Abstract

Femtosecond laser micromachining relies on tightly focused, ultrashort laser pulses to locally modify material properties through nonlinear absorption, and is finding applications in the field of vision correction. Here we study the material effects of femtosecond laser micromachining in hydrogels to understand the mechanisms of laser-induced refractive index (RI) changes. Single layer dense line patterns were inscribed successively into the middle of hydrogels using a 405 nm femtosecond laser. A maximum phase change of ∼1.2 waves could be obtained at 543 nm with only 60 mW beam intensity at the focal volume. The phase change profile, fitted to a photochemical scaling model from earlier study, indicated that the micromachining process was mainly dominated by two-photon absorption. A confocal micro-Raman system was custom-designed to quantify the structural changes in written regions, especially the local water content. Change in the local water content exhibited three distinctive stages as a function of beam intensity. Below the optical breakdown threshold, a significant increase of local water content within the written layer was observed, while all Raman signatures remained the same. We posited that the negative RI changes were likely due to the generation of free radicals, followed by water permeation in the modified volume. This increase of local water content, likely presented as free water, was further confirmed by thermogravimetric analysis. Fourier-transform infrared spectroscopy was also used to gain insights into the chemical changes in the depolymerization stage.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optimization of femtosecond laser micromachining in hydrogel polymers

Li Ding, Dharmendra Jani, Jeffrey Linhardt, Jay F. Künzler, Siddhesh Pawar, Glen Labenski, Thomas Smith, and Wayne H. Knox
J. Opt. Soc. Am. B 26(9) 1679-1687 (2009)

Large optical phase shifts in hydrogels written with femtosecond laser pulses: elucidating the role of localized water concentration changes

Gustavo A. Gandara-Montano, Vladimir Stoy, Miroslav Dudič, Václav Petrák, Kateřina Haškovcová, and Wayne H. Knox
Opt. Mater. Express 7(9) 3162-3180 (2017)

Large enhancement of femtosecond laser micromachining speed in dye-doped hydrogel polymers

Li Ding, Dharmendra Jani, Jeffrey Linhardt, Jay F. Künzler, Siddhesh Pawar, Glen Labenski, Thomas Smith, and Wayne H. Knox
Opt. Express 16(26) 21914-21921 (2008)

References

  • View by:
  • |
  • |
  • |

  1. L. Ding, R. Blackwell, J. F. Kunzler, and W. H. Knox, “Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micro-machining,” Opt. Express 14(24), 11901–11909 (2006).
    [Crossref]
  2. D. E. Savage, D. R. Brooks, M. DeMagistris, L. S. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First Demonstration of Ocular Refractive Change Using Blue-IRIS in Live Cats,” Invest. Ophthalmol. Visual Sci. 55(7), 4603–4612 (2014).
    [Crossref]
  3. R. Huang and W. H. Knox, “Quantitative photochemical scaling model for femtosecond laser micromachining of ophthalmic hydrogel polymers: effect of repetition rate and laser power in the four photon absorption limit,” Opt. Mater. Express 9(3), 1049–1061 (2019).
    [Crossref]
  4. R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refractive Surg. 42(8), 1207–1215 (2016).
    [Crossref]
  5. J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3-4), 583–592 (2003).
    [Crossref]
  6. L. Ding, D. Jani, J. Linhardt, J. F. Kunzler, S. Pawar, G. Labenski, T. Smith, and W. H. Knox, “Large enhancement of femtosecond laser micromachining speed in dye-doped hydrogel polymers,” Opt. Express 16(26), 21914–21921 (2008).
    [Crossref]
  7. A. Baum, P. J. Scully, M. Basanta, C. L. P. Thomas, P. R. Fielden, N. J. Goddard, W. Perrie, and P. R. Chalker, “Photochemistry of refractive index structures in poly(methyl methacrylate) by femtosecond laser irradiation,” Opt. Lett. 32(2), 190–192 (2007).
    [Crossref]
  8. S. Pradhan, K. A. Keller, J. L. Sperduto, and J. H. Slater, “Fundamentals of Laser-Based Hydrogel Degradation and Applications in Cell and Tissue Engineering,” Adv. Healthcare Mater. 6(24), 1700681 (2017).
    [Crossref]
  9. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  10. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001).
    [Crossref]
  11. A. Baum, P. J. Scully, W. Perrie, D. Jones, R. Issac, and D. A. Jaroszynski, “Pulse-duration dependency of femtosecond laser refractive index modification in poly(methyl methacrylate),” Opt. Lett. 33(7), 651–653 (2008).
    [Crossref]
  12. M. Will, S. Nolte, B. N. Chichkov, and A. Tunnermann, “Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses,” Appl. Opt. 41(21), 4360–4364 (2002).
    [Crossref]
  13. C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process. 76(3), 351–354 (2003).
    [Crossref]
  14. J. F. Bille, J. Engelhardt, H. R. Volpp, A. Laghouissa, M. Motzkus, Z. X. Jiang, and R. Sahler, “Chemical basis for alteration of an intraocular lens using a femtosecond laser,” Biomed. Opt. Express 8(3), 1390–1404 (2017).
    [Crossref]
  15. A. Garcia-Giron, D. Sola, and J. I. Pena, “Liquid-assisted laser ablation of advanced ceramics and glass-ceramic materials,” Appl. Surf. Sci. 363, 548–554 (2016).
    [Crossref]
  16. Z. Liu, B. X. Wu, A. Samanta, N. G. Shen, H. T. Ding, R. Xu, and K. J. Zhao, “Ultrasound-assisted water-confined laser micromachining (UWLM) of metals: Experimental study and time-resolved observation (vol 245, pg 259, 2017),” J. Mater. Process. Technol. 248, 79 (2017).
    [Crossref]
  17. V. Tangwarodomnukun, J. Wang, and P. Mathew, “A Comparison of Dry and Underwater Laser Micromachining of Silicon Substrates,” Key Eng. Mater. 443, 693–698 (2010).
    [Crossref]
  18. A. Kruusing, “Underwater and water-assisted laser processing: Part 2 - Etching, cutting and rarely used methods,” Opt. Laser Eng. 41(2), 329–352 (2004).
    [Crossref]
  19. G. A. Gandara-Montano, V. Stoy, M. Dudič, V. Petrák, K. Haškovcová, and W. H. Knox, “Large optical phase shifts in hydrogels written with femtosecond laser pulses: elucidating the role of localized water concentration changes,” Opt. Mater. Express 7(9), 3162 (2017).
    [Crossref]
  20. D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum. 75(11), 4971–4980 (2004).
    [Crossref]
  21. P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Annu. Rev. Phys. Chem. 58(1), 461–488 (2007).
    [Crossref]
  22. G. Pezzotti, L. Puppulin, A. La Rosa, M. Boffelli, W. Zhu, B. J. McEntire, S. Hosogi, T. Nakahari, and Y. Marunaka, “Effect of pH and monovalent cations on the Raman spectrum of water: Basics revisited and application to measure concentration gradients at water/solid interface in Si3N4 biomaterial,” Chem. Phys. 463, 120–136 (2015).
    [Crossref]
  23. P. Monti, R. Simoni, R. Caramazza, and A. Bertoluzza, “Applications of Raman spectroscopy to ophthalmology: Spectroscopic characterization of disposable soft contact lenses,” Biospectroscopy 4(6), 413–419 (1998).
    [Crossref]
  24. T. Moreno, M. A. M. Lopez, I. H. Illera, C. M. Piqueras, A. S. Arranz, J. G. Serna, and M. J. Cocero, “Quantitative Raman determination of hydrogen peroxide using the solvent as internal standard: Online application in the direct synthesis of hydrogen peroxide,” Chem. Eng. J. 166(3), 1061–1065 (2011).
    [Crossref]
  25. P. J. Aarnoutse and J. A. Westerhuis, “Quantitative Raman reaction monitoring using the solvent as internal standard,” Anal. Chem. 77(5), 1228–1236 (2005).
    [Crossref]
  26. A. Di Muro, B. Villemant, G. Montagnac, B. Scaillet, and B. Reynard, “Quantification of water content and speciation in natural silicic glasses (phonolite, dacite, rhyolite) by confocal microRaman spectrometry,” Geochim. Cosmochim. Acta 70(11), 2868–2884 (2006).
    [Crossref]
  27. R. Smith, K. L. Wright, and L. Ashton, “Raman spectroscopy: an evolving technique for live cell studies,” Analyst 141(12), 3590–3600 (2016).
    [Crossref]
  28. N. J. Everall, “Confocal Raman microscopy: common errors and artefacts,” Analyst 135(10), 2512–2522 (2010).
    [Crossref]
  29. H. Muhamadali, M. Chisanga, A. Subaihi, and R. Goodacre, “Combining Raman and FT-IR Spectroscopy with Quantitative Isotopic Labeling for Differentiation of E. coli Cells at Community and Single Cell Levels,” Anal. Chem. 87(8), 4578–4586 (2015).
    [Crossref]
  30. G. Guella, I. Mancini, G. Mariotto, B. Rossi, and G. Viliani, “Vibrational analysis as a powerful tool in structure elucidation of polyarsenicals: a DFT-based investigation of arsenicin A,” Phys. Chem. Chem. Phys. 11(14), 2420–2427 (2009).
    [Crossref]
  31. Contamac Ltd, “GM Advance,” http://www.contamac.com/product/gm-advance .
  32. G. A. Gandara-Montano, A. Ivansky, D. E. Savage, J. D. Ellis, and W. H. Knox, “Femtosecond laser writing of freeform gradient index microlenses in hydrogel-based contact lenses,” Opt. Mater. Express 5(10), 2257 (2015).
    [Crossref]
  33. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-Transform Method of Fringe-Pattern Analysis for Computer-Based Topography and Interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
    [Crossref]
  34. R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite Radar Interferometry - Two-Dimensional Phase Unwrapping,” Radio Sci. 23(4), 713–720 (1988).
    [Crossref]
  35. Y. Suzaki and A. Tachibana, “Measurement of Mu-M Sized Radius of Gaussian Laser-Beam Using Scanning Knife-Edge,” Appl. Opt. 14(12), 2809–2810 (1975).
    [Crossref]
  36. M. S. Scholl, “Measured Spatial Properties of the Cw Nd - Yag Laser-Beam,” Appl. Opt. 19(21), 3655–3659 (1980).
    [Crossref]
  37. W. Jia, Y. M. Luo, J. Yu, B. W. Liu, M. L. Hu, L. Chai, and C. Y. Wang, “Effects of high-repetition-rate femtosecond laser micromachining on the physical and chemical properties of polylactide (PLA),” Opt. Express 23(21), 26932–26939 (2015).
    [Crossref]
  38. R. Huang and W. H. Knox, “Femtosecond micro-machining of hydrogels: parametric study and photochemical model including material saturation,” Opt. Mater. Express (submitted).
  39. K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A: Pure Appl. Opt. 10(5), 055303 (2008).
    [Crossref]
  40. X. S. Xu, H. Ming, Q. J. Zhang, and Y. S. Zhang, “Properties of Raman spectra and laser-induced birefringence in polymethyl methacrylate optical fibres,” J. Opt. A: Pure Appl. Opt. 4(3), 237–242 (2002).
    [Crossref]
  41. A. M. Miranda, E. W. Castilho-Almeida, E. H. M. Ferreira, G. F. Moreira, C. A. Achete, R. A. S. Z. Armond, H. F. Dos Santos, and A. Jorio, “Line shape analysis of the Raman spectra from pure and mixed biofuels esters compounds,” Fuel 115, 118–125 (2014).
    [Crossref]
  42. M. Tran, A. Fallatah, A. Whale, and S. Padalkar, “Utilization of Inexpensive Carbon-Based Substrates as Platforms for Sensing,” Sensors 18(8), 2444 (2018).
    [Crossref]
  43. X. N. He, Y. Gao, M. Mahjouri-Samani, P. N. Black, J. Allen, M. Mitchell, W. Xiong, Y. S. Zhou, L. Jiang, and Y. F. Lu, “Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes,” Nanotechnology 23(20), 205702 (2012).
    [Crossref]
  44. E. Kemal and S. Deb, “Design and synthesis of three-dimensional hydrogel scaffolds for intervertebral disc repair,” J. Mater. Chem. 22(21), 10725–10735 (2012).
    [Crossref]
  45. Q. Sun and C. J. Qin, “Raman OH stretching band of water as an internal standard to determine carbonate concentrations,” Chem. Geol. 283(3-4), 274–278 (2011).
    [Crossref]
  46. F. Schiavi, N. Bolfan-Casanova, A. C. Withers, E. Medard, M. Laumonier, D. Laporte, T. Flaherty, and A. Gomez-Ulla, “Water quantification in silicate glasses by Raman spectroscopy: Correcting for the effects of confocality, density and ferric iron,” Chem. Geol. 483, 312–331 (2018).
    [Crossref]
  47. D. Di Genova, S. Sicola, C. Romano, A. Vona, S. Fanara, and L. Spina, “Effect of iron and nanolites on Raman spectra of volcanic glasses: A reassessment of existing strategies to estimate the water content,” Chem. Geol. 475, 76–86 (2017).
    [Crossref]
  48. B. D. Fecchio, S. R. Valandro, M. G. Neumann, and C. C. S. Cavalheiro, “Thermal Decomposition of Polymer/Montmorillonite Nanocomposites Synthesized in situ on a Clay Surface,” J. Braz. Chem. Soc. 27(2), 278–284 (2015).
    [Crossref]
  49. K. R. Heys, M. G. Friedrich, and R. J. W. Truscott, “Free and bound water in normal and cataractous human lenses,” Invest. Ophthalmol. Visual Sci. 49(5), 1991–1997 (2008).
    [Crossref]
  50. E. G. Crispim, J. F. Piai, A. R. Fajardo, E. R. F. Ramos, T. U. Nakamura, C. V. Nakamura, A. F. Rubira, and E. C. Muniz, “Hydrogels based on chemically modified poly(vinyl alcohol) (PVA-GMA) and PVA-GMA/chondroitin sulfate: Preparation and characterization,” eXPRESS Polym. Lett. 6(5), 383–395 (2012).
    [Crossref]
  51. K. Varaprasad, T. Jayaramudu, and E. R. Sadiku, “Removal of dye by carboxymethyl cellulose, acrylamide and graphene oxide via a free radical polymerization process,” Carbohydr. Polym. 164, 186–194 (2017).
    [Crossref]
  52. M. S. M. Eldin, A. M. Omer, E. A. Soliman, and E. A. Hassan, “Superabsorbent polyacrylamide grafted carboxymethyl cellulose pH sensitive hydrogel: I. Preparation and characterization,” Desalin. Water Treat. 51(16-18), 3196–3206 (2013).
    [Crossref]
  53. Y. Seki, A. Altinisik, B. Demircioglu, and C. Tetik, “Carboxymethylcellulose (CMC)-hydroxyethylcellulose (HEC) based hydrogels: synthesis and characterization,” Cellulose 21(3), 1689–1698 (2014).
    [Crossref]
  54. X. L. Ji, S. C. Jiang, X. P. Qiu, D. W. Dong, D. H. Yu, and B. Z. Jiang, “Structure and properties of hybrid poly(2-hydroxyethyl methacrylate)/SiO2 monoliths,” J. Appl. Polym. Sci. 88(14), 3168–3175 (2003).
    [Crossref]
  55. W. M. Cheng, X. M. Hu, Y. Y. Zhao, M. Y. Wu, Z. X. Hu, and X. T. Yu, “Preparation and swelling properties of poly(acrylic acid-co-acrylamide) composite hydrogels,” e-Polym. 17(1), 95–106 (2017).
    [Crossref]
  56. R. M. Ahmed, “Optical Study on Poly(methylmethacrylate)/Poly(vinyl acetate) Blends,” Int. J. Photoenergy 2009, 1–7 (2009).
    [Crossref]
  57. A. Baum, P. J. Scully, W. Perrie, D. Liu, and V. Lucarini, “Mechanisms of femtosecond laser-induced refractive index modification of poly(methyl methacrylate),” J. Opt. Soc. Am. B 27(1), 107–111 (2010).
    [Crossref]
  58. S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76(19), 2656–2658 (2000).
    [Crossref]
  59. M. T. Do, T. T. N. Nguyen, Q. G. L. Li, H. Benisty, I. Ledoux-Rak, and N. D. Lai, “Submicrometer 3D structures fabrication enabled by one-photon absorption direct laser writing,” Opt. Express 21(18), 20964–20973 (2013).
    [Crossref]
  60. M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
    [Crossref]
  61. P. Delrot, D. Loterie, D. Psaltis, and C. Moser, “Single-photon three-dimensional microfabrication through a multimode optical fiber,” Opt. Express 26(2), 1766–1778 (2018).
    [Crossref]
  62. S. J. Blanksby and G. B. Ellison, “Bond dissociation energies of organic molecules,” Acc. Chem. Res. 36(4), 255–263 (2003).
    [Crossref]
  63. G. A. Gandara-Montano, L. Zheleznyak, and W. H. Knox, “Optical quality of hydrogel ophthalmic devices created with femtosecond laser induced refractive index modification,” Opt. Mater. Express 8(2), 295–313 (2018).
    [Crossref]
  64. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Frohlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
    [Crossref]
  65. H. B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83(5), 819–821 (2003).
    [Crossref]
  66. J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization Kinetics in Three-Dimensional Direct Laser Writing,” Adv. Mater. 26(38), 6566–6571 (2014).
    [Crossref]
  67. J. Fischer, J. B. Mueller, J. Kaschke, T. J. A. Wolf, A. N. Unterreiner, and M. Wegener, “Three-dimensional multi-photon direct laser writing with variable repetition rate,” Opt. Express 21(22), 26244–26260 (2013).
    [Crossref]
  68. J. F. Xing, M. L. Zheng, and X. M. Duan, “Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery,” Chem. Soc. Rev. 44(15), 5031–5039 (2015).
    [Crossref]
  69. M. A. Bag and L. M. Valenzuela, “Impact of the Hydration States of Polymers on Their Hemocompatibility for Medical Applications: A Review,” Int. J. Mol. Sci. 18(8), 1422 (2017).
    [Crossref]
  70. X. J. Lin, K. Fukazawa, and K. Ishihara, “Photoreactive Polymers Bearing a Zwitterionic Phosphorylcholine Group for Surface Modification of Biomaterials,” ACS Appl. Mater. Interfaces 7(31), 17489–17498 (2015).
    [Crossref]
  71. M. Behera and S. Ram, “Synthesis and characterization of core-shell gold nanoparticles with poly(vinyl pyrrolidone) from a new precursor salt,” Appl. Nanosci. 3(1), 83–87 (2013).
    [Crossref]
  72. Z. Jovanovic, A. Radosavljevic, M. Siljegovic, N. Bibic, V. Miskovic-Stankovic, and Z. Kacarevic-Popovic, “Structural and optical characteristics of silver/poly(N-vinyl-2-pyrrolidone) nanosystems synthesized by gamma-irradiation,” Radiat. Phys. Chem. 81(11), 1720–1728 (2012).
    [Crossref]
  73. Q. Zhao and E. T. Samulski, “In situ polymerization of poly(methyl methacrylate)/clay nanocomposites in supercritical carbon dioxide,” Macromolecules 38(19), 7967–7971 (2005).
    [Crossref]
  74. J. Gidden, A. T. Jackson, J. H. Scrivens, and M. T. Bowers, “Gas phase conformations of synthetic polymers: poly (methyl methacrylate) oligomers cationized by sodium ions,” Int. J. Mass Spectrom. 188(1-2), 121–130 (1999).
    [Crossref]
  75. S. D. Baruah, A. Goswami, and N. N. Dass, “Polymerization of Methyl-Methacrylate by Charge-Transfer Mechanism with Sodium-Azide and Iron(Iii) Complex,” Polym. J. 24(8), 719–726 (1992).
    [Crossref]
  76. E. M. Ahmed, “Hydrogel: Preparation, characterization, and applications: A review,” J. Adv. Res. 6(2), 105–121 (2015).
    [Crossref]
  77. A. Ikai, The World of Nano-Biomechanics (Elsevier, 2008), Chap. 5.
  78. Q. Y. Chai, Y. Jiao, and X. J. Yu, “Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them,” Gels 3(1), 6 (2017).
    [Crossref]
  79. T. V. Chirila, G. D. Barrett, A. V. Russo, I. J. Constable, P. P. Vansaarloos, and C. I. Russo, “Laser-Induced Damage to Transparent Polymers - Chemical Effect of Short-Pulsed (Q-Switched) Nd-Yag Laser-Radiation on Ophthalmic Acrylic Biomaterials .2. Study of Monomer Release from Artificial Intraocular Lenses,” Biomaterials 11(5), 313–320 (1990).
    [Crossref]
  80. C. Wochnowski, M. A. S. Eldin, and S. Metev, “UV-laser-assisted degradation of poly(methyl methacrylate),” Polym. Degrad. Stab. 89(2), 252–264 (2005).
    [Crossref]
  81. A. Z. Samuel and S. Umapathy, “Energy funneling and macromolecular conformational dynamics: a 2D Raman correlation study of PEG melting,” Polym. J. 46(6), 330–336 (2014).
    [Crossref]
  82. V. V. Naik and S. Vasudevan, “Effect of Alkyl Chain Arrangement on Conformation and Dynamics in a Surfactant Intercalated Layered Double Hydroxide: Spectroscopic Measurements and MD Simulations,” J. Phys. Chem. C 115(16), 8221–8232 (2011).
    [Crossref]
  83. E. Sutcliffe and R. Srinivasan, “Dynamics of UV Laser Ablation of Organic Polymer Surfaces,” J. Appl. Phys. 60(9), 3315–3322 (1986).
    [Crossref]
  84. W. H. Knox, “Nonlinear Optics: Femtosecond lasers and nonlinear optics: New approaches solve old problems in ophthalmology,” Laser Focus World, 22–25 (2018).

