Abstract

In this paper, the absorptivity of a tungsten ($W$) based metamaterial absorber has been studied. The paper revolves around the spectral characteristics of the nano-holed $W$ film coated over silicon oxide (SiO${_2}$) substrate. The anisotropic effective permittivity of the nanoholed W film has been deduced by employing the effective medium theory. The light-plasmon coupling at $W$-$SiO_{2}$ interface has been investigated by the eigenvalue equation. The effect of the nanoholed radii on coupling and absorptivity has been analyzed. As such, absorption features of the absorber have been studied in the visible and near-infrared (NIR) regimes by finite difference time domain(FDTD) simulation under the excitation of fundamental transverse electric(TE)- and transverse magnetic (TM)-mode. It has been observed that absorptivity can be altered by tailoring the holes radii of tungsten nanolayer. Further, the effects of the incidence angle of the light on the absorptivity have been studied. Observations reveal that absorptivity depends on the nanohole radius of $W$, and angle of incidence of excited light. Also, wideband absorptivity has been attained using $W$ thin film. Such an absorber would be useful for solar cell, solar heating and integrated optics related applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tungsten based anisotropic metamaterial as an ultra-broadband absorber

Yinyue Lin, Yanxia Cui, Fei Ding, Kin Hung Fung, Ting Ji, Dongdong Li, and Yuying Hao
Opt. Mater. Express 7(2) 606-617 (2017)

Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial

Lei Lei, Shun Li, Haixuan Huang, Keyu Tao, and Ping Xu
Opt. Express 26(5) 5686-5693 (2018)

Dielectric-based subwavelength metallic meanders for wide-angle band absorbers

Su Shen, Wen Qiao, Yan Ye, Yun Zhou, and Linsen Chen
Opt. Express 23(2) 963-970 (2015)

