Abstract

We demonstrate a series of InGaN/GaN double quantum well nanostructure elements. We grow a layer of 2 μm undoped GaN template on top of a (0001)-direction sapphire substrate. A 100 nm SiO2 thin film is deposited on top as a masking pattern layer. This layer is then covered with a 300 nm aluminum layer as the anodic aluminum oxide (AAO) hole pattern layer. After oxalic acid etching, we transfer the hole pattern from the AAO layer to the SiO2 layer by reactive ion etching. Lastly, we utilize metal-organic chemical vapor deposition to grow GaN nanorods approximately 1.5 μm in size. We then grow two layers of InGaN/GaN double quantum wells on the semi-polar face of the GaN nanorod substrate under different temperatures. We then study the characteristics of the InGaN/GaN quantum wells formed on the semi-polar faces of GaN nanorods. We report the following findings from our study: first, using SiO2 with repeating hole pattern, we are able to grow high-quality GaN nanorods with diameters of approximately 80-120 nm; second, photoluminescence (PL) measurements enable us to identify Fabry-Perot effect from InGaN/GaN quantum wells on the semi-polar face. We calculate the quantum wells’ cavity thickness with obtained PL measurements. Lastly, high resolution TEM images allow us to study the lattice structure characteristics of InGaN/GaN quantum wells on GaN nanorod and identify the existence of threading dislocations in the lattice structure that affects the GaN nanorod’s growth mechanism.

© 2017 Optical Society of America

1. Introduction

Ever since Shuji Nakamura’s study on produced GaN thin films via metal-organic chemical vapor deposition (MOCVD) in 1993, thin films have aroused great interest and various research efforts in the academic field [1]. Given that IIIA group-N materials and their alloys possess direct energy gaps, which emit light over the entire visible light range [2], these materials have potential use in next-generation lighting applications [3]. Nano-GaN materials possess unique physical characteristics attributed to their low-dimensional effects, such as lower melting point and different energy gaps [4]. Nano-GaN materials are utilized as various electronic elements because of their broader light emission bands (from ultraviolet to infrared) and their ability to continue functioning under high temperature and pressure conditions [5]. To improve the quality of InGaN epitaxy grown on sapphire substrate and to solve lattice structure mismatch between the sapphire substrate and GaN, researchers have developed epitaxy techniques, such as epitaxial lateral overgrow [6], micro-level SiNx with patterned SiNx interlayer structures, and patterned sapphire substrates [7,8]. Research efforts related to growing GaN on non-polarized sapphire substrates have gained considerable attention in recent years, especially because of the results reported by S. Nakamura and his team [9–11]. Other than growth on non-polar a-, m-, and r- planes of three sapphire substrate lattice planes, growth on semi-polar (11–22) planes of sapphire substrates have recently been developed. Semi-polar (11–22) planes of sapphire substrates have the advantage of less lattice structure mismatches with GaN thin films as well as more moderate quantum well barriers.

In our study, we grow bonded GaN nanorods with a SiO2 masking hole pattern to reduce threading dislocations (TDs) caused by lattice structure mismatch between the sapphire substrate and GaN to obtain GaN nanorods with better quality [12,13]. We then utilize hexagonal structure behavior (nanorod growth speed on C-axis (0001) direction is much higher than that of semi-polar (11–22) face) to obtain GaN nanorods with six semi-polar faces on the top. We then study the optical and material properties of InGaN/GaN quantum wells grown on semi-polar faces.

2. Growth conditions and sample structure

We use MOCVD to grow a series of GaN nanorod substrates. The process is shown in Fig. 1. First, a layer of 2 μm undoped GaN template is placed on top of the sapphire substrate (Fig. 1(a)). A 100 nm SiO2 thin film is deposited by e-beam on the template as the masking pattern (Fig. 1(b)). A 300 nm aluminum layer is spluttered on as the AAO hole pattern layer (Fig. 1(c)). We then conduct secondary oxalic acid etching (0.3 M oxalic aide with 40 V) on this layer to form the hole pattern (Fig. 1(d)). The hole pattern is then transferred to SiO2 thin film by reactive ion etching (Fig. 1(e)). Afterward, the AAO layer is removed with a mixture of 6% phosphoric acid and 1.5% chromic acid under 333 °C (Fig. 1(f)). Lastly, we apply MOCVD under 1020 °C for 1 min to grow nanorods (Fig. 1(g)).

 

Fig. 1 Fabrication process of the s semi-polar faced InGaN/GaN double quantum wells nanorods samples.

Download Full Size | PPT Slide | PDF

This study compares four different samples under different growing conditions. Sample A is the reference sample and is a GaN nanorod grown on SiO2 hole pattern without any quantum wells. Samples B-D are grown on two layers of InGaN/GaN quantum wells on GaN nanorods. Indium has a concentration of 5% in the input growth condition. The quantum wells have widths of 2-2.5 nm and barrier heights of 10-12 nm. The quantum wells are grown under 750, 700, and 650 °C, whereas the barrier is formed under 870 °C. The structural schematic is shown in Fig. 1(h). Given that our previous study has identified the correlation between the growing temperature of quantum wells and the growth of InGaN, the present study attempts to control the growing temperature and study the differences among InGaN/GaN quantum wells.

We use photoluminescence (PL), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) to study the samples produced by the method mentioned above. PL spectra are obtained with the 325 nm line of a 50 mW He-Cd laser as the excitation source. Samples are placed in a cryostat for temperature-dependent measurements. Temperature range is 10–290 K. SEM observations are performed with a JEOL JSM 6700F system. Finally, TEM observations are performed with a JEOL TEM-300F field emission electron microscope with an acceleration voltage of 300 KV.

3. PL measurements

Figures 2(a)-2(d) show the PL measurement results for samples A-D. We excite the sample with a 325 nm laser under 10-290 K. Figure 2(a) shows a peak at approximately 355-360 nm, which is the peak position of GaN. The high peak intensity and narrow peak profile confirm that our procedure produced high-quality bonded GaN nanorod structures [14–17]. Figures 2(b)-2(d) show the PL measurements of InGaN/GaN double quantum wells under growth temperatures of 750, 700, and 650 °C. The GaN nanorod samples have constant peak positions at 355-360 nm and similar peak intensities but a rather wider peak profiles as sample A. The width of the peak profile increases as the temperature decreases, indicating a less uniformed GaN structure. We also discover a peak at 378-400 nm, which corresponds to the peak position for InGaN quantum wells. Previous studies have reported that these peaks will not change with temperature [18]. Such peaks show an increase in intensity as well as slightly redshift as temperature decreases. This behavior may cause by bandgap shrinkage as temperature decreases. This is because during deposition at different temperatures, the indium incorporation increased with lower temperature growth [19]. More indium incorporation resulted in higher In concentration in the GaN/InGaN well. This higher In concentration made better quantum confined effect then resulted in a stronger intensity in the corresponding PL readings [20]. Closer examination shows that there are two peaks in 378-400 nm. These peaks represent two slightly different concentrations of InGaN quantum wells. Such peak separation has been regarded as one of the optical features of indium-rich clusters in the InGaN thin film [21]. The low-energy peak corresponds to the localized states. The high-energy peak is attributed to the free-carrier states, corresponding to the background InGaN compound, on which clusters are distributed. Figure 2(d) shows the PL measurement for sample D. Here, we see a far more complicated peak pattern at approximately 375-425 nm. Along with the two peaks seen in samples B and C, there are two smaller peaks at approximately 400 nm and 418 nm [22]. These peak distributions resemble Fabry-Perot resonance modes [23]. This behavior is caused by the resonance cavity formed by the InGaN/GaN quantum well structures. To obtain the width of the quantum wells, we apply these peak positions to the following formula:

id=2n(λ)λpeak
Where i is the peak number, n(λ) is the index for GaN as a function of wavelength, λpeak is the peak wavelength, and d is the width of the quantum well.

 

Fig. 2 PL results of the semi-polar-faced InGaN/GaN double quantum well nanorods. (a) Sample A (control group). (b) Sample B (750°C). (c) Sample C (700°C). (d) Sample D (600°C).

Download Full Size | PPT Slide | PDF

We obtain d as 2.4 nm, which corresponds with the InGaN quantum well width obtained by our previous study. This result validates the quality of InGaN quantum wells grown on GaN nanorods and the application of Fabry-Perot effect on perfectly grown InGaN/GaN quantum wells. Moreover, the extra peaks in sample D imply more resonance cavity, which is beneficial in illuminating device applications due to the broaden spectrum of lighting. A color rendering index will increase by broader spectrum light source that means this kind of lighting more close to the sun [24].

From the PL measurement results, we identify that a lower growth temperature results in better grown InGaN/GaN quantum wells at a cost of less uniformed GaN structure. We also verify the formation of quantum wells by Fabry-Perot resonance modes. However, there is still much to understand about the structural characteristics of quantum wells. Thus, we further analyze our samples and their illumination amplifying effects with SEM and TEM imaging.

4. SEM measurements

We perform SEM to obtain the top and cross-section views of samples A (Figs. 3(a), 3(b)) and D (Fig. 3(c), 3(d)). The cross-section view of sample A (Fig. 3(b)) shows that the grown nanorod is approximately 100-150 nm tall and has a 6-faced hexagonal structure. The cross-section view of sample D (Fig. 3(d)) shows a mushroomed-shaped GaN nanorod capped with an InGaN/GaN quantum well. Its total height is approximately 120-170 nm. Its cap diameter is approximately 130-150 nm. We believe that this cap structure is formed by the outward extension of the quantum well layer on top of the nanorod. The top view of sample A (Fig. 3(a)) shows empty regions on the SiO2 substrate alongside the grown GaN nanorods. The formation of these empty regions requires further investigation and is discussed in the next section. On the other hand, the top view of Sample D (Fig. 3(c)) shows closer-spaced GaN nanorods. Reduced spacing can also be explained by the outward extension of the quantum well layer.

 

Fig. 3 SEM images of the semi-polar-faced InGaN/GaN double quantum well nanorods. (a) Top view of sample A. (b) Cross-section view of sample A. (c) Top view of sample D. (d) Cross-section view of sample D.

Download Full Size | PPT Slide | PDF

5. TEM and HRTEM measurements

Figure 4 shows the cross-sectional TEM image for samples A to D. We deduce the growing process of GaN nanorods from Fig. 4(a): GaN first grows from the GaN film layer, which is bonded by the hole pattern on the SiO2 layer. Afterward, the GaN nanorod grows over the SiO2 restriction and begins forming a hexagonal, 6-faced structure. This hexagonal structure results from the difference in growth speed among the GaN lattice structures. Lattice structures grow considerably faster in the (0001) direction than in other semi-polar (11-22) faces. From Figs. 4(b)-4(d), we also observe that InGaN/GaN quantum wells extend outside the nanorods to form a cap structure along the SiO2 layer. These cap structures can even contact other caps. We further investigate the nanorod structures by high-resolution TEM (HRTEM). In Fig. 5(a), the red circle indicates the junction between the GaN film and SiO2 layer; thus, we can verify if the GaN nanorod and GaN film layer are perfectly integrated into a uniform structure. The lattice structure between two layers is continuous and there is no discontinuity in the (0001) direction. Figure 5(b) includes areas without grown GaN nanorods. We observe a slightly different lattice structure in the GaN film layer, as indicated by the blue circle. We believe these areas are caused by threading dislocations (TDs) between the GaN film and SiO2 layer [25,26]. A massive, V-shaped hole on top of the TDs prevents the attachment of GaN crystals during the epitaxial process, resulting in empty bases on the GaN layer [27].

 

Fig. 4 TEM images of the semi-polar-faced InGaN/GaN double quantum well nanorods. (a) Sample A. (b) Sample B. (c) Sample C. (d) Sample D.

Download Full Size | PPT Slide | PDF

 

Fig. 5 HRTEM images of the GaN and SiO2 layers of the produced GaN nanorods. (a) Close-up view of the atomic lattice image of the GaN nanorod base. (b) Zoomed-out view of the atomic lattice image of the GaN nanorod base.

Download Full Size | PPT Slide | PDF

Figures 6(a) and 6(b) respectively show the HRTEM images of the left side and right side of InGaN/GaN quantum well structure (cap structure) on top of the nanorod, as indicated by the small two red circles. The black stripes are GaN lattice structure layers grown in the (0001) direction. Given that InGaN has a larger mass number than GaN, electron beams from TEM will have a larger scattering angle, thus resulting in the darker regions in the figure. The two darker lines running almost parallel to the cap structure’s edges are the two InGaN/GaN quantum wells. The InGaN quantum well is approximately 2.5 nm wide and corresponds with our Fabry-Perot effect calculation; the GaN barrier is approximately 10 nm [28–30]. The angle between the quantum well structures and GaN lattice direction is approximately 58.45°. This angle indicates that the quantum wells are grown from the semi-polar (11-22) GaN lattice face. Another possible growth direction is the semi-polar (1-101) GaN lattice face, which is approximately 61.9° to the (0001) direction; however, no angle greater than 60° is observed [27,28]. We confirm that the quantum wells are grown in the semi-polar (11-22) face direction. Quantum wells on the semi-polar (11-22) face less lattice mismatches between InGaN and GaN, as reported by previous studies [31–40]. We believe that less lattice mismatches result in better-quality GaN nanorods and InGaN/GaN quantum wells. Thus, they are more closely spaced, as seen in Fig. 2.

 

Fig. 6 HRTEM images of the semi-polar-faced InGaN/GaN double quantum well cap structure. (a) Structural atomic lattice image of sample D’s left-side cap. (b) Structural atomic lattice image of sample D’s right-side cap.

Download Full Size | PPT Slide | PDF

6. Conclusion

We grow a series of GaN nanorod structures with InGaN/GaN double quantum wells on semi-polar (11–22) faces. We study the samples’ photoluminescence peak profiles and structures with PL measurements. We verify the good quality of our GaN nanorods. We also confirm that lower growth temperatures result in higher quality InGaN/GaN double quantum wells. We observe the Fabry-Perot effect in our PL measurements; this effect results from the resonance cavity caused by the formation of InGaN/GaN double quantum wells. Sample D presents two extra resonance cavities that may be useful in amplifying illumination. From SEM images, we observe the overall configuration and the cap-like structures caused by the extension of quantum wells. These structures are further investigated by TEM and HRTEM. On the GaN layer, we identify the TDs affecting GaN nanorod growth. HRTEM allows us to closely study the quantum well structure and verify that InGaN/GaN double quantum wells grow in the semi-polar (11–22) face direction. These GaN nanorods form a hexagonal structure on top of the GaN nanorod with 6 semi-polar (11–22) faces.

