Y. Hua, and J. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33, 1079–1089 (2012).
[Crossref]
L. Zhou, R. Wang, C. Yao, X. Li, C. Wang, X. Zhang, C. Xu, A. Zeng, D. Zhao, and F. Zhang, “Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers,” Nat. Commun. 6, 6938 (2015).
[Crossref]
[PubMed]
X. Li, F. Zhang, and D. Zhao, “Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges,” Nano Today 8, 643–676 (2013).
[Crossref]
H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, “Plasmonic Modulation of the Upconversion Fluorescence in NaYF4:Yb/Tm Hexaplate Nanocrystals Using Gold Nanoparticles or Nanoshells,” Angewandte Chemie Int. Ed. 49, 2865–2868 (2010).
[Crossref]
X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10, 1060–1066 (2016).
[Crossref]
[PubMed]
J. Zhou, S. Wen, J. Liao, C. Clarke, S. A. Tawfik, W. Ren, C. Mi, F. Wang, and D. Jin, “Activation of the surface dark-layer to enhance upconversion in a thermal field,” Nat. Photonics 12, 154–158 (2018).
[Crossref]
A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using Polyelectrolyte Multilayers as Tunable Spacers,” Sci. Reports 5, 7779 (2015).
[Crossref]
S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]
Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]
[PubMed]
D. Zhou, D. Li, X. Zhou, W. Xu, X. Chen, D. Liu, Y. Zhu, and H. Song, “Semiconductor Plasmon Induced Up-Conversion Enhancement in mCu 2- x S@SiO 2 @Y 2 O 3 :Yb 3+ /Er 3+ Core-Shell Nanocomposites,” ACS Appl. Mater. & Interfaces 9, 35226–35233 (2017).
[Crossref]
D. Zhou, D. Liu, W. Xu, X. Chen, Z. Yin, X. Bai, B. Dong, L. Xu, and H. Song, “Synergistic Upconversion Enhancement Induced by Multiple Physical Effects and an Angle-Dependent Anticounterfeit Application,” Chem. Mater. 29, 6799–6809 (2017).
[Crossref]
D. Zhou, D. Liu, J. Jin, X. Chen, W. Xu, Z. Yin, G. Pan, D. Li, and H. Song, “Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells,” J. Mater. Chem. A 5, 16559–16567 (2017).
[Crossref]
D. Zhou, D. Liu, W. Xu, Z. Yin, X. Chen, P. Zhou, S. Cui, Z. Chen, and H. Song, “Observation of Considerable Upconversion Enhancement Induced by Cu 2- x S Plasmon Nanoparticles,” ACS Nano 10, 5169–5179 (2016).
[Crossref]
[PubMed]
Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8, 1058 (2017).
[Crossref]
[PubMed]
Q. Zhan, X. Zhang, Y. Zhao, J. Liu, and S. He, “Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod,” Laser & Photonics Rev. 9, 479–487 (2015).
[Crossref]
M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8, 834–840 (2014).
[Crossref]
A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using Polyelectrolyte Multilayers as Tunable Spacers,” Sci. Reports 5, 7779 (2015).
[Crossref]
C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF 4 :Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]
W. Xu, S. Xu, Y. Zhu, T. Liu, X. Bai, B. Dong, L. Xu, and H. Song, “Ultra-broad plasma resonance enhanced multicolor emissions in an assembled Ag/NaYF4:Yb, Er nano-film,” Nanoscale 4, 6971 (2012).
[Crossref]
[PubMed]
X. Liu and D. Yuan Lei, “Simultaneous excitation and emission enhancements in upconversion luminescence using plasmonic double-resonant gold nanorods,” Sci. Reports 5, 15235 (2015).
[Crossref]
B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10, 924–936 (2015).
[Crossref]
[PubMed]
Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]
[PubMed]
J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref]
[PubMed]
A. K. Kodali, X. Llora, and R. Bhargava, “Optimally designed nanolayered metal-dielectric particles as probes for massively multiplexed and ultrasensitive molecular assays,” Proc. Natl. Acad. Sci. 107, 13620–13625 (2010).
[Crossref]
[PubMed]
X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10, 1060–1066 (2016).
[Crossref]
[PubMed]
W. Park, D. Lu, and S. Ahn, “Plasmon enhancement of luminescence upconversion,” Chem. Soc. Rev. 44, 2940–2962 (2015).
[Crossref]
[PubMed]
D. Lu, S. K. Cho, S. Ahn, L. Brun, C. J. Summers, and W. Park, “Plasmon Enhancement Mechanism for the Upconversion Processes in NaYF 4 :Yb 3+, Er 3+ Nanoparticles: Maxwell versus Förster,” ACS Nano 8, 7780–7792 (2014).
[Crossref]
[PubMed]
A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using Polyelectrolyte Multilayers as Tunable Spacers,” Sci. Reports 5, 7779 (2015).
[Crossref]
Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]
[PubMed]
J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref]
[PubMed]
F. Meng, Y. Luo, Y. Zhou, J. Zhang, Y. Zheng, G. Cao, and X. Tao, “Integrated plasmonic and upconversion starlike Y2O3:Er/Au@TiO2 composite for enhanced photon harvesting in dye-sensitized solar cells,” J. Power Sources 316, 207–214 (2016).
[Crossref]
Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]
[PubMed]
W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6, 560–564 (2012).
[Crossref]
N. L. Gruenke, M. O. McAnally, G. C. Schatz, and R. P. Van Duyne, “Balancing the Effects of Extinction and Enhancement for Optimal Signal in Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy,” The J. Phys. Chem. C 120, 29449–29454 (2016).
[Crossref]
F. Meng, Y. Luo, Y. Zhou, J. Zhang, Y. Zheng, G. Cao, and X. Tao, “Integrated plasmonic and upconversion starlike Y2O3:Er/Au@TiO2 composite for enhanced photon harvesting in dye-sensitized solar cells,” J. Power Sources 316, 207–214 (2016).
[Crossref]
L. Meng, R. Yu, M. Qiu, and F. J. García de Abajo, “Plasmonic Nano-Oven by Concatenation of Multishell Photothermal Enhancement,” ACS Nano 11, 7915–7924 (2017).
[Crossref]
[PubMed]
J. Zhou, S. Wen, J. Liao, C. Clarke, S. A. Tawfik, W. Ren, C. Mi, F. Wang, and D. Jin, “Activation of the surface dark-layer to enhance upconversion in a thermal field,” Nat. Photonics 12, 154–158 (2018).
[Crossref]
J. Wang, T. Ming, Z. Jin, J. Wang, L.-D. Sun, and C.-H. Yan, “Photon energy upconversion through thermal radiation with the power efficiency reaching 16%,” Nat. Commun. 5, 5669 (2014).
[Crossref]
Y.-L. Wang, N. Mohammadi Estakhri, A. Johnson, H.-Y. Li, L.-X. Xu, Z. Zhang, A. Alù, Q.-Q. Wang, and C.-K. K. Shih, “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Nanocrystals,” Sci. Reports 5, 10196 (2015).
[Crossref]
J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref]
[PubMed]
J. L. Montaño-Priede, O. Peña-Rodríguez, and U. Pal, “Near-Electric-Field Tuned Plasmonic Au@SiO 2 and Ag@SiO 2 Nanoparticles for Efficient Utilization in Luminescence Enhancement and Surface-Enhanced Spectroscopy,” The J. Phys. Chem. C 121, 23062–23071 (2017).
[Crossref]
A. Moroz, “A recursive transfer-matrix solution for a dipole radiating inside and outside a stratified sphere,” Annals Phys. 315, 352–418 (2005).
