X. Wang, Y. Wang, J. Marques-Hueso, and X. Yan, “Improving optical temperature sensing performance of Er3+ Doped Y2O3 microtubes via co-doping and controlling excitation power,” Sci. Rep. 7(1), 758 (2017).
X. Wang, Q. Liu, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
X. Wang, Y. Bu, X. Yan, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Detecting the origin of luminescence in Er3+-doped hexagonal Na1.5Gd1.5F6 phosphors,” Opt. Lett. 41(22), 5314–5317 (2016).
H. Zou, X. Wang, Y. Hu, X. Zhu, Y. Sui, and Z. Song, “Optical temperature sensor through upconversion emission from the Er3+ Doped SrBi8Ti7O27 ferroelectrics,” J. Electron. Mater. 45(6), 2745–2749 (2016).
D. Das, S. L. Shinde, and K. K. Nanda, “Temperature-Dependent Photoluminescence of g-C3N4: implication for temperature sensing,” ACS Appl. Mater. Interfaces 8(3), 2181–2186 (2016).
Z. Cao, X. Wei, L. Zhao, Y. Chen, and M. Yin, “Investigation of SrB4O7:Sm2+ as a multimode temperature sensor with high sensitivity,” ACS Appl. Mater. Interfaces 8(50), 34546–34551 (2016).
T. Wei, Z. Dong, C. Zhao, Y. Ma, T. Zhang, Y. Xie, Q. Zhou, and Z. Li, “Up-conversion luminescence and temperature sensing properties in Er-doped ferroelectric Sr2Bi4Ti5O18,” Ceram. Int. 42(4), 5537–5545 (2016).
R. Cao, X. Ceng, J. Huang, X. Xia, S. Guo, and J. Fu, “A double-perovskite Sr2ZnWO6: Mn4+ deep red phosphor: Synthesis and luminescence properties,” Ceram. Int. 42(15), 16817–16821 (2016).
D. Chen, M. Xu, and P. Huang, “Core@ shell upconverting nanoarchitectures for luminescent sensing of temperature,” Sens. Actuators B Chem. 231, 576–583 (2016).
Y. Zhao, Y. Ge, X. Zhang, Y. Zhao, H. Zhou, J. Li, and H. Jin, “Comprehensive investigation of Er2O3 doped (Li, K, Na) NbO3 ceramics rendering potential application in novel multifunctional devices,” J. Alloys Compd. 683, 171–177 (2016).
D. Chen, W. Xu, Y. Zhou, and Y. Chen, “Lanthanide doped BaTiO3SrTiO3 solid-solution phosphors: Structure, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 676, 215–223 (2016).
A. F. Pereira, K. U. Kumar, W. F. Silva, W. Q. Santos, D. Jaque, and C. Jacinto, “Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers,” Sens. Actuators B Chem. 213, 65–71 (2015).
P. Du, L. Luo, and J. S. Yu, “Low-temperature thermometry based on upconversion emission of Ho/Yb-codoped Ba0.77Ca0.23TiO3 ceramics,” J. Alloys Compd. 632, 73–77 (2015).
S. P. Tiwari, M. K. Mahata, K. Kumar, and V. K. Rai, “Enhanced temperature sensing response of upconversion luminescence in ZnO-CaTiO3: Er3+/Yb3+ nano-composite phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 150, 623–630 (2015).
Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃Dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
D. Junli, D. Peng, X. Jiadan, X. Chaoxiang, and L. Laihui, “Piezoelectric and upconversion emission properties of Er3+-doped 0.5 Ba (Zr0.2Ti0.8) O3− 0.5 (Ba0.7Ca0.3)TiO3 ceramic,” J. Rare Earths 33(4), 391–396 (2015).
A. Pandey, V. K. Rai, V. Kumar, V. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+codoped SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209, 352–358 (2015).
P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5 Ba (Zr0. 2Ti0. 8) O3-0.5 (Ba0. 7Ca0. 3) TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
S. Zhou, G. Jiang, X. Li, S. Jiang, X. Wei, Y. Chen, M. Yin, and C. Duan, “Strategy for thermometry via Tm3+-doped NaYF4 core-shell nanoparticles,” Opt. Lett. 39(23), 6687–6690 (2014).
V. Singh, V. K. Rai, K. Al-Shamery, M. Haase, and S. H. Kim, “NIR to visible frequency upconversion in Er3+ and Yb3+ co-doped BaZrO3 phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 108, 141–145 (2013).
L. A. Diaz-Torres, P. Salas, J. Oliva, E. D. Rosa, C. Angeles-Chavez, and V. M. Castaño, “NaOH–controlled upconversion of nanocrystalline BaZrO3:Er,Yb phosphor,” Int. J. Nanotechnol. 10(12), 1055–1063 (2013).
A. Pandey and V. K. Rai, “Improved luminescence and temperature sensing performance of Ho3+-Yb3+-Zn2+:Y2O3 phosphor,” Dalton Trans. 42(30), 11005–11011 (2013).
L. Guo, C. Zhong, X. Wang, and L. Li, “Synthesis and photoluminescence properties of Er3+ doped BaZrO3 nanotube arrays,” J. Alloys Compd. 530, 22–25 (2012).
B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er–Mo:Yb2Ti2O7 nanophosphor,” Sens. Actuators B Chem. 159(1), 8–11 (2011).
F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
L. R. Macario, M. L. Moreira, J. Andres, and E. Longo, “An efficient microwave-assisted hydrothermal synthesis of BaZrO3 microcrystals: growth mechanism and photoluminescence emissions,” CrystEngComm 12(11), 3612–3619 (2010).
R. Borja-Urby, L. A. Diaz-Torres, P. Salas, M. Vega-Gonzalez, and C. Angeles-Chavez, “Blue and red emission in wide band gap BaZrO3:Yb3+,Tm3+,” Mater. Sci. Eng. B 174(1-3), 169–173 (2010).
B. Marí, K. C. Singh, M. Sahal, S. P. Khatkar, V. B. Taxak, and M. Kumar, “Preparation and luminescence properties of Tb3+ doped ZrO2 and BaZrO3 phosphors,” J. Lumin. 130(11), 2128–2132 (2010).
J. Oliva, E. D. Rosa, L. A. Diaz-Torres, P. Salas, and C. Ángeles-Chavez, “Annealing effect on the luminescence properties of BaZrO3:Yb3+ microcrystals,” J. Appl. Phys. 104(2), 023505 (2008).
