Abstract

We report on a new type of a random phase plate (RPP) that can be applied for effective homogenization of coherent laser beams. The RPP is fabricated on a uniaxial birefringent crystal, ensuring the absence of speckles within the processing plane due to two orthogonally polarized beamlets with π phase difference. High fabrication speed ∼ 2 mm2/s of RPP takes at least 10 minutes to fabricate it. RPPs test showed the transformation of Gauss intensity distribution to the flat-top one characterized by low-intensity modulation ∼1% of the coherent laser beam. Then, RPP was applied in a picosecond laser setup for ZnO film microprocessing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Random phase plates for beam smoothing on the Nova laser

S. N. Dixit, I. M. Thomas, B. W. Woods, A. J. Morgan, M. A. Henesian, P. J. Wegner, and H. T. Powell
Appl. Opt. 32(14) 2543-2554 (1993)

Spatial and temporal coherence characterization of a smoothed laser beam

J. Surville, L. Videau, S. Montant, C. Stenz, and C. Sauteret
Opt. Lett. 29(20) 2336-2338 (2004)

Laser-writing inside uniaxially birefringent crystals: fine morphology of ultrashort pulse-induced changes in lithium niobate

P. Karpinski, V. Shvedov, W. Krolikowski, and C. Hnatovsky
Opt. Express 24(7) 7456-7476 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
    [Crossref]
  2. K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
    [Crossref]
  3. B. Yalizay, T. Ersoy, B. Soylu, and S. Akturk, “Fabrication of nanometer-size structures in metal thin films using femtosecond laser Bessel beams,” Appl. Phys. Lett. 100(3), 031104 (2012).
    [Crossref]
  4. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53(11), 1057–1060 (1984).
    [Crossref]
  5. C. Kopp, L. Ravel, and P. Meyrueis, “Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate,” J. Opt. A: Pure Appl. Opt. 1(3), 398–403 (1999).
    [Crossref]
  6. R. Zakoldaev, G. Kostyuk, V. Rymkevich, V. Koval, M. Sergeev, V. Veiko, E. Yakovlev, and A. Sivers, “Fast fabrication of multilevel phase plates used for laser beam correction,” J. Laser Micro/Nanoeng. 12(3), 281–285 (2017).
    [Crossref]
  7. C. Yang, R. Zhang, Q. Xu, and P. Ma, “Continuous phase plate for laser beam smoothing,” Appl. Opt. 47(10), 1465–1469 (2008).
    [Crossref]
  8. D. L. Shealy and F. M. Dickey, “Laser beam shaping,” Opt. Eng. 42(11), 3077–3079 (2003).
    [Crossref]
  9. Z. Deng, Q. Yang, F. Chen, H. Bian, J. Yong, G. Du, Y. Hu, and X. Hou, “High-performance laser beam homogenizer based on double-sided concave microlens,” IEEE Photonics Technol. Lett. 26(20), 2086–2089 (2014).
    [Crossref]
  10. C. L. S. Lewis, I. Weaver, L. A. Doyle, G. W. Martin, T. Morrow, D. A. Pepler, C. N. Danson, and I. N. Ross, “Use of a random phase plate as a KrF laser beam homogenizer for thin film deposition applications,” Rev. Sci. Instrum. 70(4), 2116–2121 (1999).
    [Crossref]
  11. S. N. Dixit, I. M. Thomas, B. W. Woods, A. J. Morgan, M. A. Henesian, P. J. Wegner, and H. T. Powell, “Random phase plates for beam smoothing on the Nova laser,” Appl. Opt. 32(14), 2543–2554 (1993).
    [Crossref]
  12. H.-Z. Zheng, W.-Y. Liang, Z. Li, J.-W. Dong, and H.-Z. Wang, “Photonic crystal changes coherent laser to incoherent laser with random phase,” Opt. Commun. 283(7), 1394–1396 (2010).
    [Crossref]
  13. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).
  14. J. E. E. Baglin, “Ion beam nanoscale fabrication and lithography – a review,” Appl. Surf. Sci. 258(9), 4103–4111 (2012).
    [Crossref]
  15. G. Kopitkovas, T. Lippert, C. David, S. Canulescu, A. Wokaun, and J. Gobrecht, “Fabrication of beam homogenizers in quartz by laser micromachining,” J. Photochem. Photobiol., A 166(1-3), 135–140 (2004).
    [Crossref]
  16. V. Veiko, S. Volkov, R. Zakoldaev, M. Sergeev, A. Samokhvalov, G. Kostyuk, and K. Milyaev, “Laser-induced microplasma as a tool for microstructuring transparent media,” Quantum Electron. 47(9), 842–848 (2017).
    [Crossref]
  17. V. Koval, M. Sergeev, R. Zakoldaev, and G. Kostyuk, “Changes in the spectral characteristics of quartz-glass plates when they are processed with laser-induced plasma,” J. Opt. Technol. 84(7), 447–452 (2017).
    [Crossref]
  18. W. M. Steen and J. Mazumder, Laser Material Processing (Springer -Verlag London Limited, 2010).