2019 (1)

2018 (4)

M. Tran, A. Fallatah, A. Whale, and S. Padalkar, “Utilization of Inexpensive Carbon-Based Substrates as Platforms for Sensing,” Sensors 18(8), 2444 (2018).
[Crossref]

F. Schiavi, N. Bolfan-Casanova, A. C. Withers, E. Medard, M. Laumonier, D. Laporte, T. Flaherty, and A. Gomez-Ulla, “Water quantification in silicate glasses by Raman spectroscopy: Correcting for the effects of confocality, density and ferric iron,” Chem. Geol. 483, 312–331 (2018).
[Crossref]

P. Delrot, D. Loterie, D. Psaltis, and C. Moser, “Single-photon three-dimensional microfabrication through a multimode optical fiber,” Opt. Express 26(2), 1766–1778 (2018).
[Crossref]

G. A. Gandara-Montano, L. Zheleznyak, and W. H. Knox, “Optical quality of hydrogel ophthalmic devices created with femtosecond laser induced refractive index modification,” Opt. Mater. Express 8(2), 295–313 (2018).
[Crossref]

2017 (9)

M. A. Bag and L. M. Valenzuela, “Impact of the Hydration States of Polymers on Their Hemocompatibility for Medical Applications: A Review,” Int. J. Mol. Sci. 18(8), 1422 (2017).
[Crossref]

W. M. Cheng, X. M. Hu, Y. Y. Zhao, M. Y. Wu, Z. X. Hu, and X. T. Yu, “Preparation and swelling properties of poly(acrylic acid-co-acrylamide) composite hydrogels,” e-Polym. 17(1), 95–106 (2017).
[Crossref]

D. Di Genova, S. Sicola, C. Romano, A. Vona, S. Fanara, and L. Spina, “Effect of iron and nanolites on Raman spectra of volcanic glasses: A reassessment of existing strategies to estimate the water content,” Chem. Geol. 475, 76–86 (2017).
[Crossref]

K. Varaprasad, T. Jayaramudu, and E. R. Sadiku, “Removal of dye by carboxymethyl cellulose, acrylamide and graphene oxide via a free radical polymerization process,” Carbohydr. Polym. 164, 186–194 (2017).
[Crossref]

S. Pradhan, K. A. Keller, J. L. Sperduto, and J. H. Slater, “Fundamentals of Laser-Based Hydrogel Degradation and Applications in Cell and Tissue Engineering,” Adv. Healthcare Mater. 6(24), 1700681 (2017).
[Crossref]

J. F. Bille, J. Engelhardt, H. R. Volpp, A. Laghouissa, M. Motzkus, Z. X. Jiang, and R. Sahler, “Chemical basis for alteration of an intraocular lens using a femtosecond laser,” Biomed. Opt. Express 8(3), 1390–1404 (2017).
[Crossref]

Z. Liu, B. X. Wu, A. Samanta, N. G. Shen, H. T. Ding, R. Xu, and K. J. Zhao, “Ultrasound-assisted water-confined laser micromachining (UWLM) of metals: Experimental study and time-resolved observation (vol 245, pg 259, 2017),” J. Mater. Process. Technol. 248, 79 (2017).
[Crossref]

G. A. Gandara-Montano, V. Stoy, M. Dudič, V. Petrák, K. Haškovcová, and W. H. Knox, “Large optical phase shifts in hydrogels written with femtosecond laser pulses: elucidating the role of localized water concentration changes,” Opt. Mater. Express 7(9), 3162 (2017).
[Crossref]

Q. Y. Chai, Y. Jiao, and X. J. Yu, “Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them,” Gels 3(1), 6 (2017).
[Crossref]

2016 (3)

A. Garcia-Giron, D. Sola, and J. I. Pena, “Liquid-assisted laser ablation of advanced ceramics and glass-ceramic materials,” Appl. Surf. Sci. 363, 548–554 (2016).
[Crossref]

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refractive Surg. 42(8), 1207–1215 (2016).
[Crossref]

R. Smith, K. L. Wright, and L. Ashton, “Raman spectroscopy: an evolving technique for live cell studies,” Analyst 141(12), 3590–3600 (2016).
[Crossref]

2015 (8)

G. Pezzotti, L. Puppulin, A. La Rosa, M. Boffelli, W. Zhu, B. J. McEntire, S. Hosogi, T. Nakahari, and Y. Marunaka, “Effect of pH and monovalent cations on the Raman spectrum of water: Basics revisited and application to measure concentration gradients at water/solid interface in Si3N4 biomaterial,” Chem. Phys. 463, 120–136 (2015).
[Crossref]

H. Muhamadali, M. Chisanga, A. Subaihi, and R. Goodacre, “Combining Raman and FT-IR Spectroscopy with Quantitative Isotopic Labeling for Differentiation of E. coli Cells at Community and Single Cell Levels,” Anal. Chem. 87(8), 4578–4586 (2015).
[Crossref]

G. A. Gandara-Montano, A. Ivansky, D. E. Savage, J. D. Ellis, and W. H. Knox, “Femtosecond laser writing of freeform gradient index microlenses in hydrogel-based contact lenses,” Opt. Mater. Express 5(10), 2257 (2015).
[Crossref]

W. Jia, Y. M. Luo, J. Yu, B. W. Liu, M. L. Hu, L. Chai, and C. Y. Wang, “Effects of high-repetition-rate femtosecond laser micromachining on the physical and chemical properties of polylactide (PLA),” Opt. Express 23(21), 26932–26939 (2015).
[Crossref]

B. D. Fecchio, S. R. Valandro, M. G. Neumann, and C. C. S. Cavalheiro, “Thermal Decomposition of Polymer/Montmorillonite Nanocomposites Synthesized in situ on a Clay Surface,” J. Braz. Chem. Soc. 27(2), 278–284 (2015).
[Crossref]

X. J. Lin, K. Fukazawa, and K. Ishihara, “Photoreactive Polymers Bearing a Zwitterionic Phosphorylcholine Group for Surface Modification of Biomaterials,” ACS Appl. Mater. Interfaces 7(31), 17489–17498 (2015).
[Crossref]

J. F. Xing, M. L. Zheng, and X. M. Duan, “Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery,” Chem. Soc. Rev. 44(15), 5031–5039 (2015).
[Crossref]

E. M. Ahmed, “Hydrogel: Preparation, characterization, and applications: A review,” J. Adv. Res. 6(2), 105–121 (2015).
[Crossref]

2014 (5)

A. Z. Samuel and S. Umapathy, “Energy funneling and macromolecular conformational dynamics: a 2D Raman correlation study of PEG melting,” Polym. J. 46(6), 330–336 (2014).
[Crossref]

J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization Kinetics in Three-Dimensional Direct Laser Writing,” Adv. Mater. 26(38), 6566–6571 (2014).
[Crossref]

A. M. Miranda, E. W. Castilho-Almeida, E. H. M. Ferreira, G. F. Moreira, C. A. Achete, R. A. S. Z. Armond, H. F. Dos Santos, and A. Jorio, “Line shape analysis of the Raman spectra from pure and mixed biofuels esters compounds,” Fuel 115, 118–125 (2014).
[Crossref]

Y. Seki, A. Altinisik, B. Demircioglu, and C. Tetik, “Carboxymethylcellulose (CMC)-hydroxyethylcellulose (HEC) based hydrogels: synthesis and characterization,” Cellulose 21(3), 1689–1698 (2014).
[Crossref]

D. E. Savage, D. R. Brooks, M. DeMagistris, L. S. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First Demonstration of Ocular Refractive Change Using Blue-IRIS in Live Cats,” Invest. Ophthalmol. Visual Sci. 55(7), 4603–4612 (2014).
[Crossref]

2013 (4)

M. S. M. Eldin, A. M. Omer, E. A. Soliman, and E. A. Hassan, “Superabsorbent polyacrylamide grafted carboxymethyl cellulose pH sensitive hydrogel: I. Preparation and characterization,” Desalin. Water Treat. 51(16-18), 3196–3206 (2013).
[Crossref]

J. Fischer, J. B. Mueller, J. Kaschke, T. J. A. Wolf, A. N. Unterreiner, and M. Wegener, “Three-dimensional multi-photon direct laser writing with variable repetition rate,” Opt. Express 21(22), 26244–26260 (2013).
[Crossref]

M. Behera and S. Ram, “Synthesis and characterization of core-shell gold nanoparticles with poly(vinyl pyrrolidone) from a new precursor salt,” Appl. Nanosci. 3(1), 83–87 (2013).
[Crossref]

M. T. Do, T. T. N. Nguyen, Q. G. L. Li, H. Benisty, I. Ledoux-Rak, and N. D. Lai, “Submicrometer 3D structures fabrication enabled by one-photon absorption direct laser writing,” Opt. Express 21(18), 20964–20973 (2013).
[Crossref]

2012 (4)

Z. Jovanovic, A. Radosavljevic, M. Siljegovic, N. Bibic, V. Miskovic-Stankovic, and Z. Kacarevic-Popovic, “Structural and optical characteristics of silver/poly(N-vinyl-2-pyrrolidone) nanosystems synthesized by gamma-irradiation,” Radiat. Phys. Chem. 81(11), 1720–1728 (2012).
[Crossref]

E. G. Crispim, J. F. Piai, A. R. Fajardo, E. R. F. Ramos, T. U. Nakamura, C. V. Nakamura, A. F. Rubira, and E. C. Muniz, “Hydrogels based on chemically modified poly(vinyl alcohol) (PVA-GMA) and PVA-GMA/chondroitin sulfate: Preparation and characterization,” eXPRESS Polym. Lett. 6(5), 383–395 (2012).
[Crossref]

X. N. He, Y. Gao, M. Mahjouri-Samani, P. N. Black, J. Allen, M. Mitchell, W. Xiong, Y. S. Zhou, L. Jiang, and Y. F. Lu, “Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes,” Nanotechnology 23(20), 205702 (2012).
[Crossref]

E. Kemal and S. Deb, “Design and synthesis of three-dimensional hydrogel scaffolds for intervertebral disc repair,” J. Mater. Chem. 22(21), 10725–10735 (2012).
[Crossref]

2011 (3)

Q. Sun and C. J. Qin, “Raman OH stretching band of water as an internal standard to determine carbonate concentrations,” Chem. Geol. 283(3-4), 274–278 (2011).
[Crossref]

T. Moreno, M. A. M. Lopez, I. H. Illera, C. M. Piqueras, A. S. Arranz, J. G. Serna, and M. J. Cocero, “Quantitative Raman determination of hydrogen peroxide using the solvent as internal standard: Online application in the direct synthesis of hydrogen peroxide,” Chem. Eng. J. 166(3), 1061–1065 (2011).
[Crossref]