In conclusion, we believe that our method, which utilizes a bonded SiO2 masked layer to reduce lattice structure mismatch, produces high-quality GaN nanorods with InGaN/GaN double quantum wells on semi-polar (11–22) faces. We also identify the structural characteristic of the obtained high-quality GaN nanorods with InGaN/GaN double quantum wells.

Funding

This research was supported by the Ministry of Science and Technology, The Republic of China, under the Grants MOST 104-2221-E-194-054, 105-2923-E-194-003-MY3, and 105-2112-M-194-005.

References and links

1. S. Nakamura, M. Senoh, and T. Mukai, “P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes,” Jpn. J. Appl. Phys. 32(2), L8–L11 (1993). [CrossRef]  

2. J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-Light Emission From Near UV InGaN–GaN LED Chip Precoated With Blue/Green/Red Phosphors,” IEEE Photonic. Tech. L. 15(1), 18–20 (2003). [CrossRef]  

3. S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, Green, and Blue LEDs for White Light Illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002). [CrossRef]  

4. T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81(7), 1246–1248 (2002). [CrossRef]  

5. M. J. Edwards, E. D. Le Boulbar, S. Vittoz, G. Vanko, K. Brinkfeldt, L. Rufer, P. Johander, T. Lalinský, C. R. Bowen, and D. W. E. Allsopp, “Pressure and temperature dependence of GaN/AlGaN high electron mobility transistor based sensors on a sapphire membrane,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(3), 960–963 (2012). [CrossRef]  

6. H. M. Ku, C. Y. Huang, C. Z. Liao, and S. Chao, “Epitaxial Lateral Overgrowth of Gallium Nitride for Embedding the Micro-Mirror Array,” Jpn. J. Appl. Phys. 50(4S), 04DG07 (2011). [CrossRef]  

7. M. Haeberlen, D. Zhu, C. McAleese, M. J. Kappers, and C. J. Humphreys, “Dislocation reduction in MOVPE grown GaN layers on (111) Si using SiNx and AlGaN layers,” J. Phys. Conf. Ser. 209, 012017 (2010). [CrossRef]  

8. L. C. Chen and W. F. Tsai, “Properties of GaN-based light-emitting diodes on patterned sapphire substrate coated with silver nanoparticles prepared by mask-free chemical etching,” Nanoscale Res. Lett. 8(1), 157 (2013). [CrossRef]   [PubMed]  

9. H. Ohta, S. P. DenBaars, and S. Nakamura, “Future of group-III nitride semiconductor green laser diodes,” J. Opt. Soc. Am. 27(11), B45–B49 (2010). [CrossRef]  

10. A. Tyagi, H. Zhong, N. N. Fellows, M. Iza, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High Brightness Violet InGaN/GaN Light Emitting Diodes on Semipolar (10 −1 −1) Bulk GaN Substrates,” Jpn. J. Appl. Phys. 46(7), L129–L131 (2007). [CrossRef]  

11. K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. DenBaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A10R), 6573–6578 (2007). [CrossRef]  

12. Y. D. Wang, K. Y. Zang, and S. J. Chua, “Nonlithographic nanopatterning through anodic aluminum oxide template and selective growth of highly ordered GaN nanostructures,” J. Appl. Phys. 100(5), 054306 (2006). [CrossRef]  

13. N. Taşaltın, S. Öztürk, N. Kılınç, H. Yüzer, and Z. Z. Öztürk, “Simple fabrication of hexagonally well-ordered AAO template on silicon substrate in two dimensions,” Appl. Phys., A Mater. Sci. Process. 95(3), 781–787 (2009). [CrossRef]  

14. H. C. Wang, T. Malinauskas, K. Jarasiunas, S. W. Feng, C. C. Ting, and S. Liu, “Carrier dynamics in InGaN/GaN multiple quantum wells based on different polishing processes of sapphire substrate,” Thin Solid Films 518(24), 7291–7294 (2010). [CrossRef]  

15. S. W. Feng, L. W. Tu, J. I. Chyi, and H. C. Wang, “Luminescence mechanism and carrier dynamic studies of InGaN-based dichromatic light emitting diodes with ultraviolet and blue emissions,” Thin Solid Films 517(2), 909–915 (2008). [CrossRef]  

16. Y. S. Chen, C. H. Liao, Y. C. Cheng, C. T. Kuo, and H. C. Wang, “Nanostructure Study of the Coalescence Growth of GaN Columns with Molecular Beam Epitaxy,” Opt. Mater. Express 3(9), 1450–1458 (2013). [CrossRef]  

17. Y. S. Chen, C. H. Liao, Y. L. Chueh, C. C. Lai, L. Y. Chen, A. K. Chu, C. T. Kuo, and H. C. Wang, “High performance Cu2O/ZnO core-shell nanorod arrays synthesized using a nanoimprint GaN template by the hydrothermal growth technique,” Opt. Mater. Express 4(7), 1473–1486 (2014). [CrossRef]  

18. N. Sawaki, T. Hikosaka, N. Koide, S. Tanaka, Y. Honda, and M. Yamaguchi, “Growth and properties of semi-polar GaN on a patterned silicon substrate,” J. Cryst. Growth 311(10), 2867–2874 (2009). [CrossRef]  

19. S. Keller, B. P. Keller, D. Kapolnek, A. C. Abare, H. Masui, L. A. Coldren, U. K. Mishra, and S. P. Den Baars, “Growth and characterization of bulk InGaN films and quantum wells,” Appl. Phys. Lett. 68(22), 3147–3149 (1996). [CrossRef]  

20. Y. K. Kuo, J. Y. Chang, M. C. Tsai, and S. H. Yen, “Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers,” Appl. Phys. Lett. 95(1), 011116 (2009). [CrossRef]  

21. H. C. Wang, Y. C. Lu, C. C. Teng, Y. S. Chen, C. C. Yang, K. J. Ma, C. C. Pan, and J. I. Chyi, “Ultrafast Carrier Dynamics in an InGaN Thin Film,” J. Appl. Phys. 97(3), 033704 (2005). [CrossRef]  

22. Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar {2021} Free-Standing GaN Substrates, Yohei Enya,” Appl. Phys. Express 2, 082101 (2009). [CrossRef]  

23. C. Finger, T. Hempel, T. Christen, J. Dadgar, A. Hoffmann, and A. Krost, “Fabry-Perot effects in InGaN/GaN heterostructures on Si-substrate, Hums,” J. Appl. Phys. 101(3), 033113 (2007). [CrossRef]  

24. L. Y. Chen, S. H. Chen, C. T. Kuo, and H. C. Wang, “Spectral design and evaluation of OLEDs as light sources,” Org. Electron. 15(10), 2194–2209 (2014). [CrossRef]  

25. Y. S. Chen, W. Y. Shiao, T. Y. Tang, W. M. Chang, C. H. Liao, C. H. Lin, K. C. Shen, C. C. Yang, M. C. Hsu, J. H. Yeh, and T. C. Hsu, “Threading Dislocation Evolution in Patterned GaN Nanocolumn Growth and Coalescence Overgrowth,” J. Appl. Phys. 106(2), 023512 (2009). [CrossRef]  

26. Y. S. Chen, C. H. Liao, Y. L. Chueh, C. T. Kuo, and H. C. Wang, “Plan-View Transmission Electron Microscopy Study on Coalescence Overgrowth of GaN Nano-columns by MOCVD,” Opt. Mater. Express 3(9), 1459–1467 (2013). [CrossRef]  

27. N. Sawaki and Y. Honda, “Semi-polar GaN LEDs on Si substrate,” Sci. China Technol. Sci. 54(1), 38–41 (2011). [CrossRef]  

28. Z. H. Wu, T. Tanikawa, T. Murase, Y. Y. Fang, C. Q. Chen, Y. Honda, M. Yamaguchi, H. Amano, and N. Sawaki, “Partial strain relaxation by stacking fault generation in InGaN multiple quantum wells grown on (1101) semi-polar GaN,” Appl. Phys. Lett. 98(5), 051902 (2011). [CrossRef]  

29. R. Held, B. E. Ishaug, A. Parkhomovsky, A. M. Dabiran, and P. I. Cohen, “A rate equation model for the growth of GaN on GaN(0001) by molecular beam epitaxy,” J. Appl. Phys. 87(3), 1219–1226 (2000). [CrossRef]  

30. C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template,” Appl. Phys. Lett. 93(8), 081108 (2008). [CrossRef]  

31. J. S. Son, Y. Honda, M. Yamaguchi, and H. Amano, “Characterization of nonpolar a-plane InGaN/GaN multiple quantum well using double nanopillar SiO2 mask,” Jpn. J. Appl. Phys. 53(5S1), 05FL01 (2014). [CrossRef]  

32. Z. Liliental-Weber, J. Jasinski, and D. N. Zakharov, “GaN grown in polar and non-polar directions,” Opto-Electron. Rev. 12(4), 339–346 (2004).

33. Y. S. Chen, L. J. Yao, Y. L. Lin, L. Hung, C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, and C. C. Yang, “Transmission Electron Microscopy Study on Pre-strained InGaN/GaN Quantum Wells,” J. Cryst. Growth 297(1), 66–73 (2006). [CrossRef]  

34. M. Sugiyama, T. Shioda, Y. Tomita, T. Yamamoto, Y. Ikuhara, and Y. Nakano, “Optical and Structural Characterization of InGaN/GaN Multiple Quantum Wells by Epitaxial Lateral Overgrowth,” Mater. Trans. 50(5), 1085–1090 (2009). [CrossRef]  

35. G. P. Dimitrakopulos, A. Lotsari, Th. Kehagias, A. Ajagunna, A. Georgakilas, Th. Karakostas, and Ph. Komninou, “Structure and interfacial properties of semipolar s-plane (1-101) InN grown on r-plane sapphire,” Phys. Status Solidi., A Appl. Mater. Sci. 210(1), 199–203 (2013). [CrossRef]  

36. H. H. Liu, H. Y. Lin, C. Z. Liao, and J. I. Chyi, “Growth and Characterization of Crack-Free Semi-Polar (1-101) GaN on 7°-off (001) Si Substrates by Metal-Organic Chemical Vapor Deposition,” ECS Journal of Solid State Science and Technology 2(8), N3001–N3005 (2013). [CrossRef]  

37. S. W. Feng, P. H. Liao, B. Leung, J. Han, F. W. Yang, and H. C. Wang, “Efficient carrier relaxation and fast carrier recombination of N-polar InGaN/GaN light emitting diodes,” J. Appl. Phys. 118(4), 043104 (2015). [CrossRef]  

38. M. C. Chen, Y. C. Cheng, C. Y. Huang, H. C. Wang, K. I. Lin, and Z. P. Yang, “The action of silicon doping in the first two to five barriers of eight periods In0.2Ga0.8N/GaN multiple quantum wells of blue LEDs,” J. Lumin. 177, 59–64 (2016). [CrossRef]  

39. Y. S. Chen, C. H. Liao, C. T. Kuo, R. C. C. Tsiang, and H. C. Wang, “Indium droplet formation in InGaN thin films with single and double heterojunctions prepared by MOCVD,” Nanoscale Res. Lett. 9(1), 334 (2014). [CrossRef]   [PubMed]  