2017 (3)

R. Zakoldaev, G. Kostyuk, V. Rymkevich, V. Koval, M. Sergeev, V. Veiko, E. Yakovlev, and A. Sivers, “Fast fabrication of multilevel phase plates used for laser beam correction,” J. Laser Micro/Nanoeng. 12(3), 281–285 (2017).
[Crossref]

V. Veiko, S. Volkov, R. Zakoldaev, M. Sergeev, A. Samokhvalov, G. Kostyuk, and K. Milyaev, “Laser-induced microplasma as a tool for microstructuring transparent media,” Quantum Electron. 47(9), 842–848 (2017).
[Crossref]

V. Koval, M. Sergeev, R. Zakoldaev, and G. Kostyuk, “Changes in the spectral characteristics of quartz-glass plates when they are processed with laser-induced plasma,” J. Opt. Technol. 84(7), 447–452 (2017).
[Crossref]

2015 (1)

K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

2014 (1)

Z. Deng, Q. Yang, F. Chen, H. Bian, J. Yong, G. Du, Y. Hu, and X. Hou, “High-performance laser beam homogenizer based on double-sided concave microlens,” IEEE Photonics Technol. Lett. 26(20), 2086–2089 (2014).
[Crossref]

2013 (1)

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

2012 (2)

B. Yalizay, T. Ersoy, B. Soylu, and S. Akturk, “Fabrication of nanometer-size structures in metal thin films using femtosecond laser Bessel beams,” Appl. Phys. Lett. 100(3), 031104 (2012).
[Crossref]

J. E. E. Baglin, “Ion beam nanoscale fabrication and lithography – a review,” Appl. Surf. Sci. 258(9), 4103–4111 (2012).
[Crossref]

2010 (1)

H.-Z. Zheng, W.-Y. Liang, Z. Li, J.-W. Dong, and H.-Z. Wang, “Photonic crystal changes coherent laser to incoherent laser with random phase,” Opt. Commun. 283(7), 1394–1396 (2010).
[Crossref]

2008 (1)

2004 (1)

G. Kopitkovas, T. Lippert, C. David, S. Canulescu, A. Wokaun, and J. Gobrecht, “Fabrication of beam homogenizers in quartz by laser micromachining,” J. Photochem. Photobiol., A 166(1-3), 135–140 (2004).
[Crossref]

2003 (1)

D. L. Shealy and F. M. Dickey, “Laser beam shaping,” Opt. Eng. 42(11), 3077–3079 (2003).
[Crossref]

1999 (2)

C. L. S. Lewis, I. Weaver, L. A. Doyle, G. W. Martin, T. Morrow, D. A. Pepler, C. N. Danson, and I. N. Ross, “Use of a random phase plate as a KrF laser beam homogenizer for thin film deposition applications,” Rev. Sci. Instrum. 70(4), 2116–2121 (1999).
[Crossref]

C. Kopp, L. Ravel, and P. Meyrueis, “Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate,” J. Opt. A: Pure Appl. Opt. 1(3), 398–403 (1999).
[Crossref]

1993 (1)

1984 (1)

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53(11), 1057–1060 (1984).
[Crossref]

Akturk, S.