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “Electrodynamics of materials with negative index of refraction,” Phys.-Usp. 46(7), 764–768 (2003).
    [Crossref]
  2. J. B. Pendry, “Negative refraction,” Contemp. Phys. 45(3), 191–202 (2004).
    [Crossref]
  3. A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B 79(24), 245127 (2009).
    [Crossref]
  4. S. Zhai, X. Zhao, S. Liu, F. Shen, L. Li, and C. Luo, “Inverse doppler effects in broadband acoustic metamaterials,” Sci. Rep. 6(1), 32388 (2016).
    [Crossref]
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref]
  6. S. Tretyakov, A. Sihvola, and L. Jylhä, “Backward-wave regime and negative refraction in chiral composites,” Photonics Nanostructures-Fundamentals Appl. 3(2-3), 107–115 (2005).
    [Crossref]
  7. H. Gao, W. Peng, S. Chu, W. Cui, Z. Liu, L. Yu, and Z. Jing, “Refractory ultra-broadband perfect absorber from visible to near-infrared,” Nanomaterials 8(12), 1038 (2018).
    [Crossref]
  8. R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
    [Crossref]
  9. E. Ünal, M. Bağmancı, M. Karaaslan, O. Akgol, H. T. Arat, and C. Sabah, “Zinc oxide–tungsten-based pyramids in construction of ultra-broadband metamaterial absorber for solar energy harvesting,” IET Optoelectron. 11(3), 114–120 (2017).
    [Crossref]
  10. M. A. Baqir, A. Farmani, T. Fatima, M. Raza, S. Shaukat, and A. Mir, “Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range,” Appl. Opt. 57(31), 9447–9454 (2018).
    [Crossref]
  11. Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
    [Crossref]
  12. R. W. Ziolkowski and A. Erentok, “Metamaterial-based efficient electrically small antennas,” IEEE Trans. Antennas Propag. 54(7), 2113–2130 (2006).
    [Crossref]
  13. I. J. Luxmoore, P. Q. Liu, P. Li, J. Faist, and G. R. Nash, “Graphene–metamaterial photodetectors for integrated infrared sensing,” ACS Photonics 3(6), 936–941 (2016).
    [Crossref]
  14. A. Farmani, “Three-dimensional fdtd analysis of a nanostructured plasmonic sensor in the near-infrared range,” J. Opt. Soc. Am. B 36(2), 401–407 (2019).
    [Crossref]
  15. A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18(17), 7047–7054 (2018).
    [Crossref]
  16. S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
    [Crossref]
  17. T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, C. Xu, and S. Xiao, “Dynamically tunable electromagnetically induced transparency in a terahertz hybrid metamaterial,” Phys. E 104, 229–232 (2018).
    [Crossref]
  18. K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
    [Crossref]
  19. H. Jeong, T. T. Nguyen, and S. Lim, “Subwavelength metamaterial unit cell for low-frequency electromagnetic absorber applications,” Sci. Rep. 8(1), 16774 (2018).
    [Crossref]
  20. L. Meng, D. Zhao, Q. Li, and M. Qiu, “Polarization-sensitive perfect absorbers at near-infrared wavelengths,” Opt. Express 21(S1), A111–A122 (2013).
    [Crossref]
  21. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref]
  22. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
    [Crossref]
  23. K. Zhou, Q. Cheng, J. Song, L. Lu, Z. Jia, and J. Li, “Broadband perfect infrared absorption by tuning epsilon-near-zero and epsilon-near-pole resonances of multilayer ito nanowires,” Appl. Opt. 57(1), 102–111 (2018).
    [Crossref]
  24. A. S. Rana, M. Q. Mehmood, H. Jeong, I. Kim, and J. Rho, “Tungsten-based ultrathin absorber for visible regime,” Sci. Rep. 8(1), 2443 (2018).
    [Crossref]
  25. Y. Lin, Y. Cui, F. Ding, K. H. Fung, T. Ji, D. Li, and Y. Hao, “Tungsten based anisotropic metamaterial as an ultra-broadband absorber,” Opt. Mater. Express 7(2), 606–617 (2017).
    [Crossref]
  26. Z. Li, L. Stan, D. A. Czaplewski, X. Yang, and J. Gao, “Wavelength-selective mid-infrared metamaterial absorbers with multiple tungsten cross resonators,” Opt. Express 26(5), 5616–5631 (2018).
    [Crossref]
  27. M. A. Baqir, P. K. Choudhury, and M. Mughal, “Gold nanowires-based hyperbolic metamaterial multiband absorber operating in the visible and near-infrared regimes,” Plasmonics 14(2), 485–492 (2019).
    [Crossref]
  28. M. A. Baqir and P. Choudhury, “Hyperbolic metamaterial-based uv absorber,” IEEE Photonics Technol. Lett. 29(18), 1548–1551 (2017).
    [Crossref]
  29. M. Ghasemi, P. K. Choudhury, M. A. Baqir, M. A. Mohamed, A. R. M. Zain, and B. Y. Majlis, “Metamaterial absorber comprising chromium–gold nanorods-based columnar thin films,” J. Nanophotonics 11(4), 043505 (2017).
    [Crossref]
  30. H. Gao, D. Zhou, W. Cui, Z. Liu, Y. Liu, Z. Jing, and W. Peng, “Ultraviolet broadband plasmonic absorber with dual visible and near-infrared narrow bands,” J. Opt. Soc. Am. A 36(2), 264–269 (2019).
    [Crossref]
  31. M. Ghasemi, M. A. Baqir, and P. K. Choudhury, “On the metasurface-based comb filters,” IEEE Photonics Technol. Lett. 28(10), 1100–1103 (2016).
    [Crossref]
  32. B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30(3), 656–662 (2013).
    [Crossref]
  33. Y. Bai, L. Zhao, D. Ju, Y. Jiang, and L. Liu, “Wide-angle, polarization-independent and dual-band infrared perfect absorber based on l-shaped metamaterial,” Opt. Express 23(7), 8670–8680 (2015).
    [Crossref]
  34. H. Jiao, X. Niu, X. Zhang, J. Zhang, X. Cheng, and Z. Wang, “Ultra-broadband perfect absorber based on successive nano-cr-film,” in Advances in Optical Thin Films VI, Vol. 10691 (International Society for Optics and Photonics, 2018), p. 106911S.
  35. X. Zhang, Y. Fan, L. Qi, and H. Li, “Broadband plasmonic metamaterial absorber with fish-scale structure at visible frequencies,” Opt. Mater. Express 6(7), 2448–2457 (2016).
    [Crossref]
  36. H. Luo and Y. Z. Cheng, “Design of an ultrabroadband visible metamaterial absorber based on three-dimensional metallic nanostructures,” Mod. Phys. Lett. B 31(25), 1750231 (2017).
    [Crossref]
  37. X. Ling, Z. Xiao, and X. Zheng, “An ultra-broadband metamaterial absorber based on the hybrid materials in the visible region,” Opt. Quantum Electron. 49(7), 248 (2017).
    [Crossref]
  38. J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu, K. Zhang, B. Sun, S. Lin, S. Li, and Q. Bao, “Few-layer platinum diselenide as a new saturable absorber for ultrafast fiber lasers,” ACS Appl. Mater. Interfaces 10(25), 21534–21540 (2018).
    [Crossref]
  39. M. A. Baqir and P. K. Choudhury, “Design of hyperbolic metamaterial-based absorber comprised of ti nanospheres,” IEEE Photonics Technol. Lett.1 (2019).
  40. X. Han, K. He, Z. He, and Z. Zhang, “Tungsten-based highly selective solar absorber using simple nanodisk array,” Opt. Express 25(24), A1072–A1078 (2017).
    [Crossref]
  41. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref]
  42. H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3(1), 1249 (2013).
    [Crossref]
  43. C. Liu, Z. Yao, Y. Huang, W. Xu, Y. Tian, H. Wang, Y. Jin, and X. Xu, “Angular dependent strong coupling between localized waveguide resonance and surface plasmon resonance in complementary metamaterials,” J. Phys.: Condens. Matter 31(8), 085301 (2019).
    [Crossref]