L. A. Diaz-Torres, P. Salas, J. S. Perez-Huerta, C. Angeles-Chavez, and E. De la Rosa, “A new blue, green and red upconversion emission nanophosphor: BaZrO3:Er,Yb,” J. Nanosci. Nanotechnol. 8(12), 6425–6430 (2008).
X. Liu and X. Wang, “Preparation and luminescence properties of BaZrO3:Eu phosphor powders,” Opt. Mater. 30(4), 626–629 (2007).
C. Shi, M. Yoshino, and M. Morinaga, “First-principles study of protonic conduction in In-doped AZrO3 (A=Ca, Sr, Ba),” Solid State Ion. 176(11-12), 1091–1096 (2005).
I. Grinberg and A. M. Rappe, “Silver solid solution piezoelectrics,” Appl. Phys. Lett. 85(10), 1760–1762 (2004).
V. Singh, V. K. Rai, K. Al-Shamery, M. Haase, and S. H. Kim, “NIR to visible frequency upconversion in Er3+ and Yb3+ co-doped BaZrO3 phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 108, 141–145 (2013).
L. R. Macario, M. L. Moreira, J. Andres, and E. Longo, “An efficient microwave-assisted hydrothermal synthesis of BaZrO3 microcrystals: growth mechanism and photoluminescence emissions,” CrystEngComm 12(11), 3612–3619 (2010).
L. A. Diaz-Torres, P. Salas, J. Oliva, E. D. Rosa, C. Angeles-Chavez, and V. M. Castaño, “NaOH–controlled upconversion of nanocrystalline BaZrO3:Er,Yb phosphor,” Int. J. Nanotechnol. 10(12), 1055–1063 (2013).
R. Borja-Urby, L. A. Diaz-Torres, P. Salas, M. Vega-Gonzalez, and C. Angeles-Chavez, “Blue and red emission in wide band gap BaZrO3:Yb3+,Tm3+,” Mater. Sci. Eng. B 174(1-3), 169–173 (2010).
L. A. Diaz-Torres, P. Salas, J. S. Perez-Huerta, C. Angeles-Chavez, and E. De la Rosa, “A new blue, green and red upconversion emission nanophosphor: BaZrO3:Er,Yb,” J. Nanosci. Nanotechnol. 8(12), 6425–6430 (2008).
J. Oliva, E. D. Rosa, L. A. Diaz-Torres, P. Salas, and C. Ángeles-Chavez, “Annealing effect on the luminescence properties of BaZrO3:Yb3+ microcrystals,” J. Appl. Phys. 104(2), 023505 (2008).
R. Borja-Urby, L. A. Diaz-Torres, P. Salas, M. Vega-Gonzalez, and C. Angeles-Chavez, “Blue and red emission in wide band gap BaZrO3:Yb3+,Tm3+,” Mater. Sci. Eng. B 174(1-3), 169–173 (2010).
X. Wang, Y. Bu, X. Yan, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Detecting the origin of luminescence in Er3+-doped hexagonal Na1.5Gd1.5F6 phosphors,” Opt. Lett. 41(22), 5314–5317 (2016).
X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
X. Wang, Y. Bu, X. Yan, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Detecting the origin of luminescence in Er3+-doped hexagonal Na1.5Gd1.5F6 phosphors,” Opt. Lett. 41(22), 5314–5317 (2016).
X. Wang, Q. Liu, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er–Mo:Yb2Ti2O7 nanophosphor,” Sens. Actuators B Chem. 159(1), 8–11 (2011).
R. Cao, X. Ceng, J. Huang, X. Xia, S. Guo, and J. Fu, “A double-perovskite Sr2ZnWO6: Mn4+ deep red phosphor: Synthesis and luminescence properties,” Ceram. Int. 42(15), 16817–16821 (2016).
Z. Cao, X. Wei, L. Zhao, Y. Chen, and M. Yin, “Investigation of SrB4O7:Sm2+ as a multimode temperature sensor with high sensitivity,” ACS Appl. Mater. Interfaces 8(50), 34546–34551 (2016).
F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
L. A. Diaz-Torres, P. Salas, J. Oliva, E. D. Rosa, C. Angeles-Chavez, and V. M. Castaño, “NaOH–controlled upconversion of nanocrystalline BaZrO3:Er,Yb phosphor,” Int. J. Nanotechnol. 10(12), 1055–1063 (2013).
R. Cao, X. Ceng, J. Huang, X. Xia, S. Guo, and J. Fu, “A double-perovskite Sr2ZnWO6: Mn4+ deep red phosphor: Synthesis and luminescence properties,” Ceram. Int. 42(15), 16817–16821 (2016).
D. Junli, D. Peng, X. Jiadan, X. Chaoxiang, and L. Laihui, “Piezoelectric and upconversion emission properties of Er3+-doped 0.5 Ba (Zr0.2Ti0.8) O3− 0.5 (Ba0.7Ca0.3)TiO3 ceramic,” J. Rare Earths 33(4), 391–396 (2015).
Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃Dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
D. Chen, M. Xu, and P. Huang, “Core@ shell upconverting nanoarchitectures for luminescent sensing of temperature,” Sens. Actuators B Chem. 231, 576–583 (2016).
D. Chen, W. Xu, Y. Zhou, and Y. Chen, “Lanthanide doped BaTiO3SrTiO3 solid-solution phosphors: Structure, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 676, 215–223 (2016).
D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5 Ba (Zr0. 2Ti0. 8) O3-0.5 (Ba0. 7Ca0. 3) TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
Z. Cao, X. Wei, L. Zhao, Y. Chen, and M. Yin, “Investigation of SrB4O7:Sm2+ as a multimode temperature sensor with high sensitivity,” ACS Appl. Mater. Interfaces 8(50), 34546–34551 (2016).
D. Chen, W. Xu, Y. Zhou, and Y. Chen, “Lanthanide doped BaTiO3SrTiO3 solid-solution phosphors: Structure, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 676, 215–223 (2016).
S. Zhou, G. Jiang, X. Li, S. Jiang, X. Wei, Y. Chen, M. Yin, and C. Duan, “Strategy for thermometry via Tm3+-doped NaYF4 core-shell nanoparticles,” Opt. Lett. 39(23), 6687–6690 (2014).
Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃Dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
D. Das, S. L. Shinde, and K. K. Nanda, “Temperature-Dependent Photoluminescence of g-C3N4: implication for temperature sensing,” ACS Appl. Mater. Interfaces 8(3), 2181–2186 (2016).
L. A. Diaz-Torres, P. Salas, J. S. Perez-Huerta, C. Angeles-Chavez, and E. De la Rosa, “A new blue, green and red upconversion emission nanophosphor: BaZrO3:Er,Yb,” J. Nanosci. Nanotechnol. 8(12), 6425–6430 (2008).
L. A. Diaz-Torres, P. Salas, J. Oliva, E. D. Rosa, C. Angeles-Chavez, and V. M. Castaño, “NaOH–controlled upconversion of nanocrystalline BaZrO3:Er,Yb phosphor,” Int. J. Nanotechnol. 10(12), 1055–1063 (2013).
R. Borja-Urby, L. A. Diaz-Torres, P. Salas, M. Vega-Gonzalez, and C. Angeles-Chavez, “Blue and red emission in wide band gap BaZrO3:Yb3+,Tm3+,” Mater. Sci. Eng. B 174(1-3), 169–173 (2010).
L. A. Diaz-Torres, P. Salas, J. S. Perez-Huerta, C. Angeles-Chavez, and E. De la Rosa, “A new blue, green and red upconversion emission nanophosphor: BaZrO3:Er,Yb,” J. Nanosci. Nanotechnol. 8(12), 6425–6430 (2008).
J. Oliva, E. D. Rosa, L. A. Diaz-Torres, P. Salas, and C. Ángeles-Chavez, “Annealing effect on the luminescence properties of BaZrO3:Yb3+ microcrystals,” J. Appl. Phys. 104(2), 023505 (2008).
D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er–Mo:Yb2Ti2O7 nanophosphor,” Sens. Actuators B Chem. 159(1), 8–11 (2011).
T. Wei, Z. Dong, C. Zhao, Y. Ma, T. Zhang, Y. Xie, Q. Zhou, and Z. Li, “Up-conversion luminescence and temperature sensing properties in Er-doped ferroelectric Sr2Bi4Ti5O18,” Ceram. Int. 42(4), 5537–5545 (2016).
P. Du, L. Luo, and J. S. Yu, “Low-temperature thermometry based on upconversion emission of Ho/Yb-codoped Ba0.77Ca0.23TiO3 ceramics,” J. Alloys Compd. 632, 73–77 (2015).
P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5 Ba (Zr0. 2Ti0. 8) O3-0.5 (Ba0. 7Ca0. 3) TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
S. Zhou, G. Jiang, X. Li, S. Jiang, X. Wei, Y. Chen, M. Yin, and C. Duan, “Strategy for thermometry via Tm3+-doped NaYF4 core-shell nanoparticles,” Opt. Lett. 39(23), 6687–6690 (2014).
B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er–Mo:Yb2Ti2O7 nanophosphor,” Sens. Actuators B Chem. 159(1), 8–11 (2011).
R. Cao, X. Ceng, J. Huang, X. Xia, S. Guo, and J. Fu, “A double-perovskite Sr2ZnWO6: Mn4+ deep red phosphor: Synthesis and luminescence properties,” Ceram. Int. 42(15), 16817–16821 (2016).
F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
Y. Zhao, Y. Ge, X. Zhang, Y. Zhao, H. Zhou, J. Li, and H. Jin, “Comprehensive investigation of Er2O3 doped (Li, K, Na) NbO3 ceramics rendering potential application in novel multifunctional devices,” J. Alloys Compd. 683, 171–177 (2016).
I. Grinberg and A. M. Rappe, “Silver solid solution piezoelectrics,” Appl. Phys. Lett. 85(10), 1760–1762 (2004).
L. Guo, C. Zhong, X. Wang, and L. Li, “Synthesis and photoluminescence properties of Er3+ doped BaZrO3 nanotube arrays,” J. Alloys Compd. 530, 22–25 (2012).
R. Cao, X. Ceng, J. Huang, X. Xia, S. Guo, and J. Fu, “A double-perovskite Sr2ZnWO6: Mn4+ deep red phosphor: Synthesis and luminescence properties,” Ceram. Int. 42(15), 16817–16821 (2016).
V. Singh, V. K. Rai, K. Al-Shamery, M. Haase, and S. H. Kim, “NIR to visible frequency upconversion in Er3+ and Yb3+ co-doped BaZrO3 phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 108, 141–145 (2013).
B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er–Mo:Yb2Ti2O7 nanophosphor,” Sens. Actuators B Chem. 159(1), 8–11 (2011).
H. Zou, X. Wang, Y. Hu, X. Zhu, Y. Sui, and Z. Song, “Optical temperature sensor through upconversion emission from the Er3+ Doped SrBi8Ti7O27 ferroelectrics,” J. Electron. Mater. 45(6), 2745–2749 (2016).
R. Cao, X. Ceng, J. Huang, X. Xia, S. Guo, and J. Fu, “A double-perovskite Sr2ZnWO6: Mn4+ deep red phosphor: Synthesis and luminescence properties,” Ceram. Int. 42(15), 16817–16821 (2016).
D. Chen, M. Xu, and P. Huang, “Core@ shell upconverting nanoarchitectures for luminescent sensing of temperature,” Sens. Actuators B Chem. 231, 576–583 (2016).
A. F. Pereira, K. U. Kumar, W. F. Silva, W. Q. Santos, D. Jaque, and C. Jacinto, “Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers,” Sens. Actuators B Chem. 213, 65–71 (2015).
A. F. Pereira, K. U. Kumar, W. F. Silva, W. Q. Santos, D. Jaque, and C. Jacinto, “Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers,” Sens. Actuators B Chem. 213, 65–71 (2015).
F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
D. Junli, D. Peng, X. Jiadan, X. Chaoxiang, and L. Laihui, “Piezoelectric and upconversion emission properties of Er3+-doped 0.5 Ba (Zr0.2Ti0.8) O3− 0.5 (Ba0.7Ca0.3)TiO3 ceramic,” J. Rare Earths 33(4), 391–396 (2015).
S. Zhou, G. Jiang, X. Li, S. Jiang, X. Wei, Y. Chen, M. Yin, and C. Duan, “Strategy for thermometry via Tm3+-doped NaYF4 core-shell nanoparticles,” Opt. Lett. 39(23), 6687–6690 (2014).