V. V. Naik and S. Vasudevan, “Effect of Alkyl Chain Arrangement on Conformation and Dynamics in a Surfactant Intercalated Layered Double Hydroxide: Spectroscopic Measurements and MD Simulations,” J. Phys. Chem. C 115(16), 8221–8232 (2011).
[Crossref]

2010 (4)

N. J. Everall, “Confocal Raman microscopy: common errors and artefacts,” Analyst 135(10), 2512–2522 (2010).
[Crossref]

V. Tangwarodomnukun, J. Wang, and P. Mathew, “A Comparison of Dry and Underwater Laser Micromachining of Silicon Substrates,” Key Eng. Mater. 443, 693–698 (2010).
[Crossref]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
[Crossref]

A. Baum, P. J. Scully, W. Perrie, D. Liu, and V. Lucarini, “Mechanisms of femtosecond laser-induced refractive index modification of poly(methyl methacrylate),” J. Opt. Soc. Am. B 27(1), 107–111 (2010).
[Crossref]

2009 (2)

R. M. Ahmed, “Optical Study on Poly(methylmethacrylate)/Poly(vinyl acetate) Blends,” Int. J. Photoenergy 2009, 1–7 (2009).
[Crossref]

G. Guella, I. Mancini, G. Mariotto, B. Rossi, and G. Viliani, “Vibrational analysis as a powerful tool in structure elucidation of polyarsenicals: a DFT-based investigation of arsenicin A,” Phys. Chem. Chem. Phys. 11(14), 2420–2427 (2009).
[Crossref]

2008 (5)

A. Baum, P. J. Scully, W. Perrie, D. Jones, R. Issac, and D. A. Jaroszynski, “Pulse-duration dependency of femtosecond laser refractive index modification in poly(methyl methacrylate),” Opt. Lett. 33(7), 651–653 (2008).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

L. Ding, D. Jani, J. Linhardt, J. F. Kunzler, S. Pawar, G. Labenski, T. Smith, and W. H. Knox, “Large enhancement of femtosecond laser micromachining speed in dye-doped hydrogel polymers,” Opt. Express 16(26), 21914–21921 (2008).
[Crossref]

K. R. Heys, M. G. Friedrich, and R. J. W. Truscott, “Free and bound water in normal and cataractous human lenses,” Invest. Ophthalmol. Visual Sci. 49(5), 1991–1997 (2008).
[Crossref]

K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A: Pure Appl. Opt. 10(5), 055303 (2008).
[Crossref]

2007 (2)

2006 (2)

A. Di Muro, B. Villemant, G. Montagnac, B. Scaillet, and B. Reynard, “Quantification of water content and speciation in natural silicic glasses (phonolite, dacite, rhyolite) by confocal microRaman spectrometry,” Geochim. Cosmochim. Acta 70(11), 2868–2884 (2006).
[Crossref]

L. Ding, R. Blackwell, J. F. Kunzler, and W. H. Knox, “Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micro-machining,” Opt. Express 14(24), 11901–11909 (2006).
[Crossref]

2005 (3)

P. J. Aarnoutse and J. A. Westerhuis, “Quantitative Raman reaction monitoring using the solvent as internal standard,” Anal. Chem. 77(5), 1228–1236 (2005).
[Crossref]

Q. Zhao and E. T. Samulski, “In situ polymerization of poly(methyl methacrylate)/clay nanocomposites in supercritical carbon dioxide,” Macromolecules 38(19), 7967–7971 (2005).
[Crossref]

C. Wochnowski, M. A. S. Eldin, and S. Metev, “UV-laser-assisted degradation of poly(methyl methacrylate),” Polym. Degrad. Stab. 89(2), 252–264 (2005).
[Crossref]

2004 (2)

A. Kruusing, “Underwater and water-assisted laser processing: Part 2 - Etching, cutting and rarely used methods,” Opt. Laser Eng. 41(2), 329–352 (2004).
[Crossref]

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum. 75(11), 4971–4980 (2004).
[Crossref]

2003 (6)

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3-4), 583–592 (2003).
[Crossref]

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Frohlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
[Crossref]

H. B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83(5), 819–821 (2003).
[Crossref]

S. J. Blanksby and G. B. Ellison, “Bond dissociation energies of organic molecules,” Acc. Chem. Res. 36(4), 255–263 (2003).
[Crossref]

X. L. Ji, S. C. Jiang, X. P. Qiu, D. W. Dong, D. H. Yu, and B. Z. Jiang, “Structure and properties of hybrid poly(2-hydroxyethyl methacrylate)/SiO2 monoliths,” J. Appl. Polym. Sci. 88(14), 3168–3175 (2003).
[Crossref]

2002 (2)

X. S. Xu, H. Ming, Q. J. Zhang, and Y. S. Zhang, “Properties of Raman spectra and laser-induced birefringence in polymethyl methacrylate optical fibres,” J. Opt. A: Pure Appl. Opt. 4(3), 237–242 (2002).
[Crossref]

M. Will, S. Nolte, B. N. Chichkov, and A. Tunnermann, “Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses,” Appl. Opt. 41(21), 4360–4364 (2002).
[Crossref]

2001 (1)

2000 (1)

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76(19), 2656–2658 (2000).
[Crossref]

1999 (1)

J. Gidden, A. T. Jackson, J. H. Scrivens, and M. T. Bowers, “Gas phase conformations of synthetic polymers: poly (methyl methacrylate) oligomers cationized by sodium ions,” Int. J. Mass Spectrom. 188(1-2), 121–130 (1999).
[Crossref]

1998 (1)

P. Monti, R. Simoni, R. Caramazza, and A. Bertoluzza, “Applications of Raman spectroscopy to ophthalmology: Spectroscopic characterization of disposable soft contact lenses,” Biospectroscopy 4(6), 413–419 (1998).
[Crossref]

1992 (1)

S. D. Baruah, A. Goswami, and N. N. Dass, “Polymerization of Methyl-Methacrylate by Charge-Transfer Mechanism with Sodium-Azide and Iron(Iii) Complex,” Polym. J. 24(8), 719–726 (1992).
[Crossref]

1990 (1)

T. V. Chirila, G. D. Barrett, A. V. Russo, I. J. Constable, P. P. Vansaarloos, and C. I. Russo, “Laser-Induced Damage to Transparent Polymers - Chemical Effect of Short-Pulsed (Q-Switched) Nd-Yag Laser-Radiation on Ophthalmic Acrylic Biomaterials .2. Study of Monomer Release from Artificial Intraocular Lenses,” Biomaterials 11(5), 313–320 (1990).
[Crossref]

1988 (1)

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite Radar Interferometry - Two-Dimensional Phase Unwrapping,” Radio Sci. 23(4), 713–720 (1988).
[Crossref]

1986 (1)

E. Sutcliffe and R. Srinivasan, “Dynamics of UV Laser Ablation of Organic Polymer Surfaces,” J. Appl. Phys. 60(9), 3315–3322 (1986).
[Crossref]

1982 (1)

1980 (1)

1975 (1)

Aarnoutse, P. J.

P. J. Aarnoutse and J. A. Westerhuis, “Quantitative Raman reaction monitoring using the solvent as internal standard,” Anal. Chem. 77(5), 1228–1236 (2005).
[Crossref]

Achete, C. A.

A. M. Miranda, E. W. Castilho-Almeida, E. H. M. Ferreira, G. F. Moreira, C. A. Achete, R. A. S. Z. Armond, H. F. Dos Santos, and A. Jorio, “Line shape analysis of the Raman spectra from pure and mixed biofuels esters compounds,” Fuel 115, 118–125 (2014).
[Crossref]

Ahmed, E. M.

E. M. Ahmed, “Hydrogel: Preparation, characterization, and applications: A review,” J. Adv. Res. 6(2), 105–121 (2015).
[Crossref]

Ahmed, R. M.

R. M. Ahmed, “Optical Study on Poly(methylmethacrylate)/Poly(vinyl acetate) Blends,” Int. J. Photoenergy 2009, 1–7 (2009).
[Crossref]

Allen, J.

X. N. He, Y. Gao, M. Mahjouri-Samani, P. N. Black, J. Allen, M. Mitchell, W. Xiong, Y. S. Zhou, L. Jiang, and Y. F. Lu, “Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes,” Nanotechnology 23(20), 205702 (2012).
[Crossref]

Altinisik, A.

Y. Seki, A. Altinisik, B. Demircioglu, and C. Tetik, “Carboxymethylcellulose (CMC)-hydroxyethylcellulose (HEC) based hydrogels: synthesis and characterization,” Cellulose 21(3), 1689–1698 (2014).
[Crossref]

Armond, R. A. S. Z.

A. M. Miranda, E. W. Castilho-Almeida, E. H. M. Ferreira, G. F. Moreira, C. A. Achete, R. A. S. Z. Armond, H. F. Dos Santos, and A. Jorio, “Line shape analysis of the Raman spectra from pure and mixed biofuels esters compounds,” Fuel 115, 118–125 (2014).
[Crossref]

Arranz, A. S.

T. Moreno, M. A. M. Lopez, I. H. Illera, C. M. Piqueras, A. S. Arranz, J. G. Serna, and M. J. Cocero, “Quantitative Raman determination of hydrogen peroxide using the solvent as internal standard: Online application in the direct synthesis of hydrogen peroxide,” Chem. Eng. J. 166(3), 1061–1065 (2011).
[Crossref]

Ashton, L.

R. Smith, K. L. Wright, and L. Ashton, “Raman spectroscopy: an evolving technique for live cell studies,” Analyst 141(12), 3590–3600 (2016).
[Crossref]

Bag, M. A.

M. A. Bag and L. M. Valenzuela, “Impact of the Hydration States of Polymers on Their Hemocompatibility for Medical Applications: A Review,” Int. J. Mol. Sci. 18(8), 1422 (2017).
[Crossref]

Barrett, G. D.

T. V. Chirila, G. D. Barrett, A. V. Russo, I. J. Constable, P. P. Vansaarloos, and C. I. Russo, “Laser-Induced Damage to Transparent Polymers - Chemical Effect of Short-Pulsed (Q-Switched) Nd-Yag Laser-Radiation on Ophthalmic Acrylic Biomaterials .2. Study of Monomer Release from Artificial Intraocular Lenses,” Biomaterials 11(5), 313–320 (1990).
[Crossref]

Baruah, S. D.

S. D. Baruah, A. Goswami, and N. N. Dass, “Polymerization of Methyl-Methacrylate by Charge-Transfer Mechanism with Sodium-Azide and Iron(Iii) Complex,” Polym. J. 24(8), 719–726 (1992).
[Crossref]

Basanta, M.

Baum, A.

Behera, M.

M. Behera and S. Ram, “Synthesis and characterization of core-shell gold nanoparticles with poly(vinyl pyrrolidone) from a new precursor salt,” Appl. Nanosci. 3(1), 83–87 (2013).
[Crossref]

Benisty, H.

Bertoluzza, A.

P. Monti, R. Simoni, R. Caramazza, and A. Bertoluzza, “Applications of Raman spectroscopy to ophthalmology: Spectroscopic characterization of disposable soft contact lenses,” Biospectroscopy 4(6), 413–419 (1998).
[Crossref]

Bibic, N.

Z. Jovanovic, A. Radosavljevic, M. Siljegovic, N. Bibic, V. Miskovic-Stankovic, and Z. Kacarevic-Popovic, “Structural and optical characteristics of silver/poly(N-vinyl-2-pyrrolidone) nanosystems synthesized by gamma-irradiation,” Radiat. Phys. Chem. 81(11), 1720–1728 (2012).
[Crossref]

Bille, J. F.

J. F. Bille, J. Engelhardt, H. R. Volpp, A. Laghouissa, M. Motzkus, Z. X. Jiang, and R. Sahler, “Chemical basis for alteration of an intraocular lens using a femtosecond laser,” Biomed. Opt. Express 8(3), 1390–1404 (2017).
[Crossref]

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refractive Surg. 42(8), 1207–1215 (2016).
[Crossref]

Black, P. N.

X. N. He, Y. Gao, M. Mahjouri-Samani, P. N. Black, J. Allen, M. Mitchell, W. Xiong, Y. S. Zhou, L. Jiang, and Y. F. Lu, “Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes,” Nanotechnology 23(20), 205702 (2012).
[Crossref]

Blackwell, R.

Blanksby, S. J.

S. J. Blanksby and G. B. Ellison, “Bond dissociation energies of organic molecules,” Acc. Chem. Res. 36(4), 255–263 (2003).
[Crossref]

Boffelli, M.

G. Pezzotti, L. Puppulin, A. La Rosa, M. Boffelli, W. Zhu, B. J. McEntire, S. Hosogi, T. Nakahari, and Y. Marunaka, “Effect of pH and monovalent cations on the Raman spectrum of water: Basics revisited and application to measure concentration gradients at water/solid interface in Si3N4 biomaterial,” Chem. Phys. 463, 120–136 (2015).
[Crossref]

Bolfan-Casanova, N.

F. Schiavi, N. Bolfan-Casanova, A. C. Withers, E. Medard, M. Laumonier, D. Laporte, T. Flaherty, and A. Gomez-Ulla, “Water quantification in silicate glasses by Raman spectroscopy: Correcting for the effects of confocality, density and ferric iron,” Chem. Geol. 483, 312–331 (2018).
[Crossref]

Bowers, M. T.

J. Gidden, A. T. Jackson, J. H. Scrivens, and M. T. Bowers, “Gas phase conformations of synthetic polymers: poly (methyl methacrylate) oligomers cationized by sodium ions,” Int. J. Mass Spectrom. 188(1-2), 121–130 (1999).
[Crossref]

Brooks, D. R.

D. E. Savage, D. R. Brooks, M. DeMagistris, L. S. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First Demonstration of Ocular Refractive Change Using Blue-IRIS in Live Cats,” Invest. Ophthalmol. Visual Sci. 55(7), 4603–4612 (2014).
[Crossref]

Caramazza, R.

P. Monti, R. Simoni, R. Caramazza, and A. Bertoluzza, “Applications of Raman spectroscopy to ophthalmology: Spectroscopic characterization of disposable soft contact lenses,” Biospectroscopy 4(6), 413–419 (1998).
[Crossref]

Castilho-Almeida, E. W.

A. M. Miranda, E. W. Castilho-Almeida, E. H. M. Ferreira, G. F. Moreira, C. A. Achete, R. A. S. Z. Armond, H. F. Dos Santos, and A. Jorio, “Line shape analysis of the Raman spectra from pure and mixed biofuels esters compounds,” Fuel 115, 118–125 (2014).
[Crossref]

Cavalheiro, C. C. S.

B. D. Fecchio, S. R. Valandro, M. G. Neumann, and C. C. S. Cavalheiro, “Thermal Decomposition of Polymer/Montmorillonite Nanocomposites Synthesized in situ on a Clay Surface,” J. Braz. Chem. Soc. 27(2), 278–284 (2015).
[Crossref]

Chai, L.

Chai, Q. Y.

Q. Y. Chai, Y. Jiao, and X. J. Yu, “Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them,” Gels 3(1), 6 (2017).
[Crossref]

Chalker, P. R.

Chan, J. W.

Chan, K.

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refractive Surg. 42(8), 1207–1215 (2016).
[Crossref]

Cheng, W. M.

W. M. Cheng, X. M. Hu, Y. Y. Zhao, M. Y. Wu, Z. X. Hu, and X. T. Yu, “Preparation and swelling properties of poly(acrylic acid-co-acrylamide) composite hydrogels,” e-Polym. 17(1), 95–106 (2017).
[Crossref]

Chhoeung, S.

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refractive Surg. 42(8), 1207–1215 (2016).
[Crossref]

Chichkov, B. N.

Chirila, T. V.

T. V. Chirila, G. D. Barrett, A. V. Russo, I. J. Constable, P. P. Vansaarloos, and C. I. Russo, “Laser-Induced Damage to Transparent Polymers - Chemical Effect of Short-Pulsed (Q-Switched) Nd-Yag Laser-Radiation on Ophthalmic Acrylic Biomaterials .2. Study of Monomer Release from Artificial Intraocular Lenses,” Biomaterials 11(5), 313–320 (1990).
[Crossref]

Chisanga, M.

