Abstract

We investigate the optical properties of LiInSe2 (LISe) by THz time-domain spectroscopy (THz-TDS). The experimental results indicate that LISe has excellent transparency in the THz frequency region. We determine quantitatively the birefringence of LISe. The refractive index and absorption coefficient along the three dielectric axes of LISe are reported in the THz frequency region. The lattice vibrations of LISe are analyzed on the basis of the THz-TDS measurement in combination with infrared and Raman spectra. The origin of the low-frequency vibrational modes below 3 THz as interatomic bond-bending modes is revealed.

© 2014 Optical Society of America

1. Introduction

THz time-domain spectroscopy (THz-TDS) [13] enables the investigation of optical properties of materials in the far-infrared frequency region. It provides a sensitive method for the study of low-frequency transverse optical phonon resonances in crystals. Polarization dependent measurements allow the mapping of the dielectric tensor and to determine the polarization of IR active phonons.

LISe is a nonlinear chalcogenide biaxial orthorhombic crystal with high optical quality [4]. It belongs to LiBIIIC2IV family compounds, which exhibit a tetrahedral lattice structure [5]. The structural and electronic properties of LISe have been reported previously [6,7]. Although optical properties of LISe in the mid-infrared range have been studied theoretically and experimentally [8,9], its optical properties in the THz frequency region is not yet completely revealed.

In this paper, we investigate a-, b- and c-cut (a, b and c denote the crystallographic axes of LISe crystal) β-NaFeO2-type LISe single crystals [6,10] and calculate the optical constants such as the refractive index and the absorption coefficient in the frequency range of 0.3 to 2.3 THz using THz-TDS measurements. The orientation dependence of the refractive index of LISe crystal demonstrates significant birefringence in a- and c-cut crystals and circular-like refractive index ellipsoid in the b-cut crystal. Large birefringence of LISe enables phase matching [11], which is essential for THz emission from this crystal. The pronounced absorption of each crystal below 3 THz reflects Se-related lattice vibrations, which agree well with the calculated TO modes in accordance with the valence force field method [12]. Combining the damped multiharmonic oscillator model with the infrared and Raman spectra of LISe crystals cut in different principle axes, the frequency dependent dielectric constants can be obtained with the parameters such as the resonance frequency, damping constant, and oscillator strength.

2. Experimental setup and method

Our experiment setup (Fig. 1(a)) employs high-speed asynchronous optical sampling (ASOPS) with two Ti: sapphire femtosecond lasers with repetition rates of approximately 1 GHz [13]. The repetition rate offset of the two lasers is stabilized to 2 kHz by a phase-locked loop. Compared with a mechanical delay line, high-speed ASOPS provides a higher scanning speed and thus a higher sensitivity for ultrafast time-domain spectroscopy. One laser with higher repetition rate serves as pump laser and excites under normal incidence a microstructured large-area photoconductive THz emitter [14]. The emitted THz with linear polarization is collected by the first 90° off-axis parabolic mirror and is then focused onto the sample by the second parabolic mirror. After interacting with the sample, the transmitted THz beam is collimated and focused by the other two parabolic mirrors to a (110) ZnTe detector crystal [15]. The other laser with lower repetition rate serves as probe laser and is overlaid with the THz spot on the detector crystal through a hole in the fourth parabolic mirror. The center wavelength and duration of the pump and probe lasers are approximately 800 nm and 50 fs, respectively. In order to eliminate water absorption in ambient air, the enclosure including the THz beam path is purged with nitrogen gas during the measurement. The probe beam experiences a polarization change due to the THz electric field based on the electro-optic effect in ZnTe. It is focused onto a single detector after passing through a λ/4 wave plate and a polarization beam splitter. The time-domain signal of sample and reference data are obtained by measuring with and without the sample in the THz beam path, respectively.

 

Fig. 1 (a) Schematic sketch of the high-speed ASOPS THz-TDS setup; (b) linear polarized THz beam is split into the fast and the slow components due to birefringence of the crystal.

Download Full Size | PPT Slide | PDF

By performing a Fourier transform to the easily separated main pulse in the transmitted time-domain spectra, the frequency dependence of the refractive index and absorption coefficient of the sample can be quantitatively determined by extracting the amplitude ratio and phase shift between the sample and reference signal:

nS(ω)=1+Φcωd
αS(ω)=2dln{[nS(ω)+1]24nS(ω)|T|}
where |T| and Φ are the amplitude and the phase shift extracted from the complex amplitude ratio between frequency-domain spectra of the signal and reference, and c and d are the light speed in vacuum and the thickness of the sample, respectively.

3. Experimental results and discussion

THz transmission spectroscopy of a-, b- and c-cut LISe crystals are measured at room temperature. The LISe crystal is mounted on a 360° rotation stage with its rotation axis parallel to the propagation direction of the THz beam. The THz beam is focused onto the crystal under normal incidence (Fig. 1(b)). Therefore the orientation of the crystal with respect to the incident THz polarization can be manipulated by rotating the crystal. The three crystallographic axes of LISe crystal compose an orthogonal coordinate system. Therefore, if the refractive index is orientation dependent, when a THz pulse is normally incident to a crystallographic plane at an arbitrary angle with respect to one of the two crystallographic axes inside the plane, the incident THz pulse will be separated into two sub-pulses with polarizations perpendicular to each other after passing through the crystal due to the birefringence.

As illustrated in Fig. 1(b), xyz is the chosen coordinate system. The z-axis polarized THz beam is incident parallel to the x-axis and perpendicular to one principle plane of the LISe crystal in the yz plane. The transmitted pulse is separated into the fast and the slow pulses. The direction of the polarization of the fast and the slow components are denoted as the f - and the s-axis of the crystal, respectively. θ is the angle between the f -axis and the polarization of the incident THz pulse. After propagating through the crystal, the phase delay between the fast and the slow components can be expressed as:

Γ=ωd(nsnf)/c
where nf and ns are the refractive index of LISe crystal along the f - and the s-axis, respectively.

To measure the birefringence of the LISe crystal, it is necessary to locate the directions of the f - and the s-axis in the yz plane. This is realized by rotating the crystal and measuring the position of the THz signal in the time domain. When the f - or the s-axis is parallel to the polarization of the incident THz wave, there will be only a single THz pulse in the time domain.

Figure 2 shows the transmitted time- and frequency-domain spectra of the three LISe crystals cut in three principle axes, respectively. From the time-domain spectra of the transmitted THz waves, we can see that the waveform can be modulated by changing the orientation of the crystal with respect to the polarization of the incident THz pulse. The incident single pulse is broken into two pulses with polarizations perpendicular to each other, which is caused by the different group velocities of the fast and the slow components. From the frequency-domain spectra of the transmitted THz waves, we can see a spectral modulation when θ is neither 0° nor 90°. Nonetheless, the spectral modulation will disappear when either the f - or the s-axis is parallel to the polarization of the incident THz pulse. Additionally, for a- and c-cut LISe crystals (Fig. 2(a) and Fig. 2(c)), the amplitude modulation is much more significant than that for b-cut LISe crystals.

 

Fig. 2 The transmitted time- and frequency-domain spectra (insets) of (a) a-cut LISe crystal with 0.50 mm thickness, (b) b-cut LISe crystal with 0.70 mm thickness, (c) c-cut LISe crystal with 0.60 mm thickness; (d) orientation illustration of incident THz field, LISe crystal and transmitted THz field.

Download Full Size | PPT Slide | PDF

In LISe crystals, the crystallographic axes a, b and c correspond to its dielectric axes Y, X and Z, respectively. The X-, Y- and Z-axis compose an orthogonal coordinate system, so the refractive indices along the three dielectric axes can be calculated from the transmitted spectra of the crystals. Figure 3(a) illustrates the calculated real part of the refractive index of a LISe crystal when the X-, Y- and Z-axis are parallel to the polarization of the incident THz pulse in accordance with Eq. (1).

