K. Chen, E. Azhar, T. Ma, H. Jiang, and H. Yu, “Facile large-area photolithography of periodic sub-micron structures using a self-formed polymer mask,” Appl. Phys. Lett. 100(23), 233503 (2012).
[Crossref]
J.-H. Klein-Wiele, M. A. Bader, I. Bauer, S. Soria, P. Simon, and G. Marowsky, “Ablation dynamics of periodic nanostructures for polymer-based all-optical devices,” Synth. Met. 127(1–3), 53–57 (2002).
[Crossref]
J. E. E. Baglin, “Ion beam nanoscale fabrication and lithography – A review,” Appl. Surf. Sci. 258(9), 4103–4111 (2012).
[Crossref]
P. Li, U. Bakowsky, F. Yu, C. Loehbach, F. Muecklich, and C.-M. Lehr, “Laser ablation patterning by interference induces directional cell growth,” IEEE Trans. Nanobioscience 2(3), 138–145 (2003).
[Crossref]
[PubMed]
E. Stankevičius, E. Balčiūnas, M. Malinauskas, G. Račiukaitis, D. Baltriukienė, and V. Bukelskienė, “Holographic lithography for biomedical applications,” Proc. SPIE 8433, 843312 (2012).
[Crossref]
M. Malinauskas, P. Danilevičius, E. Balčiūnas, S. Rekštytė, E. Stankevičius, D. Baltriukienė, V. Bukelskienė, G. Račiukaitis, and R. Gadonas, “Applications of nonlinear laser nano/microlithography: fabrication from nanophotonic to biomedical components,” Proc. SPIE 8204, 820407 (2011).
[Crossref]
E. Stankevičius, E. Balčiūnas, M. Malinauskas, G. Račiukaitis, D. Baltriukienė, and V. Bukelskienė, “Holographic lithography for biomedical applications,” Proc. SPIE 8433, 843312 (2012).
[Crossref]
M. Malinauskas, P. Danilevičius, E. Balčiūnas, S. Rekštytė, E. Stankevičius, D. Baltriukienė, V. Bukelskienė, G. Račiukaitis, and R. Gadonas, “Applications of nonlinear laser nano/microlithography: fabrication from nanophotonic to biomedical components,” Proc. SPIE 8204, 820407 (2011).
[Crossref]
M. Malinauskas, V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuring over a large area on various substrates,” Proc. SPIE 7715, 77151F (2010).
[Crossref]
J.-H. Klein-Wiele, M. A. Bader, I. Bauer, S. Soria, P. Simon, and G. Marowsky, “Ablation dynamics of periodic nanostructures for polymer-based all-optical devices,” Synth. Met. 127(1–3), 53–57 (2002).
[Crossref]
M. Malinauskas, V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuring over a large area on various substrates,” Proc. SPIE 7715, 77151F (2010).
[Crossref]
S. J. Zilker, T. Bieringer, D. Haarer, R. S. Stein, J. W. van Egmond, and S. G. Kostromine, “Holographic Data Storage in Amorphous Polymers,” Adv. Mater. 10(11), 855–859 (1998).
[Crossref]
E. Stankevičius, E. Balčiūnas, M. Malinauskas, G. Račiukaitis, D. Baltriukienė, and V. Bukelskienė, “Holographic lithography for biomedical applications,” Proc. SPIE 8433, 843312 (2012).
[Crossref]
M. Malinauskas, P. Danilevičius, E. Balčiūnas, S. Rekštytė, E. Stankevičius, D. Baltriukienė, V. Bukelskienė, G. Račiukaitis, and R. Gadonas, “Applications of nonlinear laser nano/microlithography: fabrication from nanophotonic to biomedical components,” Proc. SPIE 8204, 820407 (2011).
[Crossref]
M. Malinauskas, V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuring over a large area on various substrates,” Proc. SPIE 7715, 77151F (2010).
[Crossref]
M. Malinauskas, V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuring over a large area on various substrates,” Proc. SPIE 7715, 77151F (2010).
[Crossref]
C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).
[Crossref]
L. Wu, Y. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86(24), 1–3 (2005).
[Crossref]
Y.-L. Yang, C.-C. Hsu, T.-L. Chang, L.-S. Kuo, and P.-H. Chen, “Study on wetting properties of periodical nanopatterns by a combinative technique of photolithography and laser interference lithography,” Appl. Surf. Sci. 256(11), 3683–3687 (2010).
