Abstract

Ion-sliced lithium niobate thin films offer high optical confinement over their bulk counter parts, enabling compact and efficient nonlinear optics. Quasi-phase matching by periodic poling of thin film lithium niobate remains challenging, however, due to large leakage currents, especially in magnesium oxide doped lithium niobate, which is used in bulk to reduce photorefractive damage. Here we present fabrication and poling details of 700 nm thick x-cut magnesium oxide doped lithium niobate thin films using electric field poling. We introduce a silicon dioxide insulation layer under co-planar electrodes to reduce leakage current. Rounded tips are utilized to encourage nucleation at the center of the electrodes. Uniform domains with 7.5 µm period and 50% duty cycle are achieved. The poling characteristics are compared to bulk lithium niobate, with and without the silicon dioxide insulation layer. The domains are characterized by piezoresponse force microscopy, hydrofluoric etching, and waveguide second harmonic generation at 1550 nm wavelength in a thin film lithium niobate waveguide loaded with a silicon nitride strip.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical diagnostic methods for monitoring the poling of thin-film lithium niobate waveguides

Jie Zhao, Michael Rüsing, and Shayan Mookherjea
Opt. Express 27(9) 12025-12038 (2019)

Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon

Ashutosh Rao, Marcin Malinowski, Amirmahdi Honardoost, Javed Rouf Talukder, Payam Rabiei, Peter Delfyett, and Sasan Fathpour
Opt. Express 24(26) 29941-29947 (2016)

Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film

Lutong Cai, Ruirui Kong, Yiwen Wang, and Hui Hu
Opt. Express 23(22) 29211-29221 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
    [Crossref]
  2. A. Rao and S. Fathpour, “Heterogeneous thin-film lithium niobate integrated photonics for electrooptics and nonlinear optics,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–12 (2018).
    [Crossref]
  3. S. Bogdanov, M. Y. Shalaginov, A. Boltasseva, and V. M. Shalaev, “Material platforms for integrated quantum photonics,” Opt. Mater. Express 7(1), 111–132 (2017).
    [Crossref]
  4. M. Vainio and L. Halonen, “Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy,” Phys. Chem. Chem. Phys. 18(6), 4266–4294 (2016).
    [Crossref]
  5. A. E. Willner, S. Khaleghi, M. R. Chitgarha, and O. F. Yilmaz, “All-optical signal processing,” J. Lightwave Technol. 32(4), 660–680 (2014).
    [Crossref]
  6. M. Leidinger, S. Fieberg, N. Waasem, F. Kühnemann, K. Buse, and I. Breunig, “Comparative study on three highly sensitive absorption measurement techniques characterizing lithium niobate over its entire transparent spectral range,” Opt. Express 23(17), 21690–21705 (2015).
    [Crossref]
  7. E. H. Turner, D. Chen, and G. N. Otto, “High-frequency electro-optic coefficients of lithium niobate,” Appl. Phys. Lett. 8(11), 303–304 (1966).
    [Crossref]
  8. M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14(4), 1693–1706 (1976).
    [Crossref]
  9. K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Electric-field poling in Mg-doped LiNbO3,” J. Appl. Phys. 96(11), 6585–6590 (2004).
    [Crossref]
  10. Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
    [Crossref]
  11. Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
    [Crossref]
  12. P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
    [Crossref]
  13. R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
    [Crossref]
  14. L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3(5), 531–535 (2016).
    [Crossref]
  15. L. Cai, Y. Wang, and H. Hu, “Efficient second harmonic generation in χ(2) profile reconfigured lithium niobate thin film,” Opt. Commun. 387, 405–408 (2017).
    [Crossref]
  16. A. Rao and S. Fathpour, “Second-harmonic generation in integrated photonics on silicon,” Phys. Status Solidi A1700684 (2017).
  17. C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5(11), 1438–1441 (2018).
    [Crossref]
  18. J.-Y. Chen, Y. M. Sua, H. Fan, and Y.-P. Huang, “Modal phase matched lithium niobate nanocircuits for integrated nonlinear photonics,” OSA Continuum 1(1), 229–242 (2018).
    [Crossref]
  19. R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5(8), 1006–1011 (2018).
    [Crossref]
  20. C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25(6), 6963–6973 (2017).
    [Crossref]
  21. G. Li, Y. Chen, H. Jiang, and X. Chen, “Broadband sum-frequency generation using d33 in periodically poled LiNbO3 thin film in the telecommunications band,” Opt. Lett. 42(5), 939–942 (2017).
    [Crossref]
  22. A. Rao, N. Nader, M. J. Stevens, T. Gerrits, O. S. Magaña-Loaiza, F. Camacho-González, J. Chiles, A. Honardoost, M. Malinowski, R. Mirin, and S. Fathpour, “Photon pair generation on a silicon chip using nanophotonic periodically-poled lithium niobate waveguides,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), p. JTh3C.2.
  23. J. Jiang, X. J. Meng, D. Q. Geng, and A. Q. Jiang, “Accelerated domain switching speed in single-crystal LiNbO3 thin films,” J. Appl. Phys. 117(10), 104101 (2015).
    [Crossref]
  24. K. Tanaka and T. Suhara, “Fabrication of domain inverted ridge waveguide in ion-sliced LiNbO3 for wavelength conversion devices,” in Microoptics Conference (MOC), 2015 20th (IEEE, 2015), pp. 1–2.
  25. G. Shao, Y. Bai, G. Cui, C. Li, X. Qiu, D. Geng, D. Wu, and Y. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).
    [Crossref]
  26. R. V. Gainutdinov, T. R. Volk, and H. H. Zhang, “Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3 films on SiO2/LiNbO3 substrates,” Appl. Phys. Lett. 107(16), 162903 (2015).
    [Crossref]
  27. T. Volk, R. Gainutdinov, and H. Zhang, “Domain patterning in ion-sliced LiNbO3 films by atomic force microscopy,” Crystals 7(5), 137 (2017).
    [Crossref]
  28. D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood Jr, S. Bakhru, H. Bakhru, and et al., “E/O tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled LiNbO3,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2007), p. CFN3.
  29. G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
    [Crossref]
  30. A. Rao, M. Malinowski, A. Honardoost, J. R. Talukder, P. Rabiei, P. Delfyett, and S. Fathpour, “Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon,” Opt. Express 24(26), 29941–29947 (2016).
    [Crossref]
  31. P. Mackwitz, M. Rüsing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108(15), 152902 (2016).
    [Crossref]
  32. E. A. Eliseev, A. N. Morozovska, G. S. Svechnikov, V. Gopalan, and V. Ya. Shur, “Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors,” Phys. Rev. B 83(23), 235313 (2011).
    [Crossref]
  33. C. S. Werner, S. J. Herr, K. Buse, B. Sturman, E. Soergel, C. Razzaghi, and I. Breunig, “Large and accessible conductivity of charged domain walls in lithium niobate,” Sci. Rep. 7(1), 9862 (2017).
    [Crossref]
  34. M. Schröder, A. Haußmann, A. Thiessen, E. Soergel, T. Woike, and L. M. Eng, “Conducting Domain Walls in Lithium Niobate Single Crystals,” Adv. Funct. Mater. 22(18), 3936–3944 (2012).
    [Crossref]
  35. N. Horikawa, T. Tsubouchi, M. Fujimura, and T. Suhara, “Formation of domain-inverted grating in MgO:LiNbO3 by voltage application with insulation layer cladding,” Jpn. J. Appl. Phys. 46(8A), 5178–5180 (2007).
    [Crossref]
  36. L. Liang, F. Wang, Y. Sang, F. Zhou, X. Xie, D. Sun, M. Zheng, and H. Liu, “Facile approach for the periodic poling of MgO-doped lithium niobate with liquid electrodes,” CrystEngComm 21(6), 941–947 (2019).
    [Crossref]
  37. L. Gui, “Periodically poled ridge waveguides and photonic wires in LiNbO3 for efficient nonlinear interactions,” Ph.D. thesis, University of Paderborn (2010).
  38. T. R. Volk, R. V. Gainutdinov, and H. H. Zhang, “Domain-wall conduction in AFM-written domain patterns in ion-sliced LiNbO3 films,” Appl. Phys. Lett. 110(13), 132905 (2017).
    [Crossref]
  39. J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM – The stopping and range of ions in matter (2010),” Nucl. Instrum. Methods Phys. Res., Sect. B 268(11-12), 1818–1823 (2010).
    [Crossref]
  40. H. Han, L. Cai, and H. Hu, “Optical and structural properties of single-crystal lithium niobate thin film,” Opt. Mater. 42, 47–51 (2015).
    [Crossref]
  41. T. Jungk, Á. Hoffmann, and E. Soergel, “Contrast mechanisms for the detection of ferroelectric domains with scanning force microscopy,” New J. Phys. 11(3), 033029 (2009).
    [Crossref]
  42. T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO: LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40(Part 1), 1751–1753 (2001).
    [Crossref]
  43. R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Byer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75(12), 1673–1675 (1999).
    [Crossref]
  44. T. Suhara and M. Fujimuura, Waveguide Nonlinear-Optic Devices (Springer, 2003).
  45. M.-L. Hu, L.-J. Hu, and J.-Y. Chang, “Polarization switching of pure and MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 42(Part 1), 7414–7417 (2003).
    [Crossref]
  46. H. Ishizuki and T. Taira, “Study on the field-poling dynamics in Mg-doped LiNbO3 and LiTaO3,” in Nonlinear Optics: Materials, Fundamentals and Applications (Optical Society of America, 2007), p. WE35.
  47. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B: Lasers Opt. 91(2), 343–348 (2008).
    [Crossref]
  48. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. B 55(10), 1205–1209 (1965).
    [Crossref]