S. Zhou, G. Jiang, X. Li, S. Jiang, X. Wei, Y. Chen, M. Yin, and C. Duan, “Strategy for thermometry via Tm3+-doped NaYF4 core-shell nanoparticles,” Opt. Lett. 39(23), 6687–6690 (2014).
Y. Zhao, Y. Ge, X. Zhang, Y. Zhao, H. Zhou, J. Li, and H. Jin, “Comprehensive investigation of Er2O3 doped (Li, K, Na) NbO3 ceramics rendering potential application in novel multifunctional devices,” J. Alloys Compd. 683, 171–177 (2016).
F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
D. Junli, D. Peng, X. Jiadan, X. Chaoxiang, and L. Laihui, “Piezoelectric and upconversion emission properties of Er3+-doped 0.5 Ba (Zr0.2Ti0.8) O3− 0.5 (Ba0.7Ca0.3)TiO3 ceramic,” J. Rare Earths 33(4), 391–396 (2015).
B. Marí, K. C. Singh, M. Sahal, S. P. Khatkar, V. B. Taxak, and M. Kumar, “Preparation and luminescence properties of Tb3+ doped ZrO2 and BaZrO3 phosphors,” J. Lumin. 130(11), 2128–2132 (2010).
V. Singh, V. K. Rai, K. Al-Shamery, M. Haase, and S. H. Kim, “NIR to visible frequency upconversion in Er3+ and Yb3+ co-doped BaZrO3 phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 108, 141–145 (2013).
S. P. Tiwari, M. K. Mahata, K. Kumar, and V. K. Rai, “Enhanced temperature sensing response of upconversion luminescence in ZnO-CaTiO3: Er3+/Yb3+ nano-composite phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 150, 623–630 (2015).
A. F. Pereira, K. U. Kumar, W. F. Silva, W. Q. Santos, D. Jaque, and C. Jacinto, “Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers,” Sens. Actuators B Chem. 213, 65–71 (2015).
B. Marí, K. C. Singh, M. Sahal, S. P. Khatkar, V. B. Taxak, and M. Kumar, “Preparation and luminescence properties of Tb3+ doped ZrO2 and BaZrO3 phosphors,” J. Lumin. 130(11), 2128–2132 (2010).
A. Pandey, V. K. Rai, V. Kumar, V. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+codoped SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209, 352–358 (2015).
A. Pandey, V. K. Rai, V. Kumar, V. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+codoped SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209, 352–358 (2015).
D. Junli, D. Peng, X. Jiadan, X. Chaoxiang, and L. Laihui, “Piezoelectric and upconversion emission properties of Er3+-doped 0.5 Ba (Zr0.2Ti0.8) O3− 0.5 (Ba0.7Ca0.3)TiO3 ceramic,” J. Rare Earths 33(4), 391–396 (2015).
Y. Zhao, Y. Ge, X. Zhang, Y. Zhao, H. Zhou, J. Li, and H. Jin, “Comprehensive investigation of Er2O3 doped (Li, K, Na) NbO3 ceramics rendering potential application in novel multifunctional devices,” J. Alloys Compd. 683, 171–177 (2016).
L. Guo, C. Zhong, X. Wang, and L. Li, “Synthesis and photoluminescence properties of Er3+ doped BaZrO3 nanotube arrays,” J. Alloys Compd. 530, 22–25 (2012).
P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5 Ba (Zr0. 2Ti0. 8) O3-0.5 (Ba0. 7Ca0. 3) TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
S. Zhou, G. Jiang, X. Li, S. Jiang, X. Wei, Y. Chen, M. Yin, and C. Duan, “Strategy for thermometry via Tm3+-doped NaYF4 core-shell nanoparticles,” Opt. Lett. 39(23), 6687–6690 (2014).
B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er–Mo:Yb2Ti2O7 nanophosphor,” Sens. Actuators B Chem. 159(1), 8–11 (2011).
T. Wei, Z. Dong, C. Zhao, Y. Ma, T. Zhang, Y. Xie, Q. Zhou, and Z. Li, “Up-conversion luminescence and temperature sensing properties in Er-doped ferroelectric Sr2Bi4Ti5O18,” Ceram. Int. 42(4), 5537–5545 (2016).
X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃Dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
X. Wang, Q. Liu, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
X. Liu and X. Wang, “Preparation and luminescence properties of BaZrO3:Eu phosphor powders,” Opt. Mater. 30(4), 626–629 (2007).
L. R. Macario, M. L. Moreira, J. Andres, and E. Longo, “An efficient microwave-assisted hydrothermal synthesis of BaZrO3 microcrystals: growth mechanism and photoluminescence emissions,” CrystEngComm 12(11), 3612–3619 (2010).
P. Du, L. Luo, and J. S. Yu, “Low-temperature thermometry based on upconversion emission of Ho/Yb-codoped Ba0.77Ca0.23TiO3 ceramics,” J. Alloys Compd. 632, 73–77 (2015).
P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5 Ba (Zr0. 2Ti0. 8) O3-0.5 (Ba0. 7Ca0. 3) TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
T. Wei, Z. Dong, C. Zhao, Y. Ma, T. Zhang, Y. Xie, Q. Zhou, and Z. Li, “Up-conversion luminescence and temperature sensing properties in Er-doped ferroelectric Sr2Bi4Ti5O18,” Ceram. Int. 42(4), 5537–5545 (2016).
L. R. Macario, M. L. Moreira, J. Andres, and E. Longo, “An efficient microwave-assisted hydrothermal synthesis of BaZrO3 microcrystals: growth mechanism and photoluminescence emissions,” CrystEngComm 12(11), 3612–3619 (2010).
S. P. Tiwari, M. K. Mahata, K. Kumar, and V. K. Rai, “Enhanced temperature sensing response of upconversion luminescence in ZnO-CaTiO3: Er3+/Yb3+ nano-composite phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 150, 623–630 (2015).
B. Marí, K. C. Singh, M. Sahal, S. P. Khatkar, V. B. Taxak, and M. Kumar, “Preparation and luminescence properties of Tb3+ doped ZrO2 and BaZrO3 phosphors,” J. Lumin. 130(11), 2128–2132 (2010).
X. Wang, Y. Wang, J. Marques-Hueso, and X. Yan, “Improving optical temperature sensing performance of Er3+ Doped Y2O3 microtubes via co-doping and controlling excitation power,” Sci. Rep. 7(1), 758 (2017).