2019 (4)

A. Farmani, “Three-dimensional fdtd analysis of a nanostructured plasmonic sensor in the near-infrared range,” J. Opt. Soc. Am. B 36(2), 401–407 (2019).
[Crossref]

M. A. Baqir, P. K. Choudhury, and M. Mughal, “Gold nanowires-based hyperbolic metamaterial multiband absorber operating in the visible and near-infrared regimes,” Plasmonics 14(2), 485–492 (2019).
[Crossref]

H. Gao, D. Zhou, W. Cui, Z. Liu, Y. Liu, Z. Jing, and W. Peng, “Ultraviolet broadband plasmonic absorber with dual visible and near-infrared narrow bands,” J. Opt. Soc. Am. A 36(2), 264–269 (2019).
[Crossref]

C. Liu, Z. Yao, Y. Huang, W. Xu, Y. Tian, H. Wang, Y. Jin, and X. Xu, “Angular dependent strong coupling between localized waveguide resonance and surface plasmon resonance in complementary metamaterials,” J. Phys.: Condens. Matter 31(8), 085301 (2019).
[Crossref]

2018 (10)

K. Zhou, Q. Cheng, J. Song, L. Lu, Z. Jia, and J. Li, “Broadband perfect infrared absorption by tuning epsilon-near-zero and epsilon-near-pole resonances of multilayer ito nanowires,” Appl. Opt. 57(1), 102–111 (2018).
[Crossref]

A. S. Rana, M. Q. Mehmood, H. Jeong, I. Kim, and J. Rho, “Tungsten-based ultrathin absorber for visible regime,” Sci. Rep. 8(1), 2443 (2018).
[Crossref]

Z. Li, L. Stan, D. A. Czaplewski, X. Yang, and J. Gao, “Wavelength-selective mid-infrared metamaterial absorbers with multiple tungsten cross resonators,” Opt. Express 26(5), 5616–5631 (2018).
[Crossref]

J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu, K. Zhang, B. Sun, S. Lin, S. Li, and Q. Bao, “Few-layer platinum diselenide as a new saturable absorber for ultrafast fiber lasers,” ACS Appl. Mater. Interfaces 10(25), 21534–21540 (2018).
[Crossref]

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18(17), 7047–7054 (2018).
[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, C. Xu, and S. Xiao, “Dynamically tunable electromagnetically induced transparency in a terahertz hybrid metamaterial,” Phys. E 104, 229–232 (2018).
[Crossref]

M. A. Baqir, A. Farmani, T. Fatima, M. Raza, S. Shaukat, and A. Mir, “Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range,” Appl. Opt. 57(31), 9447–9454 (2018).
[Crossref]

H. Jeong, T. T. Nguyen, and S. Lim, “Subwavelength metamaterial unit cell for low-frequency electromagnetic absorber applications,” Sci. Rep. 8(1), 16774 (2018).
[Crossref]

H. Gao, W. Peng, S. Chu, W. Cui, Z. Liu, L. Yu, and Z. Jing, “Refractory ultra-broadband perfect absorber from visible to near-infrared,” Nanomaterials 8(12), 1038 (2018).
[Crossref]