[Crossref]
Q.-C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-Enhanced Energy Transfer for Improved Upconversion of Infrared Radiation in Doped-Lanthanide Nanocrystals,” Nano Lett. 14, 101–106 (2014).
[Crossref]
R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-Photonic Hybrid Modes Excited on a Titanium Nitride Nanoparticle Array in the Visible Region,” ACS Photonics 4, 815–822 (2017).
[Crossref]
N. S. Abadeer, M. R. Brennan, W. L. Wilson, and C. J. Murphy, “Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods,” ACS Nano 8, 8392–8406 (2014).
[Crossref]
[PubMed]
S. T. Sivapalan, B. M. DeVetter, T. K. Yang, T. van Dijk, M. V. Schulmerich, P. S. Carney, R. Bhargava, and C. J. Murphy, “Off-Resonance Surface-Enhanced Raman Spectroscopy from Gold Nanorod Suspensions as a Function of Aspect Ratio: Not What We Thought,” ACS Nano 7, 2099–2105 (2013).
[Crossref]
[PubMed]
T. van Dijk, S. T. Sivapalan, B. M. DeVetter, T. K. Yang, M. V. Schulmerich, C. J. Murphy, R. Bhargava, and P. S. Carney, “Competition Between Extinction and Enhancement in Surface-Enhanced Raman Spectroscopy,” The J. Phys. Chem. Lett. 4, 1193–1196 (2013).
[Crossref]
M. Saboktakin, X. Ye, S. J. Oh, S.-H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-Enhanced Upconversion Luminescence Tunable through Metal Nanoparticle-Nanophosphor Separation,” ACS Nano 6, 8758–8766 (2012).
[Crossref]
[PubMed]
R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-Photonic Hybrid Modes Excited on a Titanium Nitride Nanoparticle Array in the Visible Region,” ACS Photonics 4, 815–822 (2017).
[Crossref]
Q.-C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-Enhanced Energy Transfer for Improved Upconversion of Infrared Radiation in Doped-Lanthanide Nanocrystals,” Nano Lett. 14, 101–106 (2014).
[Crossref]
G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]
[PubMed]
G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478 (2012).
[Crossref]
D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, and P. J. Schuck, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12, 402–407 (2018).
[Crossref]
P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref]
[PubMed]
G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4, 1853–1857 (2004).
[Crossref]
W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref]
[PubMed]
M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8, 834–840 (2014).
[Crossref]
P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1, 438 (2009).
[Crossref]
M. Saboktakin, X. Ye, S. J. Oh, S.-H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-Enhanced Upconversion Luminescence Tunable through Metal Nanoparticle-Nanophosphor Separation,” ACS Nano 6, 8758–8766 (2012).
[Crossref]
[PubMed]
X. Wang, R. R. Valiev, T. Y. Ohulchanskyy, H. Ågren, C. Yang, and G. Chen, “Dye-sensitized lanthanide-doped upconversion nanoparticles,” Chem. Soc. Rev. 46, 4150–4167 (2017).
[Crossref]
[PubMed]
N. Sakamoto, T. Onodera, T. Dezawa, Y. Shibata, and H. Oikawa, “Highly Enhanced Emission of Visible Light from Core-Dual-Shell-Type Hybridized Nanoparticles,” Part. & Part. Syst. Charact. 34, 1700258 (2017).
[Crossref]
N. Sakamoto, T. Onodera, T. Dezawa, Y. Shibata, and H. Oikawa, “Highly Enhanced Emission of Visible Light from Core-Dual-Shell-Type Hybridized Nanoparticles,” Part. & Part. Syst. Charact. 34, 1700258 (2017).
[Crossref]
J. L. Montaño-Priede, O. Peña-Rodríguez, and U. Pal, “Near-Electric-Field Tuned Plasmonic Au@SiO 2 and Ag@SiO 2 Nanoparticles for Efficient Utilization in Luminescence Enhancement and Surface-Enhanced Spectroscopy,” The J. Phys. Chem. C 121, 23062–23071 (2017).
[Crossref]
X. Chen, D. Zhou, W. Xu, J. Zhu, G. Pan, Z. Yin, H. Wang, Y. Zhu, C. Shaobo, and H. Song, “Fabrication of Au-Ag nanocage@NaYF4@NaYF4:Yb, Er Core-Shell Hybrid and its Tunable Upconversion Enhancement,” Sci. Reports 7, 41079 (2017).
[Crossref]
D. Zhou, D. Liu, J. Jin, X. Chen, W. Xu, Z. Yin, G. Pan, D. Li, and H. Song, “Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells,” J. Mater. Chem. A 5, 16559–16567 (2017).
[Crossref]
W. Park, D. Lu, and S. Ahn, “Plasmon enhancement of luminescence upconversion,” Chem. Soc. Rev. 44, 2940–2962 (2015).
[Crossref]
[PubMed]
D. Lu, S. K. Cho, S. Ahn, L. Brun, C. J. Summers, and W. Park, “Plasmon Enhancement Mechanism for the Upconversion Processes in NaYF 4 :Yb 3+, Er 3+ Nanoparticles: Maxwell versus Förster,” ACS Nano 8, 7780–7792 (2014).
[Crossref]
[PubMed]
J. L. Montaño-Priede, O. Peña-Rodríguez, and U. Pal, “Near-Electric-Field Tuned Plasmonic Au@SiO 2 and Ag@SiO 2 Nanoparticles for Efficient Utilization in Luminescence Enhancement and Surface-Enhanced Spectroscopy,” The J. Phys. Chem. C 121, 23062–23071 (2017).
[Crossref]
H. Xing, W. Bu, S. Zhang, X. Zheng, M. Li, F. Chen, Q. He, L. Zhou, W. Peng, Y. Hua, and J. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33, 1079–1089 (2012).
[Crossref]
Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8, 1058 (2017).
[Crossref]
[PubMed]
G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4, 1853–1857 (2004).
[Crossref]
Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]
[PubMed]
J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref]
[PubMed]
A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the Efficiency of Plasmonic Materials for Near-Field Enhancement and Photothermal Conversion,” The J. Phys. Chem. C 119, 25518–25528 (2015).
[Crossref]
V. I. Zakomirnyi, I. L. Rasskazov, S. V. Karpov, and S. P. Polyutov, “New ideally absorbing Au plasmonic nanostructures for biomedical applications,” J. Quant. Spectrosc. Radiat. Transf. 187, 54–61 (2017).
[Crossref]
V. S. Gerasimov, A. E. Ershov, S. V. Karpov, A. P. Gavrilyuk, V. I. Zakomirnyi, I. L. Rasskazov, H. Ågren, and S. P. Polyutov, “Thermal effects in systems of colloidal plasmonic nanoparticles in high-intensity pulsed laser fields [Invited],” Opt. Mater. Express 7, 555 (2017).
[Crossref]
G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics,” Chem. Rev. 114, 5161–5214 (2014).
[Crossref]
[PubMed]
L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. 100, 13549–13554 (2003).
[Crossref]
[PubMed]
W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6, 560–564 (2012).
[Crossref]
Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8, 1058 (2017).
[Crossref]
[PubMed]
P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref]
[PubMed]
G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics,” Chem. Rev. 114, 5161–5214 (2014).
[Crossref]
[PubMed]
B. Shao, Z. Yang, J. Li, J. Yang, Y. Wang, J. Qiu, and Z. Song, “Upconversion emission enhancement by porous silver films with ultra-broad plasmon absorption,” Opt. Mater. Express 7, 1188 (2017).
