Abstract

Nine specimens are prepared on the basis of the L9(33) orthogonal array design to evaluate the optical and electrical properties, morphology, and microstructure of a-IGZO/Ag/a-IGZO (IAI) triple-layer composite films deposited on curved glass substrates with a different radius of curvature efficiently. The experiments are arranged for the change in the three controlling factors, namely the IGZO and Ag thicknesses, and the substrate’s radius of curvature. The radius of curvature has the highest contribution for the RMS surface roughness (SRq) and the mean particle size (PS). The carrier mobility (CM) and carrier concentration (CC) are proportional to each, irrespective of the controlling factors in this study. An increase in the radius of curvature can result in the increase of SRq and PS, and therefore brings in a surface scattering effect that can cause the reduction of CM as well as the enhancement of resistivity (R). In addition, a sufficiently large radius of curvature can elevate the transmittance at 550 nm and Haack’s figure of merit (FOM) effectively, but it can also lower the reflectance for blue, green and red. Via the carrier injections, increasing the Ag thickness can elevate the carrier mobility and concentration significantly. The reflectance for blue, green, and red are also risen by increasing the Ag thickness. As a result of the Burstein-Moss effect, carrier concentration and optical bandgap are elevated by increasing the IGZO thickness. Additionally, the reflectance for blue, green, and red are also increased. Appropriate choices in the IGZO and Ag thicknesses and the radius of curvature can obtain the transmittance >80 %, and elevate the FOM significantly.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Amorphous In2Ga2ZnO7 films with adjustable structural, electrical and optical properties deposited by magnetron sputtering

Xianjie Zhou, Jiwen Xu, Ling Yang, Xiaosheng Tang, Qiuping Wei, and Zhiming Yu
Opt. Mater. Express 5(7) 1628-1634 (2015)

Effects of graphene layers in IGZO / graphite-like +Ni/SiO2/Si wafer specimens on electrical and optical properties in tribotests

Tse-Chang Li, Ba-Son Nguyen, Yu-Ching Chiang, Ching-Lin Hsiao, and Jen-Fin Lin
Opt. Mater. Express 6(12) 3857-3880 (2016)

Effects of sputtering-deposition inclination angle on the IGZO film microstructures, optical properties and photoluminescence

Tse-Chang Li, Chang-Fu Han, Ta-Hsuan Kuan, and Jen-Fin Lin
Opt. Mater. Express 6(2) 343-366 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, and H. Morkoç, “Transparent conducting oxides for electrode applications in light emitting and absorbing devices,” Superlattices Microstruct. 48(5), 458–484 (2010).
    [Crossref]
  2. A. Yamamoto, S. Nagasawa, H. Yamamoto, and T. Higuchi, “Electrostatic tactile display with thin film slider and its application to tactile telepresentation systems,” IEEE Trans. Vis. Comput. Graphics 12(2), 168–177 (2006).
    [Crossref]
  3. D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett. 6(9), 1880–1886 (2006).
    [Crossref]
  4. C. G. Granqvist and A. Hultåker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411(1), 1–5 (2002).
    [Crossref]
  5. F. Mei, T. Yuan, and R. Li, “Effects of second-phase particles and elemental distributions of ITO targets on the properties of deposited ITO films,” Ceram. Int. 43(12), 8866–8872 (2017).
    [Crossref]
  6. S. Calnan and A. Tiwari, “High mobility transparent conducting oxides for thin film solar cells,” Thin Solid Films 518(7), 1839–1849 (2010).
    [Crossref]
  7. T. Kamiya and H. Hosono, “Material characteristics and applications of transparent amorphous oxide semiconductors,” NPG Asia Mater. 2(1), 15–22 (2010).
    [Crossref]
  8. K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, “Amorphous oxide semiconductors for high-performance flexible thin-film transistors,” Jpn. J. Appl. Phys. 45(5B), 4303–4308 (2006).
    [Crossref]
  9. T. Kamiya, K. Nomura, and H. Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors,” Sci. Technol. Adv. Mater. 11(4), 044305 (2010).
    [Crossref]
  10. T.-C. Li, C.-F. Han, K.-C. Hsieh, and J.-F. Lin, “Effects of thin titanium and graphene depositions and annealing temperature on electrical, optical, and mechanical properties of IGZO/Ti/graphene/PI specimen,” Ceram. Int. 44(6), 6573–6583 (2018).
    [Crossref]
  11. X. Zhou, J. Xu, L. Yang, X. Tang, Q. Wei, and Z. Yu, “Amorphous In 2 Ga 2 ZnO 7 films with adjustable structural, electrical and optical properties deposited by magnetron sputtering,” Opt. Mater. Express 5(7), 1628–1634 (2015).
    [Crossref]
  12. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
    [Crossref]
  13. C.-W. Chien, C.-H. Wu, Y.-T. Tsai, Y.-C. Kung, C.-Y. Lin, P.-C. Hsu, H.-H. Hsieh, C.-C. Wu, Y.-H. Yeh, and C.-M. Leu, “High-performance flexible a-IGZO TFTs adopting stacked electrodes and transparent polyimide-based nanocomposite substrates,” IEEE Trans. Electron Devices 58(5), 1440–1446 (2011).
    [Crossref]
  14. S. Boscarino, I. Crupi, S. Mirabella, F. Simone, and A. Terrasi, “TCO/Ag/TCO transparent electrodes for solar cells application,” Appl. Phys. A 116(3), 1287–1291 (2014).
    [Crossref]
  15. K. Ravichandran, K. Subha, A. Manivasaham, M. Sridharan, T. Arun, and C. Ravidhas, “Fabrication of a novel low-cost triple layer system (TaZO/Ag/TaZO) with an enhanced quality factor for transparent electrode applications,” RSC Adv. 6(68), 63314–63324 (2016).
    [Crossref]
  16. S. Y. Lee, Y. S. Park, and T.-Y. Seong, “Optimized ITO/Ag/ITO multilayers as a current spreading layer to enhance the light output of ultraviolet light-emitting diodes,” J. Alloys Compd. 776, 960–964 (2019).
    [Crossref]
  17. K.-N. Chen, C.-F. Yang, C.-C. Wu, and Y.-H. Chen, “Development of the α-IGZO/Ag/α-IGZO Triple-Layer Structure Films for the Application of Transparent Electrode,” Materials 10(3), 226 (2017).
    [Crossref]
  18. H. Han, N. Theodore, and T. Alford, “Improved conductivity and mechanism of carrier transport in zinc oxide with embedded silver layer,” J. Appl. Phys. 103(1), 013708 (2008).
    [Crossref]
  19. I. Crupi, S. Boscarino, V. Strano, S. Mirabella, F. Simone, and A. Terrasi, “Optimization of ZnO: Al/Ag/ZnO: Al structures for ultra-thin high-performance transparent conductive electrodes,” Thin Solid Films 520(13), 4432–4435 (2012).
    [Crossref]
  20. J. Leng, Z. Yu, W. Xue, T. Zhang, Y. Jiang, J. Zhang, and D. Zhang, “Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition,” J. Appl. Phys. 108(7), 073109 (2010).
    [Crossref]
  21. G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys. 47(9), 4086–4089 (1976).
    [Crossref]
  22. J. R. Philip, “Taguchi techniques for quality engineering,” McGraw-Hill, New York (1996).
  23. B. Raju, U. C. Sekhar, and D. Drakshayani, “Optimizing multiple quality characteristics of stereolithography process via Taguchi method-based grey analysis for SL5530 epoxy resin material to enhance part quality,” Procedia Mater. Sci. 5, 2532–2541 (2014).
    [Crossref]
  24. M. Nalbant, H. Gökkaya, and G. Sur, “Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning,” Mater. Des. 28(4), 1379–1385 (2007).
    [Crossref]
  25. P. J. Ross and P. J. Ross, Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design (McGraw-Hill, 1988).
  26. X.-Y. Liu, Y.-A. Li, S. Liu, H.-L. Wu, and H.-N. Cui, “ZnO/Cu/ZnO multilayer films: Structure optimization and investigation on photoelectric properties,” Thin Solid Films 520(16), 5372–5377 (2012).
    [Crossref]
  27. Z. Wang, H. Xu, X. Li, X. Zhang, Y. Liu, and Y. Liu, “Flexible resistive switching memory device based on amorphous InGaZnO film with excellent mechanical endurance,” IEEE Electron Device Lett. 32(10), 1442–1444 (2011).
    [Crossref]
  28. S. R. Byrn, G. Zografi, and S. Chen, Solid State Properties of Pharmaceutical Materials (Wiley Online Library, 2017).
  29. H. Wang, X.-Z. Yuan, and H. Li, PEM Fuel Cell Diagnostic Tools (CRC press, 2011).
  30. V. Şenay, S. Özen, S. Pat, and Ş. Korkmaz, “Optical, structural, morphological and compositional characterization of a Co-doped GaAs semiconducting thin film produced by thermionic vacuum arc,” J. Alloys Compd. 663, 829–833 (2016).
    [Crossref]
  31. N. Ren, J. Zhu, and S. Ban, “Highly transparent conductive ITO/Ag/ITO trilayer films deposited by RF sputtering at room temperature,” AIP Adv. 7(5), 055009 (2017).
    [Crossref]
  32. D. Mardare, M. Tasca, M. Delibas, and G. Rusu, “On the structural properties and optical transmittance of TiO2 rf sputtered thin films,” Appl. Surf. Sci. 156(1-4), 200–206 (2000).
    [Crossref]
  33. Z.-N. Ng, K.-Y. Chan, and T. Tohsophon, “Effects of annealing temperature on ZnO and AZO films prepared by sol–gel technique,” Appl. Surf. Sci. 258(24), 9604–9609 (2012).
    [Crossref]
  34. K. Kim, J. H. Park, H. Kim, J. K. Kim, E. Fred Schubert, and J. Cho, “Energy bandgap variation in oblique angle-deposited indium tin oxide,” Appl. Phys. Lett. 108(4), 041910 (2016).
    [Crossref]
  35. J. Morrison, Modern Physics: For Scientists and Engineers (Academic Press, 2015).
  36. A. Indluru and T. Alford, “Effect of Ag thickness on electrical transport and optical properties of indium tin oxide–Ag–indium tin oxide multilayers,” J. Appl. Phys. 105(12), 123528 (2009).
    [Crossref]
  37. H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999).
    [Crossref]
  38. J. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Ye, Y. Zeng, Y. Zhang, and L. Zhu, “Carrier concentration dependence of band gap shift in n-type ZnO: Al films,” J. Appl. Phys. 101(8), 083705 (2007).
    [Crossref]
  39. X. Li, S. Chen, T. Chen, and Y. Liu, “Thickness dependence of optical properties of amorphous indium gallium zinc oxide thin films: effects of free-electrons and quantum confinement,” ECS Solid State Lett. 4(3), P29–P32 (2015).
    [Crossref]
  40. D. B. Potter, M. J. Powell, I. P. Parkin, and C. J. Carmalt, “Aluminium/gallium, indium/gallium, and aluminium/indium co-doped ZnO thin films deposited via aerosol assisted CVD,” J. Mater. Chem. C 6(3), 588–597 (2018).
    [Crossref]
  41. K. W. Chee, F. Meng, D. C. Lai, and F. Huang, “Measurement-based optimization and analysis of α-IGZO/Ag/α-IGZO transparent conducting electrodes fabricated using DC magnetron sputter deposition,” Ceram. Int. 44(17), 20939–20946 (2018).
    [Crossref]