B. Yalizay, T. Ersoy, B. Soylu, and S. Akturk, “Fabrication of nanometer-size structures in metal thin films using femtosecond laser Bessel beams,” Appl. Phys. Lett. 100(3), 031104 (2012).
[Crossref]

Arinaga, S.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53(11), 1057–1060 (1984).
[Crossref]

Baglin, J. E. E.

J. E. E. Baglin, “Ion beam nanoscale fabrication and lithography – a review,” Appl. Surf. Sci. 258(9), 4103–4111 (2012).
[Crossref]

Bian, H.

Z. Deng, Q. Yang, F. Chen, H. Bian, J. Yong, G. Du, Y. Hu, and X. Hou, “High-performance laser beam homogenizer based on double-sided concave microlens,” IEEE Photonics Technol. Lett. 26(20), 2086–2089 (2014).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).

Canulescu, S.

G. Kopitkovas, T. Lippert, C. David, S. Canulescu, A. Wokaun, and J. Gobrecht, “Fabrication of beam homogenizers in quartz by laser micromachining,” J. Photochem. Photobiol., A 166(1-3), 135–140 (2004).
[Crossref]

Chen, F.

Z. Deng, Q. Yang, F. Chen, H. Bian, J. Yong, G. Du, Y. Hu, and X. Hou, “High-performance laser beam homogenizer based on double-sided concave microlens,” IEEE Photonics Technol. Lett. 26(20), 2086–2089 (2014).
[Crossref]

Danson, C. N.

C. L. S. Lewis, I. Weaver, L. A. Doyle, G. W. Martin, T. Morrow, D. A. Pepler, C. N. Danson, and I. N. Ross, “Use of a random phase plate as a KrF laser beam homogenizer for thin film deposition applications,” Rev. Sci. Instrum. 70(4), 2116–2121 (1999).
[Crossref]

David, C.

G. Kopitkovas, T. Lippert, C. David, S. Canulescu, A. Wokaun, and J. Gobrecht, “Fabrication of beam homogenizers in quartz by laser micromachining,” J. Photochem. Photobiol., A 166(1-3), 135–140 (2004).
[Crossref]

Deng, Z.

Z. Deng, Q. Yang, F. Chen, H. Bian, J. Yong, G. Du, Y. Hu, and X. Hou, “High-performance laser beam homogenizer based on double-sided concave microlens,” IEEE Photonics Technol. Lett. 26(20), 2086–2089 (2014).
[Crossref]

Dickey, F. M.

D. L. Shealy and F. M. Dickey, “Laser beam shaping,” Opt. Eng. 42(11), 3077–3079 (2003).
[Crossref]

Dixit, S. N.

Dong, J.-W.

H.-Z. Zheng, W.-Y. Liang, Z. Li, J.-W. Dong, and H.-Z. Wang, “Photonic crystal changes coherent laser to incoherent laser with random phase,” Opt. Commun. 283(7), 1394–1396 (2010).
[Crossref]

Doyle, L. A.

C. L. S. Lewis, I. Weaver, L. A. Doyle, G. W. Martin, T. Morrow, D. A. Pepler, C. N. Danson, and I. N. Ross, “Use of a random phase plate as a KrF laser beam homogenizer for thin film deposition applications,” Rev. Sci. Instrum. 70(4), 2116–2121 (1999).
[Crossref]

Du, G.

Z. Deng, Q. Yang, F. Chen, H. Bian, J. Yong, G. Du, Y. Hu, and X. Hou, “High-performance laser beam homogenizer based on double-sided concave microlens,” IEEE Photonics Technol. Lett. 26(20), 2086–2089 (2014).
[Crossref]

Ersoy, T.

B. Yalizay, T. Ersoy, B. Soylu, and S. Akturk, “Fabrication of nanometer-size structures in metal thin films using femtosecond laser Bessel beams,” Appl. Phys. Lett. 100(3), 031104 (2012).
[Crossref]

Gandhi, H. H.