[Crossref]
T.-L. Chang, K.-Y. Cheng, T.-H. Chou, C.-C. Su, H.-P. Yang, and S.-W. Luo, “Hybrid-polymer nanostructures forming an anti-reflection film using two-beam interference and ultraviolet nanoimprint lithography,” Microelectron. Eng. 86(4–6), 874–877 (2009).
[Crossref]
C.-J. Ting, C.-F. Chen, and C. P. Chou, “Subwavelength structures for broadband antireflection application,” Opt. Commun. 282(3), 434–438 (2009).
[Crossref]
K. Chen, E. Azhar, T. Ma, H. Jiang, and H. Yu, “Facile large-area photolithography of periodic sub-micron structures using a self-formed polymer mask,” Appl. Phys. Lett. 100(23), 233503 (2012).
[Crossref]
K.-S. Chen, I.-K. Lin, and F.-H. Ko, “Fabrication of 3D polymer microstructures using electron beam lithography and nanoimprinting technologies,” J. Micromech. Microeng. 15(10), 1894–1903 (2005).
[Crossref]
Y.-L. Yang, C.-C. Hsu, T.-L. Chang, L.-S. Kuo, and P.-H. Chen, “Study on wetting properties of periodical nanopatterns by a combinative technique of photolithography and laser interference lithography,” Appl. Surf. Sci. 256(11), 3683–3687 (2010).
[Crossref]
X. Wang, D. Zhang, Y. Chen, L. Zhu, W. Yu, P. Wang, P. Yao, H. Ming, W. Wu, and Q. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 10–14 (2013).
[Crossref]
C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).
[Crossref]
T.-L. Chang, K.-Y. Cheng, T.-H. Chou, C.-C. Su, H.-P. Yang, and S.-W. Luo, “Hybrid-polymer nanostructures forming an anti-reflection film using two-beam interference and ultraviolet nanoimprint lithography,” Microelectron. Eng. 86(4–6), 874–877 (2009).
[Crossref]
A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]
[PubMed]
J.-H. Seo, J. H. Park, S.-I. Kim, B. J. Park, Z. Ma, J. Choi, and B.-K. Ju, “Nanopatterning by laser interference lithography: applications to optical devices,” J. Nanosci. Nanotechnol. 14(2), 1521–1532 (2014).
[Crossref]
[PubMed]
C.-J. Ting, C.-F. Chen, and C. P. Chou, “Subwavelength structures for broadband antireflection application,” Opt. Commun. 282(3), 434–438 (2009).
[Crossref]
Q. Xia and S. Y. Chou, “Applications of excimer laser in nanofabrication,” Appl. Phys., A Mater. Sci. Process. 98(1), 9–59 (2010).
[Crossref]
T.-L. Chang, K.-Y. Cheng, T.-H. Chou, C.-C. Su, H.-P. Yang, and S.-W. Luo, “Hybrid-polymer nanostructures forming an anti-reflection film using two-beam interference and ultraviolet nanoimprint lithography,” Microelectron. Eng. 86(4–6), 874–877 (2009).
[Crossref]
V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[Crossref]
C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).
[Crossref]
I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82(11), 1667–1669 (2003).
[Crossref]
M. Malinauskas, P. Danilevičius, E. Balčiūnas, S. Rekštytė, E. Stankevičius, D. Baltriukienė, V. Bukelskienė, G. Račiukaitis, and R. Gadonas, “Applications of nonlinear laser nano/microlithography: fabrication from nanophotonic to biomedical components,” Proc. SPIE 8204, 820407 (2011).
[Crossref]
M. Malinauskas, V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuring over a large area on various substrates,” Proc. SPIE 7715, 77151F (2010).
[Crossref]
I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82(11), 1667–1669 (2003).
[Crossref]
L. Müller-Meskamp, Y. H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckardt, K. Leo, and A. F. Lasagni, “Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct laser interference patterning,” Adv. Mater. 24(7), 906–910 (2012).
[Crossref]
[PubMed]
A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express 17(4), 2143–2148 (2009).
[Crossref]
[PubMed]
A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]
[PubMed]
A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express 17(4), 2143–2148 (2009).
[Crossref]
[PubMed]
A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]
[PubMed]
T. Katchalski, E. Teitelbaum, and A. A. Friesem, “Towards ultranarrow bandwidth polymer-based resonant grating waveguide structures,” Appl. Phys. Lett. 84(4), 472–474 (2004).