2019 (1)

L. Liang, F. Wang, Y. Sang, F. Zhou, X. Xie, D. Sun, M. Zheng, and H. Liu, “Facile approach for the periodic poling of MgO-doped lithium niobate with liquid electrodes,” CrystEngComm 21(6), 941–947 (2019).
[Crossref]

2018 (5)

2017 (7)

L. Cai, Y. Wang, and H. Hu, “Efficient second harmonic generation in χ(2) profile reconfigured lithium niobate thin film,” Opt. Commun. 387, 405–408 (2017).
[Crossref]

T. R. Volk, R. V. Gainutdinov, and H. H. Zhang, “Domain-wall conduction in AFM-written domain patterns in ion-sliced LiNbO3 films,” Appl. Phys. Lett. 110(13), 132905 (2017).
[Crossref]

C. S. Werner, S. J. Herr, K. Buse, B. Sturman, E. Soergel, C. Razzaghi, and I. Breunig, “Large and accessible conductivity of charged domain walls in lithium niobate,” Sci. Rep. 7(1), 9862 (2017).
[Crossref]

T. Volk, R. Gainutdinov, and H. Zhang, “Domain patterning in ion-sliced LiNbO3 films by atomic force microscopy,” Crystals 7(5), 137 (2017).
[Crossref]

S. Bogdanov, M. Y. Shalaginov, A. Boltasseva, and V. M. Shalaev, “Material platforms for integrated quantum photonics,” Opt. Mater. Express 7(1), 111–132 (2017).
[Crossref]

G. Li, Y. Chen, H. Jiang, and X. Chen, “Broadband sum-frequency generation using d33 in periodically poled LiNbO3 thin film in the telecommunications band,” Opt. Lett. 42(5), 939–942 (2017).
[Crossref]

C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25(6), 6963–6973 (2017).
[Crossref]

2016 (5)

A. Rao, M. Malinowski, A. Honardoost, J. R. Talukder, P. Rabiei, P. Delfyett, and S. Fathpour, “Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon,” Opt. Express 24(26), 29941–29947 (2016).
[Crossref]

G. Shao, Y. Bai, G. Cui, C. Li, X. Qiu, D. Geng, D. Wu, and Y. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).
[Crossref]

P. Mackwitz, M. Rüsing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108(15), 152902 (2016).
[Crossref]

M. Vainio and L. Halonen, “Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy,” Phys. Chem. Chem. Phys. 18(6), 4266–4294 (2016).
[Crossref]

L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3(5), 531–535 (2016).
[Crossref]

2015 (5)

H. Han, L. Cai, and H. Hu, “Optical and structural properties of single-crystal lithium niobate thin film,” Opt. Mater. 42, 47–51 (2015).
[Crossref]

R. V. Gainutdinov, T. R. Volk, and H. H. Zhang, “Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3 films on SiO2/LiNbO3 substrates,” Appl. Phys. Lett. 107(16), 162903 (2015).
[Crossref]

J. Jiang, X. J. Meng, D. Q. Geng, and A. Q. Jiang, “Accelerated domain switching speed in single-crystal LiNbO3 thin films,” J. Appl. Phys. 117(10), 104101 (2015).
[Crossref]

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
[Crossref]

M. Leidinger, S. Fieberg, N. Waasem, F. Kühnemann, K. Buse, and I. Breunig, “Comparative study on three highly sensitive absorption measurement techniques characterizing lithium niobate over its entire transparent spectral range,” Opt. Express 23(17), 21690–21705 (2015).
[Crossref]

2014 (1)

2012 (2)

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

M. Schröder, A. Haußmann, A. Thiessen, E. Soergel, T. Woike, and L. M. Eng, “Conducting Domain Walls in Lithium Niobate Single Crystals,” Adv. Funct. Mater. 22(18), 3936–3944 (2012).
[Crossref]

2011 (1)

E. A. Eliseev, A. N. Morozovska, G. S. Svechnikov, V. Gopalan, and V. Ya. Shur, “Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors,” Phys. Rev. B 83(23), 235313 (2011).
[Crossref]