K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

Gobrecht, J.

G. Kopitkovas, T. Lippert, C. David, S. Canulescu, A. Wokaun, and J. Gobrecht, “Fabrication of beam homogenizers in quartz by laser micromachining,” J. Photochem. Photobiol., A 166(1-3), 135–140 (2004).
[Crossref]

Guo, C.

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

Henesian, M. A.

Hou, X.

Z. Deng, Q. Yang, F. Chen, H. Bian, J. Yong, G. Du, Y. Hu, and X. Hou, “High-performance laser beam homogenizer based on double-sided concave microlens,” IEEE Photonics Technol. Lett. 26(20), 2086–2089 (2014).
[Crossref]

Hu, Y.

Z. Deng, Q. Yang, F. Chen, H. Bian, J. Yong, G. Du, Y. Hu, and X. Hou, “High-performance laser beam homogenizer based on double-sided concave microlens,” IEEE Photonics Technol. Lett. 26(20), 2086–2089 (2014).
[Crossref]

Kato, Y.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53(11), 1057–1060 (1984).
[Crossref]

Kitagawa, Y.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53(11), 1057–1060 (1984).
[Crossref]

Kopitkovas, G.

G. Kopitkovas, T. Lippert, C. David, S. Canulescu, A. Wokaun, and J. Gobrecht, “Fabrication of beam homogenizers in quartz by laser micromachining,” J. Photochem. Photobiol., A 166(1-3), 135–140 (2004).
[Crossref]

Kopp, C.

C. Kopp, L. Ravel, and P. Meyrueis, “Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate,” J. Opt. A: Pure Appl. Opt. 1(3), 398–403 (1999).
[Crossref]

Kostyuk, G.

R. Zakoldaev, G. Kostyuk, V. Rymkevich, V. Koval, M. Sergeev, V. Veiko, E. Yakovlev, and A. Sivers, “Fast fabrication of multilevel phase plates used for laser beam correction,” J. Laser Micro/Nanoeng. 12(3), 281–285 (2017).
[Crossref]

V. Veiko, S. Volkov, R. Zakoldaev, M. Sergeev, A. Samokhvalov, G. Kostyuk, and K. Milyaev, “Laser-induced microplasma as a tool for microstructuring transparent media,” Quantum Electron. 47(9), 842–848 (2017).
[Crossref]

V. Koval, M. Sergeev, R. Zakoldaev, and G. Kostyuk, “Changes in the spectral characteristics of quartz-glass plates when they are processed with laser-induced plasma,” J. Opt. Technol. 84(7), 447–452 (2017).
[Crossref]

Koval, V.

V. Koval, M. Sergeev, R. Zakoldaev, and G. Kostyuk, “Changes in the spectral characteristics of quartz-glass plates when they are processed with laser-induced plasma,” J. Opt. Technol. 84(7), 447–452 (2017).
[Crossref]

R. Zakoldaev, G. Kostyuk, V. Rymkevich, V. Koval, M. Sergeev, V. Veiko, E. Yakovlev, and A. Sivers, “Fast fabrication of multilevel phase plates used for laser beam correction,” J. Laser Micro/Nanoeng. 12(3), 281–285 (2017).
[Crossref]

Lewis, C. L. S.

C. L. S. Lewis, I. Weaver, L. A. Doyle, G. W. Martin, T. Morrow, D. A. Pepler, C. N. Danson, and I. N. Ross, “Use of a random phase plate as a KrF laser beam homogenizer for thin film deposition applications,” Rev. Sci. Instrum. 70(4), 2116–2121 (1999).
[Crossref]

Li, Z.

H.-Z. Zheng, W.-Y. Liang, Z. Li, J.-W. Dong, and H.-Z. Wang, “Photonic crystal changes coherent laser to incoherent laser with random phase,” Opt. Commun. 283(7), 1394–1396 (2010).
[Crossref]

Liang, W.-Y.