2017 (8)

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref]

E. Ünal, M. Bağmancı, M. Karaaslan, O. Akgol, H. T. Arat, and C. Sabah, “Zinc oxide–tungsten-based pyramids in construction of ultra-broadband metamaterial absorber for solar energy harvesting,” IET Optoelectron. 11(3), 114–120 (2017).
[Crossref]

X. Han, K. He, Z. He, and Z. Zhang, “Tungsten-based highly selective solar absorber using simple nanodisk array,” Opt. Express 25(24), A1072–A1078 (2017).
[Crossref]

H. Luo and Y. Z. Cheng, “Design of an ultrabroadband visible metamaterial absorber based on three-dimensional metallic nanostructures,” Mod. Phys. Lett. B 31(25), 1750231 (2017).
[Crossref]

X. Ling, Z. Xiao, and X. Zheng, “An ultra-broadband metamaterial absorber based on the hybrid materials in the visible region,” Opt. Quantum Electron. 49(7), 248 (2017).
[Crossref]

Y. Lin, Y. Cui, F. Ding, K. H. Fung, T. Ji, D. Li, and Y. Hao, “Tungsten based anisotropic metamaterial as an ultra-broadband absorber,” Opt. Mater. Express 7(2), 606–617 (2017).
[Crossref]

M. A. Baqir and P. Choudhury, “Hyperbolic metamaterial-based uv absorber,” IEEE Photonics Technol. Lett. 29(18), 1548–1551 (2017).
[Crossref]

M. Ghasemi, P. K. Choudhury, M. A. Baqir, M. A. Mohamed, A. R. M. Zain, and B. Y. Majlis, “Metamaterial absorber comprising chromium–gold nanorods-based columnar thin films,” J. Nanophotonics 11(4), 043505 (2017).
[Crossref]

2016 (5)

M. Ghasemi, M. A. Baqir, and P. K. Choudhury, “On the metasurface-based comb filters,” IEEE Photonics Technol. Lett. 28(10), 1100–1103 (2016).
[Crossref]

I. J. Luxmoore, P. Q. Liu, P. Li, J. Faist, and G. R. Nash, “Graphene–metamaterial photodetectors for integrated infrared sensing,” ACS Photonics 3(6), 936–941 (2016).
[Crossref]

X. Zhang, Y. Fan, L. Qi, and H. Li, “Broadband plasmonic metamaterial absorber with fish-scale structure at visible frequencies,” Opt. Mater. Express 6(7), 2448–2457 (2016).
[Crossref]

S. Zhai, X. Zhao, S. Liu, F. Shen, L. Li, and C. Luo, “Inverse doppler effects in broadband acoustic metamaterials,” Sci. Rep. 6(1), 32388 (2016).
[Crossref]

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref]

2015 (1)

2014 (1)

2013 (3)

2012 (1)

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

2009 (1)

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B 79(24), 245127 (2009).
[Crossref]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

2006 (1)

R. W. Ziolkowski and A. Erentok, “Metamaterial-based efficient electrically small antennas,” IEEE Trans. Antennas Propag. 54(7), 2113–2130 (2006).
[Crossref]

2005 (1)

S. Tretyakov, A. Sihvola, and L. Jylhä, “Backward-wave regime and negative refraction in chiral composites,” Photonics Nanostructures-Fundamentals Appl. 3(2-3), 107–115 (2005).
[Crossref]

2004 (1)

J. B. Pendry, “Negative refraction,” Contemp. Phys. 45(3), 191–202 (2004).
[Crossref]

2003 (1)

V. G. Veselago, “Electrodynamics of materials with negative index of refraction,” Phys.-Usp. 46(7), 764–768 (2003).
[Crossref]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref]

1998 (1)

Akgol, O.

E. Ünal, M. Bağmancı, M. Karaaslan, O. Akgol, H. T. Arat, and C. Sabah, “Zinc oxide–tungsten-based pyramids in construction of ultra-broadband metamaterial absorber for solar energy harvesting,” IET Optoelectron. 11(3), 114–120 (2017).
[Crossref]

Alapan, Y.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref]

Alipour, A.

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18(17), 7047–7054 (2018).
[Crossref]

Arat, H. T.