2010 (1)

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM – The stopping and range of ions in matter (2010),” Nucl. Instrum. Methods Phys. Res., Sect. B 268(11-12), 1818–1823 (2010).
[Crossref]

2009 (1)

T. Jungk, Á. Hoffmann, and E. Soergel, “Contrast mechanisms for the detection of ferroelectric domains with scanning force microscopy,” New J. Phys. 11(3), 033029 (2009).
[Crossref]

2008 (1)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B: Lasers Opt. 91(2), 343–348 (2008).
[Crossref]

2007 (1)

N. Horikawa, T. Tsubouchi, M. Fujimura, and T. Suhara, “Formation of domain-inverted grating in MgO:LiNbO3 by voltage application with insulation layer cladding,” Jpn. J. Appl. Phys. 46(8A), 5178–5180 (2007).
[Crossref]

2004 (2)

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Electric-field poling in Mg-doped LiNbO3,” J. Appl. Phys. 96(11), 6585–6590 (2004).
[Crossref]

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
[Crossref]

2003 (1)

M.-L. Hu, L.-J. Hu, and J.-Y. Chang, “Polarization switching of pure and MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 42(Part 1), 7414–7417 (2003).
[Crossref]

2001 (2)

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO: LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40(Part 1), 1751–1753 (2001).
[Crossref]

2000 (1)

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

1999 (1)

R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Byer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75(12), 1673–1675 (1999).
[Crossref]

1976 (1)

M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14(4), 1693–1706 (1976).
[Crossref]

1966 (1)

E. H. Turner, D. Chen, and G. N. Otto, “High-frequency electro-optic coefficients of lithium niobate,” Appl. Phys. Lett. 8(11), 303–304 (1966).
[Crossref]

1965 (1)

I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. B 55(10), 1205–1209 (1965).
[Crossref]

Alexandrovski, A.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

Andrade, N.

Arie, A.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B: Lasers Opt. 91(2), 343–348 (2008).
[Crossref]

Bai, Y.

G. Shao, Y. Bai, G. Cui, C. Li, X. Qiu, D. Geng, D. Wu, and Y. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).
[Crossref]

Bakhru, H.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood Jr, S. Bakhru, H. Bakhru, and et al., “E/O tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled LiNbO3,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2007), p. CFN3.

Bakhru, S.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood Jr, S. Bakhru, H. Bakhru, and et al., “E/O tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled LiNbO3,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2007), p. CFN3.

Batchko, R. G.

R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Byer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75(12), 1673–1675 (1999).
[Crossref]

Berth, G.

P. Mackwitz, M. Rüsing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108(15), 152902 (2016).
[Crossref]

Biersack, J. P.

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM – The stopping and range of ions in matter (2010),” Nucl. Instrum. Methods Phys. Res., Sect. B 268(11-12), 1818–1823 (2010).
[Crossref]

Boes, A.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Bogdanov, S.

Boltasseva, A.

Bowers, J.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Bowers, J. E.

Breunig, I.

C. S. Werner, S. J. Herr, K. Buse, B. Sturman, E. Soergel, C. Razzaghi, and I. Breunig, “Large and accessible conductivity of charged domain walls in lithium niobate,” Sci. Rep. 7(1), 9862 (2017).
[Crossref]

M. Leidinger, S. Fieberg, N. Waasem, F. Kühnemann, K. Buse, and I. Breunig, “Comparative study on three highly sensitive absorption measurement techniques characterizing lithium niobate over its entire transparent spectral range,” Opt. Express 23(17), 21690–21705 (2015).
[Crossref]

Buse, K.

C. S. Werner, S. J. Herr, K. Buse, B. Sturman, E. Soergel, C. Razzaghi, and I. Breunig, “Large and accessible conductivity of charged domain walls in lithium niobate,” Sci. Rep. 7(1), 9862 (2017).
[Crossref]

M. Leidinger, S. Fieberg, N. Waasem, F. Kühnemann, K. Buse, and I. Breunig, “Comparative study on three highly sensitive absorption measurement techniques characterizing lithium niobate over its entire transparent spectral range,” Opt. Express 23(17), 21690–21705 (2015).
[Crossref]

Byer, R. L.

R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Byer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75(12), 1673–1675 (1999).
[Crossref]

M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14(4), 1693–1706 (1976).
[Crossref]

Cai, L.

L. Cai, Y. Wang, and H. Hu, “Efficient second harmonic generation in χ(2) profile reconfigured lithium niobate thin film,” Opt. Commun. 387, 405–408 (2017).
[Crossref]

H. Han, L. Cai, and H. Hu, “Optical and structural properties of single-crystal lithium niobate thin film,” Opt. Mater. 42, 47–51 (2015).
[Crossref]

Camacho-González, F.

A. Rao, N. Nader, M. J. Stevens, T. Gerrits, O. S. Magaña-Loaiza, F. Camacho-González, J. Chiles, A. Honardoost, M. Malinowski, R. Mirin, and S. Fathpour, “Photon pair generation on a silicon chip using nanophotonic periodically-poled lithium niobate waveguides,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), p. JTh3C.2.

Cerda-Pons, G.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood Jr, S. Bakhru, H. Bakhru, and et al., “E/O tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled LiNbO3,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2007), p. CFN3.

Chang, J.-Y.

M.-L. Hu, L.-J. Hu, and J.-Y. Chang, “Polarization switching of pure and MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 42(Part 1), 7414–7417 (2003).
[Crossref]

Chang, L.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3(5), 531–535 (2016).
[Crossref]

Chen, D.

E. H. Turner, D. Chen, and G. N. Otto, “High-frequency electro-optic coefficients of lithium niobate,” Appl. Phys. Lett. 8(11), 303–304 (1966).
[Crossref]

Chen, J.-Y.

Chen, X.

Chen, Y.

Chiles, J.

A. Rao, N. Nader, M. J. Stevens, T. Gerrits, O. S. Magaña-Loaiza, F. Camacho-González, J. Chiles, A. Honardoost, M. Malinowski, R. Mirin, and S. Fathpour, “Photon pair generation on a silicon chip using nanophotonic periodically-poled lithium niobate waveguides,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), p. JTh3C.2.

Chitgarha, M. R.

Choy, M. M.

M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14(4), 1693–1706 (1976).
[Crossref]

Corcoran, B.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Cui, G.

G. Shao, Y. Bai, G. Cui, C. Li, X. Qiu, D. Geng, D. Wu, and Y. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).
[Crossref]

Delfyett, P.

Desiatov, B.

Diziain, S.

Djukic, D.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood Jr, S. Bakhru, H. Bakhru, and et al., “E/O tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled LiNbO3,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2007), p. CFN3.

Eliseev, E. A.

E. A. Eliseev, A. N. Morozovska, G. S. Svechnikov, V. Gopalan, and V. Ya. Shur, “Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors,” Phys. Rev. B 83(23), 235313 (2011).
[Crossref]

Eng, L. M.