H. Muhamadali, M. Chisanga, A. Subaihi, and R. Goodacre, “Combining Raman and FT-IR Spectroscopy with Quantitative Isotopic Labeling for Differentiation of E. coli Cells at Community and Single Cell Levels,” Anal. Chem. 87(8), 4578–4586 (2015).
[Crossref]

Chon, J. W. M.

H. B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83(5), 819–821 (2003).
[Crossref]

Cocero, M. J.

T. Moreno, M. A. M. Lopez, I. H. Illera, C. M. Piqueras, A. S. Arranz, J. G. Serna, and M. J. Cocero, “Quantitative Raman determination of hydrogen peroxide using the solvent as internal standard: Online application in the direct synthesis of hydrogen peroxide,” Chem. Eng. J. 166(3), 1061–1065 (2011).
[Crossref]

Constable, I. J.

T. V. Chirila, G. D. Barrett, A. V. Russo, I. J. Constable, P. P. Vansaarloos, and C. I. Russo, “Laser-Induced Damage to Transparent Polymers - Chemical Effect of Short-Pulsed (Q-Switched) Nd-Yag Laser-Radiation on Ophthalmic Acrylic Biomaterials .2. Study of Monomer Release from Artificial Intraocular Lenses,” Biomaterials 11(5), 313–320 (1990).
[Crossref]

Crispim, E. G.

E. G. Crispim, J. F. Piai, A. R. Fajardo, E. R. F. Ramos, T. U. Nakamura, C. V. Nakamura, A. F. Rubira, and E. C. Muniz, “Hydrogels based on chemically modified poly(vinyl alcohol) (PVA-GMA) and PVA-GMA/chondroitin sulfate: Preparation and characterization,” eXPRESS Polym. Lett. 6(5), 383–395 (2012).
[Crossref]

Cronauer, C.

Dass, N. N.

S. D. Baruah, A. Goswami, and N. N. Dass, “Polymerization of Methyl-Methacrylate by Charge-Transfer Mechanism with Sodium-Azide and Iron(Iii) Complex,” Polym. J. 24(8), 719–726 (1992).
[Crossref]

Deb, S.

E. Kemal and S. Deb, “Design and synthesis of three-dimensional hydrogel scaffolds for intervertebral disc repair,” J. Mater. Chem. 22(21), 10725–10735 (2012).
[Crossref]

Delrot, P.

DeMagistris, M.

D. E. Savage, D. R. Brooks, M. DeMagistris, L. S. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First Demonstration of Ocular Refractive Change Using Blue-IRIS in Live Cats,” Invest. Ophthalmol. Visual Sci. 55(7), 4603–4612 (2014).
[Crossref]

Demircioglu, B.

Y. Seki, A. Altinisik, B. Demircioglu, and C. Tetik, “Carboxymethylcellulose (CMC)-hydroxyethylcellulose (HEC) based hydrogels: synthesis and characterization,” Cellulose 21(3), 1689–1698 (2014).
[Crossref]

Di Genova, D.

D. Di Genova, S. Sicola, C. Romano, A. Vona, S. Fanara, and L. Spina, “Effect of iron and nanolites on Raman spectra of volcanic glasses: A reassessment of existing strategies to estimate the water content,” Chem. Geol. 475, 76–86 (2017).
[Crossref]

Di Muro, A.

A. Di Muro, B. Villemant, G. Montagnac, B. Scaillet, and B. Reynard, “Quantification of water content and speciation in natural silicic glasses (phonolite, dacite, rhyolite) by confocal microRaman spectrometry,” Geochim. Cosmochim. Acta 70(11), 2868–2884 (2006).
[Crossref]

Ding, H. T.

Z. Liu, B. X. Wu, A. Samanta, N. G. Shen, H. T. Ding, R. Xu, and K. J. Zhao, “Ultrasound-assisted water-confined laser micromachining (UWLM) of metals: Experimental study and time-resolved observation (vol 245, pg 259, 2017),” J. Mater. Process. Technol. 248, 79 (2017).
[Crossref]

Ding, L.

Do, M. T.

Domann, G.

Dong, D. W.

X. L. Ji, S. C. Jiang, X. P. Qiu, D. W. Dong, D. H. Yu, and B. Z. Jiang, “Structure and properties of hybrid poly(2-hydroxyethyl methacrylate)/SiO2 monoliths,” J. Appl. Polym. Sci. 88(14), 3168–3175 (2003).
[Crossref]

Dos Santos, H. F.

A. M. Miranda, E. W. Castilho-Almeida, E. H. M. Ferreira, G. F. Moreira, C. A. Achete, R. A. S. Z. Armond, H. F. Dos Santos, and A. Jorio, “Line shape analysis of the Raman spectra from pure and mixed biofuels esters compounds,” Fuel 115, 118–125 (2014).
[Crossref]

Duan, X. M.

J. F. Xing, M. L. Zheng, and X. M. Duan, “Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery,” Chem. Soc. Rev. 44(15), 5031–5039 (2015).
[Crossref]

Dudic, M.

Egbert, A.

Eldin, M. A. S.

C. Wochnowski, M. A. S. Eldin, and S. Metev, “UV-laser-assisted degradation of poly(methyl methacrylate),” Polym. Degrad. Stab. 89(2), 252–264 (2005).
[Crossref]

Eldin, M. S. M.

M. S. M. Eldin, A. M. Omer, E. A. Soliman, and E. A. Hassan, “Superabsorbent polyacrylamide grafted carboxymethyl cellulose pH sensitive hydrogel: I. Preparation and characterization,” Desalin. Water Treat. 51(16-18), 3196–3206 (2013).
[Crossref]

Ellis, J. D.

G. A. Gandara-Montano, A. Ivansky, D. E. Savage, J. D. Ellis, and W. H. Knox, “Femtosecond laser writing of freeform gradient index microlenses in hydrogel-based contact lenses,” Opt. Mater. Express 5(10), 2257 (2015).
[Crossref]

D. E. Savage, D. R. Brooks, M. DeMagistris, L. S. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First Demonstration of Ocular Refractive Change Using Blue-IRIS in Live Cats,” Invest. Ophthalmol. Visual Sci. 55(7), 4603–4612 (2014).
[Crossref]

Ellison, G. B.

S. J. Blanksby and G. B. Ellison, “Bond dissociation energies of organic molecules,” Acc. Chem. Res. 36(4), 255–263 (2003).
[Crossref]

Engelhardt, J.

Enright, S.

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refractive Surg. 42(8), 1207–1215 (2016).
[Crossref]

Everall, N. J.

N. J. Everall, “Confocal Raman microscopy: common errors and artefacts,” Analyst 135(10), 2512–2522 (2010).
[Crossref]

Fajardo, A. R.

E. G. Crispim, J. F. Piai, A. R. Fajardo, E. R. F. Ramos, T. U. Nakamura, C. V. Nakamura, A. F. Rubira, and E. C. Muniz, “Hydrogels based on chemically modified poly(vinyl alcohol) (PVA-GMA) and PVA-GMA/chondroitin sulfate: Preparation and characterization,” eXPRESS Polym. Lett. 6(5), 383–395 (2012).
[Crossref]

Fallatah, A.

M. Tran, A. Fallatah, A. Whale, and S. Padalkar, “Utilization of Inexpensive Carbon-Based Substrates as Platforms for Sensing,” Sensors 18(8), 2444 (2018).
[Crossref]

Fanara, S.

D. Di Genova, S. Sicola, C. Romano, A. Vona, S. Fanara, and L. Spina, “Effect of iron and nanolites on Raman spectra of volcanic glasses: A reassessment of existing strategies to estimate the water content,” Chem. Geol. 475, 76–86 (2017).
[Crossref]

Fecchio, B. D.

B. D. Fecchio, S. R. Valandro, M. G. Neumann, and C. C. S. Cavalheiro, “Thermal Decomposition of Polymer/Montmorillonite Nanocomposites Synthesized in situ on a Clay Surface,” J. Braz. Chem. Soc. 27(2), 278–284 (2015).
[Crossref]

Ferreira, E. H. M.

A. M. Miranda, E. W. Castilho-Almeida, E. H. M. Ferreira, G. F. Moreira, C. A. Achete, R. A. S. Z. Armond, H. F. Dos Santos, and A. Jorio, “Line shape analysis of the Raman spectra from pure and mixed biofuels esters compounds,” Fuel 115, 118–125 (2014).
[Crossref]

Fielden, P. R.

Fischer, J.

J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization Kinetics in Three-Dimensional Direct Laser Writing,” Adv. Mater. 26(38), 6566–6571 (2014).
[Crossref]

J. Fischer, J. B. Mueller, J. Kaschke, T. J. A. Wolf, A. N. Unterreiner, and M. Wegener, “Three-dimensional multi-photon direct laser writing with variable repetition rate,” Opt. Express 21(22), 26244–26260 (2013).
[Crossref]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
[Crossref]

Flaherty, T.

F. Schiavi, N. Bolfan-Casanova, A. C. Withers, E. Medard, M. Laumonier, D. Laporte, T. Flaherty, and A. Gomez-Ulla, “Water quantification in silicate glasses by Raman spectroscopy: Correcting for the effects of confocality, density and ferric iron,” Chem. Geol. 483, 312–331 (2018).
[Crossref]

Friedrich, M. G.

K. R. Heys, M. G. Friedrich, and R. J. W. Truscott, “Free and bound water in normal and cataractous human lenses,” Invest. Ophthalmol. Visual Sci. 49(5), 1991–1997 (2008).
[Crossref]

Frohlich, L.

Fukazawa, K.

X. J. Lin, K. Fukazawa, and K. Ishihara, “Photoreactive Polymers Bearing a Zwitterionic Phosphorylcholine Group for Surface Modification of Biomaterials,” ACS Appl. Mater. Interfaces 7(31), 17489–17498 (2015).
[Crossref]

Gandara-Montano, G. A.

Gao, Y.

X. N. He, Y. Gao, M. Mahjouri-Samani, P. N. Black, J. Allen, M. Mitchell, W. Xiong, Y. S. Zhou, L. Jiang, and Y. F. Lu, “Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes,” Nanotechnology 23(20), 205702 (2012).
[Crossref]

Garcia, J. F.

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Garcia-Giron, A.

A. Garcia-Giron, D. Sola, and J. I. Pena, “Liquid-assisted laser ablation of advanced ceramics and glass-ceramic materials,” Appl. Surf. Sci. 363, 548–554 (2016).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gidden, J.

J. Gidden, A. T. Jackson, J. H. Scrivens, and M. T. Bowers, “Gas phase conformations of synthetic polymers: poly (methyl methacrylate) oligomers cationized by sodium ions,” Int. J. Mass Spectrom. 188(1-2), 121–130 (1999).
[Crossref]

Goddard, N. J.

Goldstein, R. M.

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite Radar Interferometry - Two-Dimensional Phase Unwrapping,” Radio Sci. 23(4), 713–720 (1988).
[Crossref]

Gomez-Ulla, A.

F. Schiavi, N. Bolfan-Casanova, A. C. Withers, E. Medard, M. Laumonier, D. Laporte, T. Flaherty, and A. Gomez-Ulla, “Water quantification in silicate glasses by Raman spectroscopy: Correcting for the effects of confocality, density and ferric iron,” Chem. Geol. 483, 312–331 (2018).
[Crossref]

Goodacre, R.

H. Muhamadali, M. Chisanga, A. Subaihi, and R. Goodacre, “Combining Raman and FT-IR Spectroscopy with Quantitative Isotopic Labeling for Differentiation of E. coli Cells at Community and Single Cell Levels,” Anal. Chem. 87(8), 4578–4586 (2015).
[Crossref]

Goswami, A.

S. D. Baruah, A. Goswami, and N. N. Dass, “Polymerization of Methyl-Methacrylate by Charge-Transfer Mechanism with Sodium-Azide and Iron(Iii) Complex,” Polym. J. 24(8), 719–726 (1992).
[Crossref]

Grossel, M. C.

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3-4), 583–592 (2003).
[Crossref]

Gu, M.

H. B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83(5), 819–821 (2003).
[Crossref]

Guella, G.

G. Guella, I. Mancini, G. Mariotto, B. Rossi, and G. Viliani, “Vibrational analysis as a powerful tool in structure elucidation of polyarsenicals: a DFT-based investigation of arsenicin A,” Phys. Chem. Chem. Phys. 11(14), 2420–2427 (2009).
[Crossref]

Haškovcová, K.

Hassan, E. A.

M. S. M. Eldin, A. M. Omer, E. A. Soliman, and E. A. Hassan, “Superabsorbent polyacrylamide grafted carboxymethyl cellulose pH sensitive hydrogel: I. Preparation and characterization,” Desalin. Water Treat. 51(16-18), 3196–3206 (2013).
[Crossref]

He, X. N.

X. N. He, Y. Gao, M. Mahjouri-Samani, P. N. Black, J. Allen, M. Mitchell, W. Xiong, Y. S. Zhou, L. Jiang, and Y. F. Lu, “Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes,” Nanotechnology 23(20), 205702 (2012).
[Crossref]

Heys, K. R.

K. R. Heys, M. G. Friedrich, and R. J. W. Truscott, “Free and bound water in normal and cataractous human lenses,” Invest. Ophthalmol. Visual Sci. 49(5), 1991–1997 (2008).
[Crossref]

Hosogi, S.

G. Pezzotti, L. Puppulin, A. La Rosa, M. Boffelli, W. Zhu, B. J. McEntire, S. Hosogi, T. Nakahari, and Y. Marunaka, “Effect of pH and monovalent cations on the Raman spectrum of water: Basics revisited and application to measure concentration gradients at water/solid interface in Si3N4 biomaterial,” Chem. Phys. 463, 120–136 (2015).
[Crossref]

Houbertz, R.

Hu, M. L.

Hu, X. M.

W. M. Cheng, X. M. Hu, Y. Y. Zhao, M. Y. Wu, Z. X. Hu, and X. T. Yu, “Preparation and swelling properties of poly(acrylic acid-co-acrylamide) composite hydrogels,” e-Polym. 17(1), 95–106 (2017).
[Crossref]

Hu, Z. X.

W. M. Cheng, X. M. Hu, Y. Y. Zhao, M. Y. Wu, Z. X. Hu, and X. T. Yu, “Preparation and swelling properties of poly(acrylic acid-co-acrylamide) composite hydrogels,” e-Polym. 17(1), 95–106 (2017).
[Crossref]

Huang, R.

Huser, T.

Huxlin, K. R.

D. E. Savage, D. R. Brooks, M. DeMagistris, L. S. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First Demonstration of Ocular Refractive Change Using Blue-IRIS in Live Cats,” Invest. Ophthalmol. Visual Sci. 55(7), 4603–4612 (2014).
[Crossref]

Ikai, A.

A. Ikai, The World of Nano-Biomechanics (Elsevier, 2008), Chap. 5.

Ikuta, K.

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76(19), 2656–2658 (2000).
[Crossref]

Illera, I. H.

T. Moreno, M. A. M. Lopez, I. H. Illera, C. M. Piqueras, A. S. Arranz, J. G. Serna, and M. J. Cocero, “Quantitative Raman determination of hydrogen peroxide using the solvent as internal standard: Online application in the direct synthesis of hydrogen peroxide,” Chem. Eng. J. 166(3), 1061–1065 (2011).
[Crossref]

Ina, H.

Ishihara, K.

X. J. Lin, K. Fukazawa, and K. Ishihara, “Photoreactive Polymers Bearing a Zwitterionic Phosphorylcholine Group for Surface Modification of Biomaterials,” ACS Appl. Mater. Interfaces 7(31), 17489–17498 (2015).
[Crossref]

Issac, R.

Ivansky, A.

Jackson, A. T.

J. Gidden, A. T. Jackson, J. H. Scrivens, and M. T. Bowers, “Gas phase conformations of synthetic polymers: poly (methyl methacrylate) oligomers cationized by sodium ions,” Int. J. Mass Spectrom. 188(1-2), 121–130 (1999).
[Crossref]

Jani, D.

Jaroszynski, D. A.

Jayaramudu, T.

K. Varaprasad, T. Jayaramudu, and E. R. Sadiku, “Removal of dye by carboxymethyl cellulose, acrylamide and graphene oxide via a free radical polymerization process,” Carbohydr. Polym. 164, 186–194 (2017).
[Crossref]

Ji, X. L.