E. Ünal, M. Bağmancı, M. Karaaslan, O. Akgol, H. T. Arat, and C. Sabah, “Zinc oxide–tungsten-based pyramids in construction of ultra-broadband metamaterial absorber for solar energy harvesting,” IET Optoelectron. 11(3), 114–120 (2017).
[Crossref]

Bagmanci, M.

E. Ünal, M. Bağmancı, M. Karaaslan, O. Akgol, H. T. Arat, and C. Sabah, “Zinc oxide–tungsten-based pyramids in construction of ultra-broadband metamaterial absorber for solar energy harvesting,” IET Optoelectron. 11(3), 114–120 (2017).
[Crossref]

Bai, Y.

Bao, Q.

J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu, K. Zhang, B. Sun, S. Lin, S. Li, and Q. Bao, “Few-layer platinum diselenide as a new saturable absorber for ultrafast fiber lasers,” ACS Appl. Mater. Interfaces 10(25), 21534–21540 (2018).
[Crossref]

Baqir, M. A.

M. A. Baqir, P. K. Choudhury, and M. Mughal, “Gold nanowires-based hyperbolic metamaterial multiband absorber operating in the visible and near-infrared regimes,” Plasmonics 14(2), 485–492 (2019).
[Crossref]

M. A. Baqir, A. Farmani, T. Fatima, M. Raza, S. Shaukat, and A. Mir, “Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range,” Appl. Opt. 57(31), 9447–9454 (2018).
[Crossref]

M. A. Baqir and P. Choudhury, “Hyperbolic metamaterial-based uv absorber,” IEEE Photonics Technol. Lett. 29(18), 1548–1551 (2017).
[Crossref]

M. Ghasemi, P. K. Choudhury, M. A. Baqir, M. A. Mohamed, A. R. M. Zain, and B. Y. Majlis, “Metamaterial absorber comprising chromium–gold nanorods-based columnar thin films,” J. Nanophotonics 11(4), 043505 (2017).
[Crossref]

M. Ghasemi, M. A. Baqir, and P. K. Choudhury, “On the metasurface-based comb filters,” IEEE Photonics Technol. Lett. 28(10), 1100–1103 (2016).
[Crossref]

M. A. Baqir and P. K. Choudhury, “Design of hyperbolic metamaterial-based absorber comprised of ti nanospheres,” IEEE Photonics Technol. Lett.1 (2019).

Chen, Y.

J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu, K. Zhang, B. Sun, S. Lin, S. Li, and Q. Bao, “Few-layer platinum diselenide as a new saturable absorber for ultrafast fiber lasers,” ACS Appl. Mater. Interfaces 10(25), 21534–21540 (2018).
[Crossref]

Cheng, Q.

Cheng, X.

H. Jiao, X. Niu, X. Zhang, J. Zhang, X. Cheng, and Z. Wang, “Ultra-broadband perfect absorber based on successive nano-cr-film,” in Advances in Optical Thin Films VI, Vol. 10691 (International Society for Optics and Photonics, 2018), p. 106911S.

Cheng, Y. Z.

H. Luo and Y. Z. Cheng, “Design of an ultrabroadband visible metamaterial absorber based on three-dimensional metallic nanostructures,” Mod. Phys. Lett. B 31(25), 1750231 (2017).
[Crossref]

Choudhury, P.

M. A. Baqir and P. Choudhury, “Hyperbolic metamaterial-based uv absorber,” IEEE Photonics Technol. Lett. 29(18), 1548–1551 (2017).
[Crossref]

Choudhury, P. K.

M. A. Baqir, P. K. Choudhury, and M. Mughal, “Gold nanowires-based hyperbolic metamaterial multiband absorber operating in the visible and near-infrared regimes,” Plasmonics 14(2), 485–492 (2019).
[Crossref]

M. Ghasemi, P. K. Choudhury, M. A. Baqir, M. A. Mohamed, A. R. M. Zain, and B. Y. Majlis, “Metamaterial absorber comprising chromium–gold nanorods-based columnar thin films,” J. Nanophotonics 11(4), 043505 (2017).
[Crossref]

M. Ghasemi, M. A. Baqir, and P. K. Choudhury, “On the metasurface-based comb filters,” IEEE Photonics Technol. Lett. 28(10), 1100–1103 (2016).
[Crossref]

M. A. Baqir and P. K. Choudhury, “Design of hyperbolic metamaterial-based absorber comprised of ti nanospheres,” IEEE Photonics Technol. Lett.1 (2019).