F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
L. R. Macario, M. L. Moreira, J. Andres, and E. Longo, “An efficient microwave-assisted hydrothermal synthesis of BaZrO3 microcrystals: growth mechanism and photoluminescence emissions,” CrystEngComm 12(11), 3612–3619 (2010).
C. Shi, M. Yoshino, and M. Morinaga, “First-principles study of protonic conduction in In-doped AZrO3 (A=Ca, Sr, Ba),” Solid State Ion. 176(11-12), 1091–1096 (2005).
F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
D. Das, S. L. Shinde, and K. K. Nanda, “Temperature-Dependent Photoluminescence of g-C3N4: implication for temperature sensing,” ACS Appl. Mater. Interfaces 8(3), 2181–2186 (2016).
L. A. Diaz-Torres, P. Salas, J. Oliva, E. D. Rosa, C. Angeles-Chavez, and V. M. Castaño, “NaOH–controlled upconversion of nanocrystalline BaZrO3:Er,Yb phosphor,” Int. J. Nanotechnol. 10(12), 1055–1063 (2013).
J. Oliva, E. D. Rosa, L. A. Diaz-Torres, P. Salas, and C. Ángeles-Chavez, “Annealing effect on the luminescence properties of BaZrO3:Yb3+ microcrystals,” J. Appl. Phys. 104(2), 023505 (2008).
A. Pandey, V. K. Rai, V. Kumar, V. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+codoped SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209, 352–358 (2015).
A. Pandey and V. K. Rai, “Improved luminescence and temperature sensing performance of Ho3+-Yb3+-Zn2+:Y2O3 phosphor,” Dalton Trans. 42(30), 11005–11011 (2013).
D. Junli, D. Peng, X. Jiadan, X. Chaoxiang, and L. Laihui, “Piezoelectric and upconversion emission properties of Er3+-doped 0.5 Ba (Zr0.2Ti0.8) O3− 0.5 (Ba0.7Ca0.3)TiO3 ceramic,” J. Rare Earths 33(4), 391–396 (2015).
A. F. Pereira, K. U. Kumar, W. F. Silva, W. Q. Santos, D. Jaque, and C. Jacinto, “Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers,” Sens. Actuators B Chem. 213, 65–71 (2015).
L. A. Diaz-Torres, P. Salas, J. S. Perez-Huerta, C. Angeles-Chavez, and E. De la Rosa, “A new blue, green and red upconversion emission nanophosphor: BaZrO3:Er,Yb,” J. Nanosci. Nanotechnol. 8(12), 6425–6430 (2008).
Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃Dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
X. Wang, Q. Liu, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
X. Wang, Y. Bu, X. Yan, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Detecting the origin of luminescence in Er3+-doped hexagonal Na1.5Gd1.5F6 phosphors,” Opt. Lett. 41(22), 5314–5317 (2016).
A. Pandey, V. K. Rai, V. Kumar, V. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+codoped SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209, 352–358 (2015).
S. P. Tiwari, M. K. Mahata, K. Kumar, and V. K. Rai, “Enhanced temperature sensing response of upconversion luminescence in ZnO-CaTiO3: Er3+/Yb3+ nano-composite phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 150, 623–630 (2015).
A. Pandey and V. K. Rai, “Improved luminescence and temperature sensing performance of Ho3+-Yb3+-Zn2+:Y2O3 phosphor,” Dalton Trans. 42(30), 11005–11011 (2013).
V. Singh, V. K. Rai, K. Al-Shamery, M. Haase, and S. H. Kim, “NIR to visible frequency upconversion in Er3+ and Yb3+ co-doped BaZrO3 phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 108, 141–145 (2013).
I. Grinberg and A. M. Rappe, “Silver solid solution piezoelectrics,” Appl. Phys. Lett. 85(10), 1760–1762 (2004).
L. A. Diaz-Torres, P. Salas, J. Oliva, E. D. Rosa, C. Angeles-Chavez, and V. M. Castaño, “NaOH–controlled upconversion of nanocrystalline BaZrO3:Er,Yb phosphor,” Int. J. Nanotechnol. 10(12), 1055–1063 (2013).
J. Oliva, E. D. Rosa, L. A. Diaz-Torres, P. Salas, and C. Ángeles-Chavez, “Annealing effect on the luminescence properties of BaZrO3:Yb3+ microcrystals,” J. Appl. Phys. 104(2), 023505 (2008).
B. Marí, K. C. Singh, M. Sahal, S. P. Khatkar, V. B. Taxak, and M. Kumar, “Preparation and luminescence properties of Tb3+ doped ZrO2 and BaZrO3 phosphors,” J. Lumin. 130(11), 2128–2132 (2010).
L. A. Diaz-Torres, P. Salas, J. Oliva, E. D. Rosa, C. Angeles-Chavez, and V. M. Castaño, “NaOH–controlled upconversion of nanocrystalline BaZrO3:Er,Yb phosphor,” Int. J. Nanotechnol. 10(12), 1055–1063 (2013).
R. Borja-Urby, L. A. Diaz-Torres, P. Salas, M. Vega-Gonzalez, and C. Angeles-Chavez, “Blue and red emission in wide band gap BaZrO3:Yb3+,Tm3+,” Mater. Sci. Eng. B 174(1-3), 169–173 (2010).
L. A. Diaz-Torres, P. Salas, J. S. Perez-Huerta, C. Angeles-Chavez, and E. De la Rosa, “A new blue, green and red upconversion emission nanophosphor: BaZrO3:Er,Yb,” J. Nanosci. Nanotechnol. 8(12), 6425–6430 (2008).
J. Oliva, E. D. Rosa, L. A. Diaz-Torres, P. Salas, and C. Ángeles-Chavez, “Annealing effect on the luminescence properties of BaZrO3:Yb3+ microcrystals,” J. Appl. Phys. 104(2), 023505 (2008).
A. F. Pereira, K. U. Kumar, W. F. Silva, W. Q. Santos, D. Jaque, and C. Jacinto, “Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers,” Sens. Actuators B Chem. 213, 65–71 (2015).
F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
X. Wang, Q. Liu, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
X. Wang, Y. Bu, X. Yan, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Detecting the origin of luminescence in Er3+-doped hexagonal Na1.5Gd1.5F6 phosphors,” Opt. Lett. 41(22), 5314–5317 (2016).