40. H. C. Wang, X. Y. Yu, Y. L. Chueh, T. Malinauskas, K. Jarasiunas, and S. W. Feng, “Suppression of surface recombination in surface plasmon coupling with an InGaN/GaN multiple quantum well sample,” Opt. Express 19(20), 18893–18902 (2011). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. S. Nakamura, M. Senoh, and T. Mukai, “P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes,” Jpn. J. Appl. Phys. 32(2), L8–L11 (1993).
    [Crossref]
  2. J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-Light Emission From Near UV InGaN–GaN LED Chip Precoated With Blue/Green/Red Phosphors,” IEEE Photonic. Tech. L. 15(1), 18–20 (2003).
    [Crossref]
  3. S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, Green, and Blue LEDs for White Light Illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002).
    [Crossref]
  4. T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81(7), 1246–1248 (2002).
    [Crossref]
  5. M. J. Edwards, E. D. Le Boulbar, S. Vittoz, G. Vanko, K. Brinkfeldt, L. Rufer, P. Johander, T. Lalinský, C. R. Bowen, and D. W. E. Allsopp, “Pressure and temperature dependence of GaN/AlGaN high electron mobility transistor based sensors on a sapphire membrane,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(3), 960–963 (2012).
    [Crossref]
  6. H. M. Ku, C. Y. Huang, C. Z. Liao, and S. Chao, “Epitaxial Lateral Overgrowth of Gallium Nitride for Embedding the Micro-Mirror Array,” Jpn. J. Appl. Phys. 50(4S), 04DG07 (2011).
    [Crossref]
  7. M. Haeberlen, D. Zhu, C. McAleese, M. J. Kappers, and C. J. Humphreys, “Dislocation reduction in MOVPE grown GaN layers on (111) Si using SiNx and AlGaN layers,” J. Phys. Conf. Ser. 209, 012017 (2010).
    [Crossref]
  8. L. C. Chen and W. F. Tsai, “Properties of GaN-based light-emitting diodes on patterned sapphire substrate coated with silver nanoparticles prepared by mask-free chemical etching,” Nanoscale Res. Lett. 8(1), 157 (2013).
    [Crossref] [PubMed]
  9. H. Ohta, S. P. DenBaars, and S. Nakamura, “Future of group-III nitride semiconductor green laser diodes,” J. Opt. Soc. Am. 27(11), B45–B49 (2010).
    [Crossref]
  10. A. Tyagi, H. Zhong, N. N. Fellows, M. Iza, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High Brightness Violet InGaN/GaN Light Emitting Diodes on Semipolar (10 −1 −1) Bulk GaN Substrates,” Jpn. J. Appl. Phys. 46(7), L129–L131 (2007).
    [Crossref]
  11. K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. DenBaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A10R), 6573–6578 (2007).
    [Crossref]
  12. Y. D. Wang, K. Y. Zang, and S. J. Chua, “Nonlithographic nanopatterning through anodic aluminum oxide template and selective growth of highly ordered GaN nanostructures,” J. Appl. Phys. 100(5), 054306 (2006).
    [Crossref]
  13. N. Taşaltın, S. Öztürk, N. Kılınç, H. Yüzer, and Z. Z. Öztürk, “Simple fabrication of hexagonally well-ordered AAO template on silicon substrate in two dimensions,” Appl. Phys., A Mater. Sci. Process. 95(3), 781–787 (2009).
    [Crossref]
  14. H. C. Wang, T. Malinauskas, K. Jarasiunas, S. W. Feng, C. C. Ting, and S. Liu, “Carrier dynamics in InGaN/GaN multiple quantum wells based on different polishing processes of sapphire substrate,” Thin Solid Films 518(24), 7291–7294 (2010).
    [Crossref]
  15. S. W. Feng, L. W. Tu, J. I. Chyi, and H. C. Wang, “Luminescence mechanism and carrier dynamic studies of InGaN-based dichromatic light emitting diodes with ultraviolet and blue emissions,” Thin Solid Films 517(2), 909–915 (2008).
    [Crossref]
  16. Y. S. Chen, C. H. Liao, Y. C. Cheng, C. T. Kuo, and H. C. Wang, “Nanostructure Study of the Coalescence Growth of GaN Columns with Molecular Beam Epitaxy,” Opt. Mater. Express 3(9), 1450–1458 (2013).
    [Crossref]
  17. Y. S. Chen, C. H. Liao, Y. L. Chueh, C. C. Lai, L. Y. Chen, A. K. Chu, C. T. Kuo, and H. C. Wang, “High performance Cu2O/ZnO core-shell nanorod arrays synthesized using a nanoimprint GaN template by the hydrothermal growth technique,” Opt. Mater. Express 4(7), 1473–1486 (2014).
    [Crossref]
  18. N. Sawaki, T. Hikosaka, N. Koide, S. Tanaka, Y. Honda, and M. Yamaguchi, “Growth and properties of semi-polar GaN on a patterned silicon substrate,” J. Cryst. Growth 311(10), 2867–2874 (2009).
    [Crossref]
  19. S. Keller, B. P. Keller, D. Kapolnek, A. C. Abare, H. Masui, L. A. Coldren, U. K. Mishra, and S. P. Den Baars, “Growth and characterization of bulk InGaN films and quantum wells,” Appl. Phys. Lett. 68(22), 3147–3149 (1996).
    [Crossref]
  20. Y. K. Kuo, J. Y. Chang, M. C. Tsai, and S. H. Yen, “Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers,” Appl. Phys. Lett. 95(1), 011116 (2009).
    [Crossref]
  21. H. C. Wang, Y. C. Lu, C. C. Teng, Y. S. Chen, C. C. Yang, K. J. Ma, C. C. Pan, and J. I. Chyi, “Ultrafast Carrier Dynamics in an InGaN Thin Film,” J. Appl. Phys. 97(3), 033704 (2005).
    [Crossref]
  22. Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar {2021} Free-Standing GaN Substrates, Yohei Enya,” Appl. Phys. Express 2, 082101 (2009).
    [Crossref]
  23. C. Finger, T. Hempel, T. Christen, J. Dadgar, A. Hoffmann, and A. Krost, “Fabry-Perot effects in InGaN/GaN heterostructures on Si-substrate, Hums,” J. Appl. Phys. 101(3), 033113 (2007).
    [Crossref]
  24. L. Y. Chen, S. H. Chen, C. T. Kuo, and H. C. Wang, “Spectral design and evaluation of OLEDs as light sources,” Org. Electron. 15(10), 2194–2209 (2014).
    [Crossref]
  25. Y. S. Chen, W. Y. Shiao, T. Y. Tang, W. M. Chang, C. H. Liao, C. H. Lin, K. C. Shen, C. C. Yang, M. C. Hsu, J. H. Yeh, and T. C. Hsu, “Threading Dislocation Evolution in Patterned GaN Nanocolumn Growth and Coalescence Overgrowth,” J. Appl. Phys. 106(2), 023512 (2009).
    [Crossref]
  26. Y. S. Chen, C. H. Liao, Y. L. Chueh, C. T. Kuo, and H. C. Wang, “Plan-View Transmission Electron Microscopy Study on Coalescence Overgrowth of GaN Nano-columns by MOCVD,” Opt. Mater. Express 3(9), 1459–1467 (2013).
    [Crossref]
  27. N. Sawaki and Y. Honda, “Semi-polar GaN LEDs on Si substrate,” Sci. China Technol. Sci. 54(1), 38–41 (2011).
    [Crossref]
  28. Z. H. Wu, T. Tanikawa, T. Murase, Y. Y. Fang, C. Q. Chen, Y. Honda, M. Yamaguchi, H. Amano, and N. Sawaki, “Partial strain relaxation by stacking fault generation in InGaN multiple quantum wells grown on (1101) semi-polar GaN,” Appl. Phys. Lett. 98(5), 051902 (2011).
    [Crossref]
  29. R. Held, B. E. Ishaug, A. Parkhomovsky, A. M. Dabiran, and P. I. Cohen, “A rate equation model for the growth of GaN on GaN(0001) by molecular beam epitaxy,” J. Appl. Phys. 87(3), 1219–1226 (2000).
    [Crossref]
  30. C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template,” Appl. Phys. Lett. 93(8), 081108 (2008).
    [Crossref]
  31. J. S. Son, Y. Honda, M. Yamaguchi, and H. Amano, “Characterization of nonpolar a-plane InGaN/GaN multiple quantum well using double nanopillar SiO2 mask,” Jpn. J. Appl. Phys. 53(5S1), 05FL01 (2014).
    [Crossref]
  32. Z. Liliental-Weber, J. Jasinski, and D. N. Zakharov, “GaN grown in polar and non-polar directions,” Opto-Electron. Rev. 12(4), 339–346 (2004).
  33. Y. S. Chen, L. J. Yao, Y. L. Lin, L. Hung, C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, and C. C. Yang, “Transmission Electron Microscopy Study on Pre-strained InGaN/GaN Quantum Wells,” J. Cryst. Growth 297(1), 66–73 (2006).
    [Crossref]
  34. M. Sugiyama, T. Shioda, Y. Tomita, T. Yamamoto, Y. Ikuhara, and Y. Nakano, “Optical and Structural Characterization of InGaN/GaN Multiple Quantum Wells by Epitaxial Lateral Overgrowth,” Mater. Trans. 50(5), 1085–1090 (2009).
    [Crossref]
  35. G. P. Dimitrakopulos, A. Lotsari, Th. Kehagias, A. Ajagunna, A. Georgakilas, Th. Karakostas, and Ph. Komninou, “Structure and interfacial properties of semipolar s-plane (1-101) InN grown on r-plane sapphire,” Phys. Status Solidi., A Appl. Mater. Sci. 210(1), 199–203 (2013).
    [Crossref]
  36. H. H. Liu, H. Y. Lin, C. Z. Liao, and J. I. Chyi, “Growth and Characterization of Crack-Free Semi-Polar (1-101) GaN on 7°-off (001) Si Substrates by Metal-Organic Chemical Vapor Deposition,” ECS Journal of Solid State Science and Technology 2(8), N3001–N3005 (2013).
    [Crossref]
  37. S. W. Feng, P. H. Liao, B. Leung, J. Han, F. W. Yang, and H. C. Wang, “Efficient carrier relaxation and fast carrier recombination of N-polar InGaN/GaN light emitting diodes,” J. Appl. Phys. 118(4), 043104 (2015).
    [Crossref]
  38. M. C. Chen, Y. C. Cheng, C. Y. Huang, H. C. Wang, K. I. Lin, and Z. P. Yang, “The action of silicon doping in the first two to five barriers of eight periods In0.2Ga0.8N/GaN multiple quantum wells of blue LEDs,” J. Lumin. 177, 59–64 (2016).
    [Crossref]
  39. Y. S. Chen, C. H. Liao, C. T. Kuo, R. C. C. Tsiang, and H. C. Wang, “Indium droplet formation in InGaN thin films with single and double heterojunctions prepared by MOCVD,” Nanoscale Res. Lett. 9(1), 334 (2014).
    [Crossref] [PubMed]
  40. H. C. Wang, X. Y. Yu, Y. L. Chueh, T. Malinauskas, K. Jarasiunas, and S. W. Feng, “Suppression of surface recombination in surface plasmon coupling with an InGaN/GaN multiple quantum well sample,” Opt. Express 19(20), 18893–18902 (2011).
    [Crossref] [PubMed]

2016 (1)

M. C. Chen, Y. C. Cheng, C. Y. Huang, H. C. Wang, K. I. Lin, and Z. P. Yang, “The action of silicon doping in the first two to five barriers of eight periods In0.2Ga0.8N/GaN multiple quantum wells of blue LEDs,” J. Lumin. 177, 59–64 (2016).
[Crossref]

2015 (1)

S. W. Feng, P. H. Liao, B. Leung, J. Han, F. W. Yang, and H. C. Wang, “Efficient carrier relaxation and fast carrier recombination of N-polar InGaN/GaN light emitting diodes,” J. Appl. Phys. 118(4), 043104 (2015).
[Crossref]

2014 (4)

Y. S. Chen, C. H. Liao, C. T. Kuo, R. C. C. Tsiang, and H. C. Wang, “Indium droplet formation in InGaN thin films with single and double heterojunctions prepared by MOCVD,” Nanoscale Res. Lett. 9(1), 334 (2014).
[Crossref] [PubMed]

J. S. Son, Y. Honda, M. Yamaguchi, and H. Amano, “Characterization of nonpolar a-plane InGaN/GaN multiple quantum well using double nanopillar SiO2 mask,” Jpn. J. Appl. Phys. 53(5S1), 05FL01 (2014).
[Crossref]

L. Y. Chen, S. H. Chen, C. T. Kuo, and H. C. Wang, “Spectral design and evaluation of OLEDs as light sources,” Org. Electron. 15(10), 2194–2209 (2014).
[Crossref]

Y. S. Chen, C. H. Liao, Y. L. Chueh, C. C. Lai, L. Y. Chen, A. K. Chu, C. T. Kuo, and H. C. Wang, “High performance Cu2O/ZnO core-shell nanorod arrays synthesized using a nanoimprint GaN template by the hydrothermal growth technique,” Opt. Mater. Express 4(7), 1473–1486 (2014).
[Crossref]

2013 (5)

L. C. Chen and W. F. Tsai, “Properties of GaN-based light-emitting diodes on patterned sapphire substrate coated with silver nanoparticles prepared by mask-free chemical etching,” Nanoscale Res. Lett. 8(1), 157 (2013).
[Crossref] [PubMed]

Y. S. Chen, C. H. Liao, Y. L. Chueh, C. T. Kuo, and H. C. Wang, “Plan-View Transmission Electron Microscopy Study on Coalescence Overgrowth of GaN Nano-columns by MOCVD,” Opt. Mater. Express 3(9), 1459–1467 (2013).
[Crossref]

Y. S. Chen, C. H. Liao, Y. C. Cheng, C. T. Kuo, and H. C. Wang, “Nanostructure Study of the Coalescence Growth of GaN Columns with Molecular Beam Epitaxy,” Opt. Mater. Express 3(9), 1450–1458 (2013).
[Crossref]

G. P. Dimitrakopulos, A. Lotsari, Th. Kehagias, A. Ajagunna, A. Georgakilas, Th. Karakostas, and Ph. Komninou, “Structure and interfacial properties of semipolar s-plane (1-101) InN grown on r-plane sapphire,” Phys. Status Solidi., A Appl. Mater. Sci. 210(1), 199–203 (2013).
[Crossref]

H. H. Liu, H. Y. Lin, C. Z. Liao, and J. I. Chyi, “Growth and Characterization of Crack-Free Semi-Polar (1-101) GaN on 7°-off (001) Si Substrates by Metal-Organic Chemical Vapor Deposition,” ECS Journal of Solid State Science and Technology 2(8), N3001–N3005 (2013).
[Crossref]

2012 (1)

M. J. Edwards, E. D. Le Boulbar, S. Vittoz, G. Vanko, K. Brinkfeldt, L. Rufer, P. Johander, T. Lalinský, C. R. Bowen, and D. W. E. Allsopp, “Pressure and temperature dependence of GaN/AlGaN high electron mobility transistor based sensors on a sapphire membrane,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(3), 960–963 (2012).
[Crossref]

2011 (4)

H. M. Ku, C. Y. Huang, C. Z. Liao, and S. Chao, “Epitaxial Lateral Overgrowth of Gallium Nitride for Embedding the Micro-Mirror Array,” Jpn. J. Appl. Phys. 50(4S), 04DG07 (2011).
[Crossref]

H. C. Wang, X. Y. Yu, Y. L. Chueh, T. Malinauskas, K. Jarasiunas, and S. W. Feng, “Suppression of surface recombination in surface plasmon coupling with an InGaN/GaN multiple quantum well sample,” Opt. Express 19(20), 18893–18902 (2011).
[Crossref] [PubMed]

N. Sawaki and Y. Honda, “Semi-polar GaN LEDs on Si substrate,” Sci. China Technol. Sci. 54(1), 38–41 (2011).
[Crossref]

Z. H. Wu, T. Tanikawa, T. Murase, Y. Y. Fang, C. Q. Chen, Y. Honda, M. Yamaguchi, H. Amano, and N. Sawaki, “Partial strain relaxation by stacking fault generation in InGaN multiple quantum wells grown on (1101) semi-polar GaN,” Appl. Phys. Lett. 98(5), 051902 (2011).
[Crossref]

2010 (3)

M. Haeberlen, D. Zhu, C. McAleese, M. J. Kappers, and C. J. Humphreys, “Dislocation reduction in MOVPE grown GaN layers on (111) Si using SiNx and AlGaN layers,” J. Phys. Conf. Ser. 209, 012017 (2010).
[Crossref]

H. Ohta, S. P. DenBaars, and S. Nakamura, “Future of group-III nitride semiconductor green laser diodes,” J. Opt. Soc. Am. 27(11), B45–B49 (2010).
[Crossref]

H. C. Wang, T. Malinauskas, K. Jarasiunas, S. W. Feng, C. C. Ting, and S. Liu, “Carrier dynamics in InGaN/GaN multiple quantum wells based on different polishing processes of sapphire substrate,” Thin Solid Films 518(24), 7291–7294 (2010).
[Crossref]

2009 (5)

N. Taşaltın, S. Öztürk, N. Kılınç, H. Yüzer, and Z. Z. Öztürk, “Simple fabrication of hexagonally well-ordered AAO template on silicon substrate in two dimensions,” Appl. Phys., A Mater. Sci. Process. 95(3), 781–787 (2009).
[Crossref]

N. Sawaki, T. Hikosaka, N. Koide, S. Tanaka, Y. Honda, and M. Yamaguchi, “Growth and properties of semi-polar GaN on a patterned silicon substrate,” J. Cryst. Growth 311(10), 2867–2874 (2009).
[Crossref]

Y. K. Kuo, J. Y. Chang, M. C. Tsai, and S. H. Yen, “Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers,” Appl. Phys. Lett. 95(1), 011116 (2009).
[Crossref]

Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar {2021} Free-Standing GaN Substrates, Yohei Enya,” Appl. Phys. Express 2, 082101 (2009).
[Crossref]

M. Sugiyama, T. Shioda, Y. Tomita, T. Yamamoto, Y. Ikuhara, and Y. Nakano, “Optical and Structural Characterization of InGaN/GaN Multiple Quantum Wells by Epitaxial Lateral Overgrowth,” Mater. Trans. 50(5), 1085–1090 (2009).
[Crossref]