[Crossref]
M. Malinauskas, P. Danilevičius, E. Balčiūnas, S. Rekštytė, E. Stankevičius, D. Baltriukienė, V. Bukelskienė, G. Račiukaitis, and R. Gadonas, “Applications of nonlinear laser nano/microlithography: fabrication from nanophotonic to biomedical components,” Proc. SPIE 8204, 820407 (2011).
[Crossref]
M. Malinauskas, V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuring over a large area on various substrates,” Proc. SPIE 7715, 77151F (2010).
[Crossref]
H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]
E. Stankevičius, M. Garliauskas, M. Gedvilas, and G. Račiukaitis, “Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures,” Opt. Express 23(22), 28557–28566 (2015).
[Crossref]
[PubMed]
E. Stankevičius, M. Gedvilas, B. Voisiat, M. Malinauskas, and G. Račiukaitis, “Fabrication of periodic micro-structures by holographic lithography,” Lith. J. Phys. 53(4), 227–237 (2013).
[Crossref]
B. Voisiat, M. Gedvilas, S. Indrišiūnas, and G. Račiukaitis, “Picosecond-laser 4-beam-interference ablation as a flexible tool for thin film microstructuring,” Phys. Procedia 12, 116–124 (2011).
[Crossref]
M. Malinauskas, V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuring over a large area on various substrates,” Proc. SPIE 7715, 77151F (2010).
[Crossref]
A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]
[PubMed]
M. Malinauskas, V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuring over a large area on various substrates,” Proc. SPIE 7715, 77151F (2010).
[Crossref]
S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43(22), 9462–9472 (2010).
[Crossref]
A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]
[PubMed]
S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43(22), 9462–9472 (2010).
[Crossref]
L. J. Guo, “Nanoimprint lithography: Methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007).
[Crossref]
S. J. Zilker, T. Bieringer, D. Haarer, R. S. Stein, J. W. van Egmond, and S. G. Kostromine, “Holographic Data Storage in Amorphous Polymers,” Adv. Mater. 10(11), 855–859 (1998).
[Crossref]
C. Xian-Zhong and L. Hai-Ying, “Fabrication of nanoimprint stamp using interference lithography,” Chin. Phys. Lett. 24(10), 2830–2832 (2007).
[Crossref]
V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[Crossref]
K. Loeschner, G. Seifert, and A. Heilmann, “Self-organized, gratinglike nanostructures in polymer films with embedded metal nanoparticles induced by femtosecond laser irradiation,” J. Appl. Phys. 108(7), 073114 (2010).
[Crossref]
L. Müller-Meskamp, Y. H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckardt, K. Leo, and A. F. Lasagni, “Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct laser interference patterning,” Adv. Mater. 24(7), 906–910 (2012).
[Crossref]
[PubMed]
I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82(11), 1667–1669 (2003).
[Crossref]
C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 87–90 (2006).
[Crossref]
Y.-L. Yang, C.-C. Hsu, T.-L. Chang, L.-S. Kuo, and P.-H. Chen, “Study on wetting properties of periodical nanopatterns by a combinative technique of photolithography and laser interference lithography,” Appl. Surf. Sci. 256(11), 3683–3687 (2010).
[Crossref]
B. Voisiat, M. Gedvilas, S. Indrišiūnas, and G. Račiukaitis, “Picosecond-laser 4-beam-interference ablation as a flexible tool for thin film microstructuring,” Phys. Procedia 12, 116–124 (2011).
[Crossref]
K. Y. Suh, H. E. Jeong, D. H. Kim, R. A. Singh, and E. S. Yoon, “Capillarity-assisted fabrication of nanostructures using a less permeable mold for nanotribological applications,” J. Appl. Phys. 100(3), 034303 (2006).
[Crossref]
K. Chen, E. Azhar, T. Ma, H. Jiang, and H. Yu, “Facile large-area photolithography of periodic sub-micron structures using a self-formed polymer mask,” Appl. Phys. Lett. 100(23), 233503 (2012).
[Crossref]
J.-H. Seo, J. H. Park, S.-I. Kim, B. J. Park, Z. Ma, J. Choi, and B.-K. Ju, “Nanopatterning by laser interference lithography: applications to optical devices,” J. Nanosci. Nanotechnol. 14(2), 1521–1532 (2014).
[Crossref]
[PubMed]
T. Katchalski, E. Teitelbaum, and A. A. Friesem, “Towards ultranarrow bandwidth polymer-based resonant grating waveguide structures,” Appl. Phys. Lett. 84(4), 472–474 (2004).