2019 (1)

S. Y. Lee, Y. S. Park, and T.-Y. Seong, “Optimized ITO/Ag/ITO multilayers as a current spreading layer to enhance the light output of ultraviolet light-emitting diodes,” J. Alloys Compd. 776, 960–964 (2019).
[Crossref]

2018 (3)

T.-C. Li, C.-F. Han, K.-C. Hsieh, and J.-F. Lin, “Effects of thin titanium and graphene depositions and annealing temperature on electrical, optical, and mechanical properties of IGZO/Ti/graphene/PI specimen,” Ceram. Int. 44(6), 6573–6583 (2018).
[Crossref]

D. B. Potter, M. J. Powell, I. P. Parkin, and C. J. Carmalt, “Aluminium/gallium, indium/gallium, and aluminium/indium co-doped ZnO thin films deposited via aerosol assisted CVD,” J. Mater. Chem. C 6(3), 588–597 (2018).
[Crossref]

K. W. Chee, F. Meng, D. C. Lai, and F. Huang, “Measurement-based optimization and analysis of α-IGZO/Ag/α-IGZO transparent conducting electrodes fabricated using DC magnetron sputter deposition,” Ceram. Int. 44(17), 20939–20946 (2018).
[Crossref]

2017 (3)

N. Ren, J. Zhu, and S. Ban, “Highly transparent conductive ITO/Ag/ITO trilayer films deposited by RF sputtering at room temperature,” AIP Adv. 7(5), 055009 (2017).
[Crossref]

K.-N. Chen, C.-F. Yang, C.-C. Wu, and Y.-H. Chen, “Development of the α-IGZO/Ag/α-IGZO Triple-Layer Structure Films for the Application of Transparent Electrode,” Materials 10(3), 226 (2017).
[Crossref]

F. Mei, T. Yuan, and R. Li, “Effects of second-phase particles and elemental distributions of ITO targets on the properties of deposited ITO films,” Ceram. Int. 43(12), 8866–8872 (2017).
[Crossref]

2016 (3)

K. Ravichandran, K. Subha, A. Manivasaham, M. Sridharan, T. Arun, and C. Ravidhas, “Fabrication of a novel low-cost triple layer system (TaZO/Ag/TaZO) with an enhanced quality factor for transparent electrode applications,” RSC Adv. 6(68), 63314–63324 (2016).
[Crossref]

V. Şenay, S. Özen, S. Pat, and Ş. Korkmaz, “Optical, structural, morphological and compositional characterization of a Co-doped GaAs semiconducting thin film produced by thermionic vacuum arc,” J. Alloys Compd. 663, 829–833 (2016).
[Crossref]

K. Kim, J. H. Park, H. Kim, J. K. Kim, E. Fred Schubert, and J. Cho, “Energy bandgap variation in oblique angle-deposited indium tin oxide,” Appl. Phys. Lett. 108(4), 041910 (2016).
[Crossref]

2015 (2)

X. Li, S. Chen, T. Chen, and Y. Liu, “Thickness dependence of optical properties of amorphous indium gallium zinc oxide thin films: effects of free-electrons and quantum confinement,” ECS Solid State Lett. 4(3), P29–P32 (2015).
[Crossref]

X. Zhou, J. Xu, L. Yang, X. Tang, Q. Wei, and Z. Yu, “Amorphous In 2 Ga 2 ZnO 7 films with adjustable structural, electrical and optical properties deposited by magnetron sputtering,” Opt. Mater. Express 5(7), 1628–1634 (2015).
[Crossref]

2014 (2)

S. Boscarino, I. Crupi, S. Mirabella, F. Simone, and A. Terrasi, “TCO/Ag/TCO transparent electrodes for solar cells application,” Appl. Phys. A 116(3), 1287–1291 (2014).
[Crossref]

B. Raju, U. C. Sekhar, and D. Drakshayani, “Optimizing multiple quality characteristics of stereolithography process via Taguchi method-based grey analysis for SL5530 epoxy resin material to enhance part quality,” Procedia Mater. Sci. 5, 2532–2541 (2014).
[Crossref]

2012 (3)

I. Crupi, S. Boscarino, V. Strano, S. Mirabella, F. Simone, and A. Terrasi, “Optimization of ZnO: Al/Ag/ZnO: Al structures for ultra-thin high-performance transparent conductive electrodes,” Thin Solid Films 520(13), 4432–4435 (2012).
[Crossref]

X.-Y. Liu, Y.-A. Li, S. Liu, H.-L. Wu, and H.-N. Cui, “ZnO/Cu/ZnO multilayer films: Structure optimization and investigation on photoelectric properties,” Thin Solid Films 520(16), 5372–5377 (2012).
[Crossref]

Z.-N. Ng, K.-Y. Chan, and T. Tohsophon, “Effects of annealing temperature on ZnO and AZO films prepared by sol–gel technique,” Appl. Surf. Sci. 258(24), 9604–9609 (2012).
[Crossref]

2011 (2)

Z. Wang, H. Xu, X. Li, X. Zhang, Y. Liu, and Y. Liu, “Flexible resistive switching memory device based on amorphous InGaZnO film with excellent mechanical endurance,” IEEE Electron Device Lett. 32(10), 1442–1444 (2011).
[Crossref]

C.-W. Chien, C.-H. Wu, Y.-T. Tsai, Y.-C. Kung, C.-Y. Lin, P.-C. Hsu, H.-H. Hsieh, C.-C. Wu, Y.-H. Yeh, and C.-M. Leu, “High-performance flexible a-IGZO TFTs adopting stacked electrodes and transparent polyimide-based nanocomposite substrates,” IEEE Trans. Electron Devices 58(5), 1440–1446 (2011).
[Crossref]

2010 (5)

T. Kamiya, K. Nomura, and H. Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors,” Sci. Technol. Adv. Mater. 11(4), 044305 (2010).
[Crossref]

S. Calnan and A. Tiwari, “High mobility transparent conducting oxides for thin film solar cells,” Thin Solid Films 518(7), 1839–1849 (2010).
[Crossref]

T. Kamiya and H. Hosono, “Material characteristics and applications of transparent amorphous oxide semiconductors,” NPG Asia Mater. 2(1), 15–22 (2010).
[Crossref]

H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, and H. Morkoç, “Transparent conducting oxides for electrode applications in light emitting and absorbing devices,” Superlattices Microstruct. 48(5), 458–484 (2010).
[Crossref]

J. Leng, Z. Yu, W. Xue, T. Zhang, Y. Jiang, J. Zhang, and D. Zhang, “Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition,” J. Appl. Phys. 108(7), 073109 (2010).
[Crossref]

2009 (1)

A. Indluru and T. Alford, “Effect of Ag thickness on electrical transport and optical properties of indium tin oxide–Ag–indium tin oxide multilayers,” J. Appl. Phys. 105(12), 123528 (2009).
[Crossref]

2008 (1)