Chu, S.

H. Gao, W. Peng, S. Chu, W. Cui, Z. Liu, L. Yu, and Z. Jing, “Refractory ultra-broadband perfect absorber from visible to near-infrared,” Nanomaterials 8(12), 1038 (2018).
[Crossref]

Cui, W.

H. Gao, D. Zhou, W. Cui, Z. Liu, Y. Liu, Z. Jing, and W. Peng, “Ultraviolet broadband plasmonic absorber with dual visible and near-infrared narrow bands,” J. Opt. Soc. Am. A 36(2), 264–269 (2019).
[Crossref]

H. Gao, W. Peng, S. Chu, W. Cui, Z. Liu, L. Yu, and Z. Jing, “Refractory ultra-broadband perfect absorber from visible to near-infrared,” Nanomaterials 8(12), 1038 (2018).
[Crossref]

Cui, Y.

Czaplewski, D. A.

De Luca, A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref]

Ding, F.

Djurišic, A. B.

Elazar, J. M.

ElKabbash, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref]

Erentok, A.

R. W. Ziolkowski and A. Erentok, “Metamaterial-based efficient electrically small antennas,” IEEE Trans. Antennas Propag. 54(7), 2113–2130 (2006).
[Crossref]

Faist, J.

I. J. Luxmoore, P. Q. Liu, P. Li, J. Faist, and G. R. Nash, “Graphene–metamaterial photodetectors for integrated infrared sensing,” ACS Photonics 3(6), 936–941 (2016).
[Crossref]

Fan, Y.

Fang, A.

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B 79(24), 245127 (2009).
[Crossref]

Farmani, A.

Fatima, T.

Feng, Y.

Fung, K. H.

Gan, Q.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3(1), 1249 (2013).
[Crossref]

Gao, H.

H. Gao, D. Zhou, W. Cui, Z. Liu, Y. Liu, Z. Jing, and W. Peng, “Ultraviolet broadband plasmonic absorber with dual visible and near-infrared narrow bands,” J. Opt. Soc. Am. A 36(2), 264–269 (2019).
[Crossref]

H. Gao, W. Peng, S. Chu, W. Cui, Z. Liu, L. Yu, and Z. Jing, “Refractory ultra-broadband perfect absorber from visible to near-infrared,” Nanomaterials 8(12), 1038 (2018).
[Crossref]

Gao, J.

Ghasemi, M.

M. Ghasemi, P. K. Choudhury, M. A. Baqir, M. A. Mohamed, A. R. M. Zain, and B. Y. Majlis, “Metamaterial absorber comprising chromium–gold nanorods-based columnar thin films,” J. Nanophotonics 11(4), 043505 (2017).
[Crossref]

M. Ghasemi, M. A. Baqir, and P. K. Choudhury, “On the metasurface-based comb filters,” IEEE Photonics Technol. Lett. 28(10), 1100–1103 (2016).
[Crossref]

Guo, J.

Gurkan, U. A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref]

Han, X.

Hao, Y.

He, K.

He, Z.

Hendrickson, J.

Hinczewski, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref]

Hu, H.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3(1), 1249 (2013).
[Crossref]

Huang, Y.

C. Liu, Z. Yao, Y. Huang, W. Xu, Y. Tian, H. Wang, Y. Jin, and X. Xu, “Angular dependent strong coupling between localized waveguide resonance and surface plasmon resonance in complementary metamaterials,” J. Phys.: Condens. Matter 31(8), 085301 (2019).
[Crossref]

Ilker, E.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref]

Jeong, H.

H. Jeong, T. T. Nguyen, and S. Lim, “Subwavelength metamaterial unit cell for low-frequency electromagnetic absorber applications,” Sci. Rep. 8(1), 16774 (2018).
[Crossref]

A. S. Rana, M. Q. Mehmood, H. Jeong, I. Kim, and J. Rho, “Tungsten-based ultrathin absorber for visible regime,” Sci. Rep. 8(1), 2443 (2018).
[Crossref]

Ji, D.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3(1), 1249 (2013).
[Crossref]

Ji, T.

Jia, Z.

Jiang, T.

Jiang, Y.

Jiao, H.