H.-Z. Zheng, W.-Y. Liang, Z. Li, J.-W. Dong, and H.-Z. Wang, “Photonic crystal changes coherent laser to incoherent laser with random phase,” Opt. Commun. 283(7), 1394–1396 (2010).
[Crossref]

Lippert, T.

G. Kopitkovas, T. Lippert, C. David, S. Canulescu, A. Wokaun, and J. Gobrecht, “Fabrication of beam homogenizers in quartz by laser micromachining,” J. Photochem. Photobiol., A 166(1-3), 135–140 (2004).
[Crossref]

Ma, P.

Martin, G. W.

C. L. S. Lewis, I. Weaver, L. A. Doyle, G. W. Martin, T. Morrow, D. A. Pepler, C. N. Danson, and I. N. Ross, “Use of a random phase plate as a KrF laser beam homogenizer for thin film deposition applications,” Rev. Sci. Instrum. 70(4), 2116–2121 (1999).
[Crossref]

Mazumder, J.

W. M. Steen and J. Mazumder, Laser Material Processing (Springer -Verlag London Limited, 2010).

Mazur, E.

K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

Meyrueis, P.

C. Kopp, L. Ravel, and P. Meyrueis, “Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate,” J. Opt. A: Pure Appl. Opt. 1(3), 398–403 (1999).
[Crossref]

Milyaev, K.

V. Veiko, S. Volkov, R. Zakoldaev, M. Sergeev, A. Samokhvalov, G. Kostyuk, and K. Milyaev, “Laser-induced microplasma as a tool for microstructuring transparent media,” Quantum Electron. 47(9), 842–848 (2017).
[Crossref]

Mima, K.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53(11), 1057–1060 (1984).
[Crossref]

Miyanaga, N.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53(11), 1057–1060 (1984).
[Crossref]

Morgan, A. J.

Morrow, T.

C. L. S. Lewis, I. Weaver, L. A. Doyle, G. W. Martin, T. Morrow, D. A. Pepler, C. N. Danson, and I. N. Ross, “Use of a random phase plate as a KrF laser beam homogenizer for thin film deposition applications,” Rev. Sci. Instrum. 70(4), 2116–2121 (1999).
[Crossref]

Nakatsuka, M.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53(11), 1057–1060 (1984).
[Crossref]

Pepler, D. A.

C. L. S. Lewis, I. Weaver, L. A. Doyle, G. W. Martin, T. Morrow, D. A. Pepler, C. N. Danson, and I. N. Ross, “Use of a random phase plate as a KrF laser beam homogenizer for thin film deposition applications,” Rev. Sci. Instrum. 70(4), 2116–2121 (1999).
[Crossref]

Phillips, K. C.

K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

Powell, H. T.

Ravel, L.

C. Kopp, L. Ravel, and P. Meyrueis, “Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate,” J. Opt. A: Pure Appl. Opt. 1(3), 398–403 (1999).
[Crossref]

Ross, I. N.

C. L. S. Lewis, I. Weaver, L. A. Doyle, G. W. Martin, T. Morrow, D. A. Pepler, C. N. Danson, and I. N. Ross, “Use of a random phase plate as a KrF laser beam homogenizer for thin film deposition applications,” Rev. Sci. Instrum. 70(4), 2116–2121 (1999).
[Crossref]

Rymkevich, V.

R. Zakoldaev, G. Kostyuk, V. Rymkevich, V. Koval, M. Sergeev, V. Veiko, E. Yakovlev, and A. Sivers, “Fast fabrication of multilevel phase plates used for laser beam correction,” J. Laser Micro/Nanoeng. 12(3), 281–285 (2017).
[Crossref]

Samokhvalov, A.

V. Veiko, S. Volkov, R. Zakoldaev, M. Sergeev, A. Samokhvalov, G. Kostyuk, and K. Milyaev, “Laser-induced microplasma as a tool for microstructuring transparent media,” Quantum Electron. 47(9), 842–848 (2017).
[Crossref]

Sergeev, M.