[Crossref]
K. Y. Suh, H. E. Jeong, D. H. Kim, R. A. Singh, and E. S. Yoon, “Capillarity-assisted fabrication of nanostructures using a less permeable mold for nanotribological applications,” J. Appl. Phys. 100(3), 034303 (2006).
[Crossref]
J.-H. Seo, J. H. Park, S.-I. Kim, B. J. Park, Z. Ma, J. Choi, and B.-K. Ju, “Nanopatterning by laser interference lithography: applications to optical devices,” J. Nanosci. Nanotechnol. 14(2), 1521–1532 (2014).
[Crossref]
[PubMed]
L. Müller-Meskamp, Y. H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckardt, K. Leo, and A. F. Lasagni, “Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct laser interference patterning,” Adv. Mater. 24(7), 906–910 (2012).
[Crossref]
[PubMed]
J.-H. Klein-Wiele, M. A. Bader, I. Bauer, S. Soria, P. Simon, and G. Marowsky, “Ablation dynamics of periodic nanostructures for polymer-based all-optical devices,” Synth. Met. 127(1–3), 53–57 (2002).
[Crossref]
K.-S. Chen, I.-K. Lin, and F.-H. Ko, “Fabrication of 3D polymer microstructures using electron beam lithography and nanoimprinting technologies,” J. Micromech. Microeng. 15(10), 1894–1903 (2005).
[Crossref]
S. J. Zilker, T. Bieringer, D. Haarer, R. S. Stein, J. W. van Egmond, and S. G. Kostromine, “Holographic Data Storage in Amorphous Polymers,” Adv. Mater. 10(11), 855–859 (1998).
[Crossref]
Y.-L. Yang, C.-C. Hsu, T.-L. Chang, L.-S. Kuo, and P.-H. Chen, “Study on wetting properties of periodical nanopatterns by a combinative technique of photolithography and laser interference lithography,” Appl. Surf. Sci. 256(11), 3683–3687 (2010).
[Crossref]
V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[Crossref]
L. Müller-Meskamp, Y. H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckardt, K. Leo, and A. F. Lasagni, “Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct laser interference patterning,” Adv. Mater. 24(7), 906–910 (2012).
[Crossref]
[PubMed]
C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).
[Crossref]
C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).
[Crossref]
P. Li, U. Bakowsky, F. Yu, C. Loehbach, F. Muecklich, and C.-M. Lehr, “Laser ablation patterning by interference induces directional cell growth,” IEEE Trans. Nanobioscience 2(3), 138–145 (2003).
[Crossref]
[PubMed]
L. Müller-Meskamp, Y. H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckardt, K. Leo, and A. F. Lasagni, “Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct laser interference patterning,” Adv. Mater. 24(7), 906–910 (2012).
[Crossref]
[PubMed]
D. Wang, Z. Wang, Z. Zhang, Y. Yue, D. Li, and C. Maple, “Effects of polarization on four-beam laser interference lithography,” Appl. Phys. Lett. 102(8), 081903 (2013).
[Crossref]
P. Li, U. Bakowsky, F. Yu, C. Loehbach, F. Muecklich, and C.-M. Lehr, “Laser ablation patterning by interference induces directional cell growth,” IEEE Trans. Nanobioscience 2(3), 138–145 (2003).
[Crossref]
[PubMed]
C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 87–90 (2006).
[Crossref]
K.-S. Chen, I.-K. Lin, and F.-H. Ko, “Fabrication of 3D polymer microstructures using electron beam lithography and nanoimprinting technologies,” J. Micromech. Microeng. 15(10), 1894–1903 (2005).
[Crossref]
C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 87–90 (2006).
[Crossref]
S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43(22), 9462–9472 (2010).
[Crossref]
P. Li, U. Bakowsky, F. Yu, C. Loehbach, F. Muecklich, and C.-M. Lehr, “Laser ablation patterning by interference induces directional cell growth,” IEEE Trans. Nanobioscience 2(3), 138–145 (2003).
[Crossref]
[PubMed]
K. Loeschner, G. Seifert, and A. Heilmann, “Self-organized, gratinglike nanostructures in polymer films with embedded metal nanoparticles induced by femtosecond laser irradiation,” J. Appl. Phys. 108(7), 073114 (2010).
[Crossref]
C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 87–90 (2006).
[Crossref]
T.-L. Chang, K.-Y. Cheng, T.-H. Chou, C.-C. Su, H.-P. Yang, and S.-W. Luo, “Hybrid-polymer nanostructures forming an anti-reflection film using two-beam interference and ultraviolet nanoimprint lithography,” Microelectron. Eng. 86(4–6), 874–877 (2009).