[Crossref]
J. Li, Z. Yang, Z. Chai, J. Qiu, and Z. Song, “Preparation and upconversion emission enhancement of SiO_2 coated YbPO_4: Er^3+ inverse opals with Ag nanoparticles,” Opt. Mater. Express 7, 3503 (2017).
[Crossref]
Y. Qin, Z. Dong, D. Zhou, Y. Yang, X. Xu, and J. Qiu, “Modification on populating paths of β-NaYF_4:Nd/Yb/Ho@SiO_2@Ag core/double-shell nanocomposites with plasmon enhanced upconversion emission,” Opt. Mater. Express 6, 1942 (2016).
[Crossref]
L. Meng, R. Yu, M. Qiu, and F. J. García de Abajo, “Plasmonic Nano-Oven by Concatenation of Multishell Photothermal Enhancement,” ACS Nano 11, 7915–7924 (2017).
[Crossref]
[PubMed]
H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, “Plasmonic Modulation of the Upconversion Fluorescence in NaYF4:Yb/Tm Hexaplate Nanocrystals Using Gold Nanoparticles or Nanoshells,” Angewandte Chemie Int. Ed. 49, 2865–2868 (2010).
[Crossref]
Y. H. Jang, Y. J. Jang, S. Kim, L. N. Quan, K. Chung, and D. H. Kim, “Plasmonic Solar Cells: From Rational Design to Mechanism Overview,” Chem. Rev. 116, 14982–15034 (2016).
[Crossref]
[PubMed]
P. Kannan, F. A. Rahim, X. Teng, R. Chen, H. Sun, L. Huang, and D.-H. Kim, “Enhanced emission of NaYF4:Yb, Er/Tm nanoparticles by selective growth of Au and Ag nanoshells,” RSC Adv. 3, 7718 (2013).
[Crossref]
G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4, 1853–1857 (2004).
[Crossref]
V. I. Zakomirnyi, I. L. Rasskazov, S. V. Karpov, and S. P. Polyutov, “New ideally absorbing Au plasmonic nanostructures for biomedical applications,” J. Quant. Spectrosc. Radiat. Transf. 187, 54–61 (2017).
[Crossref]
V. S. Gerasimov, A. E. Ershov, S. V. Karpov, A. P. Gavrilyuk, V. I. Zakomirnyi, I. L. Rasskazov, H. Ågren, and S. P. Polyutov, “Thermal effects in systems of colloidal plasmonic nanoparticles in high-intensity pulsed laser fields [Invited],” Opt. Mater. Express 7, 555 (2017).
[Crossref]
J. Zhou, S. Wen, J. Liao, C. Clarke, S. A. Tawfik, W. Ren, C. Mi, F. Wang, and D. Jin, “Activation of the surface dark-layer to enhance upconversion in a thermal field,” Nat. Photonics 12, 154–158 (2018).
[Crossref]
Q.-C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-Enhanced Energy Transfer for Improved Upconversion of Infrared Radiation in Doped-Lanthanide Nanocrystals,” Nano Lett. 14, 101–106 (2014).
[Crossref]
L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. 100, 13549–13554 (2003).
[Crossref]
[PubMed]
G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4, 1853–1857 (2004).
[Crossref]
M. Saboktakin, X. Ye, S. J. Oh, S.-H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-Enhanced Upconversion Luminescence Tunable through Metal Nanoparticle-Nanophosphor Separation,” ACS Nano 6, 8758–8766 (2012).
[Crossref]
[PubMed]
N. Sakamoto, T. Onodera, T. Dezawa, Y. Shibata, and H. Oikawa, “Highly Enhanced Emission of Visible Light from Core-Dual-Shell-Type Hybridized Nanoparticles,” Part. & Part. Syst. Charact. 34, 1700258 (2017).
[Crossref]
D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” The J. Phys. Chem. Lett. 5, 4020–4031 (2014).
[Crossref]
J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref]
[PubMed]
N. L. Gruenke, M. O. McAnally, G. C. Schatz, and R. P. Van Duyne, “Balancing the Effects of Extinction and Enhancement for Optimal Signal in Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy,” The J. Phys. Chem. C 120, 29449–29454 (2016).
[Crossref]
D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, and P. J. Schuck, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12, 402–407 (2018).
[Crossref]
T. van Dijk, S. T. Sivapalan, B. M. DeVetter, T. K. Yang, M. V. Schulmerich, C. J. Murphy, R. Bhargava, and P. S. Carney, “Competition Between Extinction and Enhancement in Surface-Enhanced Raman Spectroscopy,” The J. Phys. Chem. Lett. 4, 1193–1196 (2013).
[Crossref]
S. T. Sivapalan, B. M. DeVetter, T. K. Yang, T. van Dijk, M. V. Schulmerich, P. S. Carney, R. Bhargava, and C. J. Murphy, “Off-Resonance Surface-Enhanced Raman Spectroscopy from Gold Nanorod Suspensions as a Function of Aspect Ratio: Not What We Thought,” ACS Nano 7, 2099–2105 (2013).
[Crossref]
[PubMed]
L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. 100, 13549–13554 (2003).
[Crossref]
[PubMed]
G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]
[PubMed]
Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4:Yb, Er@SiO2@Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]
X. Chen, D. Zhou, W. Xu, J. Zhu, G. Pan, Z. Yin, H. Wang, Y. Zhu, C. Shaobo, and H. Song, “Fabrication of Au-Ag nanocage@NaYF4@NaYF4:Yb, Er Core-Shell Hybrid and its Tunable Upconversion Enhancement,” Sci. Reports 7, 41079 (2017).
[Crossref]
D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, and P. J. Schuck, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12, 402–407 (2018).
[Crossref]
B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10, 924–936 (2015).
[Crossref]
[PubMed]
H. Xing, W. Bu, S. Zhang, X. Zheng, M. Li, F. Chen, Q. He, L. Zhou, W. Peng, Y. Hua, and J. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33, 1079–1089 (2012).
[Crossref]
N. Sakamoto, T. Onodera, T. Dezawa, Y. Shibata, and H. Oikawa, “Highly Enhanced Emission of Visible Light from Core-Dual-Shell-Type Hybridized Nanoparticles,” Part. & Part. Syst. Charact. 34, 1700258 (2017).
[Crossref]
Y.-L. Wang, N. Mohammadi Estakhri, A. Johnson, H.-Y. Li, L.-X. Xu, Z. Zhang, A. Alù, Q.-Q. Wang, and C.-K. K. Shih, “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Nanocrystals,” Sci. Reports 5, 10196 (2015).
[Crossref]
F. Wang, S. Wen, H. He, B. Wang, Z. Zhou, O. Shimoni, and D. Jin, “Microscopic inspection and tracking of single upconversion nanoparticles in living cells,” Light. Sci. & Appl. 7, 18007 (2018).
[Crossref]
Y. C. Simon and C. Weder, “Low-power photon upconversion through triplet-triplet annihilation in polymers,” J. Mater. Chem. 22, 20817 (2012).
[Crossref]
A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using Polyelectrolyte Multilayers as Tunable Spacers,” Sci. Reports 5, 7779 (2015).
[Crossref]
Q.-C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-Enhanced Energy Transfer for Improved Upconversion of Infrared Radiation in Doped-Lanthanide Nanocrystals,” Nano Lett. 14, 101–106 (2014).