2008 (2)

C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template,” Appl. Phys. Lett. 93(8), 081108 (2008).
[Crossref]

S. W. Feng, L. W. Tu, J. I. Chyi, and H. C. Wang, “Luminescence mechanism and carrier dynamic studies of InGaN-based dichromatic light emitting diodes with ultraviolet and blue emissions,” Thin Solid Films 517(2), 909–915 (2008).
[Crossref]

2007 (3)

A. Tyagi, H. Zhong, N. N. Fellows, M. Iza, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High Brightness Violet InGaN/GaN Light Emitting Diodes on Semipolar (10 −1 −1) Bulk GaN Substrates,” Jpn. J. Appl. Phys. 46(7), L129–L131 (2007).
[Crossref]

K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. DenBaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A10R), 6573–6578 (2007).
[Crossref]

C. Finger, T. Hempel, T. Christen, J. Dadgar, A. Hoffmann, and A. Krost, “Fabry-Perot effects in InGaN/GaN heterostructures on Si-substrate, Hums,” J. Appl. Phys. 101(3), 033113 (2007).
[Crossref]

2006 (2)

Y. S. Chen, L. J. Yao, Y. L. Lin, L. Hung, C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, and C. C. Yang, “Transmission Electron Microscopy Study on Pre-strained InGaN/GaN Quantum Wells,” J. Cryst. Growth 297(1), 66–73 (2006).
[Crossref]

Y. D. Wang, K. Y. Zang, and S. J. Chua, “Nonlithographic nanopatterning through anodic aluminum oxide template and selective growth of highly ordered GaN nanostructures,” J. Appl. Phys. 100(5), 054306 (2006).
[Crossref]

2005 (1)

H. C. Wang, Y. C. Lu, C. C. Teng, Y. S. Chen, C. C. Yang, K. J. Ma, C. C. Pan, and J. I. Chyi, “Ultrafast Carrier Dynamics in an InGaN Thin Film,” J. Appl. Phys. 97(3), 033704 (2005).
[Crossref]

2004 (1)

Z. Liliental-Weber, J. Jasinski, and D. N. Zakharov, “GaN grown in polar and non-polar directions,” Opto-Electron. Rev. 12(4), 339–346 (2004).

2003 (1)

J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-Light Emission From Near UV InGaN–GaN LED Chip Precoated With Blue/Green/Red Phosphors,” IEEE Photonic. Tech. L. 15(1), 18–20 (2003).
[Crossref]

2002 (2)

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, Green, and Blue LEDs for White Light Illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002).
[Crossref]

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81(7), 1246–1248 (2002).
[Crossref]

2000 (1)

R. Held, B. E. Ishaug, A. Parkhomovsky, A. M. Dabiran, and P. I. Cohen, “A rate equation model for the growth of GaN on GaN(0001) by molecular beam epitaxy,” J. Appl. Phys. 87(3), 1219–1226 (2000).
[Crossref]

1996 (1)

S. Keller, B. P. Keller, D. Kapolnek, A. C. Abare, H. Masui, L. A. Coldren, U. K. Mishra, and S. P. Den Baars, “Growth and characterization of bulk InGaN films and quantum wells,” Appl. Phys. Lett. 68(22), 3147–3149 (1996).
[Crossref]

1993 (1)

S. Nakamura, M. Senoh, and T. Mukai, “P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes,” Jpn. J. Appl. Phys. 32(2), L8–L11 (1993).
[Crossref]

Abare, A. C.

S. Keller, B. P. Keller, D. Kapolnek, A. C. Abare, H. Masui, L. A. Coldren, U. K. Mishra, and S. P. Den Baars, “Growth and characterization of bulk InGaN films and quantum wells,” Appl. Phys. Lett. 68(22), 3147–3149 (1996).
[Crossref]

Adachi, M.

Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar {2021} Free-Standing GaN Substrates, Yohei Enya,” Appl. Phys. Express 2, 082101 (2009).
[Crossref]

Ajagunna, A.

G. P. Dimitrakopulos, A. Lotsari, Th. Kehagias, A. Ajagunna, A. Georgakilas, Th. Karakostas, and Ph. Komninou, “Structure and interfacial properties of semipolar s-plane (1-101) InN grown on r-plane sapphire,” Phys. Status Solidi., A Appl. Mater. Sci. 210(1), 199–203 (2013).
[Crossref]

Akita, K.

Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar {2021} Free-Standing GaN Substrates, Yohei Enya,” Appl. Phys. Express 2, 082101 (2009).
[Crossref]

Allsopp, D. W. E.

M. J. Edwards, E. D. Le Boulbar, S. Vittoz, G. Vanko, K. Brinkfeldt, L. Rufer, P. Johander, T. Lalinský, C. R. Bowen, and D. W. E. Allsopp, “Pressure and temperature dependence of GaN/AlGaN high electron mobility transistor based sensors on a sapphire membrane,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(3), 960–963 (2012).
[Crossref]

Amano, H.

J. S. Son, Y. Honda, M. Yamaguchi, and H. Amano, “Characterization of nonpolar a-plane InGaN/GaN multiple quantum well using double nanopillar SiO2 mask,” Jpn. J. Appl. Phys. 53(5S1), 05FL01 (2014).
[Crossref]

Z. H. Wu, T. Tanikawa, T. Murase, Y. Y. Fang, C. Q. Chen, Y. Honda, M. Yamaguchi, H. Amano, and N. Sawaki, “Partial strain relaxation by stacking fault generation in InGaN multiple quantum wells grown on (1101) semi-polar GaN,” Appl. Phys. Lett. 98(5), 051902 (2011).
[Crossref]

Baker, T. J.

K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. DenBaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A10R), 6573–6578 (2007).
[Crossref]

Bowen, C. R.

M. J. Edwards, E. D. Le Boulbar, S. Vittoz, G. Vanko, K. Brinkfeldt, L. Rufer, P. Johander, T. Lalinský, C. R. Bowen, and D. W. E. Allsopp, “Pressure and temperature dependence of GaN/AlGaN high electron mobility transistor based sensors on a sapphire membrane,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(3), 960–963 (2012).
[Crossref]

Brinkfeldt, K.

M. J. Edwards, E. D. Le Boulbar, S. Vittoz, G. Vanko, K. Brinkfeldt, L. Rufer, P. Johander, T. Lalinský, C. R. Bowen, and D. W. E. Allsopp, “Pressure and temperature dependence of GaN/AlGaN high electron mobility transistor based sensors on a sapphire membrane,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(3), 960–963 (2012).
[Crossref]

Chang, J. Y.

Y. K. Kuo, J. Y. Chang, M. C. Tsai, and S. H. Yen, “Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers,” Appl. Phys. Lett. 95(1), 011116 (2009).
[Crossref]

Chang, S. J.

J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-Light Emission From Near UV InGaN–GaN LED Chip Precoated With Blue/Green/Red Phosphors,” IEEE Photonic. Tech. L. 15(1), 18–20 (2003).
[Crossref]

Chao, C. L.

C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template,” Appl. Phys. Lett. 93(8), 081108 (2008).
[Crossref]

Chao, S.

H. M. Ku, C. Y. Huang, C. Z. Liao, and S. Chao, “Epitaxial Lateral Overgrowth of Gallium Nitride for Embedding the Micro-Mirror Array,” Jpn. J. Appl. Phys. 50(4S), 04DG07 (2011).
[Crossref]

Chen, C. Q.

Z. H. Wu, T. Tanikawa, T. Murase, Y. Y. Fang, C. Q. Chen, Y. Honda, M. Yamaguchi, H. Amano, and N. Sawaki, “Partial strain relaxation by stacking fault generation in InGaN multiple quantum wells grown on (1101) semi-polar GaN,” Appl. Phys. Lett. 98(5), 051902 (2011).
[Crossref]

Chen, L. C.

L. C. Chen and W. F. Tsai, “Properties of GaN-based light-emitting diodes on patterned sapphire substrate coated with silver nanoparticles prepared by mask-free chemical etching,” Nanoscale Res. Lett. 8(1), 157 (2013).
[Crossref] [PubMed]

Chen, L. Y.

Chen, M. C.

M. C. Chen, Y. C. Cheng, C. Y. Huang, H. C. Wang, K. I. Lin, and Z. P. Yang, “The action of silicon doping in the first two to five barriers of eight periods In0.2Ga0.8N/GaN multiple quantum wells of blue LEDs,” J. Lumin. 177, 59–64 (2016).
[Crossref]

Chen, S. H.

L. Y. Chen, S. H. Chen, C. T. Kuo, and H. C. Wang, “Spectral design and evaluation of OLEDs as light sources,” Org. Electron. 15(10), 2194–2209 (2014).
[Crossref]

Chen, Y. S.

Y. S. Chen, C. H. Liao, Y. L. Chueh, C. C. Lai, L. Y. Chen, A. K. Chu, C. T. Kuo, and H. C. Wang, “High performance Cu2O/ZnO core-shell nanorod arrays synthesized using a nanoimprint GaN template by the hydrothermal growth technique,” Opt. Mater. Express 4(7), 1473–1486 (2014).
[Crossref]

Y. S. Chen, C. H. Liao, C. T. Kuo, R. C. C. Tsiang, and H. C. Wang, “Indium droplet formation in InGaN thin films with single and double heterojunctions prepared by MOCVD,” Nanoscale Res. Lett. 9(1), 334 (2014).
[Crossref] [PubMed]

Y. S. Chen, C. H. Liao, Y. L. Chueh, C. T. Kuo, and H. C. Wang, “Plan-View Transmission Electron Microscopy Study on Coalescence Overgrowth of GaN Nano-columns by MOCVD,” Opt. Mater. Express 3(9), 1459–1467 (2013).
[Crossref]

Y. S. Chen, C. H. Liao, Y. C. Cheng, C. T. Kuo, and H. C. Wang, “Nanostructure Study of the Coalescence Growth of GaN Columns with Molecular Beam Epitaxy,” Opt. Mater. Express 3(9), 1450–1458 (2013).
[Crossref]

Y. S. Chen, L. J. Yao, Y. L. Lin, L. Hung, C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, and C. C. Yang, “Transmission Electron Microscopy Study on Pre-strained InGaN/GaN Quantum Wells,” J. Cryst. Growth 297(1), 66–73 (2006).
[Crossref]

H. C. Wang, Y. C. Lu, C. C. Teng, Y. S. Chen, C. C. Yang, K. J. Ma, C. C. Pan, and J. I. Chyi, “Ultrafast Carrier Dynamics in an InGaN Thin Film,” J. Appl. Phys. 97(3), 033704 (2005).
[Crossref]

Cheng, S. J.

C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template,” Appl. Phys. Lett. 93(8), 081108 (2008).
[Crossref]

Cheng, Y. C.

M. C. Chen, Y. C. Cheng, C. Y. Huang, H. C. Wang, K. I. Lin, and Z. P. Yang, “The action of silicon doping in the first two to five barriers of eight periods In0.2Ga0.8N/GaN multiple quantum wells of blue LEDs,” J. Lumin. 177, 59–64 (2016).
[Crossref]

Y. S. Chen, C. H. Liao, Y. C. Cheng, C. T. Kuo, and H. C. Wang, “Nanostructure Study of the Coalescence Growth of GaN Columns with Molecular Beam Epitaxy,” Opt. Mater. Express 3(9), 1450–1458 (2013).
[Crossref]

Chi, G. C.

J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-Light Emission From Near UV InGaN–GaN LED Chip Precoated With Blue/Green/Red Phosphors,” IEEE Photonic. Tech. L. 15(1), 18–20 (2003).
[Crossref]

Chiu, C. H.

C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template,” Appl. Phys. Lett. 93(8), 081108 (2008).
[Crossref]

Christen, T.

C. Finger, T. Hempel, T. Christen, J. Dadgar, A. Hoffmann, and A. Krost, “Fabry-Perot effects in InGaN/GaN heterostructures on Si-substrate, Hums,” J. Appl. Phys. 101(3), 033113 (2007).
[Crossref]

Chu, A. K.

Chua, S. J.

Y. D. Wang, K. Y. Zang, and S. J. Chua, “Nonlithographic nanopatterning through anodic aluminum oxide template and selective growth of highly ordered GaN nanostructures,” J. Appl. Phys. 100(5), 054306 (2006).
[Crossref]

Chueh, Y. L.

Chyi, J. I.

H. H. Liu, H. Y. Lin, C. Z. Liao, and J. I. Chyi, “Growth and Characterization of Crack-Free Semi-Polar (1-101) GaN on 7°-off (001) Si Substrates by Metal-Organic Chemical Vapor Deposition,” ECS Journal of Solid State Science and Technology 2(8), N3001–N3005 (2013).
[Crossref]

S. W. Feng, L. W. Tu, J. I. Chyi, and H. C. Wang, “Luminescence mechanism and carrier dynamic studies of InGaN-based dichromatic light emitting diodes with ultraviolet and blue emissions,” Thin Solid Films 517(2), 909–915 (2008).
[Crossref]

H. C. Wang, Y. C. Lu, C. C. Teng, Y. S. Chen, C. C. Yang, K. J. Ma, C. C. Pan, and J. I. Chyi, “Ultrafast Carrier Dynamics in an InGaN Thin Film,” J. Appl. Phys. 97(3), 033704 (2005).
[Crossref]

Cohen, P. I.

R. Held, B. E. Ishaug, A. Parkhomovsky, A. M. Dabiran, and P. I. Cohen, “A rate equation model for the growth of GaN on GaN(0001) by molecular beam epitaxy,” J. Appl. Phys. 87(3), 1219–1226 (2000).
[Crossref]

Coldren, L. A.

S. Keller, B. P. Keller, D. Kapolnek, A. C. Abare, H. Masui, L. A. Coldren, U. K. Mishra, and S. P. Den Baars, “Growth and characterization of bulk InGaN films and quantum wells,” Appl. Phys. Lett. 68(22), 3147–3149 (1996).
[Crossref]

Dabiran, A. M.

R. Held, B. E. Ishaug, A. Parkhomovsky, A. M. Dabiran, and P. I. Cohen, “A rate equation model for the growth of GaN on GaN(0001) by molecular beam epitaxy,” J. Appl. Phys. 87(3), 1219–1226 (2000).
[Crossref]

Dadgar, J.

C. Finger, T. Hempel, T. Christen, J. Dadgar, A. Hoffmann, and A. Krost, “Fabry-Perot effects in InGaN/GaN heterostructures on Si-substrate, Hums,” J. Appl. Phys. 101(3), 033113 (2007).
[Crossref]

Den Baars, S. P.