 

Fig. 3 (a) The refractive index and (b) the absorption coefficient of LISe crystal when the X-, Y- and Z-axis are parallel to the polarization of the incident THz pulse.

Download Full Size | PPT Slide | PDF

The refractive indices of the LISe crystal exhibit orientation dependence, which was also observed from the polarization-resolved THz time-domain spectroscopy of LaAlO3 [16]. The values of nY and nZ are very close, which indicates that the refractive index ellipsoid in b-cut principle plane is close to circular. Therefore the LISe crystal can be regarded as a quasi-uniaxial crystal in this frequency range. All the three refractive indices nX, nY and nZ exhibit weak frequency dependence in the whole investigated frequency region except for a dispersive-like feature at around 2.15, 1.90, and 1.34 THz, respectively. In previous work, the refractive indices along the three dielectric axes in the visible region (e.g. at 632.8 nm) were determined as nX = 2.387, nY = 2.435, nZ = 2.437, respectively [17]. From our measurement, the refractive indices along the three dielectric axes in the far-infrared frequency region (e.g. at 300 μm, i.e. 1 THz) were determined as nX = 2.464, nY = 3.025, nZ = 2.985, respectively. Obviously, the refractive indices in the far-infrared region are larger than those in visible region. We also calculated the birefringence in b-, a-, and c-cut principle planes at these two wavelengths. The birefringence Δn of LISe in the three principle planes are |nYnZ|, |nZnX| and |nXnY|, respectively (Table 1).

Tables Icon

Table 1. Birefringence of b-, a-, and c-cut principle planes of LISe crystal.

As illustrated in Table 1, the birefringence in the THz frequency region is larger than in the visible region in all three orthogonal principle planes of the LISe crystal. As expected the b-cut principle plane shows much smaller birefringence than the a– and the c–cut principle planes.

Figure 3(b) illustrates the absorption coefficient when the X-, Y- and Z-axis are parallel to the polarization of the incident THz waves on the basis of Eq. (2). Pronounced absorption peaks occur at around 2.15, 1.90 and 1.34 THz in αX, αY and αZ, respectively. These absorption peaks are attributed to lattice vibrations and are responsible for the dispersive like features in nX, nY and nZ at the same frequencies. We can also see that αX shows much smaller values than αY and αZ. Moreover, a slow increase in the absorption coefficient is observed, which stems from the low-frequency wing of higher-frequency TO phonons [18].

LISe with β-NaFeO2 structure containing perfect InSe4 tetrahedrons and weak Li-Se covalent bonds has point group C2v. The Li-related lattice vibrations are corresponding to higher frequencies due to the small mass of Li, so the vibrations in low- and middle-frequency range are only corresponding to In-Se covalent bonds [6].

According to infrared and Raman selection rules [19], the irreducible representation of the optical modes of β-NaFeO2-type LISe can be expressed as:

11A112A211B111B2
where the B2, B1 and A1 optical modes are infrared active for the cases that the X-, Y - and Z-axis are parallel to the polarization of the incident THz pulse, respectively.

Based on the damped multiharmonic oscillator model, the frequency dependence of the complex dielectric constant of LISe crystals is given by [12]:

ε(ν)=ε+i=1NsiνTOi2νTOi2ν2+iγiν
and
i=1Nsi=ε0ε
where ε and ε0 are the high- and low-frequency dielectric constant, N the number of transverse optical modes, and si, νTOi and γi denote the oscillator strength, the frequency and damping constant of the ith TO mode. With the infrared and Raman spectra of LISe [6,20,21], we can determine the optical lattice modes and calculate the complex dielectric constant, and then obtain the refractive index and the absorption coefficient on the basis of the relations:
n=εr2+εi2+εr2
α=4πνcεr2+εi2εr2
where εr and εi are the real and imaginary parts of the dielectric constant.

Figure 4 illustrates the refractive index and the absorption coefficient calculated from Eq. (5), Eq. (6), Eq. (7) and Eq. (8) by choosing the lowest 5 TO modes for the three cases mentioned above, respectively. The peaks at around 2.13 THz, 2.09 THz and 1.31 THz in αX, αY and αZ are corresponding to the phonon frequencies observed from X-, Y- and Z-polarized infrared and Raman spectra, respectively. The peak at around 1.90 THz in αY is clearly observed in our THz transmission spectra. The parameters used for simulation of the refractive index and the absorption coefficient in Fig. 4 are shown in Table 2 where the oscillator strength s is given in % relative to the phonon mode with the strongest oscillator strength. The damping constant γ is a fit parameter. The theoretical simulation reproduces the calculation from the experimental data well except for a low frequency absorption of about 40 cm−1 in αY and αZ. The experimental data show an additional off-set with slight linear increase in absorption. The origin of this difference in absorption may stem from a stronger broadening of high frequency phonon modes (modes above 6 THz are not considered in our model) or impurities, and is under further investigation.

 

Fig. 4 Simulated refractive index (a) and absorption coefficient (b) of LISe when the X-, Y- and Z-axis are parallel to the polarization of the incident THz pulse.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 2. Parameters used for simulating the refractive index and the absorption coefficient of LISe with the X-, Y- and Z-axis parallel to the polarization of the incident THz pulse.

The frequency of the lattice vibrations are determined by the interatomic forces in the crystal. Without considering the contribution of long-range Coulomb forces to the elastic constants and the influence of the dipole-dipole interactions on the transverse optical mode, the interatomic forces can be decomposed into bond-stretching and bond-bending forces according to the valence-force-field (VFF) approach [12,22]. The force constants in the tetrahedral unity of LISe was described by the Keating model [23], and the relation between TO mode and the force constant is given by [24]:

νTO2=k1+k2meffπ2
where meff is the effective mass of the vibration part. k1 and k2 are the bond-stretching and bond-bending force constants with the relation k2 = 0.28(1 − fi)k1, where fi is the spectroscopic bond ionicity. The necessary parameters for calculating the TO mode using interatomic forces are k1 = 43.1 N/m, fi = 0.599 [25,26].

Suppose that only the Se atoms vibrate with In atoms remaining still, the corresponding TO phonon frequency induced by bond-stretching and bond-bending forces are around 5.77 THz and 1.93 THz, respectively. Therefore the high-frequency vibrational modes are related to bond-stretching forces and the vibrational modes in the three dielectric axes shown in Fig. 3(b) are related to the bond-bending forces of In-Se covalent bonds [27]. The difference of the vibrational frequencies for LISe crystal with X-, Y- and Z-axis parallel to the THz electric field is attributed to the lattice symmetry of β-NaFeO2 structure. Furthermore, the frequency offset between the calculated vibrations and the experimental result is probably due to the exact values of the effective mass and electric forces.

4. Conclusion

In conclusion, we demonstrate significant birefringence of biaxial LISe crystals in the THz frequency range. Both the refractive index and the absorption coefficient of LISe are orientation dependent and the frequencies of the pronounced absorption peaks agree well with the vibrational modes obtained from infrared and Raman spectra. Our investigations of the linear optical properties of LISe in combination with reported nonlinear coefficients suggest that phase matching for THz generation by optical rectification seems feasible. Additionally, the low-frequency vibrational modes below 3 THz mainly stem from bond-bending forces of the In-Se covalent bonds in the LISe crystal.

Acknowledgments

This research is supported by the Center for Applied Photonics (CAP) at the University of Konstanz, the DFG through the SFB 767 (Germany), the China Scholarship Council (CSC), the State National Natural Science Foundation of China (Grant No. 51272129, 5021002) and the 973 Program of the People’s Republic of China (Grant No. 2010CB630702).