H. Han, N. Theodore, and T. Alford, “Improved conductivity and mechanism of carrier transport in zinc oxide with embedded silver layer,” J. Appl. Phys. 103(1), 013708 (2008).
[Crossref]

2007 (2)

J. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Ye, Y. Zeng, Y. Zhang, and L. Zhu, “Carrier concentration dependence of band gap shift in n-type ZnO: Al films,” J. Appl. Phys. 101(8), 083705 (2007).
[Crossref]

M. Nalbant, H. Gökkaya, and G. Sur, “Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning,” Mater. Des. 28(4), 1379–1385 (2007).
[Crossref]

2006 (3)

A. Yamamoto, S. Nagasawa, H. Yamamoto, and T. Higuchi, “Electrostatic tactile display with thin film slider and its application to tactile telepresentation systems,” IEEE Trans. Vis. Comput. Graphics 12(2), 168–177 (2006).
[Crossref]

D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett. 6(9), 1880–1886 (2006).
[Crossref]

K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, “Amorphous oxide semiconductors for high-performance flexible thin-film transistors,” Jpn. J. Appl. Phys. 45(5B), 4303–4308 (2006).
[Crossref]

2004 (1)

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref]

2002 (1)

C. G. Granqvist and A. Hultåker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411(1), 1–5 (2002).
[Crossref]

2000 (1)

D. Mardare, M. Tasca, M. Delibas, and G. Rusu, “On the structural properties and optical transmittance of TiO2 rf sputtered thin films,” Appl. Surf. Sci. 156(1-4), 200–206 (2000).
[Crossref]

1999 (1)

H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999).
[Crossref]

1976 (1)

G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys. 47(9), 4086–4089 (1976).
[Crossref]

Alford, T.

A. Indluru and T. Alford, “Effect of Ag thickness on electrical transport and optical properties of indium tin oxide–Ag–indium tin oxide multilayers,” J. Appl. Phys. 105(12), 123528 (2009).
[Crossref]

H. Han, N. Theodore, and T. Alford, “Improved conductivity and mechanism of carrier transport in zinc oxide with embedded silver layer,” J. Appl. Phys. 103(1), 013708 (2008).
[Crossref]

Arun, T.

K. Ravichandran, K. Subha, A. Manivasaham, M. Sridharan, T. Arun, and C. Ravidhas, “Fabrication of a novel low-cost triple layer system (TaZO/Ag/TaZO) with an enhanced quality factor for transparent electrode applications,” RSC Adv. 6(68), 63314–63324 (2016).
[Crossref]

Avrutin, V.

H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, and H. Morkoç, “Transparent conducting oxides for electrode applications in light emitting and absorbing devices,” Superlattices Microstruct. 48(5), 458–484 (2010).
[Crossref]

Aziz, H.

H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999).
[Crossref]

Ban, S.

N. Ren, J. Zhu, and S. Ban, “Highly transparent conductive ITO/Ag/ITO trilayer films deposited by RF sputtering at room temperature,” AIP Adv. 7(5), 055009 (2017).
[Crossref]

Boscarino, S.

S. Boscarino, I. Crupi, S. Mirabella, F. Simone, and A. Terrasi, “TCO/Ag/TCO transparent electrodes for solar cells application,” Appl. Phys. A 116(3), 1287–1291 (2014).
[Crossref]

I. Crupi, S. Boscarino, V. Strano, S. Mirabella, F. Simone, and A. Terrasi, “Optimization of ZnO: Al/Ag/ZnO: Al structures for ultra-thin high-performance transparent conductive electrodes,” Thin Solid Films 520(13), 4432–4435 (2012).
[Crossref]

Byrn, S. R.

S. R. Byrn, G. Zografi, and S. Chen, Solid State Properties of Pharmaceutical Materials (Wiley Online Library, 2017).

Calnan, S.

S. Calnan and A. Tiwari, “High mobility transparent conducting oxides for thin film solar cells,” Thin Solid Films 518(7), 1839–1849 (2010).
[Crossref]

Carmalt, C. J.

D. B. Potter, M. J. Powell, I. P. Parkin, and C. J. Carmalt, “Aluminium/gallium, indium/gallium, and aluminium/indium co-doped ZnO thin films deposited via aerosol assisted CVD,” J. Mater. Chem. C 6(3), 588–597 (2018).
[Crossref]

Chan, K.-Y.

Z.-N. Ng, K.-Y. Chan, and T. Tohsophon, “Effects of annealing temperature on ZnO and AZO films prepared by sol–gel technique,” Appl. Surf. Sci. 258(24), 9604–9609 (2012).
[Crossref]

Chee, K. W.

K. W. Chee, F. Meng, D. C. Lai, and F. Huang, “Measurement-based optimization and analysis of α-IGZO/Ag/α-IGZO transparent conducting electrodes fabricated using DC magnetron sputter deposition,” Ceram. Int. 44(17), 20939–20946 (2018).
[Crossref]

Chen, K.-N.

K.-N. Chen, C.-F. Yang, C.-C. Wu, and Y.-H. Chen, “Development of the α-IGZO/Ag/α-IGZO Triple-Layer Structure Films for the Application of Transparent Electrode,” Materials 10(3), 226 (2017).
[Crossref]

Chen, S.

X. Li, S. Chen, T. Chen, and Y. Liu, “Thickness dependence of optical properties of amorphous indium gallium zinc oxide thin films: effects of free-electrons and quantum confinement,” ECS Solid State Lett. 4(3), P29–P32 (2015).
[Crossref]

S. R. Byrn, G. Zografi, and S. Chen, Solid State Properties of Pharmaceutical Materials (Wiley Online Library, 2017).

Chen, T.

X. Li, S. Chen, T. Chen, and Y. Liu, “Thickness dependence of optical properties of amorphous indium gallium zinc oxide thin films: effects of free-electrons and quantum confinement,” ECS Solid State Lett. 4(3), P29–P32 (2015).
[Crossref]

Chen, Y.-H.

K.-N. Chen, C.-F. Yang, C.-C. Wu, and Y.-H. Chen, “Development of the α-IGZO/Ag/α-IGZO Triple-Layer Structure Films for the Application of Transparent Electrode,” Materials 10(3), 226 (2017).
[Crossref]

Chien, C.-W.

C.-W. Chien, C.-H. Wu, Y.-T. Tsai, Y.-C. Kung, C.-Y. Lin, P.-C. Hsu, H.-H. Hsieh, C.-C. Wu, Y.-H. Yeh, and C.-M. Leu, “High-performance flexible a-IGZO TFTs adopting stacked electrodes and transparent polyimide-based nanocomposite substrates,” IEEE Trans. Electron Devices 58(5), 1440–1446 (2011).
[Crossref]

Cho, J.

K. Kim, J. H. Park, H. Kim, J. K. Kim, E. Fred Schubert, and J. Cho, “Energy bandgap variation in oblique angle-deposited indium tin oxide,” Appl. Phys. Lett. 108(4), 041910 (2016).
[Crossref]

Crupi, I.

S. Boscarino, I. Crupi, S. Mirabella, F. Simone, and A. Terrasi, “TCO/Ag/TCO transparent electrodes for solar cells application,” Appl. Phys. A 116(3), 1287–1291 (2014).
[Crossref]

I. Crupi, S. Boscarino, V. Strano, S. Mirabella, F. Simone, and A. Terrasi, “Optimization of ZnO: Al/Ag/ZnO: Al structures for ultra-thin high-performance transparent conductive electrodes,” Thin Solid Films 520(13), 4432–4435 (2012).
[Crossref]

Cui, H.-N.

X.-Y. Liu, Y.-A. Li, S. Liu, H.-L. Wu, and H.-N. Cui, “ZnO/Cu/ZnO multilayer films: Structure optimization and investigation on photoelectric properties,” Thin Solid Films 520(16), 5372–5377 (2012).
[Crossref]

Delibas, M.

D. Mardare, M. Tasca, M. Delibas, and G. Rusu, “On the structural properties and optical transmittance of TiO2 rf sputtered thin films,” Appl. Surf. Sci. 156(1-4), 200–206 (2000).
[Crossref]

Drakshayani, D.

B. Raju, U. C. Sekhar, and D. Drakshayani, “Optimizing multiple quality characteristics of stereolithography process via Taguchi method-based grey analysis for SL5530 epoxy resin material to enhance part quality,” Procedia Mater. Sci. 5, 2532–2541 (2014).
[Crossref]

Fred Schubert, E.

K. Kim, J. H. Park, H. Kim, J. K. Kim, E. Fred Schubert, and J. Cho, “Energy bandgap variation in oblique angle-deposited indium tin oxide,” Appl. Phys. Lett. 108(4), 041910 (2016).
[Crossref]

Fujita, S.

J. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Ye, Y. Zeng, Y. Zhang, and L. Zhu, “Carrier concentration dependence of band gap shift in n-type ZnO: Al films,” J. Appl. Phys. 101(8), 083705 (2007).
[Crossref]

Gökkaya, H.

M. Nalbant, H. Gökkaya, and G. Sur, “Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning,” Mater. Des. 28(4), 1379–1385 (2007).
[Crossref]

Granqvist, C. G.