M. Schröder, A. Haußmann, A. Thiessen, E. Soergel, T. Woike, and L. M. Eng, “Conducting Domain Walls in Lithium Niobate Single Crystals,” Adv. Funct. Mater. 22(18), 3936–3944 (2012).
[Crossref]

Fan, H.

Fathpour, S.

A. Rao and S. Fathpour, “Heterogeneous thin-film lithium niobate integrated photonics for electrooptics and nonlinear optics,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–12 (2018).
[Crossref]

A. Rao, M. Malinowski, A. Honardoost, J. R. Talukder, P. Rabiei, P. Delfyett, and S. Fathpour, “Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon,” Opt. Express 24(26), 29941–29947 (2016).
[Crossref]

A. Rao and S. Fathpour, “Second-harmonic generation in integrated photonics on silicon,” Phys. Status Solidi A1700684 (2017).

A. Rao, N. Nader, M. J. Stevens, T. Gerrits, O. S. Magaña-Loaiza, F. Camacho-González, J. Chiles, A. Honardoost, M. Malinowski, R. Mirin, and S. Fathpour, “Photon pair generation on a silicon chip using nanophotonic periodically-poled lithium niobate waveguides,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), p. JTh3C.2.

Fejer, M. M.

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5(11), 1438–1441 (2018).
[Crossref]

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Byer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75(12), 1673–1675 (1999).
[Crossref]

Fieberg, S.

Foulon, G.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

Fujimura, M.

N. Horikawa, T. Tsubouchi, M. Fujimura, and T. Suhara, “Formation of domain-inverted grating in MgO:LiNbO3 by voltage application with insulation layer cladding,” Jpn. J. Appl. Phys. 46(8A), 5178–5180 (2007).
[Crossref]

Fujimuura, M.

T. Suhara and M. Fujimuura, Waveguide Nonlinear-Optic Devices (Springer, 2003).

Furukawa, Y.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

Gainutdinov, R.

T. Volk, R. Gainutdinov, and H. Zhang, “Domain patterning in ion-sliced LiNbO3 films by atomic force microscopy,” Crystals 7(5), 137 (2017).
[Crossref]

Gainutdinov, R. V.

T. R. Volk, R. V. Gainutdinov, and H. H. Zhang, “Domain-wall conduction in AFM-written domain patterns in ion-sliced LiNbO3 films,” Appl. Phys. Lett. 110(13), 132905 (2017).
[Crossref]

R. V. Gainutdinov, T. R. Volk, and H. H. Zhang, “Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3 films on SiO2/LiNbO3 substrates,” Appl. Phys. Lett. 107(16), 162903 (2015).
[Crossref]

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B: Lasers Opt. 91(2), 343–348 (2008).
[Crossref]

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B: Lasers Opt. 91(2), 343–348 (2008).
[Crossref]

Geiss, R.

Geng, D.

G. Shao, Y. Bai, G. Cui, C. Li, X. Qiu, D. Geng, D. Wu, and Y. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).
[Crossref]

Geng, D. Q.

J. Jiang, X. J. Meng, D. Q. Geng, and A. Q. Jiang, “Accelerated domain switching speed in single-crystal LiNbO3 thin films,” J. Appl. Phys. 117(10), 104101 (2015).
[Crossref]

Gerrits, T.

A. Rao, N. Nader, M. J. Stevens, T. Gerrits, O. S. Magaña-Loaiza, F. Camacho-González, J. Chiles, A. Honardoost, M. Malinowski, R. Mirin, and S. Fathpour, “Photon pair generation on a silicon chip using nanophotonic periodically-poled lithium niobate waveguides,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), p. JTh3C.2.

Gopalan, V.

E. A. Eliseev, A. N. Morozovska, G. S. Svechnikov, V. Gopalan, and V. Ya. Shur, “Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors,” Phys. Rev. B 83(23), 235313 (2011).
[Crossref]

Grange, R.

Gui, L.

L. Gui, “Periodically poled ridge waveguides and photonic wires in LiNbO3 for efficient nonlinear interactions,” Ph.D. thesis, University of Paderborn (2010).

Gunter, P.

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
[Crossref]

Günter, P.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Guo, G.-C.

Halonen, L.

M. Vainio and L. Halonen, “Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy,” Phys. Chem. Chem. Phys. 18(6), 4266–4294 (2016).
[Crossref]

Han, H.

H. Han, L. Cai, and H. Hu, “Optical and structural properties of single-crystal lithium niobate thin film,” Opt. Mater. 42, 47–51 (2015).
[Crossref]

Haußmann, A.

M. Schröder, A. Haußmann, A. Thiessen, E. Soergel, T. Woike, and L. M. Eng, “Conducting Domain Walls in Lithium Niobate Single Crystals,” Adv. Funct. Mater. 22(18), 3936–3944 (2012).
[Crossref]

He, Y.

Herr, S. J.

C. S. Werner, S. J. Herr, K. Buse, B. Sturman, E. Soergel, C. Razzaghi, and I. Breunig, “Large and accessible conductivity of charged domain walls in lithium niobate,” Sci. Rep. 7(1), 9862 (2017).
[Crossref]

Hoffmann, Á.

T. Jungk, Á. Hoffmann, and E. Soergel, “Contrast mechanisms for the detection of ferroelectric domains with scanning force microscopy,” New J. Phys. 11(3), 033029 (2009).
[Crossref]

Honardoost, A.

A. Rao, M. Malinowski, A. Honardoost, J. R. Talukder, P. Rabiei, P. Delfyett, and S. Fathpour, “Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon,” Opt. Express 24(26), 29941–29947 (2016).
[Crossref]

A. Rao, N. Nader, M. J. Stevens, T. Gerrits, O. S. Magaña-Loaiza, F. Camacho-González, J. Chiles, A. Honardoost, M. Malinowski, R. Mirin, and S. Fathpour, “Photon pair generation on a silicon chip using nanophotonic periodically-poled lithium niobate waveguides,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), p. JTh3C.2.

Horikawa, N.

N. Horikawa, T. Tsubouchi, M. Fujimura, and T. Suhara, “Formation of domain-inverted grating in MgO:LiNbO3 by voltage application with insulation layer cladding,” Jpn. J. Appl. Phys. 46(8A), 5178–5180 (2007).
[Crossref]

Hu, H.

L. Cai, Y. Wang, and H. Hu, “Efficient second harmonic generation in χ(2) profile reconfigured lithium niobate thin film,” Opt. Commun. 387, 405–408 (2017).
[Crossref]

H. Han, L. Cai, and H. Hu, “Optical and structural properties of single-crystal lithium niobate thin film,” Opt. Mater. 42, 47–51 (2015).
[Crossref]

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Hu, L.-J.