References and links

1. J. Lloyd-Hughes and T.-I. Jeon, “A review of the terahertz conductivity of bulk and nano-materials,” J. Infrared. Milli. Terahz Waves 33(9), 871–925 (2012). [CrossRef]  

2. R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011). [CrossRef]  

3. K. Wiesauer and C. Jördens, “Recent advances in birefringences studies at THz frequencies,” J. Infrared. Milli. Terahz Waves 34(11), 663–681 (2013). [CrossRef]  

4. E. Tupitsyn, P. Bhattacharya, E. Rowe, L. Matei, M. Groza, B. Wiggins, A. Burger, and A. Stowe, “Single crystal of LiInSe2 semiconductor for neutron detector,” Appl. Phys. Lett. 101(20), 202101 (2012). [CrossRef]  

5. F. W. Ohrendorf and H. Haeuseler, “Lattice dynamics of chalcopyrite type compounds part IV. Calculations of TO phonon modes in a reduced rigid ion model,” Cryst. Res. Technol. 35(5), 569–578 (2000). [CrossRef]  

6. Y. Li, W. Fan, H. Sun, X. Cheng, P. Li, and X. Zhao, “First-principles study of the electronic, optical, and lattice dynamics properties of LiInSe2 polymorph,” J. Appl. Phys. 106(3), 033704 (2009). [CrossRef]  

7. T. Ma, C. Yang, Y. Xie, L. Sun, W. Lv, R. Wang, C. Zhu, and M. Wang, “Electronic and optical properties of orthorhombic LiInS2 and LiInSe2: A density functional theory investigation,” Comput. Mater. Sci. 47, 99 (2009). [CrossRef]  

8. O. Balachninaite, L. Petraviciute, M. Maciulevicius, V. Sirutkaitis, L. Isaenko, S. Lobanov, A. Yelisseyev, and J.-J. Zondy, “Optical characterization of the LiInS2 and LiInSe2 crystals,”Proc. of SPIE 6596, 65961J (2007).

9. T. Kamijoh, T. Nozaki, and K. Kuriyama, “Dielectric constants and bond parameters of LiInSe2 and LiGaSe2,” J. Appl. Phys. 53(1), 761–763 (1982). [CrossRef]  

10. S. Wang, X. X. Zhang, X. Zhang, C. Li, Z. Gao, Q. Lu, and X. Tao, “Modified Bridgman growth and properties of mid-infrared LiInSe2 crystal,” DOI: [CrossRef]  , J. Cryst. Growth (2014).

11. L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, G. Slekys, and J.-J. Zondy, “LiInSe2: A biaxial ternary chalcogenide crystal for nonlinear optical applications in the midinfrared,” J. Appl. Phys. 91(12), 9475–9480 (2002). [CrossRef]  

12. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, 2001).

13. R. Gebs, G. Klatt, C. Janke, T. Dekorsy, and A. Bartels, “High-speed asynchronous optical sampling with sub-50fs time resolution,” Opt. Express 18(6), 5974–5983 (2010). [CrossRef]   [PubMed]  

14. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005). [CrossRef]  

15. G. Gallot and D. Grischkowsky, “Electro-optic detection of terahertz radiation,” J. Opt. Soc. Am. B 16(8), 1204–1212 (1999). [CrossRef]  

16. J. Lloyd-Hughes, S. P. P. Jones, E. Castro-Camus, K. I. Doig, and J. L. Macmanus-Driscoll, “Modyfying the polarization state of terahertz radiation using anisotropic twin-domains in LaAlO3,” Opt. Lett. 39(5), 1121–1124 (2014). [CrossRef]   [PubMed]  

17. V. Petrov, J.-J. Zondy, O. Bidault, L. Isaenko, V. Vedenyapin, A. Yelisseyev, W. Chen, A. Tyazhev, S. Lobanov, G. Marchev, and D. Kolker, “Optical, thermal, electrical, damage, and phase-matching properties of lithium selenoin-date,” J. Opt. Soc. Am. B 27(9), 1902–1927 (2010). [CrossRef]  

18. M. Schall, M. Walther, and P. U. Jepsen, “Fundamental and second-order phonon processes in CdTe and ZnTe,” Phys. Rev. B 64(9), 094301 (2001). [CrossRef]  

19. W. G. Fateley and F. R. Dollish, Infrared and Raman Selection Rules for Molecular and Lattice Vibrations: The Correlation Method (John-Wiley & Sons. Inc., 1972).

20. B. Lorenz, “High pressure Raman investigation of LiInSe2 in the β-NaFeO2 structure,” J. Phys. Chem. Solids 58(3), 399–402 (1996). [CrossRef]  

21. A. Eifler, V. Riede, S. Wenger, S. Weise, E. Nowak, D. Sprinz, G. Lippold, and W. Grill, “Infrared and Raman study of lattice vibrations of LiInSe2 single crystals,” Cryst. Res. Technol. 31, Suppl. 31, 353–356 (1996). [CrossRef]  

22. M. J. P. Musgrave and J. A. Pople, “A general valence force field for diamond,” Proc. R. Soc. Lond. A 268, 474–484 (1962). [CrossRef]  

23. H. Neumann, “Lattice vibrations in AIBIIIC2III chalcopyrite compounds,” Helv. Phys. Acta 58, 337–346 (1985).

24. R. M. Martin, “Elastic Properties of ZnS structure semiconductors,” Phys. Rev. B 1(10), 4005–4011 (1970). [CrossRef]  

25. H. Neumann, “Bond ionicities and structural trends in some LiBIIIC2III compounds,” Cryst. Res. Technol. 21(9), 1207–1212 (1986). [CrossRef]  

26. H. Sobotta, H. Neumann, V. Riede, and G. Kuehn, “Lattice vibrations and interatomic forces in LiInSe2,” Cryst. Res. Technol. 21(10), 1367–1371 (1986). [CrossRef]  