C. G. Granqvist and A. Hultåker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411(1), 1–5 (2002).
[Crossref]

Haacke, G.

G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys. 47(9), 4086–4089 (1976).
[Crossref]

Han, C.-F.

T.-C. Li, C.-F. Han, K.-C. Hsieh, and J.-F. Lin, “Effects of thin titanium and graphene depositions and annealing temperature on electrical, optical, and mechanical properties of IGZO/Ti/graphene/PI specimen,” Ceram. Int. 44(6), 6573–6583 (2018).
[Crossref]

Han, H.

H. Han, N. Theodore, and T. Alford, “Improved conductivity and mechanism of carrier transport in zinc oxide with embedded silver layer,” J. Appl. Phys. 103(1), 013708 (2008).
[Crossref]

Higuchi, T.

A. Yamamoto, S. Nagasawa, H. Yamamoto, and T. Higuchi, “Electrostatic tactile display with thin film slider and its application to tactile telepresentation systems,” IEEE Trans. Vis. Comput. Graphics 12(2), 168–177 (2006).
[Crossref]

Hirano, M.

K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, “Amorphous oxide semiconductors for high-performance flexible thin-film transistors,” Jpn. J. Appl. Phys. 45(5B), 4303–4308 (2006).
[Crossref]

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref]

Hor, A.-M.

H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999).
[Crossref]

Hosono, H.

T. Kamiya and H. Hosono, “Material characteristics and applications of transparent amorphous oxide semiconductors,” NPG Asia Mater. 2(1), 15–22 (2010).
[Crossref]

T. Kamiya, K. Nomura, and H. Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors,” Sci. Technol. Adv. Mater. 11(4), 044305 (2010).
[Crossref]

K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, “Amorphous oxide semiconductors for high-performance flexible thin-film transistors,” Jpn. J. Appl. Phys. 45(5B), 4303–4308 (2006).
[Crossref]

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref]

Hsieh, H.-H.

C.-W. Chien, C.-H. Wu, Y.-T. Tsai, Y.-C. Kung, C.-Y. Lin, P.-C. Hsu, H.-H. Hsieh, C.-C. Wu, Y.-H. Yeh, and C.-M. Leu, “High-performance flexible a-IGZO TFTs adopting stacked electrodes and transparent polyimide-based nanocomposite substrates,” IEEE Trans. Electron Devices 58(5), 1440–1446 (2011).
[Crossref]

Hsieh, K.-C.

T.-C. Li, C.-F. Han, K.-C. Hsieh, and J.-F. Lin, “Effects of thin titanium and graphene depositions and annealing temperature on electrical, optical, and mechanical properties of IGZO/Ti/graphene/PI specimen,” Ceram. Int. 44(6), 6573–6583 (2018).
[Crossref]

Hsu, P.-C.

C.-W. Chien, C.-H. Wu, Y.-T. Tsai, Y.-C. Kung, C.-Y. Lin, P.-C. Hsu, H.-H. Hsieh, C.-C. Wu, Y.-H. Yeh, and C.-M. Leu, “High-performance flexible a-IGZO TFTs adopting stacked electrodes and transparent polyimide-based nanocomposite substrates,” IEEE Trans. Electron Devices 58(5), 1440–1446 (2011).
[Crossref]

Hu, N.-X.

H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999).
[Crossref]

Huang, F.

K. W. Chee, F. Meng, D. C. Lai, and F. Huang, “Measurement-based optimization and analysis of α-IGZO/Ag/α-IGZO transparent conducting electrodes fabricated using DC magnetron sputter deposition,” Ceram. Int. 44(17), 20939–20946 (2018).
[Crossref]

Hultåker, A.

C. G. Granqvist and A. Hultåker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411(1), 1–5 (2002).
[Crossref]

Indluru, A.

A. Indluru and T. Alford, “Effect of Ag thickness on electrical transport and optical properties of indium tin oxide–Ag–indium tin oxide multilayers,” J. Appl. Phys. 105(12), 123528 (2009).
[Crossref]

Izyumskaya, N.

H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, and H. Morkoç, “Transparent conducting oxides for electrode applications in light emitting and absorbing devices,” Superlattices Microstruct. 48(5), 458–484 (2010).
[Crossref]

Jiang, Y.

J. Leng, Z. Yu, W. Xue, T. Zhang, Y. Jiang, J. Zhang, and D. Zhang, “Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition,” J. Appl. Phys. 108(7), 073109 (2010).
[Crossref]

Kamada, Y.

J. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Ye, Y. Zeng, Y. Zhang, and L. Zhu, “Carrier concentration dependence of band gap shift in n-type ZnO: Al films,” J. Appl. Phys. 101(8), 083705 (2007).
[Crossref]

Kamiya, T.

T. Kamiya, K. Nomura, and H. Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors,” Sci. Technol. Adv. Mater. 11(4), 044305 (2010).
[Crossref]

T. Kamiya and H. Hosono, “Material characteristics and applications of transparent amorphous oxide semiconductors,” NPG Asia Mater. 2(1), 15–22 (2010).
[Crossref]

K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, “Amorphous oxide semiconductors for high-performance flexible thin-film transistors,” Jpn. J. Appl. Phys. 45(5B), 4303–4308 (2006).
[Crossref]

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref]

Kawaharamura, T.

J. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Ye, Y. Zeng, Y. Zhang, and L. Zhu, “Carrier concentration dependence of band gap shift in n-type ZnO: Al films,” J. Appl. Phys. 101(8), 083705 (2007).
[Crossref]

Kim, H.

K. Kim, J. H. Park, H. Kim, J. K. Kim, E. Fred Schubert, and J. Cho, “Energy bandgap variation in oblique angle-deposited indium tin oxide,” Appl. Phys. Lett. 108(4), 041910 (2016).
[Crossref]

Kim, J. K.

K. Kim, J. H. Park, H. Kim, J. K. Kim, E. Fred Schubert, and J. Cho, “Energy bandgap variation in oblique angle-deposited indium tin oxide,” Appl. Phys. Lett. 108(4), 041910 (2016).
[Crossref]

Kim, K.

K. Kim, J. H. Park, H. Kim, J. K. Kim, E. Fred Schubert, and J. Cho, “Energy bandgap variation in oblique angle-deposited indium tin oxide,” Appl. Phys. Lett. 108(4), 041910 (2016).
[Crossref]

Korkmaz, S.

V. Şenay, S. Özen, S. Pat, and Ş. Korkmaz, “Optical, structural, morphological and compositional characterization of a Co-doped GaAs semiconducting thin film produced by thermionic vacuum arc,” J. Alloys Compd. 663, 829–833 (2016).
[Crossref]

Kung, Y.-C.

C.-W. Chien, C.-H. Wu, Y.-T. Tsai, Y.-C. Kung, C.-Y. Lin, P.-C. Hsu, H.-H. Hsieh, C.-C. Wu, Y.-H. Yeh, and C.-M. Leu, “High-performance flexible a-IGZO TFTs adopting stacked electrodes and transparent polyimide-based nanocomposite substrates,” IEEE Trans. Electron Devices 58(5), 1440–1446 (2011).
[Crossref]

Lai, D. C.

K. W. Chee, F. Meng, D. C. Lai, and F. Huang, “Measurement-based optimization and analysis of α-IGZO/Ag/α-IGZO transparent conducting electrodes fabricated using DC magnetron sputter deposition,” Ceram. Int. 44(17), 20939–20946 (2018).
[Crossref]

Lee, S. Y.

S. Y. Lee, Y. S. Park, and T.-Y. Seong, “Optimized ITO/Ag/ITO multilayers as a current spreading layer to enhance the light output of ultraviolet light-emitting diodes,” J. Alloys Compd. 776, 960–964 (2019).
[Crossref]

Leng, J.

J. Leng, Z. Yu, W. Xue, T. Zhang, Y. Jiang, J. Zhang, and D. Zhang, “Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition,” J. Appl. Phys. 108(7), 073109 (2010).
[Crossref]

Leu, C.-M.

C.-W. Chien, C.-H. Wu, Y.-T. Tsai, Y.-C. Kung, C.-Y. Lin, P.-C. Hsu, H.-H. Hsieh, C.-C. Wu, Y.-H. Yeh, and C.-M. Leu, “High-performance flexible a-IGZO TFTs adopting stacked electrodes and transparent polyimide-based nanocomposite substrates,” IEEE Trans. Electron Devices 58(5), 1440–1446 (2011).
[Crossref]

Li, H.

H. Wang, X.-Z. Yuan, and H. Li, PEM Fuel Cell Diagnostic Tools (CRC press, 2011).

Li, R.

F. Mei, T. Yuan, and R. Li, “Effects of second-phase particles and elemental distributions of ITO targets on the properties of deposited ITO films,” Ceram. Int. 43(12), 8866–8872 (2017).
[Crossref]

Li, T.-C.

T.-C. Li, C.-F. Han, K.-C. Hsieh, and J.-F. Lin, “Effects of thin titanium and graphene depositions and annealing temperature on electrical, optical, and mechanical properties of IGZO/Ti/graphene/PI specimen,” Ceram. Int. 44(6), 6573–6583 (2018).
[Crossref]

Li, X.