C. Shi, M. Yoshino, and M. Morinaga, “First-principles study of protonic conduction in In-doped AZrO3 (A=Ca, Sr, Ba),” Solid State Ion. 176(11-12), 1091–1096 (2005).
D. Das, S. L. Shinde, and K. K. Nanda, “Temperature-Dependent Photoluminescence of g-C3N4: implication for temperature sensing,” ACS Appl. Mater. Interfaces 8(3), 2181–2186 (2016).
A. F. Pereira, K. U. Kumar, W. F. Silva, W. Q. Santos, D. Jaque, and C. Jacinto, “Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers,” Sens. Actuators B Chem. 213, 65–71 (2015).
B. Marí, K. C. Singh, M. Sahal, S. P. Khatkar, V. B. Taxak, and M. Kumar, “Preparation and luminescence properties of Tb3+ doped ZrO2 and BaZrO3 phosphors,” J. Lumin. 130(11), 2128–2132 (2010).
V. Singh, V. K. Rai, K. Al-Shamery, M. Haase, and S. H. Kim, “NIR to visible frequency upconversion in Er3+ and Yb3+ co-doped BaZrO3 phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 108, 141–145 (2013).
Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃Dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
H. Zou, X. Wang, Y. Hu, X. Zhu, Y. Sui, and Z. Song, “Optical temperature sensor through upconversion emission from the Er3+ Doped SrBi8Ti7O27 ferroelectrics,” J. Electron. Mater. 45(6), 2745–2749 (2016).
H. Zou, X. Wang, Y. Hu, X. Zhu, Y. Sui, and Z. Song, “Optical temperature sensor through upconversion emission from the Er3+ Doped SrBi8Ti7O27 ferroelectrics,” J. Electron. Mater. 45(6), 2745–2749 (2016).
A. Pandey, V. K. Rai, V. Kumar, V. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+codoped SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209, 352–358 (2015).
B. Marí, K. C. Singh, M. Sahal, S. P. Khatkar, V. B. Taxak, and M. Kumar, “Preparation and luminescence properties of Tb3+ doped ZrO2 and BaZrO3 phosphors,” J. Lumin. 130(11), 2128–2132 (2010).
S. P. Tiwari, M. K. Mahata, K. Kumar, and V. K. Rai, “Enhanced temperature sensing response of upconversion luminescence in ZnO-CaTiO3: Er3+/Yb3+ nano-composite phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 150, 623–630 (2015).
R. Borja-Urby, L. A. Diaz-Torres, P. Salas, M. Vega-Gonzalez, and C. Angeles-Chavez, “Blue and red emission in wide band gap BaZrO3:Yb3+,Tm3+,” Mater. Sci. Eng. B 174(1-3), 169–173 (2010).
F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
X. Wang, Q. Liu, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
X. Wang, Y. Bu, X. Yan, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Detecting the origin of luminescence in Er3+-doped hexagonal Na1.5Gd1.5F6 phosphors,” Opt. Lett. 41(22), 5314–5317 (2016).
D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
X. Wang, Y. Bu, X. Yan, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Detecting the origin of luminescence in Er3+-doped hexagonal Na1.5Gd1.5F6 phosphors,” Opt. Lett. 41(22), 5314–5317 (2016).
X. Wang, Q. Liu, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
X. Wang, Y. Wang, J. Marques-Hueso, and X. Yan, “Improving optical temperature sensing performance of Er3+ Doped Y2O3 microtubes via co-doping and controlling excitation power,” Sci. Rep. 7(1), 758 (2017).
X. Wang, Q. Liu, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
X. Wang, Y. Bu, X. Yan, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Detecting the origin of luminescence in Er3+-doped hexagonal Na1.5Gd1.5F6 phosphors,” Opt. Lett. 41(22), 5314–5317 (2016).
H. Zou, X. Wang, Y. Hu, X. Zhu, Y. Sui, and Z. Song, “Optical temperature sensor through upconversion emission from the Er3+ Doped SrBi8Ti7O27 ferroelectrics,” J. Electron. Mater. 45(6), 2745–2749 (2016).
X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
L. Guo, C. Zhong, X. Wang, and L. Li, “Synthesis and photoluminescence properties of Er3+ doped BaZrO3 nanotube arrays,” J. Alloys Compd. 530, 22–25 (2012).
X. Liu and X. Wang, “Preparation and luminescence properties of BaZrO3:Eu phosphor powders,” Opt. Mater. 30(4), 626–629 (2007).
X. Wang, Y. Wang, J. Marques-Hueso, and X. Yan, “Improving optical temperature sensing performance of Er3+ Doped Y2O3 microtubes via co-doping and controlling excitation power,” Sci. Rep. 7(1), 758 (2017).
Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃Dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃Dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
T. Wei, Z. Dong, C. Zhao, Y. Ma, T. Zhang, Y. Xie, Q. Zhou, and Z. Li, “Up-conversion luminescence and temperature sensing properties in Er-doped ferroelectric Sr2Bi4Ti5O18,” Ceram. Int. 42(4), 5537–5545 (2016).
Z. Cao, X. Wei, L. Zhao, Y. Chen, and M. Yin, “Investigation of SrB4O7:Sm2+ as a multimode temperature sensor with high sensitivity,” ACS Appl. Mater. Interfaces 8(50), 34546–34551 (2016).
S. Zhou, G. Jiang, X. Li, S. Jiang, X. Wei, Y. Chen, M. Yin, and C. Duan, “Strategy for thermometry via Tm3+-doped NaYF4 core-shell nanoparticles,” Opt. Lett. 39(23), 6687–6690 (2014).
Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃Dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
R. Cao, X. Ceng, J. Huang, X. Xia, S. Guo, and J. Fu, “A double-perovskite Sr2ZnWO6: Mn4+ deep red phosphor: Synthesis and luminescence properties,” Ceram. Int. 42(15), 16817–16821 (2016).
T. Wei, Z. Dong, C. Zhao, Y. Ma, T. Zhang, Y. Xie, Q. Zhou, and Z. Li, “Up-conversion luminescence and temperature sensing properties in Er-doped ferroelectric Sr2Bi4Ti5O18,” Ceram. Int. 42(4), 5537–5545 (2016).
D. Chen, M. Xu, and P. Huang, “Core@ shell upconverting nanoarchitectures for luminescent sensing of temperature,” Sens. Actuators B Chem. 231, 576–583 (2016).
D. Chen, W. Xu, Y. Zhou, and Y. Chen, “Lanthanide doped BaTiO3SrTiO3 solid-solution phosphors: Structure, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 676, 215–223 (2016).