[Crossref]
K. Chen, E. Azhar, T. Ma, H. Jiang, and H. Yu, “Facile large-area photolithography of periodic sub-micron structures using a self-formed polymer mask,” Appl. Phys. Lett. 100(23), 233503 (2012).
[Crossref]
J.-H. Seo, J. H. Park, S.-I. Kim, B. J. Park, Z. Ma, J. Choi, and B.-K. Ju, “Nanopatterning by laser interference lithography: applications to optical devices,” J. Nanosci. Nanotechnol. 14(2), 1521–1532 (2014).
[Crossref]
[PubMed]
A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]
[PubMed]
E. Stankevičius, M. Gedvilas, B. Voisiat, M. Malinauskas, and G. Račiukaitis, “Fabrication of periodic micro-structures by holographic lithography,” Lith. J. Phys. 53(4), 227–237 (2013).
[Crossref]
E. Stankevičius, E. Balčiūnas, M. Malinauskas, G. Račiukaitis, D. Baltriukienė, and V. Bukelskienė, “Holographic lithography for biomedical applications,” Proc. SPIE 8433, 843312 (2012).
[Crossref]
E. Stankevičius, M. Malinauskas, and G. Račiukaitis, “Fabrication of scaffolds and micro-lenses array in a negative photopolymer SZ2080 by multi-photon polymerization and four-femtosecond-beam interference,” Phys. Procedia 12, 82–88 (2011).
[Crossref]
M. Malinauskas, P. Danilevičius, E. Balčiūnas, S. Rekštytė, E. Stankevičius, D. Baltriukienė, V. Bukelskienė, G. Račiukaitis, and R. Gadonas, “Applications of nonlinear laser nano/microlithography: fabrication from nanophotonic to biomedical components,” Proc. SPIE 8204, 820407 (2011).
[Crossref]
M. Malinauskas, V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuring over a large area on various substrates,” Proc. SPIE 7715, 77151F (2010).
[Crossref]
C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).
[Crossref]
D. Wang, Z. Wang, Z. Zhang, Y. Yue, D. Li, and C. Maple, “Effects of polarization on four-beam laser interference lithography,” Appl. Phys. Lett. 102(8), 081903 (2013).
[Crossref]
J.-H. Klein-Wiele, M. A. Bader, I. Bauer, S. Soria, P. Simon, and G. Marowsky, “Ablation dynamics of periodic nanostructures for polymer-based all-optical devices,” Synth. Met. 127(1–3), 53–57 (2002).
[Crossref]
I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82(11), 1667–1669 (2003).
[Crossref]
C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).
[Crossref]
X. Wang, D. Zhang, Y. Chen, L. Zhu, W. Yu, P. Wang, P. Yao, H. Ming, W. Wu, and Q. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 10–14 (2013).
[Crossref]
G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[Crossref]
P. Li, U. Bakowsky, F. Yu, C. Loehbach, F. Muecklich, and C.-M. Lehr, “Laser ablation patterning by interference induces directional cell growth,” IEEE Trans. Nanobioscience 2(3), 138–145 (2003).
[Crossref]
[PubMed]
L. Müller-Meskamp, Y. H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckardt, K. Leo, and A. F. Lasagni, “Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct laser interference patterning,” Adv. Mater. 24(7), 906–910 (2012).
[Crossref]
[PubMed]
H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]
A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]
[PubMed]
A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express 17(4), 2143–2148 (2009).
[Crossref]
[PubMed]
A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]
[PubMed]
M. Malinauskas, V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuring over a large area on various substrates,” Proc. SPIE 7715, 77151F (2010).
[Crossref]
J.-H. Seo, J. H. Park, S.-I. Kim, B. J. Park, Z. Ma, J. Choi, and B.-K. Ju, “Nanopatterning by laser interference lithography: applications to optical devices,” J. Nanosci. Nanotechnol. 14(2), 1521–1532 (2014).
[Crossref]
[PubMed]
J.-H. Seo, J. H. Park, S.-I. Kim, B. J. Park, Z. Ma, J. Choi, and B.-K. Ju, “Nanopatterning by laser interference lithography: applications to optical devices,” J. Nanosci. Nanotechnol. 14(2), 1521–1532 (2014).
[Crossref]
[PubMed]
C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).
[Crossref]
M. Malinauskas, V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuring over a large area on various substrates,” Proc. SPIE 7715, 77151F (2010).
[Crossref]
M. Malinauskas, V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuring over a large area on various substrates,” Proc. SPIE 7715, 77151F (2010).