X. L. Ji, S. C. Jiang, X. P. Qiu, D. W. Dong, D. H. Yu, and B. Z. Jiang, “Structure and properties of hybrid poly(2-hydroxyethyl methacrylate)/SiO2 monoliths,” J. Appl. Polym. Sci. 88(14), 3168–3175 (2003).
[Crossref]

Jia, W.

Jiang, B. Z.

X. L. Ji, S. C. Jiang, X. P. Qiu, D. W. Dong, D. H. Yu, and B. Z. Jiang, “Structure and properties of hybrid poly(2-hydroxyethyl methacrylate)/SiO2 monoliths,” J. Appl. Polym. Sci. 88(14), 3168–3175 (2003).
[Crossref]

Jiang, L.

X. N. He, Y. Gao, M. Mahjouri-Samani, P. N. Black, J. Allen, M. Mitchell, W. Xiong, Y. S. Zhou, L. Jiang, and Y. F. Lu, “Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes,” Nanotechnology 23(20), 205702 (2012).
[Crossref]

Jiang, S. C.

X. L. Ji, S. C. Jiang, X. P. Qiu, D. W. Dong, D. H. Yu, and B. Z. Jiang, “Structure and properties of hybrid poly(2-hydroxyethyl methacrylate)/SiO2 monoliths,” J. Appl. Polym. Sci. 88(14), 3168–3175 (2003).
[Crossref]

Jiang, Z. X.

Jiao, Y.

Q. Y. Chai, Y. Jiao, and X. J. Yu, “Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them,” Gels 3(1), 6 (2017).
[Crossref]

Jones, D.

Jorio, A.

A. M. Miranda, E. W. Castilho-Almeida, E. H. M. Ferreira, G. F. Moreira, C. A. Achete, R. A. S. Z. Armond, H. F. Dos Santos, and A. Jorio, “Line shape analysis of the Raman spectra from pure and mixed biofuels esters compounds,” Fuel 115, 118–125 (2014).
[Crossref]

Jovanovic, Z.

Z. Jovanovic, A. Radosavljevic, M. Siljegovic, N. Bibic, V. Miskovic-Stankovic, and Z. Kacarevic-Popovic, “Structural and optical characteristics of silver/poly(N-vinyl-2-pyrrolidone) nanosystems synthesized by gamma-irradiation,” Radiat. Phys. Chem. 81(11), 1720–1728 (2012).
[Crossref]

Kacarevic-Popovic, Z.

Z. Jovanovic, A. Radosavljevic, M. Siljegovic, N. Bibic, V. Miskovic-Stankovic, and Z. Kacarevic-Popovic, “Structural and optical characteristics of silver/poly(N-vinyl-2-pyrrolidone) nanosystems synthesized by gamma-irradiation,” Radiat. Phys. Chem. 81(11), 1720–1728 (2012).
[Crossref]

Kadic, M.

J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization Kinetics in Three-Dimensional Direct Laser Writing,” Adv. Mater. 26(38), 6566–6571 (2014).
[Crossref]

Kaschke, J.

Kawata, S.

H. B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83(5), 819–821 (2003).
[Crossref]

Keller, K. A.

S. Pradhan, K. A. Keller, J. L. Sperduto, and J. H. Slater, “Fundamentals of Laser-Based Hydrogel Degradation and Applications in Cell and Tissue Engineering,” Adv. Healthcare Mater. 6(24), 1700681 (2017).
[Crossref]

Kemal, E.

E. Kemal and S. Deb, “Design and synthesis of three-dimensional hydrogel scaffolds for intervertebral disc repair,” J. Mater. Chem. 22(21), 10725–10735 (2012).
[Crossref]

Knox, W. H.

R. Huang and W. H. Knox, “Quantitative photochemical scaling model for femtosecond laser micromachining of ophthalmic hydrogel polymers: effect of repetition rate and laser power in the four photon absorption limit,” Opt. Mater. Express 9(3), 1049–1061 (2019).
[Crossref]

G. A. Gandara-Montano, L. Zheleznyak, and W. H. Knox, “Optical quality of hydrogel ophthalmic devices created with femtosecond laser induced refractive index modification,” Opt. Mater. Express 8(2), 295–313 (2018).
[Crossref]

G. A. Gandara-Montano, V. Stoy, M. Dudič, V. Petrák, K. Haškovcová, and W. H. Knox, “Large optical phase shifts in hydrogels written with femtosecond laser pulses: elucidating the role of localized water concentration changes,” Opt. Mater. Express 7(9), 3162 (2017).
[Crossref]

G. A. Gandara-Montano, A. Ivansky, D. E. Savage, J. D. Ellis, and W. H. Knox, “Femtosecond laser writing of freeform gradient index microlenses in hydrogel-based contact lenses,” Opt. Mater. Express 5(10), 2257 (2015).
[Crossref]

D. E. Savage, D. R. Brooks, M. DeMagistris, L. S. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First Demonstration of Ocular Refractive Change Using Blue-IRIS in Live Cats,” Invest. Ophthalmol. Visual Sci. 55(7), 4603–4612 (2014).
[Crossref]

L. Ding, D. Jani, J. Linhardt, J. F. Kunzler, S. Pawar, G. Labenski, T. Smith, and W. H. Knox, “Large enhancement of femtosecond laser micromachining speed in dye-doped hydrogel polymers,” Opt. Express 16(26), 21914–21921 (2008).
[Crossref]

L. Ding, R. Blackwell, J. F. Kunzler, and W. H. Knox, “Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micro-machining,” Opt. Express 14(24), 11901–11909 (2006).
[Crossref]

W. H. Knox, “Nonlinear Optics: Femtosecond lasers and nonlinear optics: New approaches solve old problems in ophthalmology,” Laser Focus World, 22–25 (2018).

R. Huang and W. H. Knox, “Femtosecond micro-machining of hydrogels: parametric study and photochemical model including material saturation,” Opt. Mater. Express (submitted).

Kobayashi, S.

Koo, J. S.

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3-4), 583–592 (2003).
[Crossref]

Krol, D. M.

Kruusing, A.

A. Kruusing, “Underwater and water-assisted laser processing: Part 2 - Etching, cutting and rarely used methods,” Opt. Laser Eng. 41(2), 329–352 (2004).
[Crossref]

Kukura, P.

P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Annu. Rev. Phys. Chem. 58(1), 461–488 (2007).
[Crossref]

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum. 75(11), 4971–4980 (2004).
[Crossref]

Kunzler, J. F.

La Rosa, A.

G. Pezzotti, L. Puppulin, A. La Rosa, M. Boffelli, W. Zhu, B. J. McEntire, S. Hosogi, T. Nakahari, and Y. Marunaka, “Effect of pH and monovalent cations on the Raman spectrum of water: Basics revisited and application to measure concentration gradients at water/solid interface in Si3N4 biomaterial,” Chem. Phys. 463, 120–136 (2015).
[Crossref]

Labenski, G.

Laghouissa, A.

Lai, N. D.

Laporte, D.

F. Schiavi, N. Bolfan-Casanova, A. C. Withers, E. Medard, M. Laumonier, D. Laporte, T. Flaherty, and A. Gomez-Ulla, “Water quantification in silicate glasses by Raman spectroscopy: Correcting for the effects of confocality, density and ferric iron,” Chem. Geol. 483, 312–331 (2018).
[Crossref]

Laumonier, M.

F. Schiavi, N. Bolfan-Casanova, A. C. Withers, E. Medard, M. Laumonier, D. Laporte, T. Flaherty, and A. Gomez-Ulla, “Water quantification in silicate glasses by Raman spectroscopy: Correcting for the effects of confocality, density and ferric iron,” Chem. Geol. 483, 312–331 (2018).
[Crossref]

Ledoux-Rak, I.

Li, Q. G. L.

Lin, X. J.

X. J. Lin, K. Fukazawa, and K. Ishihara, “Photoreactive Polymers Bearing a Zwitterionic Phosphorylcholine Group for Surface Modification of Biomaterials,” ACS Appl. Mater. Interfaces 7(31), 17489–17498 (2015).
[Crossref]

Linhardt, J.

Liu, B. W.

Liu, D.

Liu, Z.

Z. Liu, B. X. Wu, A. Samanta, N. G. Shen, H. T. Ding, R. Xu, and K. J. Zhao, “Ultrasound-assisted water-confined laser micromachining (UWLM) of metals: Experimental study and time-resolved observation (vol 245, pg 259, 2017),” J. Mater. Process. Technol. 248, 79 (2017).
[Crossref]

Lopez, M. A. M.

T. Moreno, M. A. M. Lopez, I. H. Illera, C. M. Piqueras, A. S. Arranz, J. G. Serna, and M. J. Cocero, “Quantitative Raman determination of hydrogen peroxide using the solvent as internal standard: Online application in the direct synthesis of hydrogen peroxide,” Chem. Eng. J. 166(3), 1061–1065 (2011).
[Crossref]

Loterie, D.

Lu, Y. F.

X. N. He, Y. Gao, M. Mahjouri-Samani, P. N. Black, J. Allen, M. Mitchell, W. Xiong, Y. S. Zhou, L. Jiang, and Y. F. Lu, “Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes,” Nanotechnology 23(20), 205702 (2012).
[Crossref]

Lucarini, V.

Luo, Y. M.

MacRae, S.

D. E. Savage, D. R. Brooks, M. DeMagistris, L. S. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First Demonstration of Ocular Refractive Change Using Blue-IRIS in Live Cats,” Invest. Ophthalmol. Visual Sci. 55(7), 4603–4612 (2014).
[Crossref]

Maeda, M.

H. B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83(5), 819–821 (2003).
[Crossref]

Mahjouri-Samani, M.

X. N. He, Y. Gao, M. Mahjouri-Samani, P. N. Black, J. Allen, M. Mitchell, W. Xiong, Y. S. Zhou, L. Jiang, and Y. F. Lu, “Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes,” Nanotechnology 23(20), 205702 (2012).
[Crossref]

Mancini, I.

G. Guella, I. Mancini, G. Mariotto, B. Rossi, and G. Viliani, “Vibrational analysis as a powerful tool in structure elucidation of polyarsenicals: a DFT-based investigation of arsenicin A,” Phys. Chem. Chem. Phys. 11(14), 2420–2427 (2009).
[Crossref]

Mariotto, G.

G. Guella, I. Mancini, G. Mariotto, B. Rossi, and G. Viliani, “Vibrational analysis as a powerful tool in structure elucidation of polyarsenicals: a DFT-based investigation of arsenicin A,” Phys. Chem. Chem. Phys. 11(14), 2420–2427 (2009).
[Crossref]

Marunaka, Y.

G. Pezzotti, L. Puppulin, A. La Rosa, M. Boffelli, W. Zhu, B. J. McEntire, S. Hosogi, T. Nakahari, and Y. Marunaka, “Effect of pH and monovalent cations on the Raman spectrum of water: Basics revisited and application to measure concentration gradients at water/solid interface in Si3N4 biomaterial,” Chem. Phys. 463, 120–136 (2015).
[Crossref]

Maruo, S.

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76(19), 2656–2658 (2000).
[Crossref]

Mathew, P.

V. Tangwarodomnukun, J. Wang, and P. Mathew, “A Comparison of Dry and Underwater Laser Micromachining of Silicon Substrates,” Key Eng. Mater. 443, 693–698 (2010).
[Crossref]

Mathies, R. A.

P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Annu. Rev. Phys. Chem. 58(1), 461–488 (2007).
[Crossref]

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum. 75(11), 4971–4980 (2004).
[Crossref]

Mayer, F.

J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization Kinetics in Three-Dimensional Direct Laser Writing,” Adv. Mater. 26(38), 6566–6571 (2014).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

McCamant, D. W.

P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Annu. Rev. Phys. Chem. 58(1), 461–488 (2007).
[Crossref]

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum. 75(11), 4971–4980 (2004).
[Crossref]

McEntire, B. J.

G. Pezzotti, L. Puppulin, A. La Rosa, M. Boffelli, W. Zhu, B. J. McEntire, S. Hosogi, T. Nakahari, and Y. Marunaka, “Effect of pH and monovalent cations on the Raman spectrum of water: Basics revisited and application to measure concentration gradients at water/solid interface in Si3N4 biomaterial,” Chem. Phys. 463, 120–136 (2015).
[Crossref]

Medard, E.

F. Schiavi, N. Bolfan-Casanova, A. C. Withers, E. Medard, M. Laumonier, D. Laporte, T. Flaherty, and A. Gomez-Ulla, “Water quantification in silicate glasses by Raman spectroscopy: Correcting for the effects of confocality, density and ferric iron,” Chem. Geol. 483, 312–331 (2018).
[Crossref]

Metev, S.

C. Wochnowski, M. A. S. Eldin, and S. Metev, “UV-laser-assisted degradation of poly(methyl methacrylate),” Polym. Degrad. Stab. 89(2), 252–264 (2005).
[Crossref]

Ming, H.

X. S. Xu, H. Ming, Q. J. Zhang, and Y. S. Zhang, “Properties of Raman spectra and laser-induced birefringence in polymethyl methacrylate optical fibres,” J. Opt. A: Pure Appl. Opt. 4(3), 237–242 (2002).
[Crossref]

Miranda, A. M.

A. M. Miranda, E. W. Castilho-Almeida, E. H. M. Ferreira, G. F. Moreira, C. A. Achete, R. A. S. Z. Armond, H. F. Dos Santos, and A. Jorio, “Line shape analysis of the Raman spectra from pure and mixed biofuels esters compounds,” Fuel 115, 118–125 (2014).
[Crossref]

Miskovic-Stankovic, V.

Z. Jovanovic, A. Radosavljevic, M. Siljegovic, N. Bibic, V. Miskovic-Stankovic, and Z. Kacarevic-Popovic, “Structural and optical characteristics of silver/poly(N-vinyl-2-pyrrolidone) nanosystems synthesized by gamma-irradiation,” Radiat. Phys. Chem. 81(11), 1720–1728 (2012).
[Crossref]

Mitchell, M.

X. N. He, Y. Gao, M. Mahjouri-Samani, P. N. Black, J. Allen, M. Mitchell, W. Xiong, Y. S. Zhou, L. Jiang, and Y. F. Lu, “Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes,” Nanotechnology 23(20), 205702 (2012).
[Crossref]

Montagnac, G.

A. Di Muro, B. Villemant, G. Montagnac, B. Scaillet, and B. Reynard, “Quantification of water content and speciation in natural silicic glasses (phonolite, dacite, rhyolite) by confocal microRaman spectrometry,” Geochim. Cosmochim. Acta 70(11), 2868–2884 (2006).
[Crossref]

Monti, P.

P. Monti, R. Simoni, R. Caramazza, and A. Bertoluzza, “Applications of Raman spectroscopy to ophthalmology: Spectroscopic characterization of disposable soft contact lenses,” Biospectroscopy 4(6), 413–419 (1998).
[Crossref]

Moreira, G. F.

A. M. Miranda, E. W. Castilho-Almeida, E. H. M. Ferreira, G. F. Moreira, C. A. Achete, R. A. S. Z. Armond, H. F. Dos Santos, and A. Jorio, “Line shape analysis of the Raman spectra from pure and mixed biofuels esters compounds,” Fuel 115, 118–125 (2014).
[Crossref]

Moreno, T.

T. Moreno, M. A. M. Lopez, I. H. Illera, C. M. Piqueras, A. S. Arranz, J. G. Serna, and M. J. Cocero, “Quantitative Raman determination of hydrogen peroxide using the solvent as internal standard: Online application in the direct synthesis of hydrogen peroxide,” Chem. Eng. J. 166(3), 1061–1065 (2011).
[Crossref]

Moser, C.

Motzkus, M.

Mueller, J. B.

J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization Kinetics in Three-Dimensional Direct Laser Writing,” Adv. Mater. 26(38), 6566–6571 (2014).
[Crossref]

J. Fischer, J. B. Mueller, J. Kaschke, T. J. A. Wolf, A. N. Unterreiner, and M. Wegener, “Three-dimensional multi-photon direct laser writing with variable repetition rate,” Opt. Express 21(22), 26244–26260 (2013).
[Crossref]

Muhamadali, H.