X. Wang, Y. Wang, J. Marques-Hueso, and X. Yan, “Improving optical temperature sensing performance of Er3+ Doped Y2O3 microtubes via co-doping and controlling excitation power,” Sci. Rep. 7(1), 758 (2017).
X. Wang, Y. Bu, X. Yan, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Detecting the origin of luminescence in Er3+-doped hexagonal Na1.5Gd1.5F6 phosphors,” Opt. Lett. 41(22), 5314–5317 (2016).
X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃Dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
Z. Cao, X. Wei, L. Zhao, Y. Chen, and M. Yin, “Investigation of SrB4O7:Sm2+ as a multimode temperature sensor with high sensitivity,” ACS Appl. Mater. Interfaces 8(50), 34546–34551 (2016).
S. Zhou, G. Jiang, X. Li, S. Jiang, X. Wei, Y. Chen, M. Yin, and C. Duan, “Strategy for thermometry via Tm3+-doped NaYF4 core-shell nanoparticles,” Opt. Lett. 39(23), 6687–6690 (2014).
C. Shi, M. Yoshino, and M. Morinaga, “First-principles study of protonic conduction in In-doped AZrO3 (A=Ca, Sr, Ba),” Solid State Ion. 176(11-12), 1091–1096 (2005).
Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃Dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
P. Du, L. Luo, and J. S. Yu, “Low-temperature thermometry based on upconversion emission of Ho/Yb-codoped Ba0.77Ca0.23TiO3 ceramics,” J. Alloys Compd. 632, 73–77 (2015).
D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5 Ba (Zr0. 2Ti0. 8) O3-0.5 (Ba0. 7Ca0. 3) TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
T. Wei, Z. Dong, C. Zhao, Y. Ma, T. Zhang, Y. Xie, Q. Zhou, and Z. Li, “Up-conversion luminescence and temperature sensing properties in Er-doped ferroelectric Sr2Bi4Ti5O18,” Ceram. Int. 42(4), 5537–5545 (2016).
Y. Zhao, Y. Ge, X. Zhang, Y. Zhao, H. Zhou, J. Li, and H. Jin, “Comprehensive investigation of Er2O3 doped (Li, K, Na) NbO3 ceramics rendering potential application in novel multifunctional devices,” J. Alloys Compd. 683, 171–177 (2016).
T. Wei, Z. Dong, C. Zhao, Y. Ma, T. Zhang, Y. Xie, Q. Zhou, and Z. Li, “Up-conversion luminescence and temperature sensing properties in Er-doped ferroelectric Sr2Bi4Ti5O18,” Ceram. Int. 42(4), 5537–5545 (2016).
Z. Cao, X. Wei, L. Zhao, Y. Chen, and M. Yin, “Investigation of SrB4O7:Sm2+ as a multimode temperature sensor with high sensitivity,” ACS Appl. Mater. Interfaces 8(50), 34546–34551 (2016).
Y. Zhao, Y. Ge, X. Zhang, Y. Zhao, H. Zhou, J. Li, and H. Jin, “Comprehensive investigation of Er2O3 doped (Li, K, Na) NbO3 ceramics rendering potential application in novel multifunctional devices,” J. Alloys Compd. 683, 171–177 (2016).
Y. Zhao, Y. Ge, X. Zhang, Y. Zhao, H. Zhou, J. Li, and H. Jin, “Comprehensive investigation of Er2O3 doped (Li, K, Na) NbO3 ceramics rendering potential application in novel multifunctional devices,” J. Alloys Compd. 683, 171–177 (2016).
L. Guo, C. Zhong, X. Wang, and L. Li, “Synthesis and photoluminescence properties of Er3+ doped BaZrO3 nanotube arrays,” J. Alloys Compd. 530, 22–25 (2012).
D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
Y. Zhao, Y. Ge, X. Zhang, Y. Zhao, H. Zhou, J. Li, and H. Jin, “Comprehensive investigation of Er2O3 doped (Li, K, Na) NbO3 ceramics rendering potential application in novel multifunctional devices,” J. Alloys Compd. 683, 171–177 (2016).
T. Wei, Z. Dong, C. Zhao, Y. Ma, T. Zhang, Y. Xie, Q. Zhou, and Z. Li, “Up-conversion luminescence and temperature sensing properties in Er-doped ferroelectric Sr2Bi4Ti5O18,” Ceram. Int. 42(4), 5537–5545 (2016).
S. Zhou, G. Jiang, X. Li, S. Jiang, X. Wei, Y. Chen, M. Yin, and C. Duan, “Strategy for thermometry via Tm3+-doped NaYF4 core-shell nanoparticles,” Opt. Lett. 39(23), 6687–6690 (2014).
D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
D. Chen, W. Xu, Y. Zhou, and Y. Chen, “Lanthanide doped BaTiO3SrTiO3 solid-solution phosphors: Structure, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 676, 215–223 (2016).
D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
H. Zou, X. Wang, Y. Hu, X. Zhu, Y. Sui, and Z. Song, “Optical temperature sensor through upconversion emission from the Er3+ Doped SrBi8Ti7O27 ferroelectrics,” J. Electron. Mater. 45(6), 2745–2749 (2016).
H. Zou, X. Wang, Y. Hu, X. Zhu, Y. Sui, and Z. Song, “Optical temperature sensor through upconversion emission from the Er3+ Doped SrBi8Ti7O27 ferroelectrics,” J. Electron. Mater. 45(6), 2745–2749 (2016).
D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
D. Das, S. L. Shinde, and K. K. Nanda, “Temperature-Dependent Photoluminescence of g-C3N4: implication for temperature sensing,” ACS Appl. Mater. Interfaces 8(3), 2181–2186 (2016).
Z. Cao, X. Wei, L. Zhao, Y. Chen, and M. Yin, “Investigation of SrB4O7:Sm2+ as a multimode temperature sensor with high sensitivity,” ACS Appl. Mater. Interfaces 8(50), 34546–34551 (2016).
F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃Dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5 Ba (Zr0. 2Ti0. 8) O3-0.5 (Ba0. 7Ca0. 3) TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
I. Grinberg and A. M. Rappe, “Silver solid solution piezoelectrics,” Appl. Phys. Lett. 85(10), 1760–1762 (2004).
T. Wei, Z. Dong, C. Zhao, Y. Ma, T. Zhang, Y. Xie, Q. Zhou, and Z. Li, “Up-conversion luminescence and temperature sensing properties in Er-doped ferroelectric Sr2Bi4Ti5O18,” Ceram. Int. 42(4), 5537–5545 (2016).