[Crossref]
S. T. Sivapalan, B. M. DeVetter, T. K. Yang, T. van Dijk, M. V. Schulmerich, P. S. Carney, R. Bhargava, and C. J. Murphy, “Off-Resonance Surface-Enhanced Raman Spectroscopy from Gold Nanorod Suspensions as a Function of Aspect Ratio: Not What We Thought,” ACS Nano 7, 2099–2105 (2013).
[Crossref]
[PubMed]
T. van Dijk, S. T. Sivapalan, B. M. DeVetter, T. K. Yang, M. V. Schulmerich, C. J. Murphy, R. Bhargava, and P. S. Carney, “Competition Between Extinction and Enhancement in Surface-Enhanced Raman Spectroscopy,” The J. Phys. Chem. Lett. 4, 1193–1196 (2013).
[Crossref]
Q.-C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-Enhanced Energy Transfer for Improved Upconversion of Infrared Radiation in Doped-Lanthanide Nanocrystals,” Nano Lett. 14, 101–106 (2014).
[Crossref]
W. Xu, X. Chen, and H. Song, “Upconversion manipulation by local electromagnetic field,” Nano Today 17, 54–78 (2017).
[Crossref]
X. Chen, D. Zhou, W. Xu, J. Zhu, G. Pan, Z. Yin, H. Wang, Y. Zhu, C. Shaobo, and H. Song, “Fabrication of Au-Ag nanocage@NaYF4@NaYF4:Yb, Er Core-Shell Hybrid and its Tunable Upconversion Enhancement,” Sci. Reports 7, 41079 (2017).
[Crossref]
D. Zhou, D. Li, X. Zhou, W. Xu, X. Chen, D. Liu, Y. Zhu, and H. Song, “Semiconductor Plasmon Induced Up-Conversion Enhancement in mCu 2- x S@SiO 2 @Y 2 O 3 :Yb 3+ /Er 3+ Core-Shell Nanocomposites,” ACS Appl. Mater. & Interfaces 9, 35226–35233 (2017).
[Crossref]
D. Zhou, D. Liu, J. Jin, X. Chen, W. Xu, Z. Yin, G. Pan, D. Li, and H. Song, “Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells,” J. Mater. Chem. A 5, 16559–16567 (2017).
[Crossref]
D. Zhou, D. Liu, W. Xu, X. Chen, Z. Yin, X. Bai, B. Dong, L. Xu, and H. Song, “Synergistic Upconversion Enhancement Induced by Multiple Physical Effects and an Angle-Dependent Anticounterfeit Application,” Chem. Mater. 29, 6799–6809 (2017).
[Crossref]
Z. Yin, D. Zhou, W. Xu, S. Cui, X. Chen, H. Wang, S. Xu, and H. Song, “Plasmon-Enhanced Upconversion Luminescence on Vertically Aligned Gold Nanorod Monolayer Supercrystals,” ACS Appl. Mater. & Interfaces 8, 11667–11674 (2016).
[Crossref]
D. Zhou, D. Liu, W. Xu, Z. Yin, X. Chen, P. Zhou, S. Cui, Z. Chen, and H. Song, “Observation of Considerable Upconversion Enhancement Induced by Cu 2- x S Plasmon Nanoparticles,” ACS Nano 10, 5169–5179 (2016).
[Crossref]
[PubMed]
W. Xu, S. Xu, Y. Zhu, T. Liu, X. Bai, B. Dong, L. Xu, and H. Song, “Ultra-broad plasma resonance enhanced multicolor emissions in an assembled Ag/NaYF4:Yb, Er nano-film,” Nanoscale 4, 6971 (2012).
[Crossref]
[PubMed]
J. Li, Z. Yang, Z. Chai, J. Qiu, and Z. Song, “Preparation and upconversion emission enhancement of SiO_2 coated YbPO_4: Er^3+ inverse opals with Ag nanoparticles,” Opt. Mater. Express 7, 3503 (2017).
[Crossref]
B. Shao, Z. Yang, J. Li, J. Yang, Y. Wang, J. Qiu, and Z. Song, “Upconversion emission enhancement by porous silver films with ultra-broad plasmon absorption,” Opt. Mater. Express 7, 1188 (2017).
[Crossref]
L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. 100, 13549–13554 (2003).
[Crossref]
[PubMed]
S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions: Errata,” Opt. Express 21, 10606 (2013).
[Crossref]
[PubMed]
S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions,” Opt. Express 20, 271 (2012).
[Crossref]
[PubMed]
D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, and P. J. Schuck, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12, 402–407 (2018).
[Crossref]
D. Lu, S. K. Cho, S. Ahn, L. Brun, C. J. Summers, and W. Park, “Plasmon Enhancement Mechanism for the Upconversion Processes in NaYF 4 :Yb 3+, Er 3+ Nanoparticles: Maxwell versus Förster,” ACS Nano 8, 7780–7792 (2014).
[Crossref]
[PubMed]
P. Kannan, F. A. Rahim, X. Teng, R. Chen, H. Sun, L. Huang, and D.-H. Kim, “Enhanced emission of NaYF4:Yb, Er/Tm nanoparticles by selective growth of Au and Ag nanoshells,” RSC Adv. 3, 7718 (2013).
[Crossref]
J. Wang, T. Ming, Z. Jin, J. Wang, L.-D. Sun, and C.-H. Yan, “Photon energy upconversion through thermal radiation with the power efficiency reaching 16%,” Nat. Commun. 5, 5669 (2014).
[Crossref]
Q.-C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-Enhanced Energy Transfer for Improved Upconversion of Infrared Radiation in Doped-Lanthanide Nanocrystals,” Nano Lett. 14, 101–106 (2014).
[Crossref]
G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4, 1853–1857 (2004).
[Crossref]
D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, and P. J. Schuck, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12, 402–407 (2018).
[Crossref]
X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10, 1060–1066 (2016).
[Crossref]
[PubMed]
R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-Photonic Hybrid Modes Excited on a Titanium Nitride Nanoparticle Array in the Visible Region,” ACS Photonics 4, 815–822 (2017).
[Crossref]
F. Meng, Y. Luo, Y. Zhou, J. Zhang, Y. Zheng, G. Cao, and X. Tao, “Integrated plasmonic and upconversion starlike Y2O3:Er/Au@TiO2 composite for enhanced photon harvesting in dye-sensitized solar cells,” J. Power Sources 316, 207–214 (2016).
[Crossref]
J. Zhou, S. Wen, J. Liao, C. Clarke, S. A. Tawfik, W. Ren, C. Mi, F. Wang, and D. Jin, “Activation of the surface dark-layer to enhance upconversion in a thermal field,” Nat. Photonics 12, 154–158 (2018).
[Crossref]
P. Kannan, F. A. Rahim, X. Teng, R. Chen, H. Sun, L. Huang, and D.-H. Kim, “Enhanced emission of NaYF4:Yb, Er/Tm nanoparticles by selective growth of Au and Ag nanoshells,” RSC Adv. 3, 7718 (2013).
[Crossref]
A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the Efficiency of Plasmonic Materials for Near-Field Enhancement and Photothermal Conversion,” The J. Phys. Chem. C 119, 25518–25528 (2015).
[Crossref]
D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, and P. J. Schuck, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12, 402–407 (2018).
[Crossref]
A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using Polyelectrolyte Multilayers as Tunable Spacers,” Sci. Reports 5, 7779 (2015).
[Crossref]
D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, and P. J. Schuck, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12, 402–407 (2018).
[Crossref]
C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF 4 :Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]
C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF 4 :Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]
N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg, and O. Hess, “Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities,” ACS Photonics 5, 186–191 (2018).