H. Muhamadali, M. Chisanga, A. Subaihi, and R. Goodacre, “Combining Raman and FT-IR Spectroscopy with Quantitative Isotopic Labeling for Differentiation of E. coli Cells at Community and Single Cell Levels,” Anal. Chem. 87(8), 4578–4586 (2015).
[Crossref]

Muniz, E. C.

E. G. Crispim, J. F. Piai, A. R. Fajardo, E. R. F. Ramos, T. U. Nakamura, C. V. Nakamura, A. F. Rubira, and E. C. Muniz, “Hydrogels based on chemically modified poly(vinyl alcohol) (PVA-GMA) and PVA-GMA/chondroitin sulfate: Preparation and characterization,” eXPRESS Polym. Lett. 6(5), 383–395 (2012).
[Crossref]

Naik, V. V.

V. V. Naik and S. Vasudevan, “Effect of Alkyl Chain Arrangement on Conformation and Dynamics in a Surfactant Intercalated Layered Double Hydroxide: Spectroscopic Measurements and MD Simulations,” J. Phys. Chem. C 115(16), 8221–8232 (2011).
[Crossref]

Nakahari, T.

G. Pezzotti, L. Puppulin, A. La Rosa, M. Boffelli, W. Zhu, B. J. McEntire, S. Hosogi, T. Nakahari, and Y. Marunaka, “Effect of pH and monovalent cations on the Raman spectrum of water: Basics revisited and application to measure concentration gradients at water/solid interface in Si3N4 biomaterial,” Chem. Phys. 463, 120–136 (2015).
[Crossref]

Nakamura, C. V.

E. G. Crispim, J. F. Piai, A. R. Fajardo, E. R. F. Ramos, T. U. Nakamura, C. V. Nakamura, A. F. Rubira, and E. C. Muniz, “Hydrogels based on chemically modified poly(vinyl alcohol) (PVA-GMA) and PVA-GMA/chondroitin sulfate: Preparation and characterization,” eXPRESS Polym. Lett. 6(5), 383–395 (2012).
[Crossref]

Nakamura, T. U.

E. G. Crispim, J. F. Piai, A. R. Fajardo, E. R. F. Ramos, T. U. Nakamura, C. V. Nakamura, A. F. Rubira, and E. C. Muniz, “Hydrogels based on chemically modified poly(vinyl alcohol) (PVA-GMA) and PVA-GMA/chondroitin sulfate: Preparation and characterization,” eXPRESS Polym. Lett. 6(5), 383–395 (2012).
[Crossref]

Nampoori, V. P. N.

K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A: Pure Appl. Opt. 10(5), 055303 (2008).
[Crossref]

Neumann, M. G.

B. D. Fecchio, S. R. Valandro, M. G. Neumann, and C. C. S. Cavalheiro, “Thermal Decomposition of Polymer/Montmorillonite Nanocomposites Synthesized in situ on a Clay Surface,” J. Braz. Chem. Soc. 27(2), 278–284 (2015).
[Crossref]

Nguyen, T. T. N.

Nolte, S.

Omer, A. M.

M. S. M. Eldin, A. M. Omer, E. A. Soliman, and E. A. Hassan, “Superabsorbent polyacrylamide grafted carboxymethyl cellulose pH sensitive hydrogel: I. Preparation and characterization,” Desalin. Water Treat. 51(16-18), 3196–3206 (2013).
[Crossref]

Ostendorf, A.

Padalkar, S.

M. Tran, A. Fallatah, A. Whale, and S. Padalkar, “Utilization of Inexpensive Carbon-Based Substrates as Platforms for Sensing,” Sensors 18(8), 2444 (2018).
[Crossref]

Pawar, S.

Pena, J. I.

A. Garcia-Giron, D. Sola, and J. I. Pena, “Liquid-assisted laser ablation of advanced ceramics and glass-ceramic materials,” Appl. Surf. Sci. 363, 548–554 (2016).
[Crossref]

Perrie, W.

Petrák, V.

Pezzotti, G.

G. Pezzotti, L. Puppulin, A. La Rosa, M. Boffelli, W. Zhu, B. J. McEntire, S. Hosogi, T. Nakahari, and Y. Marunaka, “Effect of pH and monovalent cations on the Raman spectrum of water: Basics revisited and application to measure concentration gradients at water/solid interface in Si3N4 biomaterial,” Chem. Phys. 463, 120–136 (2015).
[Crossref]

Piai, J. F.

E. G. Crispim, J. F. Piai, A. R. Fajardo, E. R. F. Ramos, T. U. Nakamura, C. V. Nakamura, A. F. Rubira, and E. C. Muniz, “Hydrogels based on chemically modified poly(vinyl alcohol) (PVA-GMA) and PVA-GMA/chondroitin sulfate: Preparation and characterization,” eXPRESS Polym. Lett. 6(5), 383–395 (2012).
[Crossref]

Piqueras, C. M.

T. Moreno, M. A. M. Lopez, I. H. Illera, C. M. Piqueras, A. S. Arranz, J. G. Serna, and M. J. Cocero, “Quantitative Raman determination of hydrogen peroxide using the solvent as internal standard: Online application in the direct synthesis of hydrogen peroxide,” Chem. Eng. J. 166(3), 1061–1065 (2011).
[Crossref]

Popall, M.

Pradhan, S.

S. Pradhan, K. A. Keller, J. L. Sperduto, and J. H. Slater, “Fundamentals of Laser-Based Hydrogel Degradation and Applications in Cell and Tissue Engineering,” Adv. Healthcare Mater. 6(24), 1700681 (2017).
[Crossref]

Psaltis, D.

Puppulin, L.

G. Pezzotti, L. Puppulin, A. La Rosa, M. Boffelli, W. Zhu, B. J. McEntire, S. Hosogi, T. Nakahari, and Y. Marunaka, “Effect of pH and monovalent cations on the Raman spectrum of water: Basics revisited and application to measure concentration gradients at water/solid interface in Si3N4 biomaterial,” Chem. Phys. 463, 120–136 (2015).
[Crossref]

Qin, C. J.

Q. Sun and C. J. Qin, “Raman OH stretching band of water as an internal standard to determine carbonate concentrations,” Chem. Geol. 283(3-4), 274–278 (2011).
[Crossref]

Qiu, X. P.

X. L. Ji, S. C. Jiang, X. P. Qiu, D. W. Dong, D. H. Yu, and B. Z. Jiang, “Structure and properties of hybrid poly(2-hydroxyethyl methacrylate)/SiO2 monoliths,” J. Appl. Polym. Sci. 88(14), 3168–3175 (2003).
[Crossref]

Radhakrishnan, P.

K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A: Pure Appl. Opt. 10(5), 055303 (2008).
[Crossref]

Radosavljevic, A.

Z. Jovanovic, A. Radosavljevic, M. Siljegovic, N. Bibic, V. Miskovic-Stankovic, and Z. Kacarevic-Popovic, “Structural and optical characteristics of silver/poly(N-vinyl-2-pyrrolidone) nanosystems synthesized by gamma-irradiation,” Radiat. Phys. Chem. 81(11), 1720–1728 (2012).
[Crossref]

Ram, S.

M. Behera and S. Ram, “Synthesis and characterization of core-shell gold nanoparticles with poly(vinyl pyrrolidone) from a new precursor salt,” Appl. Nanosci. 3(1), 83–87 (2013).
[Crossref]

Ramos, E. R. F.

E. G. Crispim, J. F. Piai, A. R. Fajardo, E. R. F. Ramos, T. U. Nakamura, C. V. Nakamura, A. F. Rubira, and E. C. Muniz, “Hydrogels based on chemically modified poly(vinyl alcohol) (PVA-GMA) and PVA-GMA/chondroitin sulfate: Preparation and characterization,” eXPRESS Polym. Lett. 6(5), 383–395 (2012).
[Crossref]

Reynard, B.

A. Di Muro, B. Villemant, G. Montagnac, B. Scaillet, and B. Reynard, “Quantification of water content and speciation in natural silicic glasses (phonolite, dacite, rhyolite) by confocal microRaman spectrometry,” Geochim. Cosmochim. Acta 70(11), 2868–2884 (2006).
[Crossref]

Risbud, S.

Riziotis, C.

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3-4), 583–592 (2003).
[Crossref]

Romano, C.

D. Di Genova, S. Sicola, C. Romano, A. Vona, S. Fanara, and L. Spina, “Effect of iron and nanolites on Raman spectra of volcanic glasses: A reassessment of existing strategies to estimate the water content,” Chem. Geol. 475, 76–86 (2017).
[Crossref]

Rossi, B.

G. Guella, I. Mancini, G. Mariotto, B. Rossi, and G. Viliani, “Vibrational analysis as a powerful tool in structure elucidation of polyarsenicals: a DFT-based investigation of arsenicin A,” Phys. Chem. Chem. Phys. 11(14), 2420–2427 (2009).
[Crossref]

Rubira, A. F.

E. G. Crispim, J. F. Piai, A. R. Fajardo, E. R. F. Ramos, T. U. Nakamura, C. V. Nakamura, A. F. Rubira, and E. C. Muniz, “Hydrogels based on chemically modified poly(vinyl alcohol) (PVA-GMA) and PVA-GMA/chondroitin sulfate: Preparation and characterization,” eXPRESS Polym. Lett. 6(5), 383–395 (2012).
[Crossref]

Russo, A. V.

T. V. Chirila, G. D. Barrett, A. V. Russo, I. J. Constable, P. P. Vansaarloos, and C. I. Russo, “Laser-Induced Damage to Transparent Polymers - Chemical Effect of Short-Pulsed (Q-Switched) Nd-Yag Laser-Radiation on Ophthalmic Acrylic Biomaterials .2. Study of Monomer Release from Artificial Intraocular Lenses,” Biomaterials 11(5), 313–320 (1990).
[Crossref]

Russo, C. I.

T. V. Chirila, G. D. Barrett, A. V. Russo, I. J. Constable, P. P. Vansaarloos, and C. I. Russo, “Laser-Induced Damage to Transparent Polymers - Chemical Effect of Short-Pulsed (Q-Switched) Nd-Yag Laser-Radiation on Ophthalmic Acrylic Biomaterials .2. Study of Monomer Release from Artificial Intraocular Lenses,” Biomaterials 11(5), 313–320 (1990).
[Crossref]

Sadiku, E. R.

K. Varaprasad, T. Jayaramudu, and E. R. Sadiku, “Removal of dye by carboxymethyl cellulose, acrylamide and graphene oxide via a free radical polymerization process,” Carbohydr. Polym. 164, 186–194 (2017).
[Crossref]

Sahler, R.

J. F. Bille, J. Engelhardt, H. R. Volpp, A. Laghouissa, M. Motzkus, Z. X. Jiang, and R. Sahler, “Chemical basis for alteration of an intraocular lens using a femtosecond laser,” Biomed. Opt. Express 8(3), 1390–1404 (2017).
[Crossref]

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refractive Surg. 42(8), 1207–1215 (2016).
[Crossref]

Samanta, A.

Z. Liu, B. X. Wu, A. Samanta, N. G. Shen, H. T. Ding, R. Xu, and K. J. Zhao, “Ultrasound-assisted water-confined laser micromachining (UWLM) of metals: Experimental study and time-resolved observation (vol 245, pg 259, 2017),” J. Mater. Process. Technol. 248, 79 (2017).
[Crossref]

Samuel, A. Z.

A. Z. Samuel and S. Umapathy, “Energy funneling and macromolecular conformational dynamics: a 2D Raman correlation study of PEG melting,” Polym. J. 46(6), 330–336 (2014).
[Crossref]

Samulski, E. T.

Q. Zhao and E. T. Samulski, “In situ polymerization of poly(methyl methacrylate)/clay nanocomposites in supercritical carbon dioxide,” Macromolecules 38(19), 7967–7971 (2005).
[Crossref]

Savage, D. E.

G. A. Gandara-Montano, A. Ivansky, D. E. Savage, J. D. Ellis, and W. H. Knox, “Femtosecond laser writing of freeform gradient index microlenses in hydrogel-based contact lenses,” Opt. Mater. Express 5(10), 2257 (2015).
[Crossref]

D. E. Savage, D. R. Brooks, M. DeMagistris, L. S. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First Demonstration of Ocular Refractive Change Using Blue-IRIS in Live Cats,” Invest. Ophthalmol. Visual Sci. 55(7), 4603–4612 (2014).
[Crossref]

Scaillet, B.

A. Di Muro, B. Villemant, G. Montagnac, B. Scaillet, and B. Reynard, “Quantification of water content and speciation in natural silicic glasses (phonolite, dacite, rhyolite) by confocal microRaman spectrometry,” Geochim. Cosmochim. Acta 70(11), 2868–2884 (2006).
[Crossref]

Schaffer, C. B.

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Schiavi, F.

F. Schiavi, N. Bolfan-Casanova, A. C. Withers, E. Medard, M. Laumonier, D. Laporte, T. Flaherty, and A. Gomez-Ulla, “Water quantification in silicate glasses by Raman spectroscopy: Correcting for the effects of confocality, density and ferric iron,” Chem. Geol. 483, 312–331 (2018).
[Crossref]

Scholl, M. S.

Schulz, J.

Scrivens, J. H.

J. Gidden, A. T. Jackson, J. H. Scrivens, and M. T. Bowers, “Gas phase conformations of synthetic polymers: poly (methyl methacrylate) oligomers cationized by sodium ions,” Int. J. Mass Spectrom. 188(1-2), 121–130 (1999).
[Crossref]

Scully, P. J.

Seki, Y.

Y. Seki, A. Altinisik, B. Demircioglu, and C. Tetik, “Carboxymethylcellulose (CMC)-hydroxyethylcellulose (HEC) based hydrogels: synthesis and characterization,” Cellulose 21(3), 1689–1698 (2014).
[Crossref]

Serbin, J.

Serna, J. G.

T. Moreno, M. A. M. Lopez, I. H. Illera, C. M. Piqueras, A. S. Arranz, J. G. Serna, and M. J. Cocero, “Quantitative Raman determination of hydrogen peroxide using the solvent as internal standard: Online application in the direct synthesis of hydrogen peroxide,” Chem. Eng. J. 166(3), 1061–1065 (2011).
[Crossref]

Sheeba, M.

K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A: Pure Appl. Opt. 10(5), 055303 (2008).
[Crossref]

Shen, N. G.

Z. Liu, B. X. Wu, A. Samanta, N. G. Shen, H. T. Ding, R. Xu, and K. J. Zhao, “Ultrasound-assisted water-confined laser micromachining (UWLM) of metals: Experimental study and time-resolved observation (vol 245, pg 259, 2017),” J. Mater. Process. Technol. 248, 79 (2017).
[Crossref]

Sicola, S.

D. Di Genova, S. Sicola, C. Romano, A. Vona, S. Fanara, and L. Spina, “Effect of iron and nanolites on Raman spectra of volcanic glasses: A reassessment of existing strategies to estimate the water content,” Chem. Geol. 475, 76–86 (2017).
[Crossref]

Siljegovic, M.

Z. Jovanovic, A. Radosavljevic, M. Siljegovic, N. Bibic, V. Miskovic-Stankovic, and Z. Kacarevic-Popovic, “Structural and optical characteristics of silver/poly(N-vinyl-2-pyrrolidone) nanosystems synthesized by gamma-irradiation,” Radiat. Phys. Chem. 81(11), 1720–1728 (2012).
[Crossref]

Simoni, R.

P. Monti, R. Simoni, R. Caramazza, and A. Bertoluzza, “Applications of Raman spectroscopy to ophthalmology: Spectroscopic characterization of disposable soft contact lenses,” Biospectroscopy 4(6), 413–419 (1998).
[Crossref]

Slater, J. H.

S. Pradhan, K. A. Keller, J. L. Sperduto, and J. H. Slater, “Fundamentals of Laser-Based Hydrogel Degradation and Applications in Cell and Tissue Engineering,” Adv. Healthcare Mater. 6(24), 1700681 (2017).
[Crossref]

Smith, P. G. R.

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3-4), 583–592 (2003).
[Crossref]

Smith, R.

R. Smith, K. L. Wright, and L. Ashton, “Raman spectroscopy: an evolving technique for live cell studies,” Analyst 141(12), 3590–3600 (2016).
[Crossref]

Smith, T.

Sola, D.