27. H. Neumann, “Interatomic force constants and localized effective charges in sphalerite-structure compounds,” Cryst. Res. Technol. 20(6), 773–780 (1985). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. J. Lloyd-Hughes and T.-I. Jeon, “A review of the terahertz conductivity of bulk and nano-materials,” J. Infrared. Milli. Terahz Waves 33(9), 871–925 (2012).
    [Crossref]
  2. R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
    [Crossref]
  3. K. Wiesauer and C. Jördens, “Recent advances in birefringences studies at THz frequencies,” J. Infrared. Milli. Terahz Waves 34(11), 663–681 (2013).
    [Crossref]
  4. E. Tupitsyn, P. Bhattacharya, E. Rowe, L. Matei, M. Groza, B. Wiggins, A. Burger, and A. Stowe, “Single crystal of LiInSe2 semiconductor for neutron detector,” Appl. Phys. Lett. 101(20), 202101 (2012).
    [Crossref]
  5. F. W. Ohrendorf and H. Haeuseler, “Lattice dynamics of chalcopyrite type compounds part IV. Calculations of TO phonon modes in a reduced rigid ion model,” Cryst. Res. Technol. 35(5), 569–578 (2000).
    [Crossref]
  6. Y. Li, W. Fan, H. Sun, X. Cheng, P. Li, and X. Zhao, “First-principles study of the electronic, optical, and lattice dynamics properties of LiInSe2 polymorph,” J. Appl. Phys. 106(3), 033704 (2009).
    [Crossref]
  7. T. Ma, C. Yang, Y. Xie, L. Sun, W. Lv, R. Wang, C. Zhu, and M. Wang, “Electronic and optical properties of orthorhombic LiInS2 and LiInSe2: A density functional theory investigation,” Comput. Mater. Sci. 47, 99 (2009).
    [Crossref]
  8. O. Balachninaite, L. Petraviciute, M. Maciulevicius, V. Sirutkaitis, L. Isaenko, S. Lobanov, A. Yelisseyev, and J.-J. Zondy, “Optical characterization of the LiInS2 and LiInSe2 crystals,”Proc. of SPIE 6596, 65961J (2007).
  9. T. Kamijoh, T. Nozaki, and K. Kuriyama, “Dielectric constants and bond parameters of LiInSe2 and LiGaSe2,” J. Appl. Phys. 53(1), 761–763 (1982).
    [Crossref]
  10. S. Wang, X. X. Zhang, X. Zhang, C. Li, Z. Gao, Q. Lu, and X. Tao, “Modified Bridgman growth and properties of mid-infrared LiInSe2 crystal,” DOI: , J. Cryst. Growth (2014).
    [Crossref]
  11. L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, G. Slekys, and J.-J. Zondy, “LiInSe2: A biaxial ternary chalcogenide crystal for nonlinear optical applications in the midinfrared,” J. Appl. Phys. 91(12), 9475–9480 (2002).
    [Crossref]
  12. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, 2001).
  13. R. Gebs, G. Klatt, C. Janke, T. Dekorsy, and A. Bartels, “High-speed asynchronous optical sampling with sub-50fs time resolution,” Opt. Express 18(6), 5974–5983 (2010).
    [Crossref] [PubMed]
  14. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
    [Crossref]
  15. G. Gallot and D. Grischkowsky, “Electro-optic detection of terahertz radiation,” J. Opt. Soc. Am. B 16(8), 1204–1212 (1999).
    [Crossref]
  16. J. Lloyd-Hughes, S. P. P. Jones, E. Castro-Camus, K. I. Doig, and J. L. Macmanus-Driscoll, “Modyfying the polarization state of terahertz radiation using anisotropic twin-domains in LaAlO3,” Opt. Lett. 39(5), 1121–1124 (2014).
    [Crossref] [PubMed]
  17. V. Petrov, J.-J. Zondy, O. Bidault, L. Isaenko, V. Vedenyapin, A. Yelisseyev, W. Chen, A. Tyazhev, S. Lobanov, G. Marchev, and D. Kolker, “Optical, thermal, electrical, damage, and phase-matching properties of lithium selenoin-date,” J. Opt. Soc. Am. B 27(9), 1902–1927 (2010).
    [Crossref]
  18. M. Schall, M. Walther, and P. U. Jepsen, “Fundamental and second-order phonon processes in CdTe and ZnTe,” Phys. Rev. B 64(9), 094301 (2001).
    [Crossref]
  19. W. G. Fateley and F. R. Dollish, Infrared and Raman Selection Rules for Molecular and Lattice Vibrations: The Correlation Method (John-Wiley & Sons. Inc., 1972).
  20. B. Lorenz, “High pressure Raman investigation of LiInSe2 in the β-NaFeO2 structure,” J. Phys. Chem. Solids 58(3), 399–402 (1996).
    [Crossref]
  21. A. Eifler, V. Riede, S. Wenger, S. Weise, E. Nowak, D. Sprinz, G. Lippold, and W. Grill, “Infrared and Raman study of lattice vibrations of LiInSe2 single crystals,” Cryst. Res. Technol. 31, Suppl. 31, 353–356 (1996).
    [Crossref]
  22. M. J. P. Musgrave and J. A. Pople, “A general valence force field for diamond,” Proc. R. Soc. Lond. A 268, 474–484 (1962).
    [Crossref]
  23. H. Neumann, “Lattice vibrations in AIBIIIC2III chalcopyrite compounds,” Helv. Phys. Acta 58, 337–346 (1985).
  24. R. M. Martin, “Elastic Properties of ZnS structure semiconductors,” Phys. Rev. B 1(10), 4005–4011 (1970).
    [Crossref]
  25. H. Neumann, “Bond ionicities and structural trends in some LiBIIIC2III compounds,” Cryst. Res. Technol. 21(9), 1207–1212 (1986).
    [Crossref]
  26. H. Sobotta, H. Neumann, V. Riede, and G. Kuehn, “Lattice vibrations and interatomic forces in LiInSe2,” Cryst. Res. Technol. 21(10), 1367–1371 (1986).
    [Crossref]
  27. H. Neumann, “Interatomic force constants and localized effective charges in sphalerite-structure compounds,” Cryst. Res. Technol. 20(6), 773–780 (1985).
    [Crossref]

2014 (1)

2013 (1)

K. Wiesauer and C. Jördens, “Recent advances in birefringences studies at THz frequencies,” J. Infrared. Milli. Terahz Waves 34(11), 663–681 (2013).
[Crossref]

2012 (2)

E. Tupitsyn, P. Bhattacharya, E. Rowe, L. Matei, M. Groza, B. Wiggins, A. Burger, and A. Stowe, “Single crystal of LiInSe2 semiconductor for neutron detector,” Appl. Phys. Lett. 101(20), 202101 (2012).
[Crossref]

J. Lloyd-Hughes and T.-I. Jeon, “A review of the terahertz conductivity of bulk and nano-materials,” J. Infrared. Milli. Terahz Waves 33(9), 871–925 (2012).
[Crossref]

2011 (1)

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[Crossref]

2010 (2)

2009 (2)

Y. Li, W. Fan, H. Sun, X. Cheng, P. Li, and X. Zhao, “First-principles study of the electronic, optical, and lattice dynamics properties of LiInSe2 polymorph,” J. Appl. Phys. 106(3), 033704 (2009).
[Crossref]

T. Ma, C. Yang, Y. Xie, L. Sun, W. Lv, R. Wang, C. Zhu, and M. Wang, “Electronic and optical properties of orthorhombic LiInS2 and LiInSe2: A density functional theory investigation,” Comput. Mater. Sci. 47, 99 (2009).
[Crossref]

2007 (1)

O. Balachninaite, L. Petraviciute, M. Maciulevicius, V. Sirutkaitis, L. Isaenko, S. Lobanov, A. Yelisseyev, and J.-J. Zondy, “Optical characterization of the LiInS2 and LiInSe2 crystals,”Proc. of SPIE 6596, 65961J (2007).

2005 (1)

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

2002 (1)

L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, G. Slekys, and J.-J. Zondy, “LiInSe2: A biaxial ternary chalcogenide crystal for nonlinear optical applications in the midinfrared,” J. Appl. Phys. 91(12), 9475–9480 (2002).
[Crossref]

2001 (1)

M. Schall, M. Walther, and P. U. Jepsen, “Fundamental and second-order phonon processes in CdTe and ZnTe,” Phys. Rev. B 64(9), 094301 (2001).
[Crossref]

2000 (1)

F. W. Ohrendorf and H. Haeuseler, “Lattice dynamics of chalcopyrite type compounds part IV. Calculations of TO phonon modes in a reduced rigid ion model,” Cryst. Res. Technol. 35(5), 569–578 (2000).
[Crossref]

1999 (1)

1996 (2)

B. Lorenz, “High pressure Raman investigation of LiInSe2 in the β-NaFeO2 structure,” J. Phys. Chem. Solids 58(3), 399–402 (1996).
[Crossref]

A. Eifler, V. Riede, S. Wenger, S. Weise, E. Nowak, D. Sprinz, G. Lippold, and W. Grill, “Infrared and Raman study of lattice vibrations of LiInSe2 single crystals,” Cryst. Res. Technol. 31, Suppl. 31, 353–356 (1996).
[Crossref]

1986 (2)

H. Neumann, “Bond ionicities and structural trends in some LiBIIIC2III compounds,” Cryst. Res. Technol. 21(9), 1207–1212 (1986).
[Crossref]

H. Sobotta, H. Neumann, V. Riede, and G. Kuehn, “Lattice vibrations and interatomic forces in LiInSe2,” Cryst. Res. Technol. 21(10), 1367–1371 (1986).
[Crossref]

1985 (2)

H. Neumann, “Interatomic force constants and localized effective charges in sphalerite-structure compounds,” Cryst. Res. Technol. 20(6), 773–780 (1985).
[Crossref]

H. Neumann, “Lattice vibrations in AIBIIIC2III chalcopyrite compounds,” Helv. Phys. Acta 58, 337–346 (1985).

1982 (1)

T. Kamijoh, T. Nozaki, and K. Kuriyama, “Dielectric constants and bond parameters of LiInSe2 and LiGaSe2,” J. Appl. Phys. 53(1), 761–763 (1982).
[Crossref]

1970 (1)

R. M. Martin, “Elastic Properties of ZnS structure semiconductors,” Phys. Rev. B 1(10), 4005–4011 (1970).
[Crossref]

1962 (1)

M. J. P. Musgrave and J. A. Pople, “A general valence force field for diamond,” Proc. R. Soc. Lond. A 268, 474–484 (1962).
[Crossref]

Balachninaite, O.