M.-L. Hu, L.-J. Hu, and J.-Y. Chang, “Polarization switching of pure and MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 42(Part 1), 7414–7417 (2003).
[Crossref]

Hu, M.-L.

M.-L. Hu, L.-J. Hu, and J.-Y. Chang, “Polarization switching of pure and MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 42(Part 1), 7414–7417 (2003).
[Crossref]

Huang, Y.-P.

Ishizuki, H.

H. Ishizuki and T. Taira, “Study on the field-poling dynamics in Mg-doped LiNbO3 and LiTaO3,” in Nonlinear Optics: Materials, Fundamentals and Applications (Optical Society of America, 2007), p. WE35.

Jankowski, M.

Jiang, A. Q.

J. Jiang, X. J. Meng, D. Q. Geng, and A. Q. Jiang, “Accelerated domain switching speed in single-crystal LiNbO3 thin films,” J. Appl. Phys. 117(10), 104101 (2015).
[Crossref]

Jiang, H.

Jiang, J.

J. Jiang, X. J. Meng, D. Q. Geng, and A. Q. Jiang, “Accelerated domain switching speed in single-crystal LiNbO3 thin films,” J. Appl. Phys. 117(10), 104101 (2015).
[Crossref]

Jungk, T.

T. Jungk, Á. Hoffmann, and E. Soergel, “Contrast mechanisms for the detection of ferroelectric domains with scanning force microscopy,” New J. Phys. 11(3), 033029 (2009).
[Crossref]

Khaleghi, S.

Kitamura, K.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

Kitaoka, Y.

T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO: LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40(Part 1), 1751–1753 (2001).
[Crossref]

Kley, E.-B.

Kühnemann, F.

Langrock, C.

Leidinger, M.

Li, C.

G. Shao, Y. Bai, G. Cui, C. Li, X. Qiu, D. Geng, D. Wu, and Y. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).
[Crossref]

Li, G.

Li, M.

Li, Y.

Liang, H.

Liang, L.

L. Liang, F. Wang, Y. Sang, F. Zhou, X. Xie, D. Sun, M. Zheng, and H. Liu, “Facile approach for the periodic poling of MgO-doped lithium niobate with liquid electrodes,” CrystEngComm 21(6), 941–947 (2019).
[Crossref]

Lin, Q.

Liu, H.

L. Liang, F. Wang, Y. Sang, F. Zhou, X. Xie, D. Sun, M. Zheng, and H. Liu, “Facile approach for the periodic poling of MgO-doped lithium niobate with liquid electrodes,” CrystEngComm 21(6), 941–947 (2019).
[Crossref]

Loncar, M.

Lu, Y.

G. Shao, Y. Bai, G. Cui, C. Li, X. Qiu, D. Geng, D. Wu, and Y. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).
[Crossref]

Luo, R.

Mackwitz, P.

P. Mackwitz, M. Rüsing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108(15), 152902 (2016).
[Crossref]

Magaña-Loaiza, O. S.

A. Rao, N. Nader, M. J. Stevens, T. Gerrits, O. S. Magaña-Loaiza, F. Camacho-González, J. Chiles, A. Honardoost, M. Malinowski, R. Mirin, and S. Fathpour, “Photon pair generation on a silicon chip using nanophotonic periodically-poled lithium niobate waveguides,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), p. JTh3C.2.

Malinowski, M.

A. Rao, M. Malinowski, A. Honardoost, J. R. Talukder, P. Rabiei, P. Delfyett, and S. Fathpour, “Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon,” Opt. Express 24(26), 29941–29947 (2016).
[Crossref]

A. Rao, N. Nader, M. J. Stevens, T. Gerrits, O. S. Magaña-Loaiza, F. Camacho-González, J. Chiles, A. Honardoost, M. Malinowski, R. Mirin, and S. Fathpour, “Photon pair generation on a silicon chip using nanophotonic periodically-poled lithium niobate waveguides,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), p. JTh3C.2.

Malitson, I. H.

I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. B 55(10), 1205–1209 (1965).
[Crossref]

Marandi, A.

Meng, X. J.

J. Jiang, X. J. Meng, D. Q. Geng, and A. Q. Jiang, “Accelerated domain switching speed in single-crystal LiNbO3 thin films,” J. Appl. Phys. 117(10), 104101 (2015).
[Crossref]

Mirin, R.

A. Rao, N. Nader, M. J. Stevens, T. Gerrits, O. S. Magaña-Loaiza, F. Camacho-González, J. Chiles, A. Honardoost, M. Malinowski, R. Mirin, and S. Fathpour, “Photon pair generation on a silicon chip using nanophotonic periodically-poled lithium niobate waveguides,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), p. JTh3C.2.

Mitchell, A.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Miyamoto, A.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

Mizuuchi, K.

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Electric-field poling in Mg-doped LiNbO3,” J. Appl. Phys. 96(11), 6585–6590 (2004).
[Crossref]

T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO: LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40(Part 1), 1751–1753 (2001).
[Crossref]

Morikawa, A.

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Electric-field poling in Mg-doped LiNbO3,” J. Appl. Phys. 96(11), 6585–6590 (2004).
[Crossref]

Morozovska, A. N.

E. A. Eliseev, A. N. Morozovska, G. S. Svechnikov, V. Gopalan, and V. Ya. Shur, “Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors,” Phys. Rev. B 83(23), 235313 (2011).
[Crossref]

Müller, K.

P. Mackwitz, M. Rüsing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108(15), 152902 (2016).
[Crossref]

Nader, N.

A. Rao, N. Nader, M. J. Stevens, T. Gerrits, O. S. Magaña-Loaiza, F. Camacho-González, J. Chiles, A. Honardoost, M. Malinowski, R. Mirin, and S. Fathpour, “Photon pair generation on a silicon chip using nanophotonic periodically-poled lithium niobate waveguides,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), p. JTh3C.2.

Osgood Jr, R. M.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood Jr, S. Bakhru, H. Bakhru, and et al., “E/O tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled LiNbO3,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2007), p. CFN3.

Otto, G. N.

E. H. Turner, D. Chen, and G. N. Otto, “High-frequency electro-optic coefficients of lithium niobate,” Appl. Phys. Lett. 8(11), 303–304 (1966).
[Crossref]

Pertsch, T.

Peters, J.

Poberaj, G.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Qiu, X.

G. Shao, Y. Bai, G. Cui, C. Li, X. Qiu, D. Geng, D. Wu, and Y. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).
[Crossref]

Rabiei, P.

A. Rao, M. Malinowski, A. Honardoost, J. R. Talukder, P. Rabiei, P. Delfyett, and S. Fathpour, “Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon,” Opt. Express 24(26), 29941–29947 (2016).
[Crossref]

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
[Crossref]

Rao, A.