A. Garcia-Giron, D. Sola, and J. I. Pena, “Liquid-assisted laser ablation of advanced ceramics and glass-ceramic materials,” Appl. Surf. Sci. 363, 548–554 (2016).
[Crossref]

Soliman, E. A.

M. S. M. Eldin, A. M. Omer, E. A. Soliman, and E. A. Hassan, “Superabsorbent polyacrylamide grafted carboxymethyl cellulose pH sensitive hydrogel: I. Preparation and characterization,” Desalin. Water Treat. 51(16-18), 3196–3206 (2013).
[Crossref]

Sperduto, J. L.

S. Pradhan, K. A. Keller, J. L. Sperduto, and J. H. Slater, “Fundamentals of Laser-Based Hydrogel Degradation and Applications in Cell and Tissue Engineering,” Adv. Healthcare Mater. 6(24), 1700681 (2017).
[Crossref]

Spina, L.

D. Di Genova, S. Sicola, C. Romano, A. Vona, S. Fanara, and L. Spina, “Effect of iron and nanolites on Raman spectra of volcanic glasses: A reassessment of existing strategies to estimate the water content,” Chem. Geol. 475, 76–86 (2017).
[Crossref]

Srinivasan, R.

E. Sutcliffe and R. Srinivasan, “Dynamics of UV Laser Ablation of Organic Polymer Surfaces,” J. Appl. Phys. 60(9), 3315–3322 (1986).
[Crossref]

Stoy, V.

Subaihi, A.

H. Muhamadali, M. Chisanga, A. Subaihi, and R. Goodacre, “Combining Raman and FT-IR Spectroscopy with Quantitative Isotopic Labeling for Differentiation of E. coli Cells at Community and Single Cell Levels,” Anal. Chem. 87(8), 4578–4586 (2015).
[Crossref]

Sun, H. B.

H. B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83(5), 819–821 (2003).
[Crossref]

Sun, Q.

Q. Sun and C. J. Qin, “Raman OH stretching band of water as an internal standard to determine carbonate concentrations,” Chem. Geol. 283(3-4), 274–278 (2011).
[Crossref]

Sutcliffe, E.

E. Sutcliffe and R. Srinivasan, “Dynamics of UV Laser Ablation of Organic Polymer Surfaces,” J. Appl. Phys. 60(9), 3315–3322 (1986).
[Crossref]

Suzaki, Y.

Tachibana, A.

Takada, K.

H. B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83(5), 819–821 (2003).
[Crossref]

Takeda, M.

Tangwarodomnukun, V.

V. Tangwarodomnukun, J. Wang, and P. Mathew, “A Comparison of Dry and Underwater Laser Micromachining of Silicon Substrates,” Key Eng. Mater. 443, 693–698 (2010).
[Crossref]

Tetik, C.

Y. Seki, A. Altinisik, B. Demircioglu, and C. Tetik, “Carboxymethylcellulose (CMC)-hydroxyethylcellulose (HEC) based hydrogels: synthesis and characterization,” Cellulose 21(3), 1689–1698 (2014).
[Crossref]

Thiel, M.

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
[Crossref]

Thomas, C. L. P.

Thomas, K. J.

K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A: Pure Appl. Opt. 10(5), 055303 (2008).
[Crossref]

Tran, M.

M. Tran, A. Fallatah, A. Whale, and S. Padalkar, “Utilization of Inexpensive Carbon-Based Substrates as Platforms for Sensing,” Sensors 18(8), 2444 (2018).
[Crossref]

Truscott, R. J. W.

K. R. Heys, M. G. Friedrich, and R. J. W. Truscott, “Free and bound water in normal and cataractous human lenses,” Invest. Ophthalmol. Visual Sci. 49(5), 1991–1997 (2008).
[Crossref]

Tunnermann, A.

Umapathy, S.

A. Z. Samuel and S. Umapathy, “Energy funneling and macromolecular conformational dynamics: a 2D Raman correlation study of PEG melting,” Polym. J. 46(6), 330–336 (2014).
[Crossref]

Unterreiner, A. N.

Valandro, S. R.

B. D. Fecchio, S. R. Valandro, M. G. Neumann, and C. C. S. Cavalheiro, “Thermal Decomposition of Polymer/Montmorillonite Nanocomposites Synthesized in situ on a Clay Surface,” J. Braz. Chem. Soc. 27(2), 278–284 (2015).
[Crossref]

Valenzuela, L. M.

M. A. Bag and L. M. Valenzuela, “Impact of the Hydration States of Polymers on Their Hemocompatibility for Medical Applications: A Review,” Int. J. Mol. Sci. 18(8), 1422 (2017).
[Crossref]

Vallabhan, C. P. G.

K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A: Pure Appl. Opt. 10(5), 055303 (2008).
[Crossref]

Vansaarloos, P. P.

T. V. Chirila, G. D. Barrett, A. V. Russo, I. J. Constable, P. P. Vansaarloos, and C. I. Russo, “Laser-Induced Damage to Transparent Polymers - Chemical Effect of Short-Pulsed (Q-Switched) Nd-Yag Laser-Radiation on Ophthalmic Acrylic Biomaterials .2. Study of Monomer Release from Artificial Intraocular Lenses,” Biomaterials 11(5), 313–320 (1990).
[Crossref]

Varaprasad, K.

K. Varaprasad, T. Jayaramudu, and E. R. Sadiku, “Removal of dye by carboxymethyl cellulose, acrylamide and graphene oxide via a free radical polymerization process,” Carbohydr. Polym. 164, 186–194 (2017).
[Crossref]

Vasudevan, S.

V. V. Naik and S. Vasudevan, “Effect of Alkyl Chain Arrangement on Conformation and Dynamics in a Surfactant Intercalated Layered Double Hydroxide: Spectroscopic Measurements and MD Simulations,” J. Phys. Chem. C 115(16), 8221–8232 (2011).
[Crossref]

Viliani, G.

G. Guella, I. Mancini, G. Mariotto, B. Rossi, and G. Viliani, “Vibrational analysis as a powerful tool in structure elucidation of polyarsenicals: a DFT-based investigation of arsenicin A,” Phys. Chem. Chem. Phys. 11(14), 2420–2427 (2009).
[Crossref]

Villemant, B.

A. Di Muro, B. Villemant, G. Montagnac, B. Scaillet, and B. Reynard, “Quantification of water content and speciation in natural silicic glasses (phonolite, dacite, rhyolite) by confocal microRaman spectrometry,” Geochim. Cosmochim. Acta 70(11), 2868–2884 (2006).
[Crossref]

Volpp, H. R.

von Freymann, G.

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
[Crossref]

Vona, A.

D. Di Genova, S. Sicola, C. Romano, A. Vona, S. Fanara, and L. Spina, “Effect of iron and nanolites on Raman spectra of volcanic glasses: A reassessment of existing strategies to estimate the water content,” Chem. Geol. 475, 76–86 (2017).
[Crossref]

Wang, C. Y.

Wang, J.

V. Tangwarodomnukun, J. Wang, and P. Mathew, “A Comparison of Dry and Underwater Laser Micromachining of Silicon Substrates,” Key Eng. Mater. 443, 693–698 (2010).
[Crossref]

Wegener, M.

J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization Kinetics in Three-Dimensional Direct Laser Writing,” Adv. Mater. 26(38), 6566–6571 (2014).
[Crossref]

J. Fischer, J. B. Mueller, J. Kaschke, T. J. A. Wolf, A. N. Unterreiner, and M. Wegener, “Three-dimensional multi-photon direct laser writing with variable repetition rate,” Opt. Express 21(22), 26244–26260 (2013).
[Crossref]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
[Crossref]

Werner, C. L.

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite Radar Interferometry - Two-Dimensional Phase Unwrapping,” Radio Sci. 23(4), 713–720 (1988).
[Crossref]

Westerhuis, J. A.

P. J. Aarnoutse and J. A. Westerhuis, “Quantitative Raman reaction monitoring using the solvent as internal standard,” Anal. Chem. 77(5), 1228–1236 (2005).
[Crossref]

Whale, A.

M. Tran, A. Fallatah, A. Whale, and S. Padalkar, “Utilization of Inexpensive Carbon-Based Substrates as Platforms for Sensing,” Sensors 18(8), 2444 (2018).
[Crossref]

Will, M.

Williams, R. B.

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3-4), 583–592 (2003).
[Crossref]

Withers, A. C.

F. Schiavi, N. Bolfan-Casanova, A. C. Withers, E. Medard, M. Laumonier, D. Laporte, T. Flaherty, and A. Gomez-Ulla, “Water quantification in silicate glasses by Raman spectroscopy: Correcting for the effects of confocality, density and ferric iron,” Chem. Geol. 483, 312–331 (2018).
[Crossref]

Wochnowski, C.

C. Wochnowski, M. A. S. Eldin, and S. Metev, “UV-laser-assisted degradation of poly(methyl methacrylate),” Polym. Degrad. Stab. 89(2), 252–264 (2005).
[Crossref]

Wolf, T. J. A.

Wright, K. L.

R. Smith, K. L. Wright, and L. Ashton, “Raman spectroscopy: an evolving technique for live cell studies,” Analyst 141(12), 3590–3600 (2016).
[Crossref]

Wu, B. X.

Z. Liu, B. X. Wu, A. Samanta, N. G. Shen, H. T. Ding, R. Xu, and K. J. Zhao, “Ultrasound-assisted water-confined laser micromachining (UWLM) of metals: Experimental study and time-resolved observation (vol 245, pg 259, 2017),” J. Mater. Process. Technol. 248, 79 (2017).
[Crossref]

Wu, M. Y.

W. M. Cheng, X. M. Hu, Y. Y. Zhao, M. Y. Wu, Z. X. Hu, and X. T. Yu, “Preparation and swelling properties of poly(acrylic acid-co-acrylamide) composite hydrogels,” e-Polym. 17(1), 95–106 (2017).
[Crossref]

Xing, J. F.

J. F. Xing, M. L. Zheng, and X. M. Duan, “Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery,” Chem. Soc. Rev. 44(15), 5031–5039 (2015).
[Crossref]

Xiong, W.

X. N. He, Y. Gao, M. Mahjouri-Samani, P. N. Black, J. Allen, M. Mitchell, W. Xiong, Y. S. Zhou, L. Jiang, and Y. F. Lu, “Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes,” Nanotechnology 23(20), 205702 (2012).
[Crossref]

Xu, L. S.

D. E. Savage, D. R. Brooks, M. DeMagistris, L. S. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First Demonstration of Ocular Refractive Change Using Blue-IRIS in Live Cats,” Invest. Ophthalmol. Visual Sci. 55(7), 4603–4612 (2014).
[Crossref]

Xu, R.

Z. Liu, B. X. Wu, A. Samanta, N. G. Shen, H. T. Ding, R. Xu, and K. J. Zhao, “Ultrasound-assisted water-confined laser micromachining (UWLM) of metals: Experimental study and time-resolved observation (vol 245, pg 259, 2017),” J. Mater. Process. Technol. 248, 79 (2017).
[Crossref]

Xu, X. S.

X. S. Xu, H. Ming, Q. J. Zhang, and Y. S. Zhang, “Properties of Raman spectra and laser-induced birefringence in polymethyl methacrylate optical fibres,” J. Opt. A: Pure Appl. Opt. 4(3), 237–242 (2002).
[Crossref]

Yoon, S.

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum. 75(11), 4971–4980 (2004).
[Crossref]

Yu, D. H.

X. L. Ji, S. C. Jiang, X. P. Qiu, D. W. Dong, D. H. Yu, and B. Z. Jiang, “Structure and properties of hybrid poly(2-hydroxyethyl methacrylate)/SiO2 monoliths,” J. Appl. Polym. Sci. 88(14), 3168–3175 (2003).
[Crossref]

Yu, J.

Yu, X. J.

Q. Y. Chai, Y. Jiao, and X. J. Yu, “Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them,” Gels 3(1), 6 (2017).
[Crossref]

Yu, X. T.

W. M. Cheng, X. M. Hu, Y. Y. Zhao, M. Y. Wu, Z. X. Hu, and X. T. Yu, “Preparation and swelling properties of poly(acrylic acid-co-acrylamide) composite hydrogels,” e-Polym. 17(1), 95–106 (2017).
[Crossref]

Zebker, H. A.

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite Radar Interferometry - Two-Dimensional Phase Unwrapping,” Radio Sci. 23(4), 713–720 (1988).
[Crossref]

Zhang, Q. J.

X. S. Xu, H. Ming, Q. J. Zhang, and Y. S. Zhang, “Properties of Raman spectra and laser-induced birefringence in polymethyl methacrylate optical fibres,” J. Opt. A: Pure Appl. Opt. 4(3), 237–242 (2002).
[Crossref]

Zhang, Y. S.

X. S. Xu, H. Ming, Q. J. Zhang, and Y. S. Zhang, “Properties of Raman spectra and laser-induced birefringence in polymethyl methacrylate optical fibres,” J. Opt. A: Pure Appl. Opt. 4(3), 237–242 (2002).
[Crossref]

Zhao, K. J.

Z. Liu, B. X. Wu, A. Samanta, N. G. Shen, H. T. Ding, R. Xu, and K. J. Zhao, “Ultrasound-assisted water-confined laser micromachining (UWLM) of metals: Experimental study and time-resolved observation (vol 245, pg 259, 2017),” J. Mater. Process. Technol. 248, 79 (2017).
[Crossref]

Zhao, Q.

Q. Zhao and E. T. Samulski, “In situ polymerization of poly(methyl methacrylate)/clay nanocomposites in supercritical carbon dioxide,” Macromolecules 38(19), 7967–7971 (2005).
[Crossref]

Zhao, Y. Y.

W. M. Cheng, X. M. Hu, Y. Y. Zhao, M. Y. Wu, Z. X. Hu, and X. T. Yu, “Preparation and swelling properties of poly(acrylic acid-co-acrylamide) composite hydrogels,” e-Polym. 17(1), 95–106 (2017).
[Crossref]

Zheleznyak, L.

Zheng, M. L.

J. F. Xing, M. L. Zheng, and X. M. Duan, “Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery,” Chem. Soc. Rev. 44(15), 5031–5039 (2015).
[Crossref]

Zhou, Y. S.

X. N. He, Y. Gao, M. Mahjouri-Samani, P. N. Black, J. Allen, M. Mitchell, W. Xiong, Y. S. Zhou, L. Jiang, and Y. F. Lu, “Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes,” Nanotechnology 23(20), 205702 (2012).
[Crossref]

Zhu, W.