R. Cao, X. Ceng, J. Huang, X. Xia, S. Guo, and J. Fu, “A double-perovskite Sr2ZnWO6: Mn4+ deep red phosphor: Synthesis and luminescence properties,” Ceram. Int. 42(15), 16817–16821 (2016).
L. R. Macario, M. L. Moreira, J. Andres, and E. Longo, “An efficient microwave-assisted hydrothermal synthesis of BaZrO3 microcrystals: growth mechanism and photoluminescence emissions,” CrystEngComm 12(11), 3612–3619 (2010).
A. Pandey and V. K. Rai, “Improved luminescence and temperature sensing performance of Ho3+-Yb3+-Zn2+:Y2O3 phosphor,” Dalton Trans. 42(30), 11005–11011 (2013).
L. A. Diaz-Torres, P. Salas, J. Oliva, E. D. Rosa, C. Angeles-Chavez, and V. M. Castaño, “NaOH–controlled upconversion of nanocrystalline BaZrO3:Er,Yb phosphor,” Int. J. Nanotechnol. 10(12), 1055–1063 (2013).
D. Chen, W. Xu, Y. Zhou, and Y. Chen, “Lanthanide doped BaTiO3SrTiO3 solid-solution phosphors: Structure, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 676, 215–223 (2016).
Y. Zhao, Y. Ge, X. Zhang, Y. Zhao, H. Zhou, J. Li, and H. Jin, “Comprehensive investigation of Er2O3 doped (Li, K, Na) NbO3 ceramics rendering potential application in novel multifunctional devices,” J. Alloys Compd. 683, 171–177 (2016).
P. Du, L. Luo, and J. S. Yu, “Low-temperature thermometry based on upconversion emission of Ho/Yb-codoped Ba0.77Ca0.23TiO3 ceramics,” J. Alloys Compd. 632, 73–77 (2015).
L. Guo, C. Zhong, X. Wang, and L. Li, “Synthesis and photoluminescence properties of Er3+ doped BaZrO3 nanotube arrays,” J. Alloys Compd. 530, 22–25 (2012).
J. Oliva, E. D. Rosa, L. A. Diaz-Torres, P. Salas, and C. Ángeles-Chavez, “Annealing effect on the luminescence properties of BaZrO3:Yb3+ microcrystals,” J. Appl. Phys. 104(2), 023505 (2008).
H. Zou, X. Wang, Y. Hu, X. Zhu, Y. Sui, and Z. Song, “Optical temperature sensor through upconversion emission from the Er3+ Doped SrBi8Ti7O27 ferroelectrics,” J. Electron. Mater. 45(6), 2745–2749 (2016).
B. Marí, K. C. Singh, M. Sahal, S. P. Khatkar, V. B. Taxak, and M. Kumar, “Preparation and luminescence properties of Tb3+ doped ZrO2 and BaZrO3 phosphors,” J. Lumin. 130(11), 2128–2132 (2010).
L. A. Diaz-Torres, P. Salas, J. S. Perez-Huerta, C. Angeles-Chavez, and E. De la Rosa, “A new blue, green and red upconversion emission nanophosphor: BaZrO3:Er,Yb,” J. Nanosci. Nanotechnol. 8(12), 6425–6430 (2008).
D. Junli, D. Peng, X. Jiadan, X. Chaoxiang, and L. Laihui, “Piezoelectric and upconversion emission properties of Er3+-doped 0.5 Ba (Zr0.2Ti0.8) O3− 0.5 (Ba0.7Ca0.3)TiO3 ceramic,” J. Rare Earths 33(4), 391–396 (2015).
R. Borja-Urby, L. A. Diaz-Torres, P. Salas, M. Vega-Gonzalez, and C. Angeles-Chavez, “Blue and red emission in wide band gap BaZrO3:Yb3+,Tm3+,” Mater. Sci. Eng. B 174(1-3), 169–173 (2010).
X. Wang, Y. Bu, X. Yan, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Detecting the origin of luminescence in Er3+-doped hexagonal Na1.5Gd1.5F6 phosphors,” Opt. Lett. 41(22), 5314–5317 (2016).
S. Zhou, G. Jiang, X. Li, S. Jiang, X. Wei, Y. Chen, M. Yin, and C. Duan, “Strategy for thermometry via Tm3+-doped NaYF4 core-shell nanoparticles,” Opt. Lett. 39(23), 6687–6690 (2014).
X. Liu and X. Wang, “Preparation and luminescence properties of BaZrO3:Eu phosphor powders,” Opt. Mater. 30(4), 626–629 (2007).
X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
X. Wang, Y. Wang, J. Marques-Hueso, and X. Yan, “Improving optical temperature sensing performance of Er3+ Doped Y2O3 microtubes via co-doping and controlling excitation power,” Sci. Rep. 7(1), 758 (2017).
A. F. Pereira, K. U. Kumar, W. F. Silva, W. Q. Santos, D. Jaque, and C. Jacinto, “Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers,” Sens. Actuators B Chem. 213, 65–71 (2015).
D. Chen, M. Xu, and P. Huang, “Core@ shell upconverting nanoarchitectures for luminescent sensing of temperature,” Sens. Actuators B Chem. 231, 576–583 (2016).
B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er–Mo:Yb2Ti2O7 nanophosphor,” Sens. Actuators B Chem. 159(1), 8–11 (2011).
A. Pandey, V. K. Rai, V. Kumar, V. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+codoped SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209, 352–358 (2015).
C. Shi, M. Yoshino, and M. Morinaga, “First-principles study of protonic conduction in In-doped AZrO3 (A=Ca, Sr, Ba),” Solid State Ion. 176(11-12), 1091–1096 (2005).
V. Singh, V. K. Rai, K. Al-Shamery, M. Haase, and S. H. Kim, “NIR to visible frequency upconversion in Er3+ and Yb3+ co-doped BaZrO3 phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 108, 141–145 (2013).
S. P. Tiwari, M. K. Mahata, K. Kumar, and V. K. Rai, “Enhanced temperature sensing response of upconversion luminescence in ZnO-CaTiO3: Er3+/Yb3+ nano-composite phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 150, 623–630 (2015).