O. Balachninaite, L. Petraviciute, M. Maciulevicius, V. Sirutkaitis, L. Isaenko, S. Lobanov, A. Yelisseyev, and J.-J. Zondy, “Optical characterization of the LiInS2 and LiInSe2 crystals,”Proc. of SPIE 6596, 65961J (2007).

Bartels, A.

Bhattacharya, P.

E. Tupitsyn, P. Bhattacharya, E. Rowe, L. Matei, M. Groza, B. Wiggins, A. Burger, and A. Stowe, “Single crystal of LiInSe2 semiconductor for neutron detector,” Appl. Phys. Lett. 101(20), 202101 (2012).
[Crossref]

Bidault, O.

Bonn, M.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[Crossref]

Burger, A.

E. Tupitsyn, P. Bhattacharya, E. Rowe, L. Matei, M. Groza, B. Wiggins, A. Burger, and A. Stowe, “Single crystal of LiInSe2 semiconductor for neutron detector,” Appl. Phys. Lett. 101(20), 202101 (2012).
[Crossref]

Cardona, M.

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, 2001).

Castro-Camus, E.

Chen, W.

Cheng, X.

Y. Li, W. Fan, H. Sun, X. Cheng, P. Li, and X. Zhao, “First-principles study of the electronic, optical, and lattice dynamics properties of LiInSe2 polymorph,” J. Appl. Phys. 106(3), 033704 (2009).
[Crossref]

Dekorsy, T.

R. Gebs, G. Klatt, C. Janke, T. Dekorsy, and A. Bartels, “High-speed asynchronous optical sampling with sub-50fs time resolution,” Opt. Express 18(6), 5974–5983 (2010).
[Crossref] [PubMed]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

Doig, K. I.

Dollish, F. R.

W. G. Fateley and F. R. Dollish, Infrared and Raman Selection Rules for Molecular and Lattice Vibrations: The Correlation Method (John-Wiley & Sons. Inc., 1972).

Dreyhaupt, A.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

Eifler, A.

A. Eifler, V. Riede, S. Wenger, S. Weise, E. Nowak, D. Sprinz, G. Lippold, and W. Grill, “Infrared and Raman study of lattice vibrations of LiInSe2 single crystals,” Cryst. Res. Technol. 31, Suppl. 31, 353–356 (1996).
[Crossref]

Fan, W.

Y. Li, W. Fan, H. Sun, X. Cheng, P. Li, and X. Zhao, “First-principles study of the electronic, optical, and lattice dynamics properties of LiInSe2 polymorph,” J. Appl. Phys. 106(3), 033704 (2009).
[Crossref]

Fateley, W. G.

W. G. Fateley and F. R. Dollish, Infrared and Raman Selection Rules for Molecular and Lattice Vibrations: The Correlation Method (John-Wiley & Sons. Inc., 1972).

Gallot, G.

Gao, Z.

S. Wang, X. X. Zhang, X. Zhang, C. Li, Z. Gao, Q. Lu, and X. Tao, “Modified Bridgman growth and properties of mid-infrared LiInSe2 crystal,” DOI: , J. Cryst. Growth (2014).
[Crossref]

Gebs, R.

Grill, W.

A. Eifler, V. Riede, S. Wenger, S. Weise, E. Nowak, D. Sprinz, G. Lippold, and W. Grill, “Infrared and Raman study of lattice vibrations of LiInSe2 single crystals,” Cryst. Res. Technol. 31, Suppl. 31, 353–356 (1996).
[Crossref]

Grischkowsky, D.

Groza, M.

E. Tupitsyn, P. Bhattacharya, E. Rowe, L. Matei, M. Groza, B. Wiggins, A. Burger, and A. Stowe, “Single crystal of LiInSe2 semiconductor for neutron detector,” Appl. Phys. Lett. 101(20), 202101 (2012).
[Crossref]

Haeuseler, H.

F. W. Ohrendorf and H. Haeuseler, “Lattice dynamics of chalcopyrite type compounds part IV. Calculations of TO phonon modes in a reduced rigid ion model,” Cryst. Res. Technol. 35(5), 569–578 (2000).
[Crossref]

Heinz, T. F.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[Crossref]

Helm, M.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

Hendry, E.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[Crossref]

Isaenko, L.

V. Petrov, J.-J. Zondy, O. Bidault, L. Isaenko, V. Vedenyapin, A. Yelisseyev, W. Chen, A. Tyazhev, S. Lobanov, G. Marchev, and D. Kolker, “Optical, thermal, electrical, damage, and phase-matching properties of lithium selenoin-date,” J. Opt. Soc. Am. B 27(9), 1902–1927 (2010).
[Crossref]

O. Balachninaite, L. Petraviciute, M. Maciulevicius, V. Sirutkaitis, L. Isaenko, S. Lobanov, A. Yelisseyev, and J.-J. Zondy, “Optical characterization of the LiInS2 and LiInSe2 crystals,”Proc. of SPIE 6596, 65961J (2007).

L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, G. Slekys, and J.-J. Zondy, “LiInSe2: A biaxial ternary chalcogenide crystal for nonlinear optical applications in the midinfrared,” J. Appl. Phys. 91(12), 9475–9480 (2002).
[Crossref]

Janke, C.

Jeon, T.-I.

J. Lloyd-Hughes and T.-I. Jeon, “A review of the terahertz conductivity of bulk and nano-materials,” J. Infrared. Milli. Terahz Waves 33(9), 871–925 (2012).
[Crossref]

Jepsen, P. U.

M. Schall, M. Walther, and P. U. Jepsen, “Fundamental and second-order phonon processes in CdTe and ZnTe,” Phys. Rev. B 64(9), 094301 (2001).
[Crossref]

Jones, S. P. P.

Jördens, C.

K. Wiesauer and C. Jördens, “Recent advances in birefringences studies at THz frequencies,” J. Infrared. Milli. Terahz Waves 34(11), 663–681 (2013).
[Crossref]

Kamijoh, T.

T. Kamijoh, T. Nozaki, and K. Kuriyama, “Dielectric constants and bond parameters of LiInSe2 and LiGaSe2,” J. Appl. Phys. 53(1), 761–763 (1982).
[Crossref]

Klatt, G.

Kolker, D.

Kuehn, G.

H. Sobotta, H. Neumann, V. Riede, and G. Kuehn, “Lattice vibrations and interatomic forces in LiInSe2,” Cryst. Res. Technol. 21(10), 1367–1371 (1986).
[Crossref]

Kuriyama, K.

T. Kamijoh, T. Nozaki, and K. Kuriyama, “Dielectric constants and bond parameters of LiInSe2 and LiGaSe2,” J. Appl. Phys. 53(1), 761–763 (1982).
[Crossref]

Li, C.

S. Wang, X. X. Zhang, X. Zhang, C. Li, Z. Gao, Q. Lu, and X. Tao, “Modified Bridgman growth and properties of mid-infrared LiInSe2 crystal,” DOI: , J. Cryst. Growth (2014).
[Crossref]

Li, P.

Y. Li, W. Fan, H. Sun, X. Cheng, P. Li, and X. Zhao, “First-principles study of the electronic, optical, and lattice dynamics properties of LiInSe2 polymorph,” J. Appl. Phys. 106(3), 033704 (2009).
[Crossref]

Li, Y.

Y. Li, W. Fan, H. Sun, X. Cheng, P. Li, and X. Zhao, “First-principles study of the electronic, optical, and lattice dynamics properties of LiInSe2 polymorph,” J. Appl. Phys. 106(3), 033704 (2009).
[Crossref]

Lippold, G.