[Crossref]
E. Stankevičius, M. Garliauskas, M. Gedvilas, and G. Račiukaitis, “Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures,” Opt. Express 23(22), 28557–28566 (2015).
[Crossref]
[PubMed]
E. Stankevičius, M. Gedvilas, B. Voisiat, M. Malinauskas, and G. Račiukaitis, “Fabrication of periodic micro-structures by holographic lithography,” Lith. J. Phys. 53(4), 227–237 (2013).
[Crossref]
E. Stankevičius, E. Balčiūnas, M. Malinauskas, G. Račiukaitis, D. Baltriukienė, and V. Bukelskienė, “Holographic lithography for biomedical applications,” Proc. SPIE 8433, 843312 (2012).
[Crossref]
E. Stankevičius, M. Malinauskas, and G. Račiukaitis, “Fabrication of scaffolds and micro-lenses array in a negative photopolymer SZ2080 by multi-photon polymerization and four-femtosecond-beam interference,” Phys. Procedia 12, 82–88 (2011).
[Crossref]
M. Malinauskas, P. Danilevičius, E. Balčiūnas, S. Rekštytė, E. Stankevičius, D. Baltriukienė, V. Bukelskienė, G. Račiukaitis, and R. Gadonas, “Applications of nonlinear laser nano/microlithography: fabrication from nanophotonic to biomedical components,” Proc. SPIE 8204, 820407 (2011).
[Crossref]
B. Voisiat, M. Gedvilas, S. Indrišiūnas, and G. Račiukaitis, “Picosecond-laser 4-beam-interference ablation as a flexible tool for thin film microstructuring,” Phys. Procedia 12, 116–124 (2011).
[Crossref]
C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 87–90 (2006).
[Crossref]
H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]
H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]
M. Malinauskas, P. Danilevičius, E. Balčiūnas, S. Rekštytė, E. Stankevičius, D. Baltriukienė, V. Bukelskienė, G. Račiukaitis, and R. Gadonas, “Applications of nonlinear laser nano/microlithography: fabrication from nanophotonic to biomedical components,” Proc. SPIE 8204, 820407 (2011).
[Crossref]
L. Müller-Meskamp, Y. H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckardt, K. Leo, and A. F. Lasagni, “Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct laser interference patterning,” Adv. Mater. 24(7), 906–910 (2012).
[Crossref]
[PubMed]
M. Malinauskas, V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuring over a large area on various substrates,” Proc. SPIE 7715, 77151F (2010).
[Crossref]
A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]
[PubMed]
V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[Crossref]
L. Müller-Meskamp, Y. H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckardt, K. Leo, and A. F. Lasagni, “Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct laser interference patterning,” Adv. Mater. 24(7), 906–910 (2012).
[Crossref]
[PubMed]
K. Loeschner, G. Seifert, and A. Heilmann, “Self-organized, gratinglike nanostructures in polymer films with embedded metal nanoparticles induced by femtosecond laser irradiation,” J. Appl. Phys. 108(7), 073114 (2010).
[Crossref]
C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 87–90 (2006).
[Crossref]
J.-H. Seo, J. H. Park, S.-I. Kim, B. J. Park, Z. Ma, J. Choi, and B.-K. Ju, “Nanopatterning by laser interference lithography: applications to optical devices,” J. Nanosci. Nanotechnol. 14(2), 1521–1532 (2014).
[Crossref]
[PubMed]
S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43(22), 9462–9472 (2010).
[Crossref]
J.-H. Klein-Wiele, M. A. Bader, I. Bauer, S. Soria, P. Simon, and G. Marowsky, “Ablation dynamics of periodic nanostructures for polymer-based all-optical devices,” Synth. Met. 127(1–3), 53–57 (2002).
[Crossref]
K. Y. Suh, H. E. Jeong, D. H. Kim, R. A. Singh, and E. S. Yoon, “Capillarity-assisted fabrication of nanostructures using a less permeable mold for nanotribological applications,” J. Appl. Phys. 100(3), 034303 (2006).
[Crossref]
M. Malinauskas, V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuring over a large area on various substrates,” Proc. SPIE 7715, 77151F (2010).
[Crossref]
M. Malinauskas, V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuring over a large area on various substrates,” Proc. SPIE 7715, 77151F (2010).
[Crossref]
J.-H. Klein-Wiele, M. A. Bader, I. Bauer, S. Soria, P. Simon, and G. Marowsky, “Ablation dynamics of periodic nanostructures for polymer-based all-optical devices,” Synth. Met. 127(1–3), 53–57 (2002).