[Crossref]
X. Wang, R. R. Valiev, T. Y. Ohulchanskyy, H. Ågren, C. Yang, and G. Chen, “Dye-sensitized lanthanide-doped upconversion nanoparticles,” Chem. Soc. Rev. 46, 4150–4167 (2017).
[Crossref]
[PubMed]
B. X. K. Chng, T. van Dijk, R. Bhargava, and P. S. Carney, “Enhancement and extinction effects in surface-enhanced stimulated Raman spectroscopy,” Phys. Chem. Chem. Phys. 17, 21348–21355 (2015).
[Crossref]
[PubMed]
T. van Dijk, S. T. Sivapalan, B. M. DeVetter, T. K. Yang, M. V. Schulmerich, C. J. Murphy, R. Bhargava, and P. S. Carney, “Competition Between Extinction and Enhancement in Surface-Enhanced Raman Spectroscopy,” The J. Phys. Chem. Lett. 4, 1193–1196 (2013).
[Crossref]
S. T. Sivapalan, B. M. DeVetter, T. K. Yang, T. van Dijk, M. V. Schulmerich, P. S. Carney, R. Bhargava, and C. J. Murphy, “Off-Resonance Surface-Enhanced Raman Spectroscopy from Gold Nanorod Suspensions as a Function of Aspect Ratio: Not What We Thought,” ACS Nano 7, 2099–2105 (2013).
[Crossref]
[PubMed]
N. L. Gruenke, M. O. McAnally, G. C. Schatz, and R. P. Van Duyne, “Balancing the Effects of Extinction and Enhancement for Optimal Signal in Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy,” The J. Phys. Chem. C 120, 29449–29454 (2016).
[Crossref]
Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]
[PubMed]
W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6, 560–564 (2012).
[Crossref]
U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, vol. 25 of Springer Series in Materials Science (Springer Berlin Heidelberg, Berlin, Heidelberg, 1995).
[Crossref]
S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions: Errata,” Opt. Express 21, 10606 (2013).
[Crossref]
[PubMed]
S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions,” Opt. Express 20, 271 (2012).
[Crossref]
[PubMed]
F. Wang, S. Wen, H. He, B. Wang, Z. Zhou, O. Shimoni, and D. Jin, “Microscopic inspection and tracking of single upconversion nanoparticles in living cells,” Light. Sci. & Appl. 7, 18007 (2018).
[Crossref]
Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8, 1058 (2017).
[Crossref]
[PubMed]
Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4:Yb, Er@SiO2@Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]
L. Zhou, R. Wang, C. Yao, X. Li, C. Wang, X. Zhang, C. Xu, A. Zeng, D. Zhao, and F. Zhang, “Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers,” Nat. Commun. 6, 6938 (2015).
[Crossref]
[PubMed]
F. Wang, S. Wen, H. He, B. Wang, Z. Zhou, O. Shimoni, and D. Jin, “Microscopic inspection and tracking of single upconversion nanoparticles in living cells,” Light. Sci. & Appl. 7, 18007 (2018).
[Crossref]
J. Zhou, S. Wen, J. Liao, C. Clarke, S. A. Tawfik, W. Ren, C. Mi, F. Wang, and D. Jin, “Activation of the surface dark-layer to enhance upconversion in a thermal field,” Nat. Photonics 12, 154–158 (2018).
[Crossref]
Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]
[PubMed]
X. Chen, D. Zhou, W. Xu, J. Zhu, G. Pan, Z. Yin, H. Wang, Y. Zhu, C. Shaobo, and H. Song, “Fabrication of Au-Ag nanocage@NaYF4@NaYF4:Yb, Er Core-Shell Hybrid and its Tunable Upconversion Enhancement,” Sci. Reports 7, 41079 (2017).
[Crossref]
Z. Yin, D. Zhou, W. Xu, S. Cui, X. Chen, H. Wang, S. Xu, and H. Song, “Plasmon-Enhanced Upconversion Luminescence on Vertically Aligned Gold Nanorod Monolayer Supercrystals,” ACS Appl. Mater. & Interfaces 8, 11667–11674 (2016).
[Crossref]
J. Wang, T. Ming, Z. Jin, J. Wang, L.-D. Sun, and C.-H. Yan, “Photon energy upconversion through thermal radiation with the power efficiency reaching 16%,” Nat. Commun. 5, 5669 (2014).
[Crossref]
J. Wang, T. Ming, Z. Jin, J. Wang, L.-D. Sun, and C.-H. Yan, “Photon energy upconversion through thermal radiation with the power efficiency reaching 16%,” Nat. Commun. 5, 5669 (2014).
[Crossref]
Y.-L. Wang, N. Mohammadi Estakhri, A. Johnson, H.-Y. Li, L.-X. Xu, Z. Zhang, A. Alù, Q.-Q. Wang, and C.-K. K. Shih, “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Nanocrystals,” Sci. Reports 5, 10196 (2015).
[Crossref]
Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4:Yb, Er@SiO2@Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]
L. Zhou, R. Wang, C. Yao, X. Li, C. Wang, X. Zhang, C. Xu, A. Zeng, D. Zhao, and F. Zhang, “Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers,” Nat. Commun. 6, 6938 (2015).
[Crossref]
[PubMed]
X. Wang, R. R. Valiev, T. Y. Ohulchanskyy, H. Ågren, C. Yang, and G. Chen, “Dye-sensitized lanthanide-doped upconversion nanoparticles,” Chem. Soc. Rev. 46, 4150–4167 (2017).
[Crossref]
[PubMed]
Y.-L. Wang, N. Mohammadi Estakhri, A. Johnson, H.-Y. Li, L.-X. Xu, Z. Zhang, A. Alù, Q.-Q. Wang, and C.-K. K. Shih, “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Nanocrystals,” Sci. Reports 5, 10196 (2015).
[Crossref]
Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4:Yb, Er@SiO2@Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]
Y. C. Simon and C. Weder, “Low-power photon upconversion through triplet-triplet annihilation in polymers,” J. Mater. Chem. 22, 20817 (2012).
[Crossref]
Y. Ding, X. Zhang, H. Gao, S. Xu, C. Wei, and Y. Zhao, “Plasmonic enhanced upconversion luminescence of β-NaYF4:Yb3+/Er3+ with Ag@SiO2 core-shell nanoparticles,” J. Lumin. 147, 72–76 (2014).
[Crossref]
J. Zhou, S. Wen, J. Liao, C. Clarke, S. A. Tawfik, W. Ren, C. Mi, F. Wang, and D. Jin, “Activation of the surface dark-layer to enhance upconversion in a thermal field,” Nat. Photonics 12, 154–158 (2018).
[Crossref]
F. Wang, S. Wen, H. He, B. Wang, Z. Zhou, O. Shimoni, and D. Jin, “Microscopic inspection and tracking of single upconversion nanoparticles in living cells,” Light. Sci. & Appl. 7, 18007 (2018).
[Crossref]
Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]
[PubMed]
L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. 100, 13549–13554 (2003).
[Crossref]
[PubMed]
N. S. Abadeer, M. R. Brennan, W. L. Wilson, and C. J. Murphy, “Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods,” ACS Nano 8, 8392–8406 (2014).
[Crossref]
[PubMed]
D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” The J. Phys. Chem. Lett. 5, 4020–4031 (2014).
[Crossref]
C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF 4 :Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]
C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF 4 :Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]
Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8, 1058 (2017).
[Crossref]
[PubMed]
X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10, 1060–1066 (2016).
[Crossref]
[PubMed]
Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]
[PubMed]
J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref]
[PubMed]
X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10, 1060–1066 (2016).