A. Eifler, V. Riede, S. Wenger, S. Weise, E. Nowak, D. Sprinz, G. Lippold, and W. Grill, “Infrared and Raman study of lattice vibrations of LiInSe2 single crystals,” Cryst. Res. Technol. 31, Suppl. 31, 353–356 (1996).
[Crossref]

Lloyd-Hughes, J.

Lobanov, S.

V. Petrov, J.-J. Zondy, O. Bidault, L. Isaenko, V. Vedenyapin, A. Yelisseyev, W. Chen, A. Tyazhev, S. Lobanov, G. Marchev, and D. Kolker, “Optical, thermal, electrical, damage, and phase-matching properties of lithium selenoin-date,” J. Opt. Soc. Am. B 27(9), 1902–1927 (2010).
[Crossref]

O. Balachninaite, L. Petraviciute, M. Maciulevicius, V. Sirutkaitis, L. Isaenko, S. Lobanov, A. Yelisseyev, and J.-J. Zondy, “Optical characterization of the LiInS2 and LiInSe2 crystals,”Proc. of SPIE 6596, 65961J (2007).

L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, G. Slekys, and J.-J. Zondy, “LiInSe2: A biaxial ternary chalcogenide crystal for nonlinear optical applications in the midinfrared,” J. Appl. Phys. 91(12), 9475–9480 (2002).
[Crossref]

Lorenz, B.

B. Lorenz, “High pressure Raman investigation of LiInSe2 in the β-NaFeO2 structure,” J. Phys. Chem. Solids 58(3), 399–402 (1996).
[Crossref]

Lu, Q.

S. Wang, X. X. Zhang, X. Zhang, C. Li, Z. Gao, Q. Lu, and X. Tao, “Modified Bridgman growth and properties of mid-infrared LiInSe2 crystal,” DOI: , J. Cryst. Growth (2014).
[Crossref]

Lv, W.

T. Ma, C. Yang, Y. Xie, L. Sun, W. Lv, R. Wang, C. Zhu, and M. Wang, “Electronic and optical properties of orthorhombic LiInS2 and LiInSe2: A density functional theory investigation,” Comput. Mater. Sci. 47, 99 (2009).
[Crossref]

Ma, T.

T. Ma, C. Yang, Y. Xie, L. Sun, W. Lv, R. Wang, C. Zhu, and M. Wang, “Electronic and optical properties of orthorhombic LiInS2 and LiInSe2: A density functional theory investigation,” Comput. Mater. Sci. 47, 99 (2009).
[Crossref]

Maciulevicius, M.

O. Balachninaite, L. Petraviciute, M. Maciulevicius, V. Sirutkaitis, L. Isaenko, S. Lobanov, A. Yelisseyev, and J.-J. Zondy, “Optical characterization of the LiInS2 and LiInSe2 crystals,”Proc. of SPIE 6596, 65961J (2007).

Macmanus-Driscoll, J. L.

Marchev, G.

Martin, R. M.

R. M. Martin, “Elastic Properties of ZnS structure semiconductors,” Phys. Rev. B 1(10), 4005–4011 (1970).
[Crossref]

Matei, L.

E. Tupitsyn, P. Bhattacharya, E. Rowe, L. Matei, M. Groza, B. Wiggins, A. Burger, and A. Stowe, “Single crystal of LiInSe2 semiconductor for neutron detector,” Appl. Phys. Lett. 101(20), 202101 (2012).
[Crossref]

Musgrave, M. J. P.

M. J. P. Musgrave and J. A. Pople, “A general valence force field for diamond,” Proc. R. Soc. Lond. A 268, 474–484 (1962).
[Crossref]

Neumann, H.

H. Neumann, “Bond ionicities and structural trends in some LiBIIIC2III compounds,” Cryst. Res. Technol. 21(9), 1207–1212 (1986).
[Crossref]

H. Sobotta, H. Neumann, V. Riede, and G. Kuehn, “Lattice vibrations and interatomic forces in LiInSe2,” Cryst. Res. Technol. 21(10), 1367–1371 (1986).
[Crossref]

H. Neumann, “Lattice vibrations in AIBIIIC2III chalcopyrite compounds,” Helv. Phys. Acta 58, 337–346 (1985).

H. Neumann, “Interatomic force constants and localized effective charges in sphalerite-structure compounds,” Cryst. Res. Technol. 20(6), 773–780 (1985).
[Crossref]

Nowak, E.

A. Eifler, V. Riede, S. Wenger, S. Weise, E. Nowak, D. Sprinz, G. Lippold, and W. Grill, “Infrared and Raman study of lattice vibrations of LiInSe2 single crystals,” Cryst. Res. Technol. 31, Suppl. 31, 353–356 (1996).
[Crossref]

Nozaki, T.

T. Kamijoh, T. Nozaki, and K. Kuriyama, “Dielectric constants and bond parameters of LiInSe2 and LiGaSe2,” J. Appl. Phys. 53(1), 761–763 (1982).
[Crossref]

Ohrendorf, F. W.

F. W. Ohrendorf and H. Haeuseler, “Lattice dynamics of chalcopyrite type compounds part IV. Calculations of TO phonon modes in a reduced rigid ion model,” Cryst. Res. Technol. 35(5), 569–578 (2000).
[Crossref]

Petraviciute, L.

O. Balachninaite, L. Petraviciute, M. Maciulevicius, V. Sirutkaitis, L. Isaenko, S. Lobanov, A. Yelisseyev, and J.-J. Zondy, “Optical characterization of the LiInS2 and LiInSe2 crystals,”Proc. of SPIE 6596, 65961J (2007).

Petrov, V.

V. Petrov, J.-J. Zondy, O. Bidault, L. Isaenko, V. Vedenyapin, A. Yelisseyev, W. Chen, A. Tyazhev, S. Lobanov, G. Marchev, and D. Kolker, “Optical, thermal, electrical, damage, and phase-matching properties of lithium selenoin-date,” J. Opt. Soc. Am. B 27(9), 1902–1927 (2010).
[Crossref]

L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, G. Slekys, and J.-J. Zondy, “LiInSe2: A biaxial ternary chalcogenide crystal for nonlinear optical applications in the midinfrared,” J. Appl. Phys. 91(12), 9475–9480 (2002).
[Crossref]

Pople, J. A.

M. J. P. Musgrave and J. A. Pople, “A general valence force field for diamond,” Proc. R. Soc. Lond. A 268, 474–484 (1962).
[Crossref]

Riede, V.

A. Eifler, V. Riede, S. Wenger, S. Weise, E. Nowak, D. Sprinz, G. Lippold, and W. Grill, “Infrared and Raman study of lattice vibrations of LiInSe2 single crystals,” Cryst. Res. Technol. 31, Suppl. 31, 353–356 (1996).
[Crossref]

H. Sobotta, H. Neumann, V. Riede, and G. Kuehn, “Lattice vibrations and interatomic forces in LiInSe2,” Cryst. Res. Technol. 21(10), 1367–1371 (1986).
[Crossref]

Rotermund, F.

L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, G. Slekys, and J.-J. Zondy, “LiInSe2: A biaxial ternary chalcogenide crystal for nonlinear optical applications in the midinfrared,” J. Appl. Phys. 91(12), 9475–9480 (2002).
[Crossref]

Rowe, E.

E. Tupitsyn, P. Bhattacharya, E. Rowe, L. Matei, M. Groza, B. Wiggins, A. Burger, and A. Stowe, “Single crystal of LiInSe2 semiconductor for neutron detector,” Appl. Phys. Lett. 101(20), 202101 (2012).
[Crossref]

Schall, M.

M. Schall, M. Walther, and P. U. Jepsen, “Fundamental and second-order phonon processes in CdTe and ZnTe,” Phys. Rev. B 64(9), 094301 (2001).
[Crossref]

Shan, J.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[Crossref]

Sirutkaitis, V.