[Crossref]
E. Stankevičius, M. Garliauskas, M. Gedvilas, and G. Račiukaitis, “Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures,” Opt. Express 23(22), 28557–28566 (2015).
[Crossref]
[PubMed]
E. Stankevičius, M. Gedvilas, B. Voisiat, M. Malinauskas, and G. Račiukaitis, “Fabrication of periodic micro-structures by holographic lithography,” Lith. J. Phys. 53(4), 227–237 (2013).
[Crossref]
E. Stankevičius, E. Balčiūnas, M. Malinauskas, G. Račiukaitis, D. Baltriukienė, and V. Bukelskienė, “Holographic lithography for biomedical applications,” Proc. SPIE 8433, 843312 (2012).
[Crossref]
E. Stankevičius, M. Malinauskas, and G. Račiukaitis, “Fabrication of scaffolds and micro-lenses array in a negative photopolymer SZ2080 by multi-photon polymerization and four-femtosecond-beam interference,” Phys. Procedia 12, 82–88 (2011).
[Crossref]
M. Malinauskas, P. Danilevičius, E. Balčiūnas, S. Rekštytė, E. Stankevičius, D. Baltriukienė, V. Bukelskienė, G. Račiukaitis, and R. Gadonas, “Applications of nonlinear laser nano/microlithography: fabrication from nanophotonic to biomedical components,” Proc. SPIE 8204, 820407 (2011).
[Crossref]
S. J. Zilker, T. Bieringer, D. Haarer, R. S. Stein, J. W. van Egmond, and S. G. Kostromine, “Holographic Data Storage in Amorphous Polymers,” Adv. Mater. 10(11), 855–859 (1998).
[Crossref]
T.-L. Chang, K.-Y. Cheng, T.-H. Chou, C.-C. Su, H.-P. Yang, and S.-W. Luo, “Hybrid-polymer nanostructures forming an anti-reflection film using two-beam interference and ultraviolet nanoimprint lithography,” Microelectron. Eng. 86(4–6), 874–877 (2009).
[Crossref]
K. Y. Suh, H. E. Jeong, D. H. Kim, R. A. Singh, and E. S. Yoon, “Capillarity-assisted fabrication of nanostructures using a less permeable mold for nanotribological applications,” J. Appl. Phys. 100(3), 034303 (2006).
[Crossref]
T. Katchalski, E. Teitelbaum, and A. A. Friesem, “Towards ultranarrow bandwidth polymer-based resonant grating waveguide structures,” Appl. Phys. Lett. 84(4), 472–474 (2004).
[Crossref]
C.-J. Ting, C.-F. Chen, and C. P. Chou, “Subwavelength structures for broadband antireflection application,” Opt. Commun. 282(3), 434–438 (2009).
[Crossref]
A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express 17(4), 2143–2148 (2009).
[Crossref]
[PubMed]
A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]
[PubMed]
S. J. Zilker, T. Bieringer, D. Haarer, R. S. Stein, J. W. van Egmond, and S. G. Kostromine, “Holographic Data Storage in Amorphous Polymers,” Adv. Mater. 10(11), 855–859 (1998).
[Crossref]
A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]
[PubMed]
C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).
[Crossref]
E. Stankevičius, M. Gedvilas, B. Voisiat, M. Malinauskas, and G. Račiukaitis, “Fabrication of periodic micro-structures by holographic lithography,” Lith. J. Phys. 53(4), 227–237 (2013).
[Crossref]
B. Voisiat, M. Gedvilas, S. Indrišiūnas, and G. Račiukaitis, “Picosecond-laser 4-beam-interference ablation as a flexible tool for thin film microstructuring,” Phys. Procedia 12, 116–124 (2011).
[Crossref]
D. Wang, Z. Wang, Z. Zhang, Y. Yue, D. Li, and C. Maple, “Effects of polarization on four-beam laser interference lithography,” Appl. Phys. Lett. 102(8), 081903 (2013).
[Crossref]
L. Wu, Y. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86(24), 1–3 (2005).
[Crossref]
X. Wang, D. Zhang, Y. Chen, L. Zhu, W. Yu, P. Wang, P. Yao, H. Ming, W. Wu, and Q. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 10–14 (2013).
[Crossref]
X. Wang, D. Zhang, Y. Chen, L. Zhu, W. Yu, P. Wang, P. Yao, H. Ming, W. Wu, and Q. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 10–14 (2013).