X. Li, S. Chen, T. Chen, and Y. Liu, “Thickness dependence of optical properties of amorphous indium gallium zinc oxide thin films: effects of free-electrons and quantum confinement,” ECS Solid State Lett. 4(3), P29–P32 (2015).
[Crossref]

Z. Wang, H. Xu, X. Li, X. Zhang, Y. Liu, and Y. Liu, “Flexible resistive switching memory device based on amorphous InGaZnO film with excellent mechanical endurance,” IEEE Electron Device Lett. 32(10), 1442–1444 (2011).
[Crossref]

Li, Y.-A.

X.-Y. Liu, Y.-A. Li, S. Liu, H.-L. Wu, and H.-N. Cui, “ZnO/Cu/ZnO multilayer films: Structure optimization and investigation on photoelectric properties,” Thin Solid Films 520(16), 5372–5377 (2012).
[Crossref]

Lin, C.-Y.

C.-W. Chien, C.-H. Wu, Y.-T. Tsai, Y.-C. Kung, C.-Y. Lin, P.-C. Hsu, H.-H. Hsieh, C.-C. Wu, Y.-H. Yeh, and C.-M. Leu, “High-performance flexible a-IGZO TFTs adopting stacked electrodes and transparent polyimide-based nanocomposite substrates,” IEEE Trans. Electron Devices 58(5), 1440–1446 (2011).
[Crossref]

Lin, J.-F.

T.-C. Li, C.-F. Han, K.-C. Hsieh, and J.-F. Lin, “Effects of thin titanium and graphene depositions and annealing temperature on electrical, optical, and mechanical properties of IGZO/Ti/graphene/PI specimen,” Ceram. Int. 44(6), 6573–6583 (2018).
[Crossref]

Liu, H.

H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, and H. Morkoç, “Transparent conducting oxides for electrode applications in light emitting and absorbing devices,” Superlattices Microstruct. 48(5), 458–484 (2010).
[Crossref]

Liu, S.

X.-Y. Liu, Y.-A. Li, S. Liu, H.-L. Wu, and H.-N. Cui, “ZnO/Cu/ZnO multilayer films: Structure optimization and investigation on photoelectric properties,” Thin Solid Films 520(16), 5372–5377 (2012).
[Crossref]

Liu, X.

D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett. 6(9), 1880–1886 (2006).
[Crossref]

Liu, X.-Y.

X.-Y. Liu, Y.-A. Li, S. Liu, H.-L. Wu, and H.-N. Cui, “ZnO/Cu/ZnO multilayer films: Structure optimization and investigation on photoelectric properties,” Thin Solid Films 520(16), 5372–5377 (2012).
[Crossref]

Liu, Y.

X. Li, S. Chen, T. Chen, and Y. Liu, “Thickness dependence of optical properties of amorphous indium gallium zinc oxide thin films: effects of free-electrons and quantum confinement,” ECS Solid State Lett. 4(3), P29–P32 (2015).
[Crossref]

Z. Wang, H. Xu, X. Li, X. Zhang, Y. Liu, and Y. Liu, “Flexible resistive switching memory device based on amorphous InGaZnO film with excellent mechanical endurance,” IEEE Electron Device Lett. 32(10), 1442–1444 (2011).
[Crossref]

Z. Wang, H. Xu, X. Li, X. Zhang, Y. Liu, and Y. Liu, “Flexible resistive switching memory device based on amorphous InGaZnO film with excellent mechanical endurance,” IEEE Electron Device Lett. 32(10), 1442–1444 (2011).
[Crossref]

Lu, J.

J. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Ye, Y. Zeng, Y. Zhang, and L. Zhu, “Carrier concentration dependence of band gap shift in n-type ZnO: Al films,” J. Appl. Phys. 101(8), 083705 (2007).
[Crossref]

Ly, J.

D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett. 6(9), 1880–1886 (2006).
[Crossref]

Manivasaham, A.

K. Ravichandran, K. Subha, A. Manivasaham, M. Sridharan, T. Arun, and C. Ravidhas, “Fabrication of a novel low-cost triple layer system (TaZO/Ag/TaZO) with an enhanced quality factor for transparent electrode applications,” RSC Adv. 6(68), 63314–63324 (2016).
[Crossref]

Mardare, D.

D. Mardare, M. Tasca, M. Delibas, and G. Rusu, “On the structural properties and optical transmittance of TiO2 rf sputtered thin films,” Appl. Surf. Sci. 156(1-4), 200–206 (2000).
[Crossref]

Mei, F.

F. Mei, T. Yuan, and R. Li, “Effects of second-phase particles and elemental distributions of ITO targets on the properties of deposited ITO films,” Ceram. Int. 43(12), 8866–8872 (2017).
[Crossref]

Meng, F.

K. W. Chee, F. Meng, D. C. Lai, and F. Huang, “Measurement-based optimization and analysis of α-IGZO/Ag/α-IGZO transparent conducting electrodes fabricated using DC magnetron sputter deposition,” Ceram. Int. 44(17), 20939–20946 (2018).
[Crossref]

Mirabella, S.

S. Boscarino, I. Crupi, S. Mirabella, F. Simone, and A. Terrasi, “TCO/Ag/TCO transparent electrodes for solar cells application,” Appl. Phys. A 116(3), 1287–1291 (2014).
[Crossref]

I. Crupi, S. Boscarino, V. Strano, S. Mirabella, F. Simone, and A. Terrasi, “Optimization of ZnO: Al/Ag/ZnO: Al structures for ultra-thin high-performance transparent conductive electrodes,” Thin Solid Films 520(13), 4432–4435 (2012).
[Crossref]

Morkoç, H.

H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, and H. Morkoç, “Transparent conducting oxides for electrode applications in light emitting and absorbing devices,” Superlattices Microstruct. 48(5), 458–484 (2010).
[Crossref]

Morrison, J.

J. Morrison, Modern Physics: For Scientists and Engineers (Academic Press, 2015).

Nagasawa, S.

A. Yamamoto, S. Nagasawa, H. Yamamoto, and T. Higuchi, “Electrostatic tactile display with thin film slider and its application to tactile telepresentation systems,” IEEE Trans. Vis. Comput. Graphics 12(2), 168–177 (2006).
[Crossref]

Nalbant, M.

M. Nalbant, H. Gökkaya, and G. Sur, “Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning,” Mater. Des. 28(4), 1379–1385 (2007).
[Crossref]

Ng, Z.-N.

Z.-N. Ng, K.-Y. Chan, and T. Tohsophon, “Effects of annealing temperature on ZnO and AZO films prepared by sol–gel technique,” Appl. Surf. Sci. 258(24), 9604–9609 (2012).
[Crossref]

Nishinaka, H.

J. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Ye, Y. Zeng, Y. Zhang, and L. Zhu, “Carrier concentration dependence of band gap shift in n-type ZnO: Al films,” J. Appl. Phys. 101(8), 083705 (2007).
[Crossref]

Nomura, K.

T. Kamiya, K. Nomura, and H. Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors,” Sci. Technol. Adv. Mater. 11(4), 044305 (2010).
[Crossref]

K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, “Amorphous oxide semiconductors for high-performance flexible thin-film transistors,” Jpn. J. Appl. Phys. 45(5B), 4303–4308 (2006).
[Crossref]

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref]

Ohshima, T.

J. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Ye, Y. Zeng, Y. Zhang, and L. Zhu, “Carrier concentration dependence of band gap shift in n-type ZnO: Al films,” J. Appl. Phys. 101(8), 083705 (2007).
[Crossref]

Ohta, H.

K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, “Amorphous oxide semiconductors for high-performance flexible thin-film transistors,” Jpn. J. Appl. Phys. 45(5B), 4303–4308 (2006).
[Crossref]

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref]

Özen, S.

V. Şenay, S. Özen, S. Pat, and Ş. Korkmaz, “Optical, structural, morphological and compositional characterization of a Co-doped GaAs semiconducting thin film produced by thermionic vacuum arc,” J. Alloys Compd. 663, 829–833 (2016).
[Crossref]

Özgür, Ü.

H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, and H. Morkoç, “Transparent conducting oxides for electrode applications in light emitting and absorbing devices,” Superlattices Microstruct. 48(5), 458–484 (2010).
[Crossref]

Park, J. H.

K. Kim, J. H. Park, H. Kim, J. K. Kim, E. Fred Schubert, and J. Cho, “Energy bandgap variation in oblique angle-deposited indium tin oxide,” Appl. Phys. Lett. 108(4), 041910 (2016).
[Crossref]

Park, Y. S.

S. Y. Lee, Y. S. Park, and T.-Y. Seong, “Optimized ITO/Ag/ITO multilayers as a current spreading layer to enhance the light output of ultraviolet light-emitting diodes,” J. Alloys Compd. 776, 960–964 (2019).
[Crossref]

Parkin, I. P.

D. B. Potter, M. J. Powell, I. P. Parkin, and C. J. Carmalt, “Aluminium/gallium, indium/gallium, and aluminium/indium co-doped ZnO thin films deposited via aerosol assisted CVD,” J. Mater. Chem. C 6(3), 588–597 (2018).
[Crossref]

Pat, S.