V. Veiko, S. Volkov, R. Zakoldaev, M. Sergeev, A. Samokhvalov, G. Kostyuk, and K. Milyaev, “Laser-induced microplasma as a tool for microstructuring transparent media,” Quantum Electron. 47(9), 842–848 (2017).
[Crossref]

R. Zakoldaev, G. Kostyuk, V. Rymkevich, V. Koval, M. Sergeev, V. Veiko, E. Yakovlev, and A. Sivers, “Fast fabrication of multilevel phase plates used for laser beam correction,” J. Laser Micro/Nanoeng. 12(3), 281–285 (2017).
[Crossref]

V. Koval, M. Sergeev, R. Zakoldaev, and G. Kostyuk, “Changes in the spectral characteristics of quartz-glass plates when they are processed with laser-induced plasma,” J. Opt. Technol. 84(7), 447–452 (2017).
[Crossref]

Shealy, D. L.

D. L. Shealy and F. M. Dickey, “Laser beam shaping,” Opt. Eng. 42(11), 3077–3079 (2003).
[Crossref]

Sivers, A.

R. Zakoldaev, G. Kostyuk, V. Rymkevich, V. Koval, M. Sergeev, V. Veiko, E. Yakovlev, and A. Sivers, “Fast fabrication of multilevel phase plates used for laser beam correction,” J. Laser Micro/Nanoeng. 12(3), 281–285 (2017).
[Crossref]

Soylu, B.

B. Yalizay, T. Ersoy, B. Soylu, and S. Akturk, “Fabrication of nanometer-size structures in metal thin films using femtosecond laser Bessel beams,” Appl. Phys. Lett. 100(3), 031104 (2012).
[Crossref]

Steen, W. M.

W. M. Steen and J. Mazumder, Laser Material Processing (Springer -Verlag London Limited, 2010).

Sundaram, S. K.

K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

Thomas, I. M.

Veiko, V.

R. Zakoldaev, G. Kostyuk, V. Rymkevich, V. Koval, M. Sergeev, V. Veiko, E. Yakovlev, and A. Sivers, “Fast fabrication of multilevel phase plates used for laser beam correction,” J. Laser Micro/Nanoeng. 12(3), 281–285 (2017).
[Crossref]

V. Veiko, S. Volkov, R. Zakoldaev, M. Sergeev, A. Samokhvalov, G. Kostyuk, and K. Milyaev, “Laser-induced microplasma as a tool for microstructuring transparent media,” Quantum Electron. 47(9), 842–848 (2017).
[Crossref]

Volkov, S.

V. Veiko, S. Volkov, R. Zakoldaev, M. Sergeev, A. Samokhvalov, G. Kostyuk, and K. Milyaev, “Laser-induced microplasma as a tool for microstructuring transparent media,” Quantum Electron. 47(9), 842–848 (2017).
[Crossref]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

Wang, H.-Z.

H.-Z. Zheng, W.-Y. Liang, Z. Li, J.-W. Dong, and H.-Z. Wang, “Photonic crystal changes coherent laser to incoherent laser with random phase,” Opt. Commun. 283(7), 1394–1396 (2010).
[Crossref]

Weaver, I.

C. L. S. Lewis, I. Weaver, L. A. Doyle, G. W. Martin, T. Morrow, D. A. Pepler, C. N. Danson, and I. N. Ross, “Use of a random phase plate as a KrF laser beam homogenizer for thin film deposition applications,” Rev. Sci. Instrum. 70(4), 2116–2121 (1999).
[Crossref]

Wegner, P. J.

Wokaun, A.

G. Kopitkovas, T. Lippert, C. David, S. Canulescu, A. Wokaun, and J. Gobrecht, “Fabrication of beam homogenizers in quartz by laser micromachining,” J. Photochem. Photobiol., A 166(1-3), 135–140 (2004).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).

Woods, B. W.

Xu, Q.

Yakovlev, E.

R. Zakoldaev, G. Kostyuk, V. Rymkevich, V. Koval, M. Sergeev, V. Veiko, E. Yakovlev, and A. Sivers, “Fast fabrication of multilevel phase plates used for laser beam correction,” J. Laser Micro/Nanoeng. 12(3), 281–285 (2017).
[Crossref]

Yalizay, B.