[Crossref]
[PubMed]
H. Xing, W. Bu, S. Zhang, X. Zheng, M. Li, F. Chen, Q. He, L. Zhou, W. Peng, Y. Hua, and J. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33, 1079–1089 (2012).
[Crossref]
L. Zhou, R. Wang, C. Yao, X. Li, C. Wang, X. Zhang, C. Xu, A. Zeng, D. Zhao, and F. Zhang, “Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers,” Nat. Commun. 6, 6938 (2015).
[Crossref]
[PubMed]
A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using Polyelectrolyte Multilayers as Tunable Spacers,” Sci. Reports 5, 7779 (2015).
[Crossref]
D. Zhou, D. Liu, W. Xu, X. Chen, Z. Yin, X. Bai, B. Dong, L. Xu, and H. Song, “Synergistic Upconversion Enhancement Induced by Multiple Physical Effects and an Angle-Dependent Anticounterfeit Application,” Chem. Mater. 29, 6799–6809 (2017).
[Crossref]
W. Xu, S. Xu, Y. Zhu, T. Liu, X. Bai, B. Dong, L. Xu, and H. Song, “Ultra-broad plasma resonance enhanced multicolor emissions in an assembled Ag/NaYF4:Yb, Er nano-film,” Nanoscale 4, 6971 (2012).
[Crossref]
[PubMed]
Y.-L. Wang, N. Mohammadi Estakhri, A. Johnson, H.-Y. Li, L.-X. Xu, Z. Zhang, A. Alù, Q.-Q. Wang, and C.-K. K. Shih, “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Nanocrystals,” Sci. Reports 5, 10196 (2015).
[Crossref]
P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q.-H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb, Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4, 5132 (2012).
[Crossref]
[PubMed]
Z. Yin, D. Zhou, W. Xu, S. Cui, X. Chen, H. Wang, S. Xu, and H. Song, “Plasmon-Enhanced Upconversion Luminescence on Vertically Aligned Gold Nanorod Monolayer Supercrystals,” ACS Appl. Mater. & Interfaces 8, 11667–11674 (2016).
[Crossref]
Y. Ding, X. Zhang, H. Gao, S. Xu, C. Wei, and Y. Zhao, “Plasmonic enhanced upconversion luminescence of β-NaYF4:Yb3+/Er3+ with Ag@SiO2 core-shell nanoparticles,” J. Lumin. 147, 72–76 (2014).
[Crossref]
W. Xu, S. Xu, Y. Zhu, T. Liu, X. Bai, B. Dong, L. Xu, and H. Song, “Ultra-broad plasma resonance enhanced multicolor emissions in an assembled Ag/NaYF4:Yb, Er nano-film,” Nanoscale 4, 6971 (2012).
[Crossref]
[PubMed]
W. Xu, X. Chen, and H. Song, “Upconversion manipulation by local electromagnetic field,” Nano Today 17, 54–78 (2017).
[Crossref]
D. Zhou, D. Liu, J. Jin, X. Chen, W. Xu, Z. Yin, G. Pan, D. Li, and H. Song, “Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells,” J. Mater. Chem. A 5, 16559–16567 (2017).
[Crossref]
D. Zhou, D. Liu, W. Xu, X. Chen, Z. Yin, X. Bai, B. Dong, L. Xu, and H. Song, “Synergistic Upconversion Enhancement Induced by Multiple Physical Effects and an Angle-Dependent Anticounterfeit Application,” Chem. Mater. 29, 6799–6809 (2017).
[Crossref]
D. Zhou, D. Li, X. Zhou, W. Xu, X. Chen, D. Liu, Y. Zhu, and H. Song, “Semiconductor Plasmon Induced Up-Conversion Enhancement in mCu 2- x S@SiO 2 @Y 2 O 3 :Yb 3+ /Er 3+ Core-Shell Nanocomposites,” ACS Appl. Mater. & Interfaces 9, 35226–35233 (2017).
[Crossref]
X. Chen, D. Zhou, W. Xu, J. Zhu, G. Pan, Z. Yin, H. Wang, Y. Zhu, C. Shaobo, and H. Song, “Fabrication of Au-Ag nanocage@NaYF4@NaYF4:Yb, Er Core-Shell Hybrid and its Tunable Upconversion Enhancement,” Sci. Reports 7, 41079 (2017).
[Crossref]
D. Zhou, D. Liu, W. Xu, Z. Yin, X. Chen, P. Zhou, S. Cui, Z. Chen, and H. Song, “Observation of Considerable Upconversion Enhancement Induced by Cu 2- x S Plasmon Nanoparticles,” ACS Nano 10, 5169–5179 (2016).
[Crossref]
[PubMed]
Z. Yin, D. Zhou, W. Xu, S. Cui, X. Chen, H. Wang, S. Xu, and H. Song, “Plasmon-Enhanced Upconversion Luminescence on Vertically Aligned Gold Nanorod Monolayer Supercrystals,” ACS Appl. Mater. & Interfaces 8, 11667–11674 (2016).
[Crossref]
W. Xu, S. Xu, Y. Zhu, T. Liu, X. Bai, B. Dong, L. Xu, and H. Song, “Ultra-broad plasma resonance enhanced multicolor emissions in an assembled Ag/NaYF4:Yb, Er nano-film,” Nanoscale 4, 6971 (2012).
[Crossref]
[PubMed]
J. Wang, T. Ming, Z. Jin, J. Wang, L.-D. Sun, and C.-H. Yan, “Photon energy upconversion through thermal radiation with the power efficiency reaching 16%,” Nat. Commun. 5, 5669 (2014).
[Crossref]
X. Wang, R. R. Valiev, T. Y. Ohulchanskyy, H. Ågren, C. Yang, and G. Chen, “Dye-sensitized lanthanide-doped upconversion nanoparticles,” Chem. Soc. Rev. 46, 4150–4167 (2017).
[Crossref]
[PubMed]
B. Shao, Z. Yang, J. Li, J. Yang, Y. Wang, J. Qiu, and Z. Song, “Upconversion emission enhancement by porous silver films with ultra-broad plasmon absorption,” Opt. Mater. Express 7, 1188 (2017).
[Crossref]
R. Faggiani, J. Yang, and P. Lalanne, “Quenching, Plasmonic, and Radiative Decays in Nanogap Emitting Devices,” ACS Photonics 2, 1739–1744 (2015).
[Crossref]
T. van Dijk, S. T. Sivapalan, B. M. DeVetter, T. K. Yang, M. V. Schulmerich, C. J. Murphy, R. Bhargava, and P. S. Carney, “Competition Between Extinction and Enhancement in Surface-Enhanced Raman Spectroscopy,” The J. Phys. Chem. Lett. 4, 1193–1196 (2013).
[Crossref]
S. T. Sivapalan, B. M. DeVetter, T. K. Yang, T. van Dijk, M. V. Schulmerich, P. S. Carney, R. Bhargava, and C. J. Murphy, “Off-Resonance Surface-Enhanced Raman Spectroscopy from Gold Nanorod Suspensions as a Function of Aspect Ratio: Not What We Thought,” ACS Nano 7, 2099–2105 (2013).
[Crossref]
[PubMed]
Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]
[PubMed]
B. Shao, Z. Yang, J. Li, J. Yang, Y. Wang, J. Qiu, and Z. Song, “Upconversion emission enhancement by porous silver films with ultra-broad plasmon absorption,” Opt. Mater. Express 7, 1188 (2017).