S. Keller, B. P. Keller, D. Kapolnek, A. C. Abare, H. Masui, L. A. Coldren, U. K. Mishra, and S. P. Den Baars, “Growth and characterization of bulk InGaN films and quantum wells,” Appl. Phys. Lett. 68(22), 3147–3149 (1996).
[Crossref]

DenBaars, S. P.

H. Ohta, S. P. DenBaars, and S. Nakamura, “Future of group-III nitride semiconductor green laser diodes,” J. Opt. Soc. Am. 27(11), B45–B49 (2010).
[Crossref]

A. Tyagi, H. Zhong, N. N. Fellows, M. Iza, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High Brightness Violet InGaN/GaN Light Emitting Diodes on Semipolar (10 −1 −1) Bulk GaN Substrates,” Jpn. J. Appl. Phys. 46(7), L129–L131 (2007).
[Crossref]

K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. DenBaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A10R), 6573–6578 (2007).
[Crossref]

Dimitrakopulos, G. P.

G. P. Dimitrakopulos, A. Lotsari, Th. Kehagias, A. Ajagunna, A. Georgakilas, Th. Karakostas, and Ph. Komninou, “Structure and interfacial properties of semipolar s-plane (1-101) InN grown on r-plane sapphire,” Phys. Status Solidi., A Appl. Mater. Sci. 210(1), 199–203 (2013).
[Crossref]

Edwards, M. J.

M. J. Edwards, E. D. Le Boulbar, S. Vittoz, G. Vanko, K. Brinkfeldt, L. Rufer, P. Johander, T. Lalinský, C. R. Bowen, and D. W. E. Allsopp, “Pressure and temperature dependence of GaN/AlGaN high electron mobility transistor based sensors on a sapphire membrane,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(3), 960–963 (2012).
[Crossref]

Fang, Y. Y.

Z. H. Wu, T. Tanikawa, T. Murase, Y. Y. Fang, C. Q. Chen, Y. Honda, M. Yamaguchi, H. Amano, and N. Sawaki, “Partial strain relaxation by stacking fault generation in InGaN multiple quantum wells grown on (1101) semi-polar GaN,” Appl. Phys. Lett. 98(5), 051902 (2011).
[Crossref]

Fellows, N. N.

A. Tyagi, H. Zhong, N. N. Fellows, M. Iza, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High Brightness Violet InGaN/GaN Light Emitting Diodes on Semipolar (10 −1 −1) Bulk GaN Substrates,” Jpn. J. Appl. Phys. 46(7), L129–L131 (2007).
[Crossref]

Feng, S. W.

S. W. Feng, P. H. Liao, B. Leung, J. Han, F. W. Yang, and H. C. Wang, “Efficient carrier relaxation and fast carrier recombination of N-polar InGaN/GaN light emitting diodes,” J. Appl. Phys. 118(4), 043104 (2015).
[Crossref]

H. C. Wang, X. Y. Yu, Y. L. Chueh, T. Malinauskas, K. Jarasiunas, and S. W. Feng, “Suppression of surface recombination in surface plasmon coupling with an InGaN/GaN multiple quantum well sample,” Opt. Express 19(20), 18893–18902 (2011).
[Crossref] [PubMed]

H. C. Wang, T. Malinauskas, K. Jarasiunas, S. W. Feng, C. C. Ting, and S. Liu, “Carrier dynamics in InGaN/GaN multiple quantum wells based on different polishing processes of sapphire substrate,” Thin Solid Films 518(24), 7291–7294 (2010).
[Crossref]

S. W. Feng, L. W. Tu, J. I. Chyi, and H. C. Wang, “Luminescence mechanism and carrier dynamic studies of InGaN-based dichromatic light emitting diodes with ultraviolet and blue emissions,” Thin Solid Films 517(2), 909–915 (2008).
[Crossref]

Finger, C.

C. Finger, T. Hempel, T. Christen, J. Dadgar, A. Hoffmann, and A. Krost, “Fabry-Perot effects in InGaN/GaN heterostructures on Si-substrate, Hums,” J. Appl. Phys. 101(3), 033113 (2007).
[Crossref]

Fujii, K.

K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. DenBaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A10R), 6573–6578 (2007).
[Crossref]

Georgakilas, A.

G. P. Dimitrakopulos, A. Lotsari, Th. Kehagias, A. Ajagunna, A. Georgakilas, Th. Karakostas, and Ph. Komninou, “Structure and interfacial properties of semipolar s-plane (1-101) InN grown on r-plane sapphire,” Phys. Status Solidi., A Appl. Mater. Sci. 210(1), 199–203 (2013).
[Crossref]

Haeberlen, M.

M. Haeberlen, D. Zhu, C. McAleese, M. J. Kappers, and C. J. Humphreys, “Dislocation reduction in MOVPE grown GaN layers on (111) Si using SiNx and AlGaN layers,” J. Phys. Conf. Ser. 209, 012017 (2010).
[Crossref]

Han, J.

S. W. Feng, P. H. Liao, B. Leung, J. Han, F. W. Yang, and H. C. Wang, “Efficient carrier relaxation and fast carrier recombination of N-polar InGaN/GaN light emitting diodes,” J. Appl. Phys. 118(4), 043104 (2015).
[Crossref]

Harima, H.

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81(7), 1246–1248 (2002).
[Crossref]

Held, R.

R. Held, B. E. Ishaug, A. Parkhomovsky, A. M. Dabiran, and P. I. Cohen, “A rate equation model for the growth of GaN on GaN(0001) by molecular beam epitaxy,” J. Appl. Phys. 87(3), 1219–1226 (2000).
[Crossref]

Hempel, T.

C. Finger, T. Hempel, T. Christen, J. Dadgar, A. Hoffmann, and A. Krost, “Fabry-Perot effects in InGaN/GaN heterostructures on Si-substrate, Hums,” J. Appl. Phys. 101(3), 033113 (2007).
[Crossref]

Hikosaka, T.

N. Sawaki, T. Hikosaka, N. Koide, S. Tanaka, Y. Honda, and M. Yamaguchi, “Growth and properties of semi-polar GaN on a patterned silicon substrate,” J. Cryst. Growth 311(10), 2867–2874 (2009).
[Crossref]

Hoffmann, A.

C. Finger, T. Hempel, T. Christen, J. Dadgar, A. Hoffmann, and A. Krost, “Fabry-Perot effects in InGaN/GaN heterostructures on Si-substrate, Hums,” J. Appl. Phys. 101(3), 033113 (2007).
[Crossref]

Honda, Y.

J. S. Son, Y. Honda, M. Yamaguchi, and H. Amano, “Characterization of nonpolar a-plane InGaN/GaN multiple quantum well using double nanopillar SiO2 mask,” Jpn. J. Appl. Phys. 53(5S1), 05FL01 (2014).
[Crossref]

N. Sawaki and Y. Honda, “Semi-polar GaN LEDs on Si substrate,” Sci. China Technol. Sci. 54(1), 38–41 (2011).
[Crossref]

Z. H. Wu, T. Tanikawa, T. Murase, Y. Y. Fang, C. Q. Chen, Y. Honda, M. Yamaguchi, H. Amano, and N. Sawaki, “Partial strain relaxation by stacking fault generation in InGaN multiple quantum wells grown on (1101) semi-polar GaN,” Appl. Phys. Lett. 98(5), 051902 (2011).
[Crossref]

N. Sawaki, T. Hikosaka, N. Koide, S. Tanaka, Y. Honda, and M. Yamaguchi, “Growth and properties of semi-polar GaN on a patterned silicon substrate,” J. Cryst. Growth 311(10), 2867–2874 (2009).
[Crossref]

Huang, C. F.

Y. S. Chen, L. J. Yao, Y. L. Lin, L. Hung, C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, and C. C. Yang, “Transmission Electron Microscopy Study on Pre-strained InGaN/GaN Quantum Wells,” J. Cryst. Growth 297(1), 66–73 (2006).
[Crossref]

Huang, C. Y.

M. C. Chen, Y. C. Cheng, C. Y. Huang, H. C. Wang, K. I. Lin, and Z. P. Yang, “The action of silicon doping in the first two to five barriers of eight periods In0.2Ga0.8N/GaN multiple quantum wells of blue LEDs,” J. Lumin. 177, 59–64 (2016).
[Crossref]

H. M. Ku, C. Y. Huang, C. Z. Liao, and S. Chao, “Epitaxial Lateral Overgrowth of Gallium Nitride for Embedding the Micro-Mirror Array,” Jpn. J. Appl. Phys. 50(4S), 04DG07 (2011).
[Crossref]

Huang, J. J.

Y. S. Chen, L. J. Yao, Y. L. Lin, L. Hung, C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, and C. C. Yang, “Transmission Electron Microscopy Study on Pre-strained InGaN/GaN Quantum Wells,” J. Cryst. Growth 297(1), 66–73 (2006).
[Crossref]

Humphreys, C. J.

M. Haeberlen, D. Zhu, C. McAleese, M. J. Kappers, and C. J. Humphreys, “Dislocation reduction in MOVPE grown GaN layers on (111) Si using SiNx and AlGaN layers,” J. Phys. Conf. Ser. 209, 012017 (2010).
[Crossref]

Hung, L.

Y. S. Chen, L. J. Yao, Y. L. Lin, L. Hung, C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, and C. C. Yang, “Transmission Electron Microscopy Study on Pre-strained InGaN/GaN Quantum Wells,” J. Cryst. Growth 297(1), 66–73 (2006).
[Crossref]

Ikegami, T.

Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar {2021} Free-Standing GaN Substrates, Yohei Enya,” Appl. Phys. Express 2, 082101 (2009).
[Crossref]

Ikuhara, Y.

M. Sugiyama, T. Shioda, Y. Tomita, T. Yamamoto, Y. Ikuhara, and Y. Nakano, “Optical and Structural Characterization of InGaN/GaN Multiple Quantum Wells by Epitaxial Lateral Overgrowth,” Mater. Trans. 50(5), 1085–1090 (2009).
[Crossref]

Ishaug, B. E.

R. Held, B. E. Ishaug, A. Parkhomovsky, A. M. Dabiran, and P. I. Cohen, “A rate equation model for the growth of GaN on GaN(0001) by molecular beam epitaxy,” J. Appl. Phys. 87(3), 1219–1226 (2000).
[Crossref]

Iwaki, Y.

K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. DenBaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A10R), 6573–6578 (2007).
[Crossref]

Iza, M.

K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. DenBaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A10R), 6573–6578 (2007).
[Crossref]

A. Tyagi, H. Zhong, N. N. Fellows, M. Iza, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High Brightness Violet InGaN/GaN Light Emitting Diodes on Semipolar (10 −1 −1) Bulk GaN Substrates,” Jpn. J. Appl. Phys. 46(7), L129–L131 (2007).
[Crossref]

Jarasiunas, K.

H. C. Wang, X. Y. Yu, Y. L. Chueh, T. Malinauskas, K. Jarasiunas, and S. W. Feng, “Suppression of surface recombination in surface plasmon coupling with an InGaN/GaN multiple quantum well sample,” Opt. Express 19(20), 18893–18902 (2011).
[Crossref] [PubMed]

H. C. Wang, T. Malinauskas, K. Jarasiunas, S. W. Feng, C. C. Ting, and S. Liu, “Carrier dynamics in InGaN/GaN multiple quantum wells based on different polishing processes of sapphire substrate,” Thin Solid Films 518(24), 7291–7294 (2010).
[Crossref]

Jasinski, J.

Z. Liliental-Weber, J. Jasinski, and D. N. Zakharov, “GaN grown in polar and non-polar directions,” Opto-Electron. Rev. 12(4), 339–346 (2004).

Johander, P.

M. J. Edwards, E. D. Le Boulbar, S. Vittoz, G. Vanko, K. Brinkfeldt, L. Rufer, P. Johander, T. Lalinský, C. R. Bowen, and D. W. E. Allsopp, “Pressure and temperature dependence of GaN/AlGaN high electron mobility transistor based sensors on a sapphire membrane,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(3), 960–963 (2012).
[Crossref]

Kaeding, J.

K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. DenBaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A10R), 6573–6578 (2007).
[Crossref]

Kapolnek, D.

S. Keller, B. P. Keller, D. Kapolnek, A. C. Abare, H. Masui, L. A. Coldren, U. K. Mishra, and S. P. Den Baars, “Growth and characterization of bulk InGaN films and quantum wells,” Appl. Phys. Lett. 68(22), 3147–3149 (1996).
[Crossref]

Kappers, M. J.

M. Haeberlen, D. Zhu, C. McAleese, M. J. Kappers, and C. J. Humphreys, “Dislocation reduction in MOVPE grown GaN layers on (111) Si using SiNx and AlGaN layers,” J. Phys. Conf. Ser. 209, 012017 (2010).
[Crossref]

Karakostas, Th.

G. P. Dimitrakopulos, A. Lotsari, Th. Kehagias, A. Ajagunna, A. Georgakilas, Th. Karakostas, and Ph. Komninou, “Structure and interfacial properties of semipolar s-plane (1-101) InN grown on r-plane sapphire,” Phys. Status Solidi., A Appl. Mater. Sci. 210(1), 199–203 (2013).
[Crossref]

Katayama, K.

Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar {2021} Free-Standing GaN Substrates, Yohei Enya,” Appl. Phys. Express 2, 082101 (2009).
[Crossref]

Kehagias, Th.

G. P. Dimitrakopulos, A. Lotsari, Th. Kehagias, A. Ajagunna, A. Georgakilas, Th. Karakostas, and Ph. Komninou, “Structure and interfacial properties of semipolar s-plane (1-101) InN grown on r-plane sapphire,” Phys. Status Solidi., A Appl. Mater. Sci. 210(1), 199–203 (2013).
[Crossref]

Keller, B. P.

S. Keller, B. P. Keller, D. Kapolnek, A. C. Abare, H. Masui, L. A. Coldren, U. K. Mishra, and S. P. Den Baars, “Growth and characterization of bulk InGaN films and quantum wells,” Appl. Phys. Lett. 68(22), 3147–3149 (1996).
[Crossref]

Keller, S.

S. Keller, B. P. Keller, D. Kapolnek, A. C. Abare, H. Masui, L. A. Coldren, U. K. Mishra, and S. P. Den Baars, “Growth and characterization of bulk InGaN films and quantum wells,” Appl. Phys. Lett. 68(22), 3147–3149 (1996).
[Crossref]

Kilinç, N.

N. Taşaltın, S. Öztürk, N. Kılınç, H. Yüzer, and Z. Z. Öztürk, “Simple fabrication of hexagonally well-ordered AAO template on silicon substrate in two dimensions,” Appl. Phys., A Mater. Sci. Process. 95(3), 781–787 (2009).
[Crossref]

Koide, N.