O. Balachninaite, L. Petraviciute, M. Maciulevicius, V. Sirutkaitis, L. Isaenko, S. Lobanov, A. Yelisseyev, and J.-J. Zondy, “Optical characterization of the LiInS2 and LiInSe2 crystals,”Proc. of SPIE 6596, 65961J (2007).

Slekys, G.

L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, G. Slekys, and J.-J. Zondy, “LiInSe2: A biaxial ternary chalcogenide crystal for nonlinear optical applications in the midinfrared,” J. Appl. Phys. 91(12), 9475–9480 (2002).
[Crossref]

Sobotta, H.

H. Sobotta, H. Neumann, V. Riede, and G. Kuehn, “Lattice vibrations and interatomic forces in LiInSe2,” Cryst. Res. Technol. 21(10), 1367–1371 (1986).
[Crossref]

Sprinz, D.

A. Eifler, V. Riede, S. Wenger, S. Weise, E. Nowak, D. Sprinz, G. Lippold, and W. Grill, “Infrared and Raman study of lattice vibrations of LiInSe2 single crystals,” Cryst. Res. Technol. 31, Suppl. 31, 353–356 (1996).
[Crossref]

Stowe, A.

E. Tupitsyn, P. Bhattacharya, E. Rowe, L. Matei, M. Groza, B. Wiggins, A. Burger, and A. Stowe, “Single crystal of LiInSe2 semiconductor for neutron detector,” Appl. Phys. Lett. 101(20), 202101 (2012).
[Crossref]

Sun, H.

Y. Li, W. Fan, H. Sun, X. Cheng, P. Li, and X. Zhao, “First-principles study of the electronic, optical, and lattice dynamics properties of LiInSe2 polymorph,” J. Appl. Phys. 106(3), 033704 (2009).
[Crossref]

Sun, L.

T. Ma, C. Yang, Y. Xie, L. Sun, W. Lv, R. Wang, C. Zhu, and M. Wang, “Electronic and optical properties of orthorhombic LiInS2 and LiInSe2: A density functional theory investigation,” Comput. Mater. Sci. 47, 99 (2009).
[Crossref]

Tao, X.

S. Wang, X. X. Zhang, X. Zhang, C. Li, Z. Gao, Q. Lu, and X. Tao, “Modified Bridgman growth and properties of mid-infrared LiInSe2 crystal,” DOI: , J. Cryst. Growth (2014).
[Crossref]

Tupitsyn, E.

E. Tupitsyn, P. Bhattacharya, E. Rowe, L. Matei, M. Groza, B. Wiggins, A. Burger, and A. Stowe, “Single crystal of LiInSe2 semiconductor for neutron detector,” Appl. Phys. Lett. 101(20), 202101 (2012).
[Crossref]

Tyazhev, A.

Ulbricht, R.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[Crossref]

Vedenyapin, V.

Walther, M.

M. Schall, M. Walther, and P. U. Jepsen, “Fundamental and second-order phonon processes in CdTe and ZnTe,” Phys. Rev. B 64(9), 094301 (2001).
[Crossref]

Wang, M.

T. Ma, C. Yang, Y. Xie, L. Sun, W. Lv, R. Wang, C. Zhu, and M. Wang, “Electronic and optical properties of orthorhombic LiInS2 and LiInSe2: A density functional theory investigation,” Comput. Mater. Sci. 47, 99 (2009).
[Crossref]

Wang, R.

T. Ma, C. Yang, Y. Xie, L. Sun, W. Lv, R. Wang, C. Zhu, and M. Wang, “Electronic and optical properties of orthorhombic LiInS2 and LiInSe2: A density functional theory investigation,” Comput. Mater. Sci. 47, 99 (2009).
[Crossref]

Wang, S.

S. Wang, X. X. Zhang, X. Zhang, C. Li, Z. Gao, Q. Lu, and X. Tao, “Modified Bridgman growth and properties of mid-infrared LiInSe2 crystal,” DOI: , J. Cryst. Growth (2014).
[Crossref]

Weise, S.

A. Eifler, V. Riede, S. Wenger, S. Weise, E. Nowak, D. Sprinz, G. Lippold, and W. Grill, “Infrared and Raman study of lattice vibrations of LiInSe2 single crystals,” Cryst. Res. Technol. 31, Suppl. 31, 353–356 (1996).
[Crossref]

Wenger, S.

A. Eifler, V. Riede, S. Wenger, S. Weise, E. Nowak, D. Sprinz, G. Lippold, and W. Grill, “Infrared and Raman study of lattice vibrations of LiInSe2 single crystals,” Cryst. Res. Technol. 31, Suppl. 31, 353–356 (1996).
[Crossref]

Wiesauer, K.

K. Wiesauer and C. Jördens, “Recent advances in birefringences studies at THz frequencies,” J. Infrared. Milli. Terahz Waves 34(11), 663–681 (2013).
[Crossref]

Wiggins, B.

E. Tupitsyn, P. Bhattacharya, E. Rowe, L. Matei, M. Groza, B. Wiggins, A. Burger, and A. Stowe, “Single crystal of LiInSe2 semiconductor for neutron detector,” Appl. Phys. Lett. 101(20), 202101 (2012).
[Crossref]

Winnerl, S.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

Xie, Y.

T. Ma, C. Yang, Y. Xie, L. Sun, W. Lv, R. Wang, C. Zhu, and M. Wang, “Electronic and optical properties of orthorhombic LiInS2 and LiInSe2: A density functional theory investigation,” Comput. Mater. Sci. 47, 99 (2009).
[Crossref]

Yang, C.

T. Ma, C. Yang, Y. Xie, L. Sun, W. Lv, R. Wang, C. Zhu, and M. Wang, “Electronic and optical properties of orthorhombic LiInS2 and LiInSe2: A density functional theory investigation,” Comput. Mater. Sci. 47, 99 (2009).
[Crossref]

Yelisseyev, A.

V. Petrov, J.-J. Zondy, O. Bidault, L. Isaenko, V. Vedenyapin, A. Yelisseyev, W. Chen, A. Tyazhev, S. Lobanov, G. Marchev, and D. Kolker, “Optical, thermal, electrical, damage, and phase-matching properties of lithium selenoin-date,” J. Opt. Soc. Am. B 27(9), 1902–1927 (2010).
[Crossref]

O. Balachninaite, L. Petraviciute, M. Maciulevicius, V. Sirutkaitis, L. Isaenko, S. Lobanov, A. Yelisseyev, and J.-J. Zondy, “Optical characterization of the LiInS2 and LiInSe2 crystals,”Proc. of SPIE 6596, 65961J (2007).

L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, G. Slekys, and J.-J. Zondy, “LiInSe2: A biaxial ternary chalcogenide crystal for nonlinear optical applications in the midinfrared,” J. Appl. Phys. 91(12), 9475–9480 (2002).
[Crossref]

Yu, P. Y.

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, 2001).

Zhang, X.

S. Wang, X. X. Zhang, X. Zhang, C. Li, Z. Gao, Q. Lu, and X. Tao, “Modified Bridgman growth and properties of mid-infrared LiInSe2 crystal,” DOI: , J. Cryst. Growth (2014).
[Crossref]

Zhang, X. X.

S. Wang, X. X. Zhang, X. Zhang, C. Li, Z. Gao, Q. Lu, and X. Tao, “Modified Bridgman growth and properties of mid-infrared LiInSe2 crystal,” DOI: , J. Cryst. Growth (2014).
[Crossref]

Zhao, X.

Y. Li, W. Fan, H. Sun, X. Cheng, P. Li, and X. Zhao, “First-principles study of the electronic, optical, and lattice dynamics properties of LiInSe2 polymorph,” J. Appl. Phys. 106(3), 033704 (2009).
[Crossref]

Zhu, C.

T. Ma, C. Yang, Y. Xie, L. Sun, W. Lv, R. Wang, C. Zhu, and M. Wang, “Electronic and optical properties of orthorhombic LiInS2 and LiInSe2: A density functional theory investigation,” Comput. Mater. Sci. 47, 99 (2009).
[Crossref]

Zondy, J.-J.