[Crossref]
J. Li, Z. Yang, Z. Chai, J. Qiu, and Z. Song, “Preparation and upconversion emission enhancement of SiO_2 coated YbPO_4: Er^3+ inverse opals with Ag nanoparticles,” Opt. Mater. Express 7, 3503 (2017).
[Crossref]
L. Zhou, R. Wang, C. Yao, X. Li, C. Wang, X. Zhang, C. Xu, A. Zeng, D. Zhao, and F. Zhang, “Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers,” Nat. Commun. 6, 6938 (2015).
[Crossref]
[PubMed]
M. Saboktakin, X. Ye, S. J. Oh, S.-H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-Enhanced Upconversion Luminescence Tunable through Metal Nanoparticle-Nanophosphor Separation,” ACS Nano 6, 8758–8766 (2012).
[Crossref]
[PubMed]
X. Chen, D. Zhou, W. Xu, J. Zhu, G. Pan, Z. Yin, H. Wang, Y. Zhu, C. Shaobo, and H. Song, “Fabrication of Au-Ag nanocage@NaYF4@NaYF4:Yb, Er Core-Shell Hybrid and its Tunable Upconversion Enhancement,” Sci. Reports 7, 41079 (2017).
[Crossref]
D. Zhou, D. Liu, W. Xu, X. Chen, Z. Yin, X. Bai, B. Dong, L. Xu, and H. Song, “Synergistic Upconversion Enhancement Induced by Multiple Physical Effects and an Angle-Dependent Anticounterfeit Application,” Chem. Mater. 29, 6799–6809 (2017).
[Crossref]
D. Zhou, D. Liu, J. Jin, X. Chen, W. Xu, Z. Yin, G. Pan, D. Li, and H. Song, “Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells,” J. Mater. Chem. A 5, 16559–16567 (2017).
[Crossref]
D. Zhou, D. Liu, W. Xu, Z. Yin, X. Chen, P. Zhou, S. Cui, Z. Chen, and H. Song, “Observation of Considerable Upconversion Enhancement Induced by Cu 2- x S Plasmon Nanoparticles,” ACS Nano 10, 5169–5179 (2016).
[Crossref]
[PubMed]
Z. Yin, D. Zhou, W. Xu, S. Cui, X. Chen, H. Wang, S. Xu, and H. Song, “Plasmon-Enhanced Upconversion Luminescence on Vertically Aligned Gold Nanorod Monolayer Supercrystals,” ACS Appl. Mater. & Interfaces 8, 11667–11674 (2016).
[Crossref]
A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using Polyelectrolyte Multilayers as Tunable Spacers,” Sci. Reports 5, 7779 (2015).
[Crossref]
L. Meng, R. Yu, M. Qiu, and F. J. García de Abajo, “Plasmonic Nano-Oven by Concatenation of Multishell Photothermal Enhancement,” ACS Nano 11, 7915–7924 (2017).
[Crossref]
[PubMed]
P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q.-H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb, Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4, 5132 (2012).
[Crossref]
[PubMed]
X. Liu and D. Yuan Lei, “Simultaneous excitation and emission enhancements in upconversion luminescence using plasmonic double-resonant gold nanorods,” Sci. Reports 5, 15235 (2015).
[Crossref]
V. S. Gerasimov, A. E. Ershov, S. V. Karpov, A. P. Gavrilyuk, V. I. Zakomirnyi, I. L. Rasskazov, H. Ågren, and S. P. Polyutov, “Thermal effects in systems of colloidal plasmonic nanoparticles in high-intensity pulsed laser fields [Invited],” Opt. Mater. Express 7, 555 (2017).
[Crossref]
V. I. Zakomirnyi, I. L. Rasskazov, S. V. Karpov, and S. P. Polyutov, “New ideally absorbing Au plasmonic nanostructures for biomedical applications,” J. Quant. Spectrosc. Radiat. Transf. 187, 54–61 (2017).
[Crossref]
L. Zhou, R. Wang, C. Yao, X. Li, C. Wang, X. Zhang, C. Xu, A. Zeng, D. Zhao, and F. Zhang, “Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers,” Nat. Commun. 6, 6938 (2015).
[Crossref]
[PubMed]
Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8, 1058 (2017).
[Crossref]
[PubMed]
Q. Zhan, X. Zhang, Y. Zhao, J. Liu, and S. He, “Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod,” Laser & Photonics Rev. 9, 479–487 (2015).
[Crossref]
L. Zhou, R. Wang, C. Yao, X. Li, C. Wang, X. Zhang, C. Xu, A. Zeng, D. Zhao, and F. Zhang, “Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers,” Nat. Commun. 6, 6938 (2015).
[Crossref]
[PubMed]
X. Li, F. Zhang, and D. Zhao, “Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges,” Nano Today 8, 643–676 (2013).
[Crossref]
H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, “Plasmonic Modulation of the Upconversion Fluorescence in NaYF4:Yb/Tm Hexaplate Nanocrystals Using Gold Nanoparticles or Nanoshells,” Angewandte Chemie Int. Ed. 49, 2865–2868 (2010).
[Crossref]
F. Meng, Y. Luo, Y. Zhou, J. Zhang, Y. Zheng, G. Cao, and X. Tao, “Integrated plasmonic and upconversion starlike Y2O3:Er/Au@TiO2 composite for enhanced photon harvesting in dye-sensitized solar cells,” J. Power Sources 316, 207–214 (2016).
[Crossref]
Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4:Yb, Er@SiO2@Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]
J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref]
[PubMed]
H. Xing, W. Bu, S. Zhang, X. Zheng, M. Li, F. Chen, Q. He, L. Zhou, W. Peng, Y. Hua, and J. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33, 1079–1089 (2012).
[Crossref]
Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4:Yb, Er@SiO2@Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]
Q. Zhan, X. Zhang, Y. Zhao, J. Liu, and S. He, “Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod,” Laser & Photonics Rev. 9, 479–487 (2015).
[Crossref]
L. Zhou, R. Wang, C. Yao, X. Li, C. Wang, X. Zhang, C. Xu, A. Zeng, D. Zhao, and F. Zhang, “Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers,” Nat. Commun. 6, 6938 (2015).
[Crossref]
[PubMed]
Y. Ding, X. Zhang, H. Gao, S. Xu, C. Wei, and Y. Zhao, “Plasmonic enhanced upconversion luminescence of β-NaYF4:Yb3+/Er3+ with Ag@SiO2 core-shell nanoparticles,” J. Lumin. 147, 72–76 (2014).
[Crossref]
X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10, 1060–1066 (2016).
[Crossref]
[PubMed]
P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q.-H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb, Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4, 5132 (2012).
[Crossref]
[PubMed]
X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10, 1060–1066 (2016).
[Crossref]
[PubMed]
Y.-L. Wang, N. Mohammadi Estakhri, A. Johnson, H.-Y. Li, L.-X. Xu, Z. Zhang, A. Alù, Q.-Q. Wang, and C.-K. K. Shih, “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Nanocrystals,” Sci. Reports 5, 10196 (2015).
[Crossref]
L. Zhou, R. Wang, C. Yao, X. Li, C. Wang, X. Zhang, C. Xu, A. Zeng, D. Zhao, and F. Zhang, “Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers,” Nat. Commun. 6, 6938 (2015).
[Crossref]
[PubMed]
X. Li, F. Zhang, and D. Zhao, “Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges,” Nano Today 8, 643–676 (2013).
[Crossref]
Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]
[PubMed]
J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref]
[PubMed]
J. Zhao, S. Ji, and H. Guo, “Triplet-triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields,” RSC Adv. 1, 937 (2011).