V. Şenay, S. Özen, S. Pat, and Ş. Korkmaz, “Optical, structural, morphological and compositional characterization of a Co-doped GaAs semiconducting thin film produced by thermionic vacuum arc,” J. Alloys Compd. 663, 829–833 (2016).
[Crossref]

Philip, J. R.

J. R. Philip, “Taguchi techniques for quality engineering,” McGraw-Hill, New York (1996).

Polikarpov, E.

D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett. 6(9), 1880–1886 (2006).
[Crossref]

Popovic, Z. D.

H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999).
[Crossref]

Potter, D. B.

D. B. Potter, M. J. Powell, I. P. Parkin, and C. J. Carmalt, “Aluminium/gallium, indium/gallium, and aluminium/indium co-doped ZnO thin films deposited via aerosol assisted CVD,” J. Mater. Chem. C 6(3), 588–597 (2018).
[Crossref]

Powell, M. J.

D. B. Potter, M. J. Powell, I. P. Parkin, and C. J. Carmalt, “Aluminium/gallium, indium/gallium, and aluminium/indium co-doped ZnO thin films deposited via aerosol assisted CVD,” J. Mater. Chem. C 6(3), 588–597 (2018).
[Crossref]

Raju, B.

B. Raju, U. C. Sekhar, and D. Drakshayani, “Optimizing multiple quality characteristics of stereolithography process via Taguchi method-based grey analysis for SL5530 epoxy resin material to enhance part quality,” Procedia Mater. Sci. 5, 2532–2541 (2014).
[Crossref]

Ravichandran, K.

K. Ravichandran, K. Subha, A. Manivasaham, M. Sridharan, T. Arun, and C. Ravidhas, “Fabrication of a novel low-cost triple layer system (TaZO/Ag/TaZO) with an enhanced quality factor for transparent electrode applications,” RSC Adv. 6(68), 63314–63324 (2016).
[Crossref]

Ravidhas, C.

K. Ravichandran, K. Subha, A. Manivasaham, M. Sridharan, T. Arun, and C. Ravidhas, “Fabrication of a novel low-cost triple layer system (TaZO/Ag/TaZO) with an enhanced quality factor for transparent electrode applications,” RSC Adv. 6(68), 63314–63324 (2016).
[Crossref]

Ren, N.

N. Ren, J. Zhu, and S. Ban, “Highly transparent conductive ITO/Ag/ITO trilayer films deposited by RF sputtering at room temperature,” AIP Adv. 7(5), 055009 (2017).
[Crossref]

Ross, P. J.

P. J. Ross and P. J. Ross, Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design (McGraw-Hill, 1988).

P. J. Ross and P. J. Ross, Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design (McGraw-Hill, 1988).

Rusu, G.

D. Mardare, M. Tasca, M. Delibas, and G. Rusu, “On the structural properties and optical transmittance of TiO2 rf sputtered thin films,” Appl. Surf. Sci. 156(1-4), 200–206 (2000).
[Crossref]

Ryu, K.

D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett. 6(9), 1880–1886 (2006).
[Crossref]

Sekhar, U. C.

B. Raju, U. C. Sekhar, and D. Drakshayani, “Optimizing multiple quality characteristics of stereolithography process via Taguchi method-based grey analysis for SL5530 epoxy resin material to enhance part quality,” Procedia Mater. Sci. 5, 2532–2541 (2014).
[Crossref]

Senay, V.

V. Şenay, S. Özen, S. Pat, and Ş. Korkmaz, “Optical, structural, morphological and compositional characterization of a Co-doped GaAs semiconducting thin film produced by thermionic vacuum arc,” J. Alloys Compd. 663, 829–833 (2016).
[Crossref]

Seong, T.-Y.

S. Y. Lee, Y. S. Park, and T.-Y. Seong, “Optimized ITO/Ag/ITO multilayers as a current spreading layer to enhance the light output of ultraviolet light-emitting diodes,” J. Alloys Compd. 776, 960–964 (2019).
[Crossref]

Simone, F.

S. Boscarino, I. Crupi, S. Mirabella, F. Simone, and A. Terrasi, “TCO/Ag/TCO transparent electrodes for solar cells application,” Appl. Phys. A 116(3), 1287–1291 (2014).
[Crossref]

I. Crupi, S. Boscarino, V. Strano, S. Mirabella, F. Simone, and A. Terrasi, “Optimization of ZnO: Al/Ag/ZnO: Al structures for ultra-thin high-performance transparent conductive electrodes,” Thin Solid Films 520(13), 4432–4435 (2012).
[Crossref]

Sridharan, M.

K. Ravichandran, K. Subha, A. Manivasaham, M. Sridharan, T. Arun, and C. Ravidhas, “Fabrication of a novel low-cost triple layer system (TaZO/Ag/TaZO) with an enhanced quality factor for transparent electrode applications,” RSC Adv. 6(68), 63314–63324 (2016).
[Crossref]

Strano, V.

I. Crupi, S. Boscarino, V. Strano, S. Mirabella, F. Simone, and A. Terrasi, “Optimization of ZnO: Al/Ag/ZnO: Al structures for ultra-thin high-performance transparent conductive electrodes,” Thin Solid Films 520(13), 4432–4435 (2012).
[Crossref]

Subha, K.

K. Ravichandran, K. Subha, A. Manivasaham, M. Sridharan, T. Arun, and C. Ravidhas, “Fabrication of a novel low-cost triple layer system (TaZO/Ag/TaZO) with an enhanced quality factor for transparent electrode applications,” RSC Adv. 6(68), 63314–63324 (2016).
[Crossref]

Sur, G.

M. Nalbant, H. Gökkaya, and G. Sur, “Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning,” Mater. Des. 28(4), 1379–1385 (2007).
[Crossref]

Takagi, A.

K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, “Amorphous oxide semiconductors for high-performance flexible thin-film transistors,” Jpn. J. Appl. Phys. 45(5B), 4303–4308 (2006).
[Crossref]

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref]

Tang, X.

Tasca, M.

D. Mardare, M. Tasca, M. Delibas, and G. Rusu, “On the structural properties and optical transmittance of TiO2 rf sputtered thin films,” Appl. Surf. Sci. 156(1-4), 200–206 (2000).
[Crossref]

Terrasi, A.

S. Boscarino, I. Crupi, S. Mirabella, F. Simone, and A. Terrasi, “TCO/Ag/TCO transparent electrodes for solar cells application,” Appl. Phys. A 116(3), 1287–1291 (2014).
[Crossref]

I. Crupi, S. Boscarino, V. Strano, S. Mirabella, F. Simone, and A. Terrasi, “Optimization of ZnO: Al/Ag/ZnO: Al structures for ultra-thin high-performance transparent conductive electrodes,” Thin Solid Films 520(13), 4432–4435 (2012).
[Crossref]

Theodore, N.

H. Han, N. Theodore, and T. Alford, “Improved conductivity and mechanism of carrier transport in zinc oxide with embedded silver layer,” J. Appl. Phys. 103(1), 013708 (2008).
[Crossref]

Tiwari, A.

S. Calnan and A. Tiwari, “High mobility transparent conducting oxides for thin film solar cells,” Thin Solid Films 518(7), 1839–1849 (2010).
[Crossref]

Tohsophon, T.

Z.-N. Ng, K.-Y. Chan, and T. Tohsophon, “Effects of annealing temperature on ZnO and AZO films prepared by sol–gel technique,” Appl. Surf. Sci. 258(24), 9604–9609 (2012).
[Crossref]

Tompson, M. E.

D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett. 6(9), 1880–1886 (2006).
[Crossref]

Tsai, Y.-T.

C.-W. Chien, C.-H. Wu, Y.-T. Tsai, Y.-C. Kung, C.-Y. Lin, P.-C. Hsu, H.-H. Hsieh, C.-C. Wu, Y.-H. Yeh, and C.-M. Leu, “High-performance flexible a-IGZO TFTs adopting stacked electrodes and transparent polyimide-based nanocomposite substrates,” IEEE Trans. Electron Devices 58(5), 1440–1446 (2011).
[Crossref]

Wang, H.

H. Wang, X.-Z. Yuan, and H. Li, PEM Fuel Cell Diagnostic Tools (CRC press, 2011).

Wang, Z.

Z. Wang, H. Xu, X. Li, X. Zhang, Y. Liu, and Y. Liu, “Flexible resistive switching memory device based on amorphous InGaZnO film with excellent mechanical endurance,” IEEE Electron Device Lett. 32(10), 1442–1444 (2011).
[Crossref]

Wei, Q.

Wu, C.-C.

K.-N. Chen, C.-F. Yang, C.-C. Wu, and Y.-H. Chen, “Development of the α-IGZO/Ag/α-IGZO Triple-Layer Structure Films for the Application of Transparent Electrode,” Materials 10(3), 226 (2017).
[Crossref]

C.-W. Chien, C.-H. Wu, Y.-T. Tsai, Y.-C. Kung, C.-Y. Lin, P.-C. Hsu, H.-H. Hsieh, C.-C. Wu, Y.-H. Yeh, and C.-M. Leu, “High-performance flexible a-IGZO TFTs adopting stacked electrodes and transparent polyimide-based nanocomposite substrates,” IEEE Trans. Electron Devices 58(5), 1440–1446 (2011).
[Crossref]

Wu, C.-H.