G. Pezzotti, L. Puppulin, A. La Rosa, M. Boffelli, W. Zhu, B. J. McEntire, S. Hosogi, T. Nakahari, and Y. Marunaka, “Effect of pH and monovalent cations on the Raman spectrum of water: Basics revisited and application to measure concentration gradients at water/solid interface in Si3N4 biomaterial,” Chem. Phys. 463, 120–136 (2015).
[Crossref]

Acc. Chem. Res. (1)

S. J. Blanksby and G. B. Ellison, “Bond dissociation energies of organic molecules,” Acc. Chem. Res. 36(4), 255–263 (2003).
[Crossref]

ACS Appl. Mater. Interfaces (1)

X. J. Lin, K. Fukazawa, and K. Ishihara, “Photoreactive Polymers Bearing a Zwitterionic Phosphorylcholine Group for Surface Modification of Biomaterials,” ACS Appl. Mater. Interfaces 7(31), 17489–17498 (2015).
[Crossref]

Adv. Healthcare Mater. (1)

S. Pradhan, K. A. Keller, J. L. Sperduto, and J. H. Slater, “Fundamentals of Laser-Based Hydrogel Degradation and Applications in Cell and Tissue Engineering,” Adv. Healthcare Mater. 6(24), 1700681 (2017).
[Crossref]

Adv. Mater. (1)

J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization Kinetics in Three-Dimensional Direct Laser Writing,” Adv. Mater. 26(38), 6566–6571 (2014).
[Crossref]

Anal. Chem. (2)

H. Muhamadali, M. Chisanga, A. Subaihi, and R. Goodacre, “Combining Raman and FT-IR Spectroscopy with Quantitative Isotopic Labeling for Differentiation of E. coli Cells at Community and Single Cell Levels,” Anal. Chem. 87(8), 4578–4586 (2015).
[Crossref]

P. J. Aarnoutse and J. A. Westerhuis, “Quantitative Raman reaction monitoring using the solvent as internal standard,” Anal. Chem. 77(5), 1228–1236 (2005).
[Crossref]

Analyst (2)

R. Smith, K. L. Wright, and L. Ashton, “Raman spectroscopy: an evolving technique for live cell studies,” Analyst 141(12), 3590–3600 (2016).
[Crossref]

N. J. Everall, “Confocal Raman microscopy: common errors and artefacts,” Analyst 135(10), 2512–2522 (2010).
[Crossref]

Annu. Rev. Phys. Chem. (1)

P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Annu. Rev. Phys. Chem. 58(1), 461–488 (2007).
[Crossref]

Appl. Nanosci. (1)

M. Behera and S. Ram, “Synthesis and characterization of core-shell gold nanoparticles with poly(vinyl pyrrolidone) from a new precursor salt,” Appl. Nanosci. 3(1), 83–87 (2013).
[Crossref]

Appl. Opt. (3)

Appl. Phys. A: Mater. Sci. Process. (1)

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Appl. Phys. Lett. (3)

H. B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83(5), 819–821 (2003).
[Crossref]

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76(19), 2656–2658 (2000).
[Crossref]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
[Crossref]

Appl. Surf. Sci. (1)

A. Garcia-Giron, D. Sola, and J. I. Pena, “Liquid-assisted laser ablation of advanced ceramics and glass-ceramic materials,” Appl. Surf. Sci. 363, 548–554 (2016).
[Crossref]

Biomaterials (1)

T. V. Chirila, G. D. Barrett, A. V. Russo, I. J. Constable, P. P. Vansaarloos, and C. I. Russo, “Laser-Induced Damage to Transparent Polymers - Chemical Effect of Short-Pulsed (Q-Switched) Nd-Yag Laser-Radiation on Ophthalmic Acrylic Biomaterials .2. Study of Monomer Release from Artificial Intraocular Lenses,” Biomaterials 11(5), 313–320 (1990).
[Crossref]

Biomed. Opt. Express (1)

Biospectroscopy (1)

P. Monti, R. Simoni, R. Caramazza, and A. Bertoluzza, “Applications of Raman spectroscopy to ophthalmology: Spectroscopic characterization of disposable soft contact lenses,” Biospectroscopy 4(6), 413–419 (1998).
[Crossref]

Carbohydr. Polym. (1)

K. Varaprasad, T. Jayaramudu, and E. R. Sadiku, “Removal of dye by carboxymethyl cellulose, acrylamide and graphene oxide via a free radical polymerization process,” Carbohydr. Polym. 164, 186–194 (2017).
[Crossref]

Cellulose (1)

Y. Seki, A. Altinisik, B. Demircioglu, and C. Tetik, “Carboxymethylcellulose (CMC)-hydroxyethylcellulose (HEC) based hydrogels: synthesis and characterization,” Cellulose 21(3), 1689–1698 (2014).
[Crossref]

Chem. Eng. J. (1)

T. Moreno, M. A. M. Lopez, I. H. Illera, C. M. Piqueras, A. S. Arranz, J. G. Serna, and M. J. Cocero, “Quantitative Raman determination of hydrogen peroxide using the solvent as internal standard: Online application in the direct synthesis of hydrogen peroxide,” Chem. Eng. J. 166(3), 1061–1065 (2011).
[Crossref]

Chem. Geol. (3)

Q. Sun and C. J. Qin, “Raman OH stretching band of water as an internal standard to determine carbonate concentrations,” Chem. Geol. 283(3-4), 274–278 (2011).
[Crossref]

F. Schiavi, N. Bolfan-Casanova, A. C. Withers, E. Medard, M. Laumonier, D. Laporte, T. Flaherty, and A. Gomez-Ulla, “Water quantification in silicate glasses by Raman spectroscopy: Correcting for the effects of confocality, density and ferric iron,” Chem. Geol. 483, 312–331 (2018).
[Crossref]

D. Di Genova, S. Sicola, C. Romano, A. Vona, S. Fanara, and L. Spina, “Effect of iron and nanolites on Raman spectra of volcanic glasses: A reassessment of existing strategies to estimate the water content,” Chem. Geol. 475, 76–86 (2017).
[Crossref]

Chem. Phys. (1)

G. Pezzotti, L. Puppulin, A. La Rosa, M. Boffelli, W. Zhu, B. J. McEntire, S. Hosogi, T. Nakahari, and Y. Marunaka, “Effect of pH and monovalent cations on the Raman spectrum of water: Basics revisited and application to measure concentration gradients at water/solid interface in Si3N4 biomaterial,” Chem. Phys. 463, 120–136 (2015).
[Crossref]

Chem. Soc. Rev. (1)

J. F. Xing, M. L. Zheng, and X. M. Duan, “Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery,” Chem. Soc. Rev. 44(15), 5031–5039 (2015).
[Crossref]

Desalin. Water Treat. (1)

M. S. M. Eldin, A. M. Omer, E. A. Soliman, and E. A. Hassan, “Superabsorbent polyacrylamide grafted carboxymethyl cellulose pH sensitive hydrogel: I. Preparation and characterization,” Desalin. Water Treat. 51(16-18), 3196–3206 (2013).
[Crossref]

e-Polym. (1)

W. M. Cheng, X. M. Hu, Y. Y. Zhao, M. Y. Wu, Z. X. Hu, and X. T. Yu, “Preparation and swelling properties of poly(acrylic acid-co-acrylamide) composite hydrogels,” e-Polym. 17(1), 95–106 (2017).
[Crossref]

eXPRESS Polym. Lett. (1)

E. G. Crispim, J. F. Piai, A. R. Fajardo, E. R. F. Ramos, T. U. Nakamura, C. V. Nakamura, A. F. Rubira, and E. C. Muniz, “Hydrogels based on chemically modified poly(vinyl alcohol) (PVA-GMA) and PVA-GMA/chondroitin sulfate: Preparation and characterization,” eXPRESS Polym. Lett. 6(5), 383–395 (2012).
[Crossref]

Fuel (1)

A. M. Miranda, E. W. Castilho-Almeida, E. H. M. Ferreira, G. F. Moreira, C. A. Achete, R. A. S. Z. Armond, H. F. Dos Santos, and A. Jorio, “Line shape analysis of the Raman spectra from pure and mixed biofuels esters compounds,” Fuel 115, 118–125 (2014).
[Crossref]

Gels (1)

Q. Y. Chai, Y. Jiao, and X. J. Yu, “Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them,” Gels 3(1), 6 (2017).
[Crossref]

Geochim. Cosmochim. Acta (1)

A. Di Muro, B. Villemant, G. Montagnac, B. Scaillet, and B. Reynard, “Quantification of water content and speciation in natural silicic glasses (phonolite, dacite, rhyolite) by confocal microRaman spectrometry,” Geochim. Cosmochim. Acta 70(11), 2868–2884 (2006).
[Crossref]

Int. J. Mass Spectrom. (1)

J. Gidden, A. T. Jackson, J. H. Scrivens, and M. T. Bowers, “Gas phase conformations of synthetic polymers: poly (methyl methacrylate) oligomers cationized by sodium ions,” Int. J. Mass Spectrom. 188(1-2), 121–130 (1999).
[Crossref]

Int. J. Mol. Sci. (1)

M. A. Bag and L. M. Valenzuela, “Impact of the Hydration States of Polymers on Their Hemocompatibility for Medical Applications: A Review,” Int. J. Mol. Sci. 18(8), 1422 (2017).
[Crossref]

Int. J. Photoenergy (1)

R. M. Ahmed, “Optical Study on Poly(methylmethacrylate)/Poly(vinyl acetate) Blends,” Int. J. Photoenergy 2009, 1–7 (2009).
[Crossref]

Invest. Ophthalmol. Visual Sci. (2)

K. R. Heys, M. G. Friedrich, and R. J. W. Truscott, “Free and bound water in normal and cataractous human lenses,” Invest. Ophthalmol. Visual Sci. 49(5), 1991–1997 (2008).
[Crossref]

D. E. Savage, D. R. Brooks, M. DeMagistris, L. S. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First Demonstration of Ocular Refractive Change Using Blue-IRIS in Live Cats,” Invest. Ophthalmol. Visual Sci. 55(7), 4603–4612 (2014).
[Crossref]

J. Adv. Res. (1)

E. M. Ahmed, “Hydrogel: Preparation, characterization, and applications: A review,” J. Adv. Res. 6(2), 105–121 (2015).
[Crossref]

J. Appl. Phys. (1)

E. Sutcliffe and R. Srinivasan, “Dynamics of UV Laser Ablation of Organic Polymer Surfaces,” J. Appl. Phys. 60(9), 3315–3322 (1986).
[Crossref]

J. Appl. Polym. Sci. (1)

X. L. Ji, S. C. Jiang, X. P. Qiu, D. W. Dong, D. H. Yu, and B. Z. Jiang, “Structure and properties of hybrid poly(2-hydroxyethyl methacrylate)/SiO2 monoliths,” J. Appl. Polym. Sci. 88(14), 3168–3175 (2003).
[Crossref]

J. Braz. Chem. Soc. (1)

B. D. Fecchio, S. R. Valandro, M. G. Neumann, and C. C. S. Cavalheiro, “Thermal Decomposition of Polymer/Montmorillonite Nanocomposites Synthesized in situ on a Clay Surface,” J. Braz. Chem. Soc. 27(2), 278–284 (2015).
[Crossref]

J. Cataract Refractive Surg. (1)

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refractive Surg. 42(8), 1207–1215 (2016).
[Crossref]

J. Mater. Chem. (1)

E. Kemal and S. Deb, “Design and synthesis of three-dimensional hydrogel scaffolds for intervertebral disc repair,” J. Mater. Chem. 22(21), 10725–10735 (2012).
[Crossref]

J. Mater. Process. Technol. (1)

Z. Liu, B. X. Wu, A. Samanta, N. G. Shen, H. T. Ding, R. Xu, and K. J. Zhao, “Ultrasound-assisted water-confined laser micromachining (UWLM) of metals: Experimental study and time-resolved observation (vol 245, pg 259, 2017),” J. Mater. Process. Technol. 248, 79 (2017).
[Crossref]

J. Opt. A: Pure Appl. Opt. (2)

K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A: Pure Appl. Opt. 10(5), 055303 (2008).
[Crossref]

X. S. Xu, H. Ming, Q. J. Zhang, and Y. S. Zhang, “Properties of Raman spectra and laser-induced birefringence in polymethyl methacrylate optical fibres,” J. Opt. A: Pure Appl. Opt. 4(3), 237–242 (2002).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

V. V. Naik and S. Vasudevan, “Effect of Alkyl Chain Arrangement on Conformation and Dynamics in a Surfactant Intercalated Layered Double Hydroxide: Spectroscopic Measurements and MD Simulations,” J. Phys. Chem. C 115(16), 8221–8232 (2011).
[Crossref]

Key Eng. Mater. (1)

V. Tangwarodomnukun, J. Wang, and P. Mathew, “A Comparison of Dry and Underwater Laser Micromachining of Silicon Substrates,” Key Eng. Mater. 443, 693–698 (2010).
[Crossref]

Macromolecules (1)

Q. Zhao and E. T. Samulski, “In situ polymerization of poly(methyl methacrylate)/clay nanocomposites in supercritical carbon dioxide,” Macromolecules 38(19), 7967–7971 (2005).
[Crossref]

Nanotechnology (1)

X. N. He, Y. Gao, M. Mahjouri-Samani, P. N. Black, J. Allen, M. Mitchell, W. Xiong, Y. S. Zhou, L. Jiang, and Y. F. Lu, “Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes,” Nanotechnology 23(20), 205702 (2012).
[Crossref]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Express (6)

Opt. Laser Eng. (1)

A. Kruusing, “Underwater and water-assisted laser processing: Part 2 - Etching, cutting and rarely used methods,” Opt. Laser Eng. 41(2), 329–352 (2004).
[Crossref]

Opt. Lett. (4)

Opt. Mater. (1)

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3-4), 583–592 (2003).
[Crossref]

Opt. Mater. Express (4)

Phys. Chem. Chem. Phys. (1)

G. Guella, I. Mancini, G. Mariotto, B. Rossi, and G. Viliani, “Vibrational analysis as a powerful tool in structure elucidation of polyarsenicals: a DFT-based investigation of arsenicin A,” Phys. Chem. Chem. Phys. 11(14), 2420–2427 (2009).
[Crossref]

Polym. Degrad. Stab. (1)

C. Wochnowski, M. A. S. Eldin, and S. Metev, “UV-laser-assisted degradation of poly(methyl methacrylate),” Polym. Degrad. Stab. 89(2), 252–264 (2005).
[Crossref]

Polym. J. (2)

A. Z. Samuel and S. Umapathy, “Energy funneling and macromolecular conformational dynamics: a 2D Raman correlation study of PEG melting,” Polym. J. 46(6), 330–336 (2014).
[Crossref]

S. D. Baruah, A. Goswami, and N. N. Dass, “Polymerization of Methyl-Methacrylate by Charge-Transfer Mechanism with Sodium-Azide and Iron(Iii) Complex,” Polym. J. 24(8), 719–726 (1992).
[Crossref]

Radiat. Phys. Chem. (1)

Z. Jovanovic, A. Radosavljevic, M. Siljegovic, N. Bibic, V. Miskovic-Stankovic, and Z. Kacarevic-Popovic, “Structural and optical characteristics of silver/poly(N-vinyl-2-pyrrolidone) nanosystems synthesized by gamma-irradiation,” Radiat. Phys. Chem. 81(11), 1720–1728 (2012).
[Crossref]

Radio Sci. (1)

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite Radar Interferometry - Two-Dimensional Phase Unwrapping,” Radio Sci. 23(4), 713–720 (1988).
[Crossref]

Rev. Sci. Instrum. (1)

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum. 75(11), 4971–4980 (2004).
[Crossref]

Sensors (1)

M. Tran, A. Fallatah, A. Whale, and S. Padalkar, “Utilization of Inexpensive Carbon-Based Substrates as Platforms for Sensing,” Sensors 18(8), 2444 (2018).
[Crossref]

Other (4)

R. Huang and W. H. Knox, “Femtosecond micro-machining of hydrogels: parametric study and photochemical model including material saturation,” Opt. Mater. Express (submitted).

A. Ikai, The World of Nano-Biomechanics (Elsevier, 2008), Chap. 5.

Contamac Ltd, “GM Advance,” http://www.contamac.com/product/gm-advance .

W. H. Knox, “Nonlinear Optics: Femtosecond lasers and nonlinear optics: New approaches solve old problems in ophthalmology,” Laser Focus World, 22–25 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (A) Mounting scheme of laser micromachining in hydrogels. (B) Custom-built MZI used for phase change quantification.
Fig. 2.
Fig. 2. (A) Confocal micro-Raman system sketch. (B) Beam depth profile used for calibrating the axial resolution, obtained by scanning a 2 µm-thick film and extracting the 866 cm-1 peak intensity at each axial position.
Fig. 3.
Fig. 3. (A) DIC images of patterns written at different power. Scale bar: 50 µm for all. (B) Interferograms and retrieved phase maps of the 40 mW (top) and 60 mW (bottom) pattern written on sample 1. (C) Phase change measured at 543 nm as a function of laser power, with a nonlinear fit and R2 values included in the graph.
Fig. 4.
Fig. 4. (A) DIC images of the cross sections. Scale bar: 50 µm for all. (B) Spectrum of Contaflex GM 58 showing all characteristic Raman bands. (C) Lateral scan profile of the cross section written at 40 mW. (D) Normalized spectra from the 40 mW cross section, from which a dramatic increase of the Int3456/Int3000 ratio was observed. (E) Change in local water content as a function of laser power, expressed as a percentage. (F) Representative spectra from damaged patterns demonstrating different chemical changes.
Fig. 5.
Fig. 5. (A) TGA thermograms of pristine hydrogels (the black and red curves), and samples containing a bulk phase pattern as in stage I (the blue and magenta curves). (B) Derivative of the weight loss.
Fig. 6.
Fig. 6. FT-IR spectra of non-written region (black curve), 150 mW (blue curve) and 230 mW (red curve) damaged patterns.