B. Yalizay, T. Ersoy, B. Soylu, and S. Akturk, “Fabrication of nanometer-size structures in metal thin films using femtosecond laser Bessel beams,” Appl. Phys. Lett. 100(3), 031104 (2012).
[Crossref]

Yamanaka, C.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53(11), 1057–1060 (1984).
[Crossref]

Yang, C.

Yang, Q.

Z. Deng, Q. Yang, F. Chen, H. Bian, J. Yong, G. Du, Y. Hu, and X. Hou, “High-performance laser beam homogenizer based on double-sided concave microlens,” IEEE Photonics Technol. Lett. 26(20), 2086–2089 (2014).
[Crossref]

Yong, J.

Z. Deng, Q. Yang, F. Chen, H. Bian, J. Yong, G. Du, Y. Hu, and X. Hou, “High-performance laser beam homogenizer based on double-sided concave microlens,” IEEE Photonics Technol. Lett. 26(20), 2086–2089 (2014).
[Crossref]

Zakoldaev, R.

V. Veiko, S. Volkov, R. Zakoldaev, M. Sergeev, A. Samokhvalov, G. Kostyuk, and K. Milyaev, “Laser-induced microplasma as a tool for microstructuring transparent media,” Quantum Electron. 47(9), 842–848 (2017).
[Crossref]

R. Zakoldaev, G. Kostyuk, V. Rymkevich, V. Koval, M. Sergeev, V. Veiko, E. Yakovlev, and A. Sivers, “Fast fabrication of multilevel phase plates used for laser beam correction,” J. Laser Micro/Nanoeng. 12(3), 281–285 (2017).
[Crossref]

V. Koval, M. Sergeev, R. Zakoldaev, and G. Kostyuk, “Changes in the spectral characteristics of quartz-glass plates when they are processed with laser-induced plasma,” J. Opt. Technol. 84(7), 447–452 (2017).
[Crossref]

Zhang, R.

Zheng, H.-Z.

H.-Z. Zheng, W.-Y. Liang, Z. Li, J.-W. Dong, and H.-Z. Wang, “Photonic crystal changes coherent laser to incoherent laser with random phase,” Opt. Commun. 283(7), 1394–1396 (2010).
[Crossref]

Adv. Opt. Photonics (1)

K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

B. Yalizay, T. Ersoy, B. Soylu, and S. Akturk, “Fabrication of nanometer-size structures in metal thin films using femtosecond laser Bessel beams,” Appl. Phys. Lett. 100(3), 031104 (2012).
[Crossref]

Appl. Surf. Sci. (1)

J. E. E. Baglin, “Ion beam nanoscale fabrication and lithography – a review,” Appl. Surf. Sci. 258(9), 4103–4111 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Z. Deng, Q. Yang, F. Chen, H. Bian, J. Yong, G. Du, Y. Hu, and X. Hou, “High-performance laser beam homogenizer based on double-sided concave microlens,” IEEE Photonics Technol. Lett. 26(20), 2086–2089 (2014).
[Crossref]

J. Laser Micro/Nanoeng. (1)

R. Zakoldaev, G. Kostyuk, V. Rymkevich, V. Koval, M. Sergeev, V. Veiko, E. Yakovlev, and A. Sivers, “Fast fabrication of multilevel phase plates used for laser beam correction,” J. Laser Micro/Nanoeng. 12(3), 281–285 (2017).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

C. Kopp, L. Ravel, and P. Meyrueis, “Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate,” J. Opt. A: Pure Appl. Opt. 1(3), 398–403 (1999).
[Crossref]

J. Opt. Technol. (1)

J. Photochem. Photobiol., A (1)

G. Kopitkovas, T. Lippert, C. David, S. Canulescu, A. Wokaun, and J. Gobrecht, “Fabrication of beam homogenizers in quartz by laser micromachining,” J. Photochem. Photobiol., A 166(1-3), 135–140 (2004).
[Crossref]

Laser Photonics Rev. (1)

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

Opt. Commun. (1)