A. Rao and S. Fathpour, “Heterogeneous thin-film lithium niobate integrated photonics for electrooptics and nonlinear optics,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–12 (2018).
[Crossref]

A. Rao, M. Malinowski, A. Honardoost, J. R. Talukder, P. Rabiei, P. Delfyett, and S. Fathpour, “Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon,” Opt. Express 24(26), 29941–29947 (2016).
[Crossref]

A. Rao and S. Fathpour, “Second-harmonic generation in integrated photonics on silicon,” Phys. Status Solidi A1700684 (2017).

A. Rao, N. Nader, M. J. Stevens, T. Gerrits, O. S. Magaña-Loaiza, F. Camacho-González, J. Chiles, A. Honardoost, M. Malinowski, R. Mirin, and S. Fathpour, “Photon pair generation on a silicon chip using nanophotonic periodically-poled lithium niobate waveguides,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), p. JTh3C.2.

Razzaghi, C.

C. S. Werner, S. J. Herr, K. Buse, B. Sturman, E. Soergel, C. Razzaghi, and I. Breunig, “Large and accessible conductivity of charged domain walls in lithium niobate,” Sci. Rep. 7(1), 9862 (2017).
[Crossref]

Ren, X.-F.

Roth, R. M.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood Jr, S. Bakhru, H. Bakhru, and et al., “E/O tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled LiNbO3,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2007), p. CFN3.

Route, R. K.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

Rüsing, M.

P. Mackwitz, M. Rüsing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108(15), 152902 (2016).
[Crossref]

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B: Lasers Opt. 91(2), 343–348 (2008).
[Crossref]

Sang, Y.

L. Liang, F. Wang, Y. Sang, F. Zhou, X. Xie, D. Sun, M. Zheng, and H. Liu, “Facile approach for the periodic poling of MgO-doped lithium niobate with liquid electrodes,” CrystEngComm 21(6), 941–947 (2019).
[Crossref]

Saravi, S.

Schrempel, F.

Schröder, M.

M. Schröder, A. Haußmann, A. Thiessen, E. Soergel, T. Woike, and L. M. Eng, “Conducting Domain Walls in Lithium Niobate Single Crystals,” Adv. Funct. Mater. 22(18), 3936–3944 (2012).
[Crossref]

Sergeyev, A.

Setzpfandt, F.

Shalaev, V. M.

Shalaginov, M. Y.

Shao, G.

G. Shao, Y. Bai, G. Cui, C. Li, X. Qiu, D. Geng, D. Wu, and Y. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).
[Crossref]

Shur, V. Y.

R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Byer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75(12), 1673–1675 (1999).
[Crossref]

Shur, V. Ya.

E. A. Eliseev, A. N. Morozovska, G. S. Svechnikov, V. Gopalan, and V. Ya. Shur, “Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors,” Phys. Rev. B 83(23), 235313 (2011).
[Crossref]

Soergel, E.

C. S. Werner, S. J. Herr, K. Buse, B. Sturman, E. Soergel, C. Razzaghi, and I. Breunig, “Large and accessible conductivity of charged domain walls in lithium niobate,” Sci. Rep. 7(1), 9862 (2017).
[Crossref]

M. Schröder, A. Haußmann, A. Thiessen, E. Soergel, T. Woike, and L. M. Eng, “Conducting Domain Walls in Lithium Niobate Single Crystals,” Adv. Funct. Mater. 22(18), 3936–3944 (2012).
[Crossref]

T. Jungk, Á. Hoffmann, and E. Soergel, “Contrast mechanisms for the detection of ferroelectric domains with scanning force microscopy,” New J. Phys. 11(3), 033029 (2009).
[Crossref]

Sohler, W.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Stevens, M. J.

A. Rao, N. Nader, M. J. Stevens, T. Gerrits, O. S. Magaña-Loaiza, F. Camacho-González, J. Chiles, A. Honardoost, M. Malinowski, R. Mirin, and S. Fathpour, “Photon pair generation on a silicon chip using nanophotonic periodically-poled lithium niobate waveguides,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), p. JTh3C.2.

Sturman, B.

C. S. Werner, S. J. Herr, K. Buse, B. Sturman, E. Soergel, C. Razzaghi, and I. Breunig, “Large and accessible conductivity of charged domain walls in lithium niobate,” Sci. Rep. 7(1), 9862 (2017).
[Crossref]

Sua, Y. M.

Suda, N.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

Sugita, T.

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Electric-field poling in Mg-doped LiNbO3,” J. Appl. Phys. 96(11), 6585–6590 (2004).
[Crossref]

T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO: LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40(Part 1), 1751–1753 (2001).
[Crossref]

Suhara, T.

N. Horikawa, T. Tsubouchi, M. Fujimura, and T. Suhara, “Formation of domain-inverted grating in MgO:LiNbO3 by voltage application with insulation layer cladding,” Jpn. J. Appl. Phys. 46(8A), 5178–5180 (2007).
[Crossref]

T. Suhara and M. Fujimuura, Waveguide Nonlinear-Optic Devices (Springer, 2003).

K. Tanaka and T. Suhara, “Fabrication of domain inverted ridge waveguide in ion-sliced LiNbO3 for wavelength conversion devices,” in Microoptics Conference (MOC), 2015 20th (IEEE, 2015), pp. 1–2.

Sun, D.

L. Liang, F. Wang, Y. Sang, F. Zhou, X. Xie, D. Sun, M. Zheng, and H. Liu, “Facile approach for the periodic poling of MgO-doped lithium niobate with liquid electrodes,” CrystEngComm 21(6), 941–947 (2019).
[Crossref]

Svechnikov, G. S.

E. A. Eliseev, A. N. Morozovska, G. S. Svechnikov, V. Gopalan, and V. Ya. Shur, “Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors,” Phys. Rev. B 83(23), 235313 (2011).
[Crossref]

Taira, T.

H. Ishizuki and T. Taira, “Study on the field-poling dynamics in Mg-doped LiNbO3 and LiTaO3,” in Nonlinear Optics: Materials, Fundamentals and Applications (Optical Society of America, 2007), p. WE35.

Takekawa, S.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

Talukder, J. R.

Tanaka, K.

K. Tanaka and T. Suhara, “Fabrication of domain inverted ridge waveguide in ion-sliced LiNbO3 for wavelength conversion devices,” in Microoptics Conference (MOC), 2015 20th (IEEE, 2015), pp. 1–2.

Terao, M.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

Thiessen, A.

M. Schröder, A. Haußmann, A. Thiessen, E. Soergel, T. Woike, and L. M. Eng, “Conducting Domain Walls in Lithium Niobate Single Crystals,” Adv. Funct. Mater. 22(18), 3936–3944 (2012).
[Crossref]

Tsubouchi, T.

N. Horikawa, T. Tsubouchi, M. Fujimura, and T. Suhara, “Formation of domain-inverted grating in MgO:LiNbO3 by voltage application with insulation layer cladding,” Jpn. J. Appl. Phys. 46(8A), 5178–5180 (2007).
[Crossref]

Tünnermann, A.