[Crossref]
Q. Zhan, X. Zhang, Y. Zhao, J. Liu, and S. He, “Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod,” Laser & Photonics Rev. 9, 479–487 (2015).
[Crossref]
Y. Ding, X. Zhang, H. Gao, S. Xu, C. Wei, and Y. Zhao, “Plasmonic enhanced upconversion luminescence of β-NaYF4:Yb3+/Er3+ with Ag@SiO2 core-shell nanoparticles,” J. Lumin. 147, 72–76 (2014).
[Crossref]
Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4:Yb, Er@SiO2@Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]
Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]
[PubMed]
H. Xing, W. Bu, S. Zhang, X. Zheng, M. Li, F. Chen, Q. He, L. Zhou, W. Peng, Y. Hua, and J. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33, 1079–1089 (2012).
[Crossref]
F. Meng, Y. Luo, Y. Zhou, J. Zhang, Y. Zheng, G. Cao, and X. Tao, “Integrated plasmonic and upconversion starlike Y2O3:Er/Au@TiO2 composite for enhanced photon harvesting in dye-sensitized solar cells,” J. Power Sources 316, 207–214 (2016).
[Crossref]
B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10, 924–936 (2015).
[Crossref]
[PubMed]
Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8, 1058 (2017).
[Crossref]
[PubMed]
X. Chen, D. Zhou, W. Xu, J. Zhu, G. Pan, Z. Yin, H. Wang, Y. Zhu, C. Shaobo, and H. Song, “Fabrication of Au-Ag nanocage@NaYF4@NaYF4:Yb, Er Core-Shell Hybrid and its Tunable Upconversion Enhancement,” Sci. Reports 7, 41079 (2017).
[Crossref]
D. Zhou, D. Liu, W. Xu, X. Chen, Z. Yin, X. Bai, B. Dong, L. Xu, and H. Song, “Synergistic Upconversion Enhancement Induced by Multiple Physical Effects and an Angle-Dependent Anticounterfeit Application,” Chem. Mater. 29, 6799–6809 (2017).
[Crossref]
D. Zhou, D. Liu, J. Jin, X. Chen, W. Xu, Z. Yin, G. Pan, D. Li, and H. Song, “Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells,” J. Mater. Chem. A 5, 16559–16567 (2017).
[Crossref]
D. Zhou, D. Li, X. Zhou, W. Xu, X. Chen, D. Liu, Y. Zhu, and H. Song, “Semiconductor Plasmon Induced Up-Conversion Enhancement in mCu 2- x S@SiO 2 @Y 2 O 3 :Yb 3+ /Er 3+ Core-Shell Nanocomposites,” ACS Appl. Mater. & Interfaces 9, 35226–35233 (2017).
[Crossref]
D. Zhou, D. Liu, W. Xu, Z. Yin, X. Chen, P. Zhou, S. Cui, Z. Chen, and H. Song, “Observation of Considerable Upconversion Enhancement Induced by Cu 2- x S Plasmon Nanoparticles,” ACS Nano 10, 5169–5179 (2016).
[Crossref]
[PubMed]
Y. Qin, Z. Dong, D. Zhou, Y. Yang, X. Xu, and J. Qiu, “Modification on populating paths of β-NaYF_4:Nd/Yb/Ho@SiO_2@Ag core/double-shell nanocomposites with plasmon enhanced upconversion emission,” Opt. Mater. Express 6, 1942 (2016).
[Crossref]
Z. Yin, D. Zhou, W. Xu, S. Cui, X. Chen, H. Wang, S. Xu, and H. Song, “Plasmon-Enhanced Upconversion Luminescence on Vertically Aligned Gold Nanorod Monolayer Supercrystals,” ACS Appl. Mater. & Interfaces 8, 11667–11674 (2016).
[Crossref]
J. Zhou, S. Wen, J. Liao, C. Clarke, S. A. Tawfik, W. Ren, C. Mi, F. Wang, and D. Jin, “Activation of the surface dark-layer to enhance upconversion in a thermal field,” Nat. Photonics 12, 154–158 (2018).
[Crossref]
Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]
[PubMed]
L. Zhou, R. Wang, C. Yao, X. Li, C. Wang, X. Zhang, C. Xu, A. Zeng, D. Zhao, and F. Zhang, “Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers,” Nat. Commun. 6, 6938 (2015).
[Crossref]
[PubMed]
H. Xing, W. Bu, S. Zhang, X. Zheng, M. Li, F. Chen, Q. He, L. Zhou, W. Peng, Y. Hua, and J. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33, 1079–1089 (2012).
[Crossref]
D. Zhou, D. Liu, W. Xu, Z. Yin, X. Chen, P. Zhou, S. Cui, Z. Chen, and H. Song, “Observation of Considerable Upconversion Enhancement Induced by Cu 2- x S Plasmon Nanoparticles,” ACS Nano 10, 5169–5179 (2016).
[Crossref]
[PubMed]
D. Zhou, D. Li, X. Zhou, W. Xu, X. Chen, D. Liu, Y. Zhu, and H. Song, “Semiconductor Plasmon Induced Up-Conversion Enhancement in mCu 2- x S@SiO 2 @Y 2 O 3 :Yb 3+ /Er 3+ Core-Shell Nanocomposites,” ACS Appl. Mater. & Interfaces 9, 35226–35233 (2017).
[Crossref]
F. Meng, Y. Luo, Y. Zhou, J. Zhang, Y. Zheng, G. Cao, and X. Tao, “Integrated plasmonic and upconversion starlike Y2O3:Er/Au@TiO2 composite for enhanced photon harvesting in dye-sensitized solar cells,” J. Power Sources 316, 207–214 (2016).
[Crossref]
F. Wang, S. Wen, H. He, B. Wang, Z. Zhou, O. Shimoni, and D. Jin, “Microscopic inspection and tracking of single upconversion nanoparticles in living cells,” Light. Sci. & Appl. 7, 18007 (2018).
[Crossref]
Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]
[PubMed]
X. Chen, D. Zhou, W. Xu, J. Zhu, G. Pan, Z. Yin, H. Wang, Y. Zhu, C. Shaobo, and H. Song, “Fabrication of Au-Ag nanocage@NaYF4@NaYF4:Yb, Er Core-Shell Hybrid and its Tunable Upconversion Enhancement,” Sci. Reports 7, 41079 (2017).
[Crossref]
W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref]
[PubMed]
D. Zhou, D. Li, X. Zhou, W. Xu, X. Chen, D. Liu, Y. Zhu, and H. Song, “Semiconductor Plasmon Induced Up-Conversion Enhancement in mCu 2- x S@SiO 2 @Y 2 O 3 :Yb 3+ /Er 3+ Core-Shell Nanocomposites,” ACS Appl. Mater. & Interfaces 9, 35226–35233 (2017).
[Crossref]
X. Chen, D. Zhou, W. Xu, J. Zhu, G. Pan, Z. Yin, H. Wang, Y. Zhu, C. Shaobo, and H. Song, “Fabrication of Au-Ag nanocage@NaYF4@NaYF4:Yb, Er Core-Shell Hybrid and its Tunable Upconversion Enhancement,” Sci. Reports 7, 41079 (2017).
[Crossref]
W. Xu, S. Xu, Y. Zhu, T. Liu, X. Bai, B. Dong, L. Xu, and H. Song, “Ultra-broad plasma resonance enhanced multicolor emissions in an assembled Ag/NaYF4:Yb, Er nano-film,” Nanoscale 4, 6971 (2012).
[Crossref]
[PubMed]
W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6, 560–564 (2012).
[Crossref]
J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref]
[PubMed]