H.-Z. Zheng, W.-Y. Liang, Z. Li, J.-W. Dong, and H.-Z. Wang, “Photonic crystal changes coherent laser to incoherent laser with random phase,” Opt. Commun. 283(7), 1394–1396 (2010).
[Crossref]

Opt. Eng. (1)

D. L. Shealy and F. M. Dickey, “Laser beam shaping,” Opt. Eng. 42(11), 3077–3079 (2003).
[Crossref]

Phys. Rev. Lett. (1)

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53(11), 1057–1060 (1984).
[Crossref]

Quantum Electron. (1)

V. Veiko, S. Volkov, R. Zakoldaev, M. Sergeev, A. Samokhvalov, G. Kostyuk, and K. Milyaev, “Laser-induced microplasma as a tool for microstructuring transparent media,” Quantum Electron. 47(9), 842–848 (2017).
[Crossref]

Rev. Sci. Instrum. (1)

C. L. S. Lewis, I. Weaver, L. A. Doyle, G. W. Martin, T. Morrow, D. A. Pepler, C. N. Danson, and I. N. Ross, “Use of a random phase plate as a KrF laser beam homogenizer for thin film deposition applications,” Rev. Sci. Instrum. 70(4), 2116–2121 (1999).
[Crossref]

Other (2)

W. M. Steen and J. Mazumder, Laser Material Processing (Springer -Verlag London Limited, 2010).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. The procedure of RPP fabrication on Iceland spar: (a) experimental setup of LIMP method includes: 1 – fiber Yb-laser (wavelength λ = 1.06 µm, varied pulse duration τ = 4–200 ns, pulse repetition rate ν = 1–100 kHz); 2 – a two-coordinate galvanometric scanning system; 3 – f-theta scan lens (focal length f = 210 mm); 4 – Iceland spar plate; 5 – graphite target; (b) LIMP processing of Iceland spar; (с) template of RPP.
Fig. 2.
Fig. 2. Experimental setup to test fabricated RPP: (a) with laser modules: 1 – laser modules (operated at 405 nm or 780 nm); 2 – polarizer; 3 – telescope (3х); 4 – RPP; 5 – lens (focal distance f = 150 mm); 6 – CCD camera (Gentec beamage 3.0); (b) with picosecond laser: 1 – laser source; 2, 3 – mirrors; 4 – CCD camera; 5 – RPP; 6 – lens (10x, NA = 0.3, focal length f = 6 mm); 7 – ZnO film; 8 – coordinate table.
Fig. 3.
Fig. 3. Microphotograph of squares: (a, b) without cracks (5 scans, at 3 W and 4 W, consequently and V = 800 mm/s, ν = 80 kHz, τ = 50 ns); (c, d) with cracks (1 scan, at 2 W and 3 W, consequently V = 700 mm/s, ν = 60 kHz, τ = 50 ns).
Fig. 4.
Fig. 4. RPP designed for λ = 355 nm: (a) template of RPP; (b) RPP’s fragment microphotograph in transmitted light; (c) profilometry of the fabricated cells.
Fig. 5.
Fig. 5. RPP test results for two wavelengths 405 nm and 780 nm: (a) initial intensity distribution; (b) intensity distribution after post the RPP into the setup without the telescope; (c) intensity distribution after insertion of RPP into the setup with the telescope; (d) intensity distribution after posting the RPP fabricated on fused silica into the setup with the telescope.
Fig. 6.
Fig. 6. Microphotographs of ZnO film laser processing regions by the action of picosecond laser pulses: (a) without RPP; (b) with RPP.

Tables (2)

Tables Icon

Table 1. Regime of laser processing parameters for RPPs fabrication.

Tables Icon

Table 2. Homogenization quality.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ=(none)h.
ϕ=2πλh(none)=2πλΔ,
Δ=(m+1/2)λ;m=0,1,2,
hc=λ2(none).
d1=4M2λfπD0,
d2=2λfdel,
Γ=σI,
σ=1N1i=1N(IiI)2;I=1Ni=1NIi,

Metrics