Turner, E. H.

E. H. Turner, D. Chen, and G. N. Otto, “High-frequency electro-optic coefficients of lithium niobate,” Appl. Phys. Lett. 8(11), 303–304 (1966).
[Crossref]

Vainio, M.

M. Vainio and L. Halonen, “Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy,” Phys. Chem. Chem. Phys. 18(6), 4266–4294 (2016).
[Crossref]

Venkataraman, V.

Volet, N.

Volk, T.

T. Volk, R. Gainutdinov, and H. Zhang, “Domain patterning in ion-sliced LiNbO3 films by atomic force microscopy,” Crystals 7(5), 137 (2017).
[Crossref]

Volk, T. R.

T. R. Volk, R. V. Gainutdinov, and H. H. Zhang, “Domain-wall conduction in AFM-written domain patterns in ion-sliced LiNbO3 films,” Appl. Phys. Lett. 110(13), 132905 (2017).
[Crossref]

R. V. Gainutdinov, T. R. Volk, and H. H. Zhang, “Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3 films on SiO2/LiNbO3 substrates,” Appl. Phys. Lett. 107(16), 162903 (2015).
[Crossref]

Waasem, N.

Wang, C.

Wang, F.

L. Liang, F. Wang, Y. Sang, F. Zhou, X. Xie, D. Sun, M. Zheng, and H. Liu, “Facile approach for the periodic poling of MgO-doped lithium niobate with liquid electrodes,” CrystEngComm 21(6), 941–947 (2019).
[Crossref]

Wang, L.

Wang, Y.

L. Cai, Y. Wang, and H. Hu, “Efficient second harmonic generation in χ(2) profile reconfigured lithium niobate thin film,” Opt. Commun. 387, 405–408 (2017).
[Crossref]

Werner, C. S.

C. S. Werner, S. J. Herr, K. Buse, B. Sturman, E. Soergel, C. Razzaghi, and I. Breunig, “Large and accessible conductivity of charged domain walls in lithium niobate,” Sci. Rep. 7(1), 9862 (2017).
[Crossref]

Widhalm, A.

P. Mackwitz, M. Rüsing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108(15), 152902 (2016).
[Crossref]

Willner, A. E.

Woike, T.

M. Schröder, A. Haußmann, A. Thiessen, E. Soergel, T. Woike, and L. M. Eng, “Conducting Domain Walls in Lithium Niobate Single Crystals,” Adv. Funct. Mater. 22(18), 3936–3944 (2012).
[Crossref]

Wu, D.

G. Shao, Y. Bai, G. Cui, C. Li, X. Qiu, D. Geng, D. Wu, and Y. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).
[Crossref]

Xie, X.

L. Liang, F. Wang, Y. Sang, F. Zhou, X. Xie, D. Sun, M. Zheng, and H. Liu, “Facile approach for the periodic poling of MgO-doped lithium niobate with liquid electrodes,” CrystEngComm 21(6), 941–947 (2019).
[Crossref]

Xiong, X.

Yamamoto, K.

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Electric-field poling in Mg-doped LiNbO3,” J. Appl. Phys. 96(11), 6585–6590 (2004).
[Crossref]

T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO: LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40(Part 1), 1751–1753 (2001).
[Crossref]

Yilmaz, O. F.

Zhang, H.

T. Volk, R. Gainutdinov, and H. Zhang, “Domain patterning in ion-sliced LiNbO3 films by atomic force microscopy,” Crystals 7(5), 137 (2017).
[Crossref]

Zhang, H. H.

T. R. Volk, R. V. Gainutdinov, and H. H. Zhang, “Domain-wall conduction in AFM-written domain patterns in ion-sliced LiNbO3 films,” Appl. Phys. Lett. 110(13), 132905 (2017).
[Crossref]

R. V. Gainutdinov, T. R. Volk, and H. H. Zhang, “Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3 films on SiO2/LiNbO3 substrates,” Appl. Phys. Lett. 107(16), 162903 (2015).
[Crossref]

Zhang, M.

Zheng, M.

L. Liang, F. Wang, Y. Sang, F. Zhou, X. Xie, D. Sun, M. Zheng, and H. Liu, “Facile approach for the periodic poling of MgO-doped lithium niobate with liquid electrodes,” CrystEngComm 21(6), 941–947 (2019).
[Crossref]

Zhou, F.

L. Liang, F. Wang, Y. Sang, F. Zhou, X. Xie, D. Sun, M. Zheng, and H. Liu, “Facile approach for the periodic poling of MgO-doped lithium niobate with liquid electrodes,” CrystEngComm 21(6), 941–947 (2019).
[Crossref]

Ziegler, J. F.

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM – The stopping and range of ions in matter (2010),” Nucl. Instrum. Methods Phys. Res., Sect. B 268(11-12), 1818–1823 (2010).
[Crossref]

Ziegler, M. D.

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM – The stopping and range of ions in matter (2010),” Nucl. Instrum. Methods Phys. Res., Sect. B 268(11-12), 1818–1823 (2010).
[Crossref]

Zrenner, A.

P. Mackwitz, M. Rüsing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108(15), 152902 (2016).
[Crossref]

Adv. Funct. Mater. (1)

M. Schröder, A. Haußmann, A. Thiessen, E. Soergel, T. Woike, and L. M. Eng, “Conducting Domain Walls in Lithium Niobate Single Crystals,” Adv. Funct. Mater. 22(18), 3936–3944 (2012).
[Crossref]

AIP Adv. (1)

G. Shao, Y. Bai, G. Cui, C. Li, X. Qiu, D. Geng, D. Wu, and Y. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B: Lasers Opt. 91(2), 343–348 (2008).
[Crossref]

Appl. Phys. Lett. (8)

T. R. Volk, R. V. Gainutdinov, and H. H. Zhang, “Domain-wall conduction in AFM-written domain patterns in ion-sliced LiNbO3 films,” Appl. Phys. Lett. 110(13), 132905 (2017).
[Crossref]

R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Byer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75(12), 1673–1675 (1999).
[Crossref]

R. V. Gainutdinov, T. R. Volk, and H. H. Zhang, “Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3 films on SiO2/LiNbO3 substrates,” Appl. Phys. Lett. 107(16), 162903 (2015).
[Crossref]

P. Mackwitz, M. Rüsing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108(15), 152902 (2016).
[Crossref]

E. H. Turner, D. Chen, and G. N. Otto, “High-frequency electro-optic coefficients of lithium niobate,” Appl. Phys. Lett. 8(11), 303–304 (1966).
[Crossref]

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
[Crossref]

Crystals (1)

T. Volk, R. Gainutdinov, and H. Zhang, “Domain patterning in ion-sliced LiNbO3 films by atomic force microscopy,” Crystals 7(5), 137 (2017).
[Crossref]

CrystEngComm (1)