N. Sawaki, T. Hikosaka, N. Koide, S. Tanaka, Y. Honda, and M. Yamaguchi, “Growth and properties of semi-polar GaN on a patterned silicon substrate,” J. Cryst. Growth 311(10), 2867–2874 (2009).
[Crossref]

Komninou, Ph.

G. P. Dimitrakopulos, A. Lotsari, Th. Kehagias, A. Ajagunna, A. Georgakilas, Th. Karakostas, and Ph. Komninou, “Structure and interfacial properties of semipolar s-plane (1-101) InN grown on r-plane sapphire,” Phys. Status Solidi., A Appl. Mater. Sci. 210(1), 199–203 (2013).
[Crossref]

Krost, A.

C. Finger, T. Hempel, T. Christen, J. Dadgar, A. Hoffmann, and A. Krost, “Fabry-Perot effects in InGaN/GaN heterostructures on Si-substrate, Hums,” J. Appl. Phys. 101(3), 033113 (2007).
[Crossref]

Ku, H. M.

H. M. Ku, C. Y. Huang, C. Z. Liao, and S. Chao, “Epitaxial Lateral Overgrowth of Gallium Nitride for Embedding the Micro-Mirror Array,” Jpn. J. Appl. Phys. 50(4S), 04DG07 (2011).
[Crossref]

Kuo, C. H.

J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-Light Emission From Near UV InGaN–GaN LED Chip Precoated With Blue/Green/Red Phosphors,” IEEE Photonic. Tech. L. 15(1), 18–20 (2003).
[Crossref]

Kuo, C. T.

Kuo, H. C.

C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template,” Appl. Phys. Lett. 93(8), 081108 (2008).
[Crossref]

Kuo, Y. K.

Y. K. Kuo, J. Y. Chang, M. C. Tsai, and S. H. Yen, “Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers,” Appl. Phys. Lett. 95(1), 011116 (2009).
[Crossref]

Kurimoto, E.

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81(7), 1246–1248 (2002).
[Crossref]

Kyono, T.

Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar {2021} Free-Standing GaN Substrates, Yohei Enya,” Appl. Phys. Express 2, 082101 (2009).
[Crossref]

Lai, C. C.

Lai, W. C.

J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-Light Emission From Near UV InGaN–GaN LED Chip Precoated With Blue/Green/Red Phosphors,” IEEE Photonic. Tech. L. 15(1), 18–20 (2003).
[Crossref]

Lalinský, T.

M. J. Edwards, E. D. Le Boulbar, S. Vittoz, G. Vanko, K. Brinkfeldt, L. Rufer, P. Johander, T. Lalinský, C. R. Bowen, and D. W. E. Allsopp, “Pressure and temperature dependence of GaN/AlGaN high electron mobility transistor based sensors on a sapphire membrane,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(3), 960–963 (2012).
[Crossref]

Lau, K. M.

C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template,” Appl. Phys. Lett. 93(8), 081108 (2008).
[Crossref]

Le Boulbar, E. D.

M. J. Edwards, E. D. Le Boulbar, S. Vittoz, G. Vanko, K. Brinkfeldt, L. Rufer, P. Johander, T. Lalinský, C. R. Bowen, and D. W. E. Allsopp, “Pressure and temperature dependence of GaN/AlGaN high electron mobility transistor based sensors on a sapphire membrane,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(3), 960–963 (2012).
[Crossref]

Leung, B.

S. W. Feng, P. H. Liao, B. Leung, J. Han, F. W. Yang, and H. C. Wang, “Efficient carrier relaxation and fast carrier recombination of N-polar InGaN/GaN light emitting diodes,” J. Appl. Phys. 118(4), 043104 (2015).
[Crossref]

Li, Z. Y.

C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template,” Appl. Phys. Lett. 93(8), 081108 (2008).
[Crossref]

Liao, C. H.

Liao, C. Z.

H. H. Liu, H. Y. Lin, C. Z. Liao, and J. I. Chyi, “Growth and Characterization of Crack-Free Semi-Polar (1-101) GaN on 7°-off (001) Si Substrates by Metal-Organic Chemical Vapor Deposition,” ECS Journal of Solid State Science and Technology 2(8), N3001–N3005 (2013).
[Crossref]

H. M. Ku, C. Y. Huang, C. Z. Liao, and S. Chao, “Epitaxial Lateral Overgrowth of Gallium Nitride for Embedding the Micro-Mirror Array,” Jpn. J. Appl. Phys. 50(4S), 04DG07 (2011).
[Crossref]

Liao, P. H.

S. W. Feng, P. H. Liao, B. Leung, J. Han, F. W. Yang, and H. C. Wang, “Efficient carrier relaxation and fast carrier recombination of N-polar InGaN/GaN light emitting diodes,” J. Appl. Phys. 118(4), 043104 (2015).
[Crossref]

Liliental-Weber, Z.

Z. Liliental-Weber, J. Jasinski, and D. N. Zakharov, “GaN grown in polar and non-polar directions,” Opto-Electron. Rev. 12(4), 339–346 (2004).

Lin, H. Y.

H. H. Liu, H. Y. Lin, C. Z. Liao, and J. I. Chyi, “Growth and Characterization of Crack-Free Semi-Polar (1-101) GaN on 7°-off (001) Si Substrates by Metal-Organic Chemical Vapor Deposition,” ECS Journal of Solid State Science and Technology 2(8), N3001–N3005 (2013).
[Crossref]

Lin, K. I.

M. C. Chen, Y. C. Cheng, C. Y. Huang, H. C. Wang, K. I. Lin, and Z. P. Yang, “The action of silicon doping in the first two to five barriers of eight periods In0.2Ga0.8N/GaN multiple quantum wells of blue LEDs,” J. Lumin. 177, 59–64 (2016).
[Crossref]

Lin, Y. C.

J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-Light Emission From Near UV InGaN–GaN LED Chip Precoated With Blue/Green/Red Phosphors,” IEEE Photonic. Tech. L. 15(1), 18–20 (2003).
[Crossref]

Lin, Y. L.

Y. S. Chen, L. J. Yao, Y. L. Lin, L. Hung, C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, and C. C. Yang, “Transmission Electron Microscopy Study on Pre-strained InGaN/GaN Quantum Wells,” J. Cryst. Growth 297(1), 66–73 (2006).
[Crossref]

Liu, H. H.

H. H. Liu, H. Y. Lin, C. Z. Liao, and J. I. Chyi, “Growth and Characterization of Crack-Free Semi-Polar (1-101) GaN on 7°-off (001) Si Substrates by Metal-Organic Chemical Vapor Deposition,” ECS Journal of Solid State Science and Technology 2(8), N3001–N3005 (2013).
[Crossref]

Liu, S.

H. C. Wang, T. Malinauskas, K. Jarasiunas, S. W. Feng, C. C. Ting, and S. Liu, “Carrier dynamics in InGaN/GaN multiple quantum wells based on different polishing processes of sapphire substrate,” Thin Solid Films 518(24), 7291–7294 (2010).
[Crossref]

Lotsari, A.

G. P. Dimitrakopulos, A. Lotsari, Th. Kehagias, A. Ajagunna, A. Georgakilas, Th. Karakostas, and Ph. Komninou, “Structure and interfacial properties of semipolar s-plane (1-101) InN grown on r-plane sapphire,” Phys. Status Solidi., A Appl. Mater. Sci. 210(1), 199–203 (2013).
[Crossref]

Lu, T. C.

C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template,” Appl. Phys. Lett. 93(8), 081108 (2008).
[Crossref]

Lu, Y. C.

H. C. Wang, Y. C. Lu, C. C. Teng, Y. S. Chen, C. C. Yang, K. J. Ma, C. C. Pan, and J. I. Chyi, “Ultrafast Carrier Dynamics in an InGaN Thin Film,” J. Appl. Phys. 97(3), 033704 (2005).
[Crossref]

Ma, K. J.

H. C. Wang, Y. C. Lu, C. C. Teng, Y. S. Chen, C. C. Yang, K. J. Ma, C. C. Pan, and J. I. Chyi, “Ultrafast Carrier Dynamics in an InGaN Thin Film,” J. Appl. Phys. 97(3), 033704 (2005).
[Crossref]

Malinauskas, T.

H. C. Wang, X. Y. Yu, Y. L. Chueh, T. Malinauskas, K. Jarasiunas, and S. W. Feng, “Suppression of surface recombination in surface plasmon coupling with an InGaN/GaN multiple quantum well sample,” Opt. Express 19(20), 18893–18902 (2011).
[Crossref] [PubMed]

H. C. Wang, T. Malinauskas, K. Jarasiunas, S. W. Feng, C. C. Ting, and S. Liu, “Carrier dynamics in InGaN/GaN multiple quantum wells based on different polishing processes of sapphire substrate,” Thin Solid Films 518(24), 7291–7294 (2010).
[Crossref]

Masui, H.

K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. DenBaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A10R), 6573–6578 (2007).
[Crossref]

S. Keller, B. P. Keller, D. Kapolnek, A. C. Abare, H. Masui, L. A. Coldren, U. K. Mishra, and S. P. Den Baars, “Growth and characterization of bulk InGaN films and quantum wells,” Appl. Phys. Lett. 68(22), 3147–3149 (1996).
[Crossref]

Matsuoka, T.

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81(7), 1246–1248 (2002).
[Crossref]

McAleese, C.

M. Haeberlen, D. Zhu, C. McAleese, M. J. Kappers, and C. J. Humphreys, “Dislocation reduction in MOVPE grown GaN layers on (111) Si using SiNx and AlGaN layers,” J. Phys. Conf. Ser. 209, 012017 (2010).
[Crossref]

Mishra, U. K.

S. Keller, B. P. Keller, D. Kapolnek, A. C. Abare, H. Masui, L. A. Coldren, U. K. Mishra, and S. P. Den Baars, “Growth and characterization of bulk InGaN films and quantum wells,” Appl. Phys. Lett. 68(22), 3147–3149 (1996).
[Crossref]

Mukai, T.

S. Nakamura, M. Senoh, and T. Mukai, “P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes,” Jpn. J. Appl. Phys. 32(2), L8–L11 (1993).
[Crossref]

Murase, T.

Z. H. Wu, T. Tanikawa, T. Murase, Y. Y. Fang, C. Q. Chen, Y. Honda, M. Yamaguchi, H. Amano, and N. Sawaki, “Partial strain relaxation by stacking fault generation in InGaN multiple quantum wells grown on (1101) semi-polar GaN,” Appl. Phys. Lett. 98(5), 051902 (2011).
[Crossref]

Muthu, S.

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, Green, and Blue LEDs for White Light Illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002).
[Crossref]

Nakamura, S.

H. Ohta, S. P. DenBaars, and S. Nakamura, “Future of group-III nitride semiconductor green laser diodes,” J. Opt. Soc. Am. 27(11), B45–B49 (2010).
[Crossref]

A. Tyagi, H. Zhong, N. N. Fellows, M. Iza, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High Brightness Violet InGaN/GaN Light Emitting Diodes on Semipolar (10 −1 −1) Bulk GaN Substrates,” Jpn. J. Appl. Phys. 46(7), L129–L131 (2007).
[Crossref]

K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. DenBaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A10R), 6573–6578 (2007).
[Crossref]

S. Nakamura, M. Senoh, and T. Mukai, “P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes,” Jpn. J. Appl. Phys. 32(2), L8–L11 (1993).
[Crossref]

Nakamura, T.

Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar {2021} Free-Standing GaN Substrates, Yohei Enya,” Appl. Phys. Express 2, 082101 (2009).
[Crossref]

Nakano, Y.

M. Sugiyama, T. Shioda, Y. Tomita, T. Yamamoto, Y. Ikuhara, and Y. Nakano, “Optical and Structural Characterization of InGaN/GaN Multiple Quantum Wells by Epitaxial Lateral Overgrowth,” Mater. Trans. 50(5), 1085–1090 (2009).
[Crossref]

Nakao, M.

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81(7), 1246–1248 (2002).
[Crossref]

Ohkawa, K.

K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. DenBaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A10R), 6573–6578 (2007).
[Crossref]

Ohta, H.

H. Ohta, S. P. DenBaars, and S. Nakamura, “Future of group-III nitride semiconductor green laser diodes,” J. Opt. Soc. Am. 27(11), B45–B49 (2010).
[Crossref]

Okamoto, H.

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81(7), 1246–1248 (2002).
[Crossref]

Öztürk, S.

N. Taşaltın, S. Öztürk, N. Kılınç, H. Yüzer, and Z. Z. Öztürk, “Simple fabrication of hexagonally well-ordered AAO template on silicon substrate in two dimensions,” Appl. Phys., A Mater. Sci. Process. 95(3), 781–787 (2009).
[Crossref]

Öztürk, Z. Z.

N. Taşaltın, S. Öztürk, N. Kılınç, H. Yüzer, and Z. Z. Öztürk, “Simple fabrication of hexagonally well-ordered AAO template on silicon substrate in two dimensions,” Appl. Phys., A Mater. Sci. Process. 95(3), 781–787 (2009).
[Crossref]

Pan, C. C.

H. C. Wang, Y. C. Lu, C. C. Teng, Y. S. Chen, C. C. Yang, K. J. Ma, C. C. Pan, and J. I. Chyi, “Ultrafast Carrier Dynamics in an InGaN Thin Film,” J. Appl. Phys. 97(3), 033704 (2005).
[Crossref]

Parkhomovsky, A.

R. Held, B. E. Ishaug, A. Parkhomovsky, A. M. Dabiran, and P. I. Cohen, “A rate equation model for the growth of GaN on GaN(0001) by molecular beam epitaxy,” J. Appl. Phys. 87(3), 1219–1226 (2000).
[Crossref]

Pashley, M. D.

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, Green, and Blue LEDs for White Light Illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002).
[Crossref]

Rufer, L.

M. J. Edwards, E. D. Le Boulbar, S. Vittoz, G. Vanko, K. Brinkfeldt, L. Rufer, P. Johander, T. Lalinský, C. R. Bowen, and D. W. E. Allsopp, “Pressure and temperature dependence of GaN/AlGaN high electron mobility transistor based sensors on a sapphire membrane,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(3), 960–963 (2012).
[Crossref]

Sato, H.

K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. DenBaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A10R), 6573–6578 (2007).
[Crossref]

Sawaki, N.