C.-W. Chien, C.-H. Wu, Y.-T. Tsai, Y.-C. Kung, C.-Y. Lin, P.-C. Hsu, H.-H. Hsieh, C.-C. Wu, Y.-H. Yeh, and C.-M. Leu, “High-performance flexible a-IGZO TFTs adopting stacked electrodes and transparent polyimide-based nanocomposite substrates,” IEEE Trans. Electron Devices 58(5), 1440–1446 (2011).
[Crossref]

Wu, H.-L.

X.-Y. Liu, Y.-A. Li, S. Liu, H.-L. Wu, and H.-N. Cui, “ZnO/Cu/ZnO multilayer films: Structure optimization and investigation on photoelectric properties,” Thin Solid Films 520(16), 5372–5377 (2012).
[Crossref]

Xu, G.

H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999).
[Crossref]

Xu, H.

Z. Wang, H. Xu, X. Li, X. Zhang, Y. Liu, and Y. Liu, “Flexible resistive switching memory device based on amorphous InGaZnO film with excellent mechanical endurance,” IEEE Electron Device Lett. 32(10), 1442–1444 (2011).
[Crossref]

Xu, J.

Xue, W.

J. Leng, Z. Yu, W. Xue, T. Zhang, Y. Jiang, J. Zhang, and D. Zhang, “Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition,” J. Appl. Phys. 108(7), 073109 (2010).
[Crossref]

Yamamoto, A.

A. Yamamoto, S. Nagasawa, H. Yamamoto, and T. Higuchi, “Electrostatic tactile display with thin film slider and its application to tactile telepresentation systems,” IEEE Trans. Vis. Comput. Graphics 12(2), 168–177 (2006).
[Crossref]

Yamamoto, H.

A. Yamamoto, S. Nagasawa, H. Yamamoto, and T. Higuchi, “Electrostatic tactile display with thin film slider and its application to tactile telepresentation systems,” IEEE Trans. Vis. Comput. Graphics 12(2), 168–177 (2006).
[Crossref]

Yang, C.-F.

K.-N. Chen, C.-F. Yang, C.-C. Wu, and Y.-H. Chen, “Development of the α-IGZO/Ag/α-IGZO Triple-Layer Structure Films for the Application of Transparent Electrode,” Materials 10(3), 226 (2017).
[Crossref]

Yang, L.

Ye, Z.

J. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Ye, Y. Zeng, Y. Zhang, and L. Zhu, “Carrier concentration dependence of band gap shift in n-type ZnO: Al films,” J. Appl. Phys. 101(8), 083705 (2007).
[Crossref]

Yeh, Y.-H.

C.-W. Chien, C.-H. Wu, Y.-T. Tsai, Y.-C. Kung, C.-Y. Lin, P.-C. Hsu, H.-H. Hsieh, C.-C. Wu, Y.-H. Yeh, and C.-M. Leu, “High-performance flexible a-IGZO TFTs adopting stacked electrodes and transparent polyimide-based nanocomposite substrates,” IEEE Trans. Electron Devices 58(5), 1440–1446 (2011).
[Crossref]

Yu, Z.

X. Zhou, J. Xu, L. Yang, X. Tang, Q. Wei, and Z. Yu, “Amorphous In 2 Ga 2 ZnO 7 films with adjustable structural, electrical and optical properties deposited by magnetron sputtering,” Opt. Mater. Express 5(7), 1628–1634 (2015).
[Crossref]

J. Leng, Z. Yu, W. Xue, T. Zhang, Y. Jiang, J. Zhang, and D. Zhang, “Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition,” J. Appl. Phys. 108(7), 073109 (2010).
[Crossref]

Yuan, T.

F. Mei, T. Yuan, and R. Li, “Effects of second-phase particles and elemental distributions of ITO targets on the properties of deposited ITO films,” Ceram. Int. 43(12), 8866–8872 (2017).
[Crossref]

Yuan, X.-Z.

H. Wang, X.-Z. Yuan, and H. Li, PEM Fuel Cell Diagnostic Tools (CRC press, 2011).

Zeng, Y.

J. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Ye, Y. Zeng, Y. Zhang, and L. Zhu, “Carrier concentration dependence of band gap shift in n-type ZnO: Al films,” J. Appl. Phys. 101(8), 083705 (2007).
[Crossref]

Zhang, D.

J. Leng, Z. Yu, W. Xue, T. Zhang, Y. Jiang, J. Zhang, and D. Zhang, “Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition,” J. Appl. Phys. 108(7), 073109 (2010).
[Crossref]

D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett. 6(9), 1880–1886 (2006).
[Crossref]

Zhang, J.

J. Leng, Z. Yu, W. Xue, T. Zhang, Y. Jiang, J. Zhang, and D. Zhang, “Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition,” J. Appl. Phys. 108(7), 073109 (2010).
[Crossref]

Zhang, T.

J. Leng, Z. Yu, W. Xue, T. Zhang, Y. Jiang, J. Zhang, and D. Zhang, “Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition,” J. Appl. Phys. 108(7), 073109 (2010).
[Crossref]

Zhang, X.

Z. Wang, H. Xu, X. Li, X. Zhang, Y. Liu, and Y. Liu, “Flexible resistive switching memory device based on amorphous InGaZnO film with excellent mechanical endurance,” IEEE Electron Device Lett. 32(10), 1442–1444 (2011).
[Crossref]

Zhang, Y.

J. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Ye, Y. Zeng, Y. Zhang, and L. Zhu, “Carrier concentration dependence of band gap shift in n-type ZnO: Al films,” J. Appl. Phys. 101(8), 083705 (2007).
[Crossref]

Zhou, C.

D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett. 6(9), 1880–1886 (2006).
[Crossref]

Zhou, X.

Zhu, J.

N. Ren, J. Zhu, and S. Ban, “Highly transparent conductive ITO/Ag/ITO trilayer films deposited by RF sputtering at room temperature,” AIP Adv. 7(5), 055009 (2017).
[Crossref]

Zhu, L.

J. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Ye, Y. Zeng, Y. Zhang, and L. Zhu, “Carrier concentration dependence of band gap shift in n-type ZnO: Al films,” J. Appl. Phys. 101(8), 083705 (2007).
[Crossref]

Zografi, G.

S. R. Byrn, G. Zografi, and S. Chen, Solid State Properties of Pharmaceutical Materials (Wiley Online Library, 2017).

AIP Adv. (1)

N. Ren, J. Zhu, and S. Ban, “Highly transparent conductive ITO/Ag/ITO trilayer films deposited by RF sputtering at room temperature,” AIP Adv. 7(5), 055009 (2017).
[Crossref]

Appl. Phys. A (1)

S. Boscarino, I. Crupi, S. Mirabella, F. Simone, and A. Terrasi, “TCO/Ag/TCO transparent electrodes for solar cells application,” Appl. Phys. A 116(3), 1287–1291 (2014).
[Crossref]

Appl. Phys. Lett. (1)

K. Kim, J. H. Park, H. Kim, J. K. Kim, E. Fred Schubert, and J. Cho, “Energy bandgap variation in oblique angle-deposited indium tin oxide,” Appl. Phys. Lett. 108(4), 041910 (2016).
[Crossref]

Appl. Surf. Sci. (2)

D. Mardare, M. Tasca, M. Delibas, and G. Rusu, “On the structural properties and optical transmittance of TiO2 rf sputtered thin films,” Appl. Surf. Sci. 156(1-4), 200–206 (2000).
[Crossref]

Z.-N. Ng, K.-Y. Chan, and T. Tohsophon, “Effects of annealing temperature on ZnO and AZO films prepared by sol–gel technique,” Appl. Surf. Sci. 258(24), 9604–9609 (2012).
[Crossref]

Ceram. Int. (3)

K. W. Chee, F. Meng, D. C. Lai, and F. Huang, “Measurement-based optimization and analysis of α-IGZO/Ag/α-IGZO transparent conducting electrodes fabricated using DC magnetron sputter deposition,” Ceram. Int. 44(17), 20939–20946 (2018).
[Crossref]

F. Mei, T. Yuan, and R. Li, “Effects of second-phase particles and elemental distributions of ITO targets on the properties of deposited ITO films,” Ceram. Int. 43(12), 8866–8872 (2017).
[Crossref]

T.-C. Li, C.-F. Han, K.-C. Hsieh, and J.-F. Lin, “Effects of thin titanium and graphene depositions and annealing temperature on electrical, optical, and mechanical properties of IGZO/Ti/graphene/PI specimen,” Ceram. Int. 44(6), 6573–6583 (2018).
[Crossref]

ECS Solid State Lett. (1)

X. Li, S. Chen, T. Chen, and Y. Liu, “Thickness dependence of optical properties of amorphous indium gallium zinc oxide thin films: effects of free-electrons and quantum confinement,” ECS Solid State Lett. 4(3), P29–P32 (2015).
[Crossref]

IEEE Electron Device Lett. (1)

Z. Wang, H. Xu, X. Li, X. Zhang, Y. Liu, and Y. Liu, “Flexible resistive switching memory device based on amorphous InGaZnO film with excellent mechanical endurance,” IEEE Electron Device Lett. 32(10), 1442–1444 (2011).
[Crossref]