V. Petrov, J.-J. Zondy, O. Bidault, L. Isaenko, V. Vedenyapin, A. Yelisseyev, W. Chen, A. Tyazhev, S. Lobanov, G. Marchev, and D. Kolker, “Optical, thermal, electrical, damage, and phase-matching properties of lithium selenoin-date,” J. Opt. Soc. Am. B 27(9), 1902–1927 (2010).
[Crossref]

O. Balachninaite, L. Petraviciute, M. Maciulevicius, V. Sirutkaitis, L. Isaenko, S. Lobanov, A. Yelisseyev, and J.-J. Zondy, “Optical characterization of the LiInS2 and LiInSe2 crystals,”Proc. of SPIE 6596, 65961J (2007).

L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, G. Slekys, and J.-J. Zondy, “LiInSe2: A biaxial ternary chalcogenide crystal for nonlinear optical applications in the midinfrared,” J. Appl. Phys. 91(12), 9475–9480 (2002).
[Crossref]

Appl. Phys. Lett. (2)

E. Tupitsyn, P. Bhattacharya, E. Rowe, L. Matei, M. Groza, B. Wiggins, A. Burger, and A. Stowe, “Single crystal of LiInSe2 semiconductor for neutron detector,” Appl. Phys. Lett. 101(20), 202101 (2012).
[Crossref]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

Comput. Mater. Sci. (1)

T. Ma, C. Yang, Y. Xie, L. Sun, W. Lv, R. Wang, C. Zhu, and M. Wang, “Electronic and optical properties of orthorhombic LiInS2 and LiInSe2: A density functional theory investigation,” Comput. Mater. Sci. 47, 99 (2009).
[Crossref]

Cryst. Res. Technol. (5)

F. W. Ohrendorf and H. Haeuseler, “Lattice dynamics of chalcopyrite type compounds part IV. Calculations of TO phonon modes in a reduced rigid ion model,” Cryst. Res. Technol. 35(5), 569–578 (2000).
[Crossref]

A. Eifler, V. Riede, S. Wenger, S. Weise, E. Nowak, D. Sprinz, G. Lippold, and W. Grill, “Infrared and Raman study of lattice vibrations of LiInSe2 single crystals,” Cryst. Res. Technol. 31, Suppl. 31, 353–356 (1996).
[Crossref]

H. Neumann, “Bond ionicities and structural trends in some LiBIIIC2III compounds,” Cryst. Res. Technol. 21(9), 1207–1212 (1986).
[Crossref]

H. Sobotta, H. Neumann, V. Riede, and G. Kuehn, “Lattice vibrations and interatomic forces in LiInSe2,” Cryst. Res. Technol. 21(10), 1367–1371 (1986).
[Crossref]

H. Neumann, “Interatomic force constants and localized effective charges in sphalerite-structure compounds,” Cryst. Res. Technol. 20(6), 773–780 (1985).
[Crossref]

Helv. Phys. Acta (1)

H. Neumann, “Lattice vibrations in AIBIIIC2III chalcopyrite compounds,” Helv. Phys. Acta 58, 337–346 (1985).

J. Appl. Phys. (3)

Y. Li, W. Fan, H. Sun, X. Cheng, P. Li, and X. Zhao, “First-principles study of the electronic, optical, and lattice dynamics properties of LiInSe2 polymorph,” J. Appl. Phys. 106(3), 033704 (2009).
[Crossref]

T. Kamijoh, T. Nozaki, and K. Kuriyama, “Dielectric constants and bond parameters of LiInSe2 and LiGaSe2,” J. Appl. Phys. 53(1), 761–763 (1982).
[Crossref]

L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, G. Slekys, and J.-J. Zondy, “LiInSe2: A biaxial ternary chalcogenide crystal for nonlinear optical applications in the midinfrared,” J. Appl. Phys. 91(12), 9475–9480 (2002).
[Crossref]

J. Infrared. Milli. Terahz Waves (2)

K. Wiesauer and C. Jördens, “Recent advances in birefringences studies at THz frequencies,” J. Infrared. Milli. Terahz Waves 34(11), 663–681 (2013).
[Crossref]

J. Lloyd-Hughes and T.-I. Jeon, “A review of the terahertz conductivity of bulk and nano-materials,” J. Infrared. Milli. Terahz Waves 33(9), 871–925 (2012).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. Solids (1)

B. Lorenz, “High pressure Raman investigation of LiInSe2 in the β-NaFeO2 structure,” J. Phys. Chem. Solids 58(3), 399–402 (1996).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (2)

M. Schall, M. Walther, and P. U. Jepsen, “Fundamental and second-order phonon processes in CdTe and ZnTe,” Phys. Rev. B 64(9), 094301 (2001).
[Crossref]

R. M. Martin, “Elastic Properties of ZnS structure semiconductors,” Phys. Rev. B 1(10), 4005–4011 (1970).
[Crossref]

Proc. of SPIE (1)

O. Balachninaite, L. Petraviciute, M. Maciulevicius, V. Sirutkaitis, L. Isaenko, S. Lobanov, A. Yelisseyev, and J.-J. Zondy, “Optical characterization of the LiInS2 and LiInSe2 crystals,”Proc. of SPIE 6596, 65961J (2007).

Proc. R. Soc. Lond. A (1)

M. J. P. Musgrave and J. A. Pople, “A general valence force field for diamond,” Proc. R. Soc. Lond. A 268, 474–484 (1962).
[Crossref]

Rev. Mod. Phys. (1)

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[Crossref]

Other (3)

S. Wang, X. X. Zhang, X. Zhang, C. Li, Z. Gao, Q. Lu, and X. Tao, “Modified Bridgman growth and properties of mid-infrared LiInSe2 crystal,” DOI: , J. Cryst. Growth (2014).
[Crossref]

W. G. Fateley and F. R. Dollish, Infrared and Raman Selection Rules for Molecular and Lattice Vibrations: The Correlation Method (John-Wiley & Sons. Inc., 1972).

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic sketch of the high-speed ASOPS THz-TDS setup; (b) linear polarized THz beam is split into the fast and the slow components due to birefringence of the crystal.
Fig. 2
Fig. 2 The transmitted time- and frequency-domain spectra (insets) of (a) a-cut LISe crystal with 0.50 mm thickness, (b) b-cut LISe crystal with 0.70 mm thickness, (c) c-cut LISe crystal with 0.60 mm thickness; (d) orientation illustration of incident THz field, LISe crystal and transmitted THz field.
Fig. 3
Fig. 3 (a) The refractive index and (b) the absorption coefficient of LISe crystal when the X-, Y- and Z-axis are parallel to the polarization of the incident THz pulse.
Fig. 4
Fig. 4 Simulated refractive index (a) and absorption coefficient (b) of LISe when the X-, Y- and Z-axis are parallel to the polarization of the incident THz pulse.

Tables (2)

Tables Icon

Table 1 Birefringence of b-, a-, and c-cut principle planes of LISe crystal.

Tables Icon

Table 2 Parameters used for simulating the refractive index and the absorption coefficient of LISe with the X-, Y- and Z-axis parallel to the polarization of the incident THz pulse.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

n S ( ω ) = 1 + Φ c ω d
α S ( ω ) = 2 d ln { [ n S ( ω ) + 1 ] 2 4 n S ( ω ) | T | }
Γ = ω d ( n s n f ) / c
11 A 1 12 A 2 11 B 1 11 B 2
ε ( ν ) = ε + i = 1 N s i ν TOi 2 ν TOi 2 ν 2 + i γ i ν
i = 1 N s i = ε 0 ε
n = ε r 2 + ε i 2 + ε r 2
α = 4 π ν c ε r 2 + ε i 2 ε r 2
ν TO 2 = k 1 + k 2 m eff π 2

Metrics