[Crossref]
D. Wang, Z. Wang, Z. Zhang, Y. Yue, D. Li, and C. Maple, “Effects of polarization on four-beam laser interference lithography,” Appl. Phys. Lett. 102(8), 081903 (2013).
[Crossref]
L. Wu, Y. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86(24), 1–3 (2005).
[Crossref]
L. Wu, Y. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86(24), 1–3 (2005).
[Crossref]
X. Wang, D. Zhang, Y. Chen, L. Zhu, W. Yu, P. Wang, P. Yao, H. Ming, W. Wu, and Q. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 10–14 (2013).
[Crossref]
Q. Xia and S. Y. Chou, “Applications of excimer laser in nanofabrication,” Appl. Phys., A Mater. Sci. Process. 98(1), 9–59 (2010).
[Crossref]
C. Xian-Zhong and L. Hai-Ying, “Fabrication of nanoimprint stamp using interference lithography,” Chin. Phys. Lett. 24(10), 2830–2832 (2007).
[Crossref]
C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 87–90 (2006).
[Crossref]
T.-L. Chang, K.-Y. Cheng, T.-H. Chou, C.-C. Su, H.-P. Yang, and S.-W. Luo, “Hybrid-polymer nanostructures forming an anti-reflection film using two-beam interference and ultraviolet nanoimprint lithography,” Microelectron. Eng. 86(4–6), 874–877 (2009).
[Crossref]
Y.-L. Yang, C.-C. Hsu, T.-L. Chang, L.-S. Kuo, and P.-H. Chen, “Study on wetting properties of periodical nanopatterns by a combinative technique of photolithography and laser interference lithography,” Appl. Surf. Sci. 256(11), 3683–3687 (2010).
[Crossref]
X. Wang, D. Zhang, Y. Chen, L. Zhu, W. Yu, P. Wang, P. Yao, H. Ming, W. Wu, and Q. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 10–14 (2013).
[Crossref]
K. Y. Suh, H. E. Jeong, D. H. Kim, R. A. Singh, and E. S. Yoon, “Capillarity-assisted fabrication of nanostructures using a less permeable mold for nanotribological applications,” J. Appl. Phys. 100(3), 034303 (2006).
[Crossref]
P. Li, U. Bakowsky, F. Yu, C. Loehbach, F. Muecklich, and C.-M. Lehr, “Laser ablation patterning by interference induces directional cell growth,” IEEE Trans. Nanobioscience 2(3), 138–145 (2003).
[Crossref]
[PubMed]
K. Chen, E. Azhar, T. Ma, H. Jiang, and H. Yu, “Facile large-area photolithography of periodic sub-micron structures using a self-formed polymer mask,” Appl. Phys. Lett. 100(23), 233503 (2012).
[Crossref]
X. Wang, D. Zhang, Y. Chen, L. Zhu, W. Yu, P. Wang, P. Yao, H. Ming, W. Wu, and Q. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 10–14 (2013).
[Crossref]
D. Wang, Z. Wang, Z. Zhang, Y. Yue, D. Li, and C. Maple, “Effects of polarization on four-beam laser interference lithography,” Appl. Phys. Lett. 102(8), 081903 (2013).
[Crossref]
X. Wang, D. Zhang, Y. Chen, L. Zhu, W. Yu, P. Wang, P. Yao, H. Ming, W. Wu, and Q. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 10–14 (2013).
[Crossref]
X. Wang, D. Zhang, Y. Chen, L. Zhu, W. Yu, P. Wang, P. Yao, H. Ming, W. Wu, and Q. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 10–14 (2013).
[Crossref]
D. Wang, Z. Wang, Z. Zhang, Y. Yue, D. Li, and C. Maple, “Effects of polarization on four-beam laser interference lithography,” Appl. Phys. Lett. 102(8), 081903 (2013).
[Crossref]
G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[Crossref]
L. Wu, Y. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86(24), 1–3 (2005).
[Crossref]
X. Wang, D. Zhang, Y. Chen, L. Zhu, W. Yu, P. Wang, P. Yao, H. Ming, W. Wu, and Q. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 10–14 (2013).
[Crossref]
S. J. Zilker, T. Bieringer, D. Haarer, R. S. Stein, J. W. van Egmond, and S. G. Kostromine, “Holographic Data Storage in Amorphous Polymers,” Adv. Mater. 10(11), 855–859 (1998).
[Crossref]
M. Malinauskas, V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuring over a large area on various substrates,” Proc. SPIE 7715, 77151F (2010).
[Crossref]