IEEE Trans. Electron Devices (1)

C.-W. Chien, C.-H. Wu, Y.-T. Tsai, Y.-C. Kung, C.-Y. Lin, P.-C. Hsu, H.-H. Hsieh, C.-C. Wu, Y.-H. Yeh, and C.-M. Leu, “High-performance flexible a-IGZO TFTs adopting stacked electrodes and transparent polyimide-based nanocomposite substrates,” IEEE Trans. Electron Devices 58(5), 1440–1446 (2011).
[Crossref]

IEEE Trans. Vis. Comput. Graphics (1)

A. Yamamoto, S. Nagasawa, H. Yamamoto, and T. Higuchi, “Electrostatic tactile display with thin film slider and its application to tactile telepresentation systems,” IEEE Trans. Vis. Comput. Graphics 12(2), 168–177 (2006).
[Crossref]

J. Alloys Compd. (2)

V. Şenay, S. Özen, S. Pat, and Ş. Korkmaz, “Optical, structural, morphological and compositional characterization of a Co-doped GaAs semiconducting thin film produced by thermionic vacuum arc,” J. Alloys Compd. 663, 829–833 (2016).
[Crossref]

S. Y. Lee, Y. S. Park, and T.-Y. Seong, “Optimized ITO/Ag/ITO multilayers as a current spreading layer to enhance the light output of ultraviolet light-emitting diodes,” J. Alloys Compd. 776, 960–964 (2019).
[Crossref]

J. Appl. Phys. (5)

H. Han, N. Theodore, and T. Alford, “Improved conductivity and mechanism of carrier transport in zinc oxide with embedded silver layer,” J. Appl. Phys. 103(1), 013708 (2008).
[Crossref]

J. Leng, Z. Yu, W. Xue, T. Zhang, Y. Jiang, J. Zhang, and D. Zhang, “Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition,” J. Appl. Phys. 108(7), 073109 (2010).
[Crossref]

G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys. 47(9), 4086–4089 (1976).
[Crossref]

J. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Ye, Y. Zeng, Y. Zhang, and L. Zhu, “Carrier concentration dependence of band gap shift in n-type ZnO: Al films,” J. Appl. Phys. 101(8), 083705 (2007).
[Crossref]

A. Indluru and T. Alford, “Effect of Ag thickness on electrical transport and optical properties of indium tin oxide–Ag–indium tin oxide multilayers,” J. Appl. Phys. 105(12), 123528 (2009).
[Crossref]

J. Mater. Chem. C (1)

D. B. Potter, M. J. Powell, I. P. Parkin, and C. J. Carmalt, “Aluminium/gallium, indium/gallium, and aluminium/indium co-doped ZnO thin films deposited via aerosol assisted CVD,” J. Mater. Chem. C 6(3), 588–597 (2018).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, “Amorphous oxide semiconductors for high-performance flexible thin-film transistors,” Jpn. J. Appl. Phys. 45(5B), 4303–4308 (2006).
[Crossref]

Mater. Des. (1)

M. Nalbant, H. Gökkaya, and G. Sur, “Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning,” Mater. Des. 28(4), 1379–1385 (2007).
[Crossref]

Materials (1)

K.-N. Chen, C.-F. Yang, C.-C. Wu, and Y.-H. Chen, “Development of the α-IGZO/Ag/α-IGZO Triple-Layer Structure Films for the Application of Transparent Electrode,” Materials 10(3), 226 (2017).
[Crossref]

Nano Lett. (1)

D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett. 6(9), 1880–1886 (2006).
[Crossref]

Nature (1)

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref]

NPG Asia Mater. (1)

T. Kamiya and H. Hosono, “Material characteristics and applications of transparent amorphous oxide semiconductors,” NPG Asia Mater. 2(1), 15–22 (2010).
[Crossref]

Opt. Mater. Express (1)

Procedia Mater. Sci. (1)

B. Raju, U. C. Sekhar, and D. Drakshayani, “Optimizing multiple quality characteristics of stereolithography process via Taguchi method-based grey analysis for SL5530 epoxy resin material to enhance part quality,” Procedia Mater. Sci. 5, 2532–2541 (2014).
[Crossref]

RSC Adv. (1)

K. Ravichandran, K. Subha, A. Manivasaham, M. Sridharan, T. Arun, and C. Ravidhas, “Fabrication of a novel low-cost triple layer system (TaZO/Ag/TaZO) with an enhanced quality factor for transparent electrode applications,” RSC Adv. 6(68), 63314–63324 (2016).
[Crossref]

Sci. Technol. Adv. Mater. (1)

T. Kamiya, K. Nomura, and H. Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors,” Sci. Technol. Adv. Mater. 11(4), 044305 (2010).
[Crossref]

Science (1)

H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999).
[Crossref]

Superlattices Microstruct. (1)

H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, and H. Morkoç, “Transparent conducting oxides for electrode applications in light emitting and absorbing devices,” Superlattices Microstruct. 48(5), 458–484 (2010).
[Crossref]

Thin Solid Films (4)

C. G. Granqvist and A. Hultåker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411(1), 1–5 (2002).
[Crossref]

S. Calnan and A. Tiwari, “High mobility transparent conducting oxides for thin film solar cells,” Thin Solid Films 518(7), 1839–1849 (2010).
[Crossref]

I. Crupi, S. Boscarino, V. Strano, S. Mirabella, F. Simone, and A. Terrasi, “Optimization of ZnO: Al/Ag/ZnO: Al structures for ultra-thin high-performance transparent conductive electrodes,” Thin Solid Films 520(13), 4432–4435 (2012).
[Crossref]

X.-Y. Liu, Y.-A. Li, S. Liu, H.-L. Wu, and H.-N. Cui, “ZnO/Cu/ZnO multilayer films: Structure optimization and investigation on photoelectric properties,” Thin Solid Films 520(16), 5372–5377 (2012).
[Crossref]

Other (5)

S. R. Byrn, G. Zografi, and S. Chen, Solid State Properties of Pharmaceutical Materials (Wiley Online Library, 2017).

H. Wang, X.-Z. Yuan, and H. Li, PEM Fuel Cell Diagnostic Tools (CRC press, 2011).

P. J. Ross and P. J. Ross, Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design (McGraw-Hill, 1988).

J. R. Philip, “Taguchi techniques for quality engineering,” McGraw-Hill, New York (1996).

J. Morrison, Modern Physics: For Scientists and Engineers (Academic Press, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. (a) Triple-layer thin films deposited on a curved glass substrate with its top surface having the radius of curvature of (b) 35 mm, (c) 45 mm, (d) 55 mm.
Fig. 2.
Fig. 2. SEM images of (a) specimen 1, (b) specimen 4, (c) specimen 7.
Fig. 3.
Fig. 3. (a) Results of the kurtosis and skewness of particle size distribution as a function of mean particle size; (b) plot of skewness vs kurtosis for particle size distribution. (c) plot of particle size vs RMS surface roughness.
Fig. 4.
Fig. 4. Results of mean RMS surface roughness (SRq) and mean particle size (PS) expressed as a function of substrate’s radius of curvature.
Fig. 5.
Fig. 5. GID-XRD analyses of the IAI structures.
Fig. 6.
Fig. 6. Cross-sectional TEM images for specimens (a) 4, (b) 5, and (c) 6 and their SAED analyses for Ag and IGZO layer, respectively.
Fig. 7.
Fig. 7. The correlation among Hall carrier mobility, resistivity, and carrier concentration of the IAI thin films.
Fig. 8.
Fig. 8. The absorption coefficient of IAI thin films on curved quartz slides as a function of bandgap energy.
Fig. 9.
Fig. 9. Mean resistivity as a function of mean SRq and mean optical bandgap with the variation of substrate’s radius of curvature.
Fig. 10.
Fig. 10. (a) Mean optical bandgap and mean carrier concentration; and (b) mean resistivity, carrier mobility, and carrier concentration expressed as a function of Ag thickness.
Fig. 11.
Fig. 11. (a) Mean optical bandgap and mean carrier concentration as a function of IGZO thickness; (b) mean resistivity, carrier mobility, and carrier concentration as a function of IGZO thickness.
Fig. 12.
Fig. 12. (a) The transmittance, and (b) reflectance of all 9 specimens in a wavelength region of 300 to 1000 nm.
Fig. 13.
Fig. 13. The mean reflectance and transmittance as a function of (a) substrate’s radius of curvature; (b) Ag thickness; (c) IGZO thickness.

Tables (5)

Tables Icon

Table 1. Design of the controlling factors.

Tables Icon

Table 2. L9 (33) orthogonal table.

Tables Icon

Table 3. Residual errors for particle size, RMS surface roughness, carrier mobility, carrier concentration, resistivity, and optical bandgap.

Tables Icon

Table 4. Residual errors for transmittance and reflectance in the blue, green and red light regions.

Tables Icon

Table 5. Optical and electrical properties, FOM and optical bandgap of the 9 specimens.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R = 1 (CM e CC)
1 C M tot = i = 1 n 1 C M i
α = 1 t ln ( 1 T )
( α h ν ) 2 = C ( h ν E g )
FOM = T 10 R s h

Metrics