N. Sawaki and Y. Honda, “Semi-polar GaN LEDs on Si substrate,” Sci. China Technol. Sci. 54(1), 38–41 (2011).
[Crossref]

Z. H. Wu, T. Tanikawa, T. Murase, Y. Y. Fang, C. Q. Chen, Y. Honda, M. Yamaguchi, H. Amano, and N. Sawaki, “Partial strain relaxation by stacking fault generation in InGaN multiple quantum wells grown on (1101) semi-polar GaN,” Appl. Phys. Lett. 98(5), 051902 (2011).
[Crossref]

N. Sawaki, T. Hikosaka, N. Koide, S. Tanaka, Y. Honda, and M. Yamaguchi, “Growth and properties of semi-polar GaN on a patterned silicon substrate,” J. Cryst. Growth 311(10), 2867–2874 (2009).
[Crossref]

Schuurmans, F. J. P.

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, Green, and Blue LEDs for White Light Illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002).
[Crossref]

Senoh, M.

S. Nakamura, M. Senoh, and T. Mukai, “P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes,” Jpn. J. Appl. Phys. 32(2), L8–L11 (1993).
[Crossref]

Sheu, J. K.

J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-Light Emission From Near UV InGaN–GaN LED Chip Precoated With Blue/Green/Red Phosphors,” IEEE Photonic. Tech. L. 15(1), 18–20 (2003).
[Crossref]

Shiao, W. Y.

Y. S. Chen, L. J. Yao, Y. L. Lin, L. Hung, C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, and C. C. Yang, “Transmission Electron Microscopy Study on Pre-strained InGaN/GaN Quantum Wells,” J. Cryst. Growth 297(1), 66–73 (2006).
[Crossref]

Shioda, T.

M. Sugiyama, T. Shioda, Y. Tomita, T. Yamamoto, Y. Ikuhara, and Y. Nakano, “Optical and Structural Characterization of InGaN/GaN Multiple Quantum Wells by Epitaxial Lateral Overgrowth,” Mater. Trans. 50(5), 1085–1090 (2009).
[Crossref]

Son, J. S.

J. S. Son, Y. Honda, M. Yamaguchi, and H. Amano, “Characterization of nonpolar a-plane InGaN/GaN multiple quantum well using double nanopillar SiO2 mask,” Jpn. J. Appl. Phys. 53(5S1), 05FL01 (2014).
[Crossref]

Speck, J. S.

K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. DenBaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A10R), 6573–6578 (2007).
[Crossref]

A. Tyagi, H. Zhong, N. N. Fellows, M. Iza, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High Brightness Violet InGaN/GaN Light Emitting Diodes on Semipolar (10 −1 −1) Bulk GaN Substrates,” Jpn. J. Appl. Phys. 46(7), L129–L131 (2007).
[Crossref]

Su, Y. K.

J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-Light Emission From Near UV InGaN–GaN LED Chip Precoated With Blue/Green/Red Phosphors,” IEEE Photonic. Tech. L. 15(1), 18–20 (2003).
[Crossref]

Sugiyama, M.

M. Sugiyama, T. Shioda, Y. Tomita, T. Yamamoto, Y. Ikuhara, and Y. Nakano, “Optical and Structural Characterization of InGaN/GaN Multiple Quantum Wells by Epitaxial Lateral Overgrowth,” Mater. Trans. 50(5), 1085–1090 (2009).
[Crossref]

Sumitomo, T.

Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar {2021} Free-Standing GaN Substrates, Yohei Enya,” Appl. Phys. Express 2, 082101 (2009).
[Crossref]

Tanaka, S.

N. Sawaki, T. Hikosaka, N. Koide, S. Tanaka, Y. Honda, and M. Yamaguchi, “Growth and properties of semi-polar GaN on a patterned silicon substrate,” J. Cryst. Growth 311(10), 2867–2874 (2009).
[Crossref]

Tang, T. Y.

Y. S. Chen, L. J. Yao, Y. L. Lin, L. Hung, C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, and C. C. Yang, “Transmission Electron Microscopy Study on Pre-strained InGaN/GaN Quantum Wells,” J. Cryst. Growth 297(1), 66–73 (2006).
[Crossref]

Tanikawa, T.

Z. H. Wu, T. Tanikawa, T. Murase, Y. Y. Fang, C. Q. Chen, Y. Honda, M. Yamaguchi, H. Amano, and N. Sawaki, “Partial strain relaxation by stacking fault generation in InGaN multiple quantum wells grown on (1101) semi-polar GaN,” Appl. Phys. Lett. 98(5), 051902 (2011).
[Crossref]

Tasaltin, N.

N. Taşaltın, S. Öztürk, N. Kılınç, H. Yüzer, and Z. Z. Öztürk, “Simple fabrication of hexagonally well-ordered AAO template on silicon substrate in two dimensions,” Appl. Phys., A Mater. Sci. Process. 95(3), 781–787 (2009).
[Crossref]

Teng, C. C.

H. C. Wang, Y. C. Lu, C. C. Teng, Y. S. Chen, C. C. Yang, K. J. Ma, C. C. Pan, and J. I. Chyi, “Ultrafast Carrier Dynamics in an InGaN Thin Film,” J. Appl. Phys. 97(3), 033704 (2005).
[Crossref]

Ting, C. C.

H. C. Wang, T. Malinauskas, K. Jarasiunas, S. W. Feng, C. C. Ting, and S. Liu, “Carrier dynamics in InGaN/GaN multiple quantum wells based on different polishing processes of sapphire substrate,” Thin Solid Films 518(24), 7291–7294 (2010).
[Crossref]

Tokuyama, S.

Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar {2021} Free-Standing GaN Substrates, Yohei Enya,” Appl. Phys. Express 2, 082101 (2009).
[Crossref]

Tomita, Y.

M. Sugiyama, T. Shioda, Y. Tomita, T. Yamamoto, Y. Ikuhara, and Y. Nakano, “Optical and Structural Characterization of InGaN/GaN Multiple Quantum Wells by Epitaxial Lateral Overgrowth,” Mater. Trans. 50(5), 1085–1090 (2009).
[Crossref]

Tsai, J. M.

J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-Light Emission From Near UV InGaN–GaN LED Chip Precoated With Blue/Green/Red Phosphors,” IEEE Photonic. Tech. L. 15(1), 18–20 (2003).
[Crossref]

Tsai, M. C.

Y. K. Kuo, J. Y. Chang, M. C. Tsai, and S. H. Yen, “Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers,” Appl. Phys. Lett. 95(1), 011116 (2009).
[Crossref]

Tsai, W. F.

L. C. Chen and W. F. Tsai, “Properties of GaN-based light-emitting diodes on patterned sapphire substrate coated with silver nanoparticles prepared by mask-free chemical etching,” Nanoscale Res. Lett. 8(1), 157 (2013).
[Crossref] [PubMed]

Tsiang, R. C. C.

Y. S. Chen, C. H. Liao, C. T. Kuo, R. C. C. Tsiang, and H. C. Wang, “Indium droplet formation in InGaN thin films with single and double heterojunctions prepared by MOCVD,” Nanoscale Res. Lett. 9(1), 334 (2014).
[Crossref] [PubMed]

Tu, L. W.

S. W. Feng, L. W. Tu, J. I. Chyi, and H. C. Wang, “Luminescence mechanism and carrier dynamic studies of InGaN-based dichromatic light emitting diodes with ultraviolet and blue emissions,” Thin Solid Films 517(2), 909–915 (2008).
[Crossref]

Tyagi, A.

A. Tyagi, H. Zhong, N. N. Fellows, M. Iza, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High Brightness Violet InGaN/GaN Light Emitting Diodes on Semipolar (10 −1 −1) Bulk GaN Substrates,” Jpn. J. Appl. Phys. 46(7), L129–L131 (2007).
[Crossref]

Ueno, M.

Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar {2021} Free-Standing GaN Substrates, Yohei Enya,” Appl. Phys. Express 2, 082101 (2009).
[Crossref]

Vanko, G.

M. J. Edwards, E. D. Le Boulbar, S. Vittoz, G. Vanko, K. Brinkfeldt, L. Rufer, P. Johander, T. Lalinský, C. R. Bowen, and D. W. E. Allsopp, “Pressure and temperature dependence of GaN/AlGaN high electron mobility transistor based sensors on a sapphire membrane,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(3), 960–963 (2012).
[Crossref]

Vittoz, S.

M. J. Edwards, E. D. Le Boulbar, S. Vittoz, G. Vanko, K. Brinkfeldt, L. Rufer, P. Johander, T. Lalinský, C. R. Bowen, and D. W. E. Allsopp, “Pressure and temperature dependence of GaN/AlGaN high electron mobility transistor based sensors on a sapphire membrane,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(3), 960–963 (2012).
[Crossref]

Wang, H. C.

M. C. Chen, Y. C. Cheng, C. Y. Huang, H. C. Wang, K. I. Lin, and Z. P. Yang, “The action of silicon doping in the first two to five barriers of eight periods In0.2Ga0.8N/GaN multiple quantum wells of blue LEDs,” J. Lumin. 177, 59–64 (2016).
[Crossref]

S. W. Feng, P. H. Liao, B. Leung, J. Han, F. W. Yang, and H. C. Wang, “Efficient carrier relaxation and fast carrier recombination of N-polar InGaN/GaN light emitting diodes,” J. Appl. Phys. 118(4), 043104 (2015).
[Crossref]

Y. S. Chen, C. H. Liao, C. T. Kuo, R. C. C. Tsiang, and H. C. Wang, “Indium droplet formation in InGaN thin films with single and double heterojunctions prepared by MOCVD,” Nanoscale Res. Lett. 9(1), 334 (2014).
[Crossref] [PubMed]

L. Y. Chen, S. H. Chen, C. T. Kuo, and H. C. Wang, “Spectral design and evaluation of OLEDs as light sources,” Org. Electron. 15(10), 2194–2209 (2014).
[Crossref]

Y. S. Chen, C. H. Liao, Y. L. Chueh, C. C. Lai, L. Y. Chen, A. K. Chu, C. T. Kuo, and H. C. Wang, “High performance Cu2O/ZnO core-shell nanorod arrays synthesized using a nanoimprint GaN template by the hydrothermal growth technique,” Opt. Mater. Express 4(7), 1473–1486 (2014).
[Crossref]

Y. S. Chen, C. H. Liao, Y. C. Cheng, C. T. Kuo, and H. C. Wang, “Nanostructure Study of the Coalescence Growth of GaN Columns with Molecular Beam Epitaxy,” Opt. Mater. Express 3(9), 1450–1458 (2013).
[Crossref]

Y. S. Chen, C. H. Liao, Y. L. Chueh, C. T. Kuo, and H. C. Wang, “Plan-View Transmission Electron Microscopy Study on Coalescence Overgrowth of GaN Nano-columns by MOCVD,” Opt. Mater. Express 3(9), 1459–1467 (2013).
[Crossref]

H. C. Wang, X. Y. Yu, Y. L. Chueh, T. Malinauskas, K. Jarasiunas, and S. W. Feng, “Suppression of surface recombination in surface plasmon coupling with an InGaN/GaN multiple quantum well sample,” Opt. Express 19(20), 18893–18902 (2011).
[Crossref] [PubMed]

H. C. Wang, T. Malinauskas, K. Jarasiunas, S. W. Feng, C. C. Ting, and S. Liu, “Carrier dynamics in InGaN/GaN multiple quantum wells based on different polishing processes of sapphire substrate,” Thin Solid Films 518(24), 7291–7294 (2010).
[Crossref]

S. W. Feng, L. W. Tu, J. I. Chyi, and H. C. Wang, “Luminescence mechanism and carrier dynamic studies of InGaN-based dichromatic light emitting diodes with ultraviolet and blue emissions,” Thin Solid Films 517(2), 909–915 (2008).
[Crossref]

H. C. Wang, Y. C. Lu, C. C. Teng, Y. S. Chen, C. C. Yang, K. J. Ma, C. C. Pan, and J. I. Chyi, “Ultrafast Carrier Dynamics in an InGaN Thin Film,” J. Appl. Phys. 97(3), 033704 (2005).
[Crossref]

Wang, S. C.

C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template,” Appl. Phys. Lett. 93(8), 081108 (2008).
[Crossref]

Wang, Y. D.

Y. D. Wang, K. Y. Zang, and S. J. Chua, “Nonlithographic nanopatterning through anodic aluminum oxide template and selective growth of highly ordered GaN nanostructures,” J. Appl. Phys. 100(5), 054306 (2006).
[Crossref]

Wu, L. W.

J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-Light Emission From Near UV InGaN–GaN LED Chip Precoated With Blue/Green/Red Phosphors,” IEEE Photonic. Tech. L. 15(1), 18–20 (2003).
[Crossref]

Wu, R. K.

J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-Light Emission From Near UV InGaN–GaN LED Chip Precoated With Blue/Green/Red Phosphors,” IEEE Photonic. Tech. L. 15(1), 18–20 (2003).
[Crossref]

Wu, Z. H.

Z. H. Wu, T. Tanikawa, T. Murase, Y. Y. Fang, C. Q. Chen, Y. Honda, M. Yamaguchi, H. Amano, and N. Sawaki, “Partial strain relaxation by stacking fault generation in InGaN multiple quantum wells grown on (1101) semi-polar GaN,” Appl. Phys. Lett. 98(5), 051902 (2011).
[Crossref]

Yamaguchi, M.

J. S. Son, Y. Honda, M. Yamaguchi, and H. Amano, “Characterization of nonpolar a-plane InGaN/GaN multiple quantum well using double nanopillar SiO2 mask,” Jpn. J. Appl. Phys. 53(5S1), 05FL01 (2014).
[Crossref]

Z. H. Wu, T. Tanikawa, T. Murase, Y. Y. Fang, C. Q. Chen, Y. Honda, M. Yamaguchi, H. Amano, and N. Sawaki, “Partial strain relaxation by stacking fault generation in InGaN multiple quantum wells grown on (1101) semi-polar GaN,” Appl. Phys. Lett. 98(5), 051902 (2011).
[Crossref]

N. Sawaki, T. Hikosaka, N. Koide, S. Tanaka, Y. Honda, and M. Yamaguchi, “Growth and properties of semi-polar GaN on a patterned silicon substrate,” J. Cryst. Growth 311(10), 2867–2874 (2009).
[Crossref]

Yamamoto, T.

M. Sugiyama, T. Shioda, Y. Tomita, T. Yamamoto, Y. Ikuhara, and Y. Nakano, “Optical and Structural Characterization of InGaN/GaN Multiple Quantum Wells by Epitaxial Lateral Overgrowth,” Mater. Trans. 50(5), 1085–1090 (2009).
[Crossref]

Yang, C. C.

Y. S. Chen, L. J. Yao, Y. L. Lin, L. Hung, C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, and C. C. Yang, “Transmission Electron Microscopy Study on Pre-strained InGaN/GaN Quantum Wells,” J. Cryst. Growth 297(1), 66–73 (2006).
[Crossref]

H. C. Wang, Y. C. Lu, C. C. Teng, Y. S. Chen, C. C. Yang, K. J. Ma, C. C. Pan, and J. I. Chyi, “Ultrafast Carrier Dynamics in an InGaN Thin Film,” J. Appl. Phys. 97(3), 033704 (2005).
[Crossref]

Yang, F. W.