L. Liang, F. Wang, Y. Sang, F. Zhou, X. Xie, D. Sun, M. Zheng, and H. Liu, “Facile approach for the periodic poling of MgO-doped lithium niobate with liquid electrodes,” CrystEngComm 21(6), 941–947 (2019).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Rao and S. Fathpour, “Heterogeneous thin-film lithium niobate integrated photonics for electrooptics and nonlinear optics,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–12 (2018).
[Crossref]

J. Appl. Phys. (2)

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Electric-field poling in Mg-doped LiNbO3,” J. Appl. Phys. 96(11), 6585–6590 (2004).
[Crossref]

J. Jiang, X. J. Meng, D. Q. Geng, and A. Q. Jiang, “Accelerated domain switching speed in single-crystal LiNbO3 thin films,” J. Appl. Phys. 117(10), 104101 (2015).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. B 55(10), 1205–1209 (1965).
[Crossref]

Jpn. J. Appl. Phys. (3)

T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO: LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40(Part 1), 1751–1753 (2001).
[Crossref]

M.-L. Hu, L.-J. Hu, and J.-Y. Chang, “Polarization switching of pure and MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 42(Part 1), 7414–7417 (2003).
[Crossref]

N. Horikawa, T. Tsubouchi, M. Fujimura, and T. Suhara, “Formation of domain-inverted grating in MgO:LiNbO3 by voltage application with insulation layer cladding,” Jpn. J. Appl. Phys. 46(8A), 5178–5180 (2007).
[Crossref]

Laser Photonics Rev. (2)

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

New J. Phys. (1)

T. Jungk, Á. Hoffmann, and E. Soergel, “Contrast mechanisms for the detection of ferroelectric domains with scanning force microscopy,” New J. Phys. 11(3), 033029 (2009).
[Crossref]

Nucl. Instrum. Methods Phys. Res., Sect. B (1)

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM – The stopping and range of ions in matter (2010),” Nucl. Instrum. Methods Phys. Res., Sect. B 268(11-12), 1818–1823 (2010).
[Crossref]

Opt. Commun. (1)

L. Cai, Y. Wang, and H. Hu, “Efficient second harmonic generation in χ(2) profile reconfigured lithium niobate thin film,” Opt. Commun. 387, 405–408 (2017).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. (1)

H. Han, L. Cai, and H. Hu, “Optical and structural properties of single-crystal lithium niobate thin film,” Opt. Mater. 42, 47–51 (2015).
[Crossref]

Opt. Mater. Express (1)

Optica (3)

OSA Continuum (1)

Phys. Chem. Chem. Phys. (1)

M. Vainio and L. Halonen, “Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy,” Phys. Chem. Chem. Phys. 18(6), 4266–4294 (2016).
[Crossref]

Phys. Rev. B (2)

M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14(4), 1693–1706 (1976).
[Crossref]

E. A. Eliseev, A. N. Morozovska, G. S. Svechnikov, V. Gopalan, and V. Ya. Shur, “Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors,” Phys. Rev. B 83(23), 235313 (2011).
[Crossref]

Sci. Rep. (1)

C. S. Werner, S. J. Herr, K. Buse, B. Sturman, E. Soergel, C. Razzaghi, and I. Breunig, “Large and accessible conductivity of charged domain walls in lithium niobate,” Sci. Rep. 7(1), 9862 (2017).
[Crossref]

Other (7)

L. Gui, “Periodically poled ridge waveguides and photonic wires in LiNbO3 for efficient nonlinear interactions,” Ph.D. thesis, University of Paderborn (2010).

A. Rao, N. Nader, M. J. Stevens, T. Gerrits, O. S. Magaña-Loaiza, F. Camacho-González, J. Chiles, A. Honardoost, M. Malinowski, R. Mirin, and S. Fathpour, “Photon pair generation on a silicon chip using nanophotonic periodically-poled lithium niobate waveguides,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), p. JTh3C.2.

K. Tanaka and T. Suhara, “Fabrication of domain inverted ridge waveguide in ion-sliced LiNbO3 for wavelength conversion devices,” in Microoptics Conference (MOC), 2015 20th (IEEE, 2015), pp. 1–2.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood Jr, S. Bakhru, H. Bakhru, and et al., “E/O tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled LiNbO3,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2007), p. CFN3.

A. Rao and S. Fathpour, “Second-harmonic generation in integrated photonics on silicon,” Phys. Status Solidi A1700684 (2017).

H. Ishizuki and T. Taira, “Study on the field-poling dynamics in Mg-doped LiNbO3 and LiTaO3,” in Nonlinear Optics: Materials, Fundamentals and Applications (Optical Society of America, 2007), p. WE35.

T. Suhara and M. Fujimuura, Waveguide Nonlinear-Optic Devices (Springer, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Schematic of poling electrodes and silicon nitride (SiN) strip on 700 nm thick x-cut MgO:LN thin film. (b) Zoomed in view of poling electrode tip showing 160 nm chromium (Cr) on top of 100 nm SiO2. (c) Poling circuit; pulses generated from an arbitrary waveform generator (AWG) are amplified by a high voltage amplifier (HVA) and applied to a sample covered with silicone oil. An oscilloscope monitors the poling voltage (VLN) and current (Ipol) through a voltage divider (R1 and R2) and series resister R3, respectively. Resistor RS provides over-voltage protection to the oscilloscope in the case of a short circuit. R1 = 20 MΩ, R2 = 2.26 MΩ, R3 = 330 kΩ, RS = 2 MΩ, and the oscilloscope input resistance Rin = 10 MΩ.
Fig. 2.
Fig. 2. Poling waveforms and piezoresponse force microscopy amplitude image (a.u.) of domains on MgO:LN (a)-(b) thin film, (c)-(d) bulk with SiO2 insulation, and (e)-(f) bulk without SiO2 insulation. Poling waveforms show voltage (VLN) and current (Ipol) after open-circuit subtraction. The piezoresponse force microscopy images are taken on the +x surface, where the dark regions have been inverted. Chromium electrode tips are visible at the top and bottom.
Fig. 3.
Fig. 3. (a) Generated second harmonic power as a function of input pump power (a.u.) showing characteristic quadratic scaling. Insert shows PFM amplitude image (a.u.) on +x surface; the SiN waveguide can be seen between the electrodes. (b) and (c) Simulated TE0 modes profiles (Ez component) at pump (1550 nm) and second harmonic (775 nm) wavelengths. (d) SEM image of fabricated device coated with Cr anti-charging layer.
Fig. 4.
Fig. 4. Scanning electron microscopy images of FIB milled cross-sections through center of SiN strip after HF etching. The sample is tilted ∼45°. Inset shows location of milled trench on +x face. (a) Device poled with one pulse shows domains penetrate ∼65% through the LN film. (b) Poling with two pulses shows domains penetrate entire depth.

Tables (1)

Tables Icon

Table 1. Summary of measured threshold voltage (Vth) with 15 µm electrode gap size

Metrics