S. W. Feng, P. H. Liao, B. Leung, J. Han, F. W. Yang, and H. C. Wang, “Efficient carrier relaxation and fast carrier recombination of N-polar InGaN/GaN light emitting diodes,” J. Appl. Phys. 118(4), 043104 (2015).
[Crossref]

Yang, Z. P.

M. C. Chen, Y. C. Cheng, C. Y. Huang, H. C. Wang, K. I. Lin, and Z. P. Yang, “The action of silicon doping in the first two to five barriers of eight periods In0.2Ga0.8N/GaN multiple quantum wells of blue LEDs,” J. Lumin. 177, 59–64 (2016).
[Crossref]

Yao, L. J.

Y. S. Chen, L. J. Yao, Y. L. Lin, L. Hung, C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, and C. C. Yang, “Transmission Electron Microscopy Study on Pre-strained InGaN/GaN Quantum Wells,” J. Cryst. Growth 297(1), 66–73 (2006).
[Crossref]

Yao, T.

K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. DenBaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A10R), 6573–6578 (2007).
[Crossref]

Yen, H. H.

C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template,” Appl. Phys. Lett. 93(8), 081108 (2008).
[Crossref]

Yen, S. H.

Y. K. Kuo, J. Y. Chang, M. C. Tsai, and S. H. Yen, “Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers,” Appl. Phys. Lett. 95(1), 011116 (2009).
[Crossref]

Yoshizumi, Y.

Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar {2021} Free-Standing GaN Substrates, Yohei Enya,” Appl. Phys. Express 2, 082101 (2009).
[Crossref]

Yu, P.

C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template,” Appl. Phys. Lett. 93(8), 081108 (2008).
[Crossref]

Yu, X. Y.

Yüzer, H.

N. Taşaltın, S. Öztürk, N. Kılınç, H. Yüzer, and Z. Z. Öztürk, “Simple fabrication of hexagonally well-ordered AAO template on silicon substrate in two dimensions,” Appl. Phys., A Mater. Sci. Process. 95(3), 781–787 (2009).
[Crossref]

Zakharov, D. N.

Z. Liliental-Weber, J. Jasinski, and D. N. Zakharov, “GaN grown in polar and non-polar directions,” Opto-Electron. Rev. 12(4), 339–346 (2004).

Zang, K. Y.

Y. D. Wang, K. Y. Zang, and S. J. Chua, “Nonlithographic nanopatterning through anodic aluminum oxide template and selective growth of highly ordered GaN nanostructures,” J. Appl. Phys. 100(5), 054306 (2006).
[Crossref]

Zhong, H.

A. Tyagi, H. Zhong, N. N. Fellows, M. Iza, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High Brightness Violet InGaN/GaN Light Emitting Diodes on Semipolar (10 −1 −1) Bulk GaN Substrates,” Jpn. J. Appl. Phys. 46(7), L129–L131 (2007).
[Crossref]

Zhu, D.

M. Haeberlen, D. Zhu, C. McAleese, M. J. Kappers, and C. J. Humphreys, “Dislocation reduction in MOVPE grown GaN layers on (111) Si using SiNx and AlGaN layers,” J. Phys. Conf. Ser. 209, 012017 (2010).
[Crossref]

Appl. Phys. Express (1)

Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar {2021} Free-Standing GaN Substrates, Yohei Enya,” Appl. Phys. Express 2, 082101 (2009).
[Crossref]

Appl. Phys. Lett. (5)

S. Keller, B. P. Keller, D. Kapolnek, A. C. Abare, H. Masui, L. A. Coldren, U. K. Mishra, and S. P. Den Baars, “Growth and characterization of bulk InGaN films and quantum wells,” Appl. Phys. Lett. 68(22), 3147–3149 (1996).
[Crossref]

Y. K. Kuo, J. Y. Chang, M. C. Tsai, and S. H. Yen, “Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers,” Appl. Phys. Lett. 95(1), 011116 (2009).
[Crossref]

Z. H. Wu, T. Tanikawa, T. Murase, Y. Y. Fang, C. Q. Chen, Y. Honda, M. Yamaguchi, H. Amano, and N. Sawaki, “Partial strain relaxation by stacking fault generation in InGaN multiple quantum wells grown on (1101) semi-polar GaN,” Appl. Phys. Lett. 98(5), 051902 (2011).
[Crossref]

C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template,” Appl. Phys. Lett. 93(8), 081108 (2008).
[Crossref]

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81(7), 1246–1248 (2002).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

N. Taşaltın, S. Öztürk, N. Kılınç, H. Yüzer, and Z. Z. Öztürk, “Simple fabrication of hexagonally well-ordered AAO template on silicon substrate in two dimensions,” Appl. Phys., A Mater. Sci. Process. 95(3), 781–787 (2009).
[Crossref]

ECS Journal of Solid State Science and Technology (1)

H. H. Liu, H. Y. Lin, C. Z. Liao, and J. I. Chyi, “Growth and Characterization of Crack-Free Semi-Polar (1-101) GaN on 7°-off (001) Si Substrates by Metal-Organic Chemical Vapor Deposition,” ECS Journal of Solid State Science and Technology 2(8), N3001–N3005 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, Green, and Blue LEDs for White Light Illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002).
[Crossref]

IEEE Photonic. Tech. L. (1)

J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-Light Emission From Near UV InGaN–GaN LED Chip Precoated With Blue/Green/Red Phosphors,” IEEE Photonic. Tech. L. 15(1), 18–20 (2003).
[Crossref]

J. Appl. Phys. (5)

Y. D. Wang, K. Y. Zang, and S. J. Chua, “Nonlithographic nanopatterning through anodic aluminum oxide template and selective growth of highly ordered GaN nanostructures,” J. Appl. Phys. 100(5), 054306 (2006).
[Crossref]

S. W. Feng, P. H. Liao, B. Leung, J. Han, F. W. Yang, and H. C. Wang, “Efficient carrier relaxation and fast carrier recombination of N-polar InGaN/GaN light emitting diodes,” J. Appl. Phys. 118(4), 043104 (2015).
[Crossref]

R. Held, B. E. Ishaug, A. Parkhomovsky, A. M. Dabiran, and P. I. Cohen, “A rate equation model for the growth of GaN on GaN(0001) by molecular beam epitaxy,” J. Appl. Phys. 87(3), 1219–1226 (2000).
[Crossref]

H. C. Wang, Y. C. Lu, C. C. Teng, Y. S. Chen, C. C. Yang, K. J. Ma, C. C. Pan, and J. I. Chyi, “Ultrafast Carrier Dynamics in an InGaN Thin Film,” J. Appl. Phys. 97(3), 033704 (2005).
[Crossref]

C. Finger, T. Hempel, T. Christen, J. Dadgar, A. Hoffmann, and A. Krost, “Fabry-Perot effects in InGaN/GaN heterostructures on Si-substrate, Hums,” J. Appl. Phys. 101(3), 033113 (2007).
[Crossref]

J. Cryst. Growth (2)

N. Sawaki, T. Hikosaka, N. Koide, S. Tanaka, Y. Honda, and M. Yamaguchi, “Growth and properties of semi-polar GaN on a patterned silicon substrate,” J. Cryst. Growth 311(10), 2867–2874 (2009).
[Crossref]

Y. S. Chen, L. J. Yao, Y. L. Lin, L. Hung, C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, and C. C. Yang, “Transmission Electron Microscopy Study on Pre-strained InGaN/GaN Quantum Wells,” J. Cryst. Growth 297(1), 66–73 (2006).
[Crossref]

J. Lumin. (1)

M. C. Chen, Y. C. Cheng, C. Y. Huang, H. C. Wang, K. I. Lin, and Z. P. Yang, “The action of silicon doping in the first two to five barriers of eight periods In0.2Ga0.8N/GaN multiple quantum wells of blue LEDs,” J. Lumin. 177, 59–64 (2016).
[Crossref]

J. Opt. Soc. Am. (1)

H. Ohta, S. P. DenBaars, and S. Nakamura, “Future of group-III nitride semiconductor green laser diodes,” J. Opt. Soc. Am. 27(11), B45–B49 (2010).
[Crossref]

J. Phys. Conf. Ser. (1)

M. Haeberlen, D. Zhu, C. McAleese, M. J. Kappers, and C. J. Humphreys, “Dislocation reduction in MOVPE grown GaN layers on (111) Si using SiNx and AlGaN layers,” J. Phys. Conf. Ser. 209, 012017 (2010).
[Crossref]

Jpn. J. Appl. Phys. (5)

H. M. Ku, C. Y. Huang, C. Z. Liao, and S. Chao, “Epitaxial Lateral Overgrowth of Gallium Nitride for Embedding the Micro-Mirror Array,” Jpn. J. Appl. Phys. 50(4S), 04DG07 (2011).
[Crossref]

S. Nakamura, M. Senoh, and T. Mukai, “P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes,” Jpn. J. Appl. Phys. 32(2), L8–L11 (1993).
[Crossref]

A. Tyagi, H. Zhong, N. N. Fellows, M. Iza, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High Brightness Violet InGaN/GaN Light Emitting Diodes on Semipolar (10 −1 −1) Bulk GaN Substrates,” Jpn. J. Appl. Phys. 46(7), L129–L131 (2007).
[Crossref]

K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. DenBaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A10R), 6573–6578 (2007).
[Crossref]

J. S. Son, Y. Honda, M. Yamaguchi, and H. Amano, “Characterization of nonpolar a-plane InGaN/GaN multiple quantum well using double nanopillar SiO2 mask,” Jpn. J. Appl. Phys. 53(5S1), 05FL01 (2014).
[Crossref]

Mater. Trans. (1)

M. Sugiyama, T. Shioda, Y. Tomita, T. Yamamoto, Y. Ikuhara, and Y. Nakano, “Optical and Structural Characterization of InGaN/GaN Multiple Quantum Wells by Epitaxial Lateral Overgrowth,” Mater. Trans. 50(5), 1085–1090 (2009).
[Crossref]

Nanoscale Res. Lett. (2)

Y. S. Chen, C. H. Liao, C. T. Kuo, R. C. C. Tsiang, and H. C. Wang, “Indium droplet formation in InGaN thin films with single and double heterojunctions prepared by MOCVD,” Nanoscale Res. Lett. 9(1), 334 (2014).
[Crossref] [PubMed]

L. C. Chen and W. F. Tsai, “Properties of GaN-based light-emitting diodes on patterned sapphire substrate coated with silver nanoparticles prepared by mask-free chemical etching,” Nanoscale Res. Lett. 8(1), 157 (2013).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. Express (3)

Opto-Electron. Rev. (1)

Z. Liliental-Weber, J. Jasinski, and D. N. Zakharov, “GaN grown in polar and non-polar directions,” Opto-Electron. Rev. 12(4), 339–346 (2004).

Org. Electron. (1)

L. Y. Chen, S. H. Chen, C. T. Kuo, and H. C. Wang, “Spectral design and evaluation of OLEDs as light sources,” Org. Electron. 15(10), 2194–2209 (2014).
[Crossref]

Phys. Status Solidi., A Appl. Mater. Sci. (1)

G. P. Dimitrakopulos, A. Lotsari, Th. Kehagias, A. Ajagunna, A. Georgakilas, Th. Karakostas, and Ph. Komninou, “Structure and interfacial properties of semipolar s-plane (1-101) InN grown on r-plane sapphire,” Phys. Status Solidi., A Appl. Mater. Sci. 210(1), 199–203 (2013).
[Crossref]

Phys. Status Solidi., C Curr. Top. Solid State Phys. (1)

M. J. Edwards, E. D. Le Boulbar, S. Vittoz, G. Vanko, K. Brinkfeldt, L. Rufer, P. Johander, T. Lalinský, C. R. Bowen, and D. W. E. Allsopp, “Pressure and temperature dependence of GaN/AlGaN high electron mobility transistor based sensors on a sapphire membrane,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(3), 960–963 (2012).
[Crossref]

Sci. China Technol. Sci. (1)

N. Sawaki and Y. Honda, “Semi-polar GaN LEDs on Si substrate,” Sci. China Technol. Sci. 54(1), 38–41 (2011).
[Crossref]

Thin Solid Films (2)

H. C. Wang, T. Malinauskas, K. Jarasiunas, S. W. Feng, C. C. Ting, and S. Liu, “Carrier dynamics in InGaN/GaN multiple quantum wells based on different polishing processes of sapphire substrate,” Thin Solid Films 518(24), 7291–7294 (2010).
[Crossref]

S. W. Feng, L. W. Tu, J. I. Chyi, and H. C. Wang, “Luminescence mechanism and carrier dynamic studies of InGaN-based dichromatic light emitting diodes with ultraviolet and blue emissions,” Thin Solid Films 517(2), 909–915 (2008).
[Crossref]

Other (1)

Y. S. Chen, W. Y. Shiao, T. Y. Tang, W. M. Chang, C. H. Liao, C. H. Lin, K. C. Shen, C. C. Yang, M. C. Hsu, J. H. Yeh, and T. C. Hsu, “Threading Dislocation Evolution in Patterned GaN Nanocolumn Growth and Coalescence Overgrowth,” J. Appl. Phys. 106(2), 023512 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Fabrication process of the s semi-polar faced InGaN/GaN double quantum wells nanorods samples.
Fig. 2
Fig. 2 PL results of the semi-polar-faced InGaN/GaN double quantum well nanorods. (a) Sample A (control group). (b) Sample B (750°C). (c) Sample C (700°C). (d) Sample D (600°C).
Fig. 3
Fig. 3 SEM images of the semi-polar-faced InGaN/GaN double quantum well nanorods. (a) Top view of sample A. (b) Cross-section view of sample A. (c) Top view of sample D. (d) Cross-section view of sample D.
Fig. 4
Fig. 4 TEM images of the semi-polar-faced InGaN/GaN double quantum well nanorods. (a) Sample A. (b) Sample B. (c) Sample C. (d) Sample D.
Fig. 5
Fig. 5 HRTEM images of the GaN and SiO2 layers of the produced GaN nanorods. (a) Close-up view of the atomic lattice image of the GaN nanorod base. (b) Zoomed-out view of the atomic lattice image of the GaN nanorod base.
Fig. 6
Fig. 6 HRTEM images of the semi-polar-faced InGaN/GaN double quantum well cap structure. (a) Structural atomic lattice image of sample D’s left-side cap. (b) Structural atomic lattice image of sample D’s right-side cap.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

i d = 2n(λ) λ peak

Metrics