H. Jiao, X. Niu, X. Zhang, J. Zhang, X. Cheng, and Z. Wang, “Ultra-broadband perfect absorber based on successive nano-cr-film,” in Advances in Optical Thin Films VI, Vol. 10691 (International Society for Optics and Photonics, 2018), p. 106911S.

Jin, Y.

C. Liu, Z. Yao, Y. Huang, W. Xu, Y. Tian, H. Wang, Y. Jin, and X. Xu, “Angular dependent strong coupling between localized waveguide resonance and surface plasmon resonance in complementary metamaterials,” J. Phys.: Condens. Matter 31(8), 085301 (2019).
[Crossref]

Jing, Z.

H. Gao, D. Zhou, W. Cui, Z. Liu, Y. Liu, Z. Jing, and W. Peng, “Ultraviolet broadband plasmonic absorber with dual visible and near-infrared narrow bands,” J. Opt. Soc. Am. A 36(2), 264–269 (2019).
[Crossref]

H. Gao, W. Peng, S. Chu, W. Cui, Z. Liu, L. Yu, and Z. Jing, “Refractory ultra-broadband perfect absorber from visible to near-infrared,” Nanomaterials 8(12), 1038 (2018).
[Crossref]

Ju, D.

Jylhä, L.

S. Tretyakov, A. Sihvola, and L. Jylhä, “Backward-wave regime and negative refraction in chiral composites,” Photonics Nanostructures-Fundamentals Appl. 3(2-3), 107–115 (2005).
[Crossref]

Karaaslan, M.

E. Ünal, M. Bağmancı, M. Karaaslan, O. Akgol, H. T. Arat, and C. Sabah, “Zinc oxide–tungsten-based pyramids in construction of ultra-broadband metamaterial absorber for solar energy harvesting,” IET Optoelectron. 11(3), 114–120 (2017).
[Crossref]

Kempa, K.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Kim, I.

A. S. Rana, M. Q. Mehmood, H. Jeong, I. Kim, and J. Rho, “Tungsten-based ultrathin absorber for visible regime,” Sci. Rep. 8(1), 2443 (2018).
[Crossref]

Koschny, T.

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B 79(24), 245127 (2009).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Li, D.

Li, H.

Li, J.

Li, L.

J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu, K. Zhang, B. Sun, S. Lin, S. Li, and Q. Bao, “Few-layer platinum diselenide as a new saturable absorber for ultrafast fiber lasers,” ACS Appl. Mater. Interfaces 10(25), 21534–21540 (2018).
[Crossref]

S. Zhai, X. Zhao, S. Liu, F. Shen, L. Li, and C. Luo, “Inverse doppler effects in broadband acoustic metamaterials,” Sci. Rep. 6(1), 32388 (2016).
[Crossref]

Li, P.

I. J. Luxmoore, P. Q. Liu, P. Li, J. Faist, and G. R. Nash, “Graphene–metamaterial photodetectors for integrated infrared sensing,” ACS Photonics 3(6), 936–941 (2016).
[Crossref]

Li, Q.

Li, R.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref]

Li, S.

J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu, K. Zhang, B. Sun, S. Lin, S. Li, and Q. Bao, “Few-layer platinum diselenide as a new saturable absorber for ultrafast fiber lasers,” ACS Appl. Mater. Interfaces 10(25), 21534–21540 (2018).
[Crossref]

Li, Z.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Z. Li, L. Stan, D. A. Czaplewski, X. Yang, and J. Gao, “Wavelength-selective mid-infrared metamaterial absorbers with multiple tungsten cross resonators,” Opt. Express 26(5), 5616–5631 (2018).
[Crossref]

Lim, S.

H. Jeong, T. T. Nguyen, and S. Lim, “Subwavelength metamaterial unit cell for low-frequency electromagnetic absorber applications,” Sci. Rep. 8(1), 16774 (2018).
[Crossref]

Lin, S.

J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu, K. Zhang, B. Sun, S. Lin, S. Li, and Q. Bao, “Few-layer platinum diselenide as a new saturable absorber for ultrafast fiber lasers,” ACS Appl. Mater. Interfaces 10(25), 21534–21540 (2018).
[Crossref]

Lin, Y.

Ling, X.

X. Ling, Z. Xiao, and X. Zheng, “An ultra-broadband metamaterial absorber based on the hybrid materials in the visible region,” Opt. Quantum Electron. 49(7), 248 (2017).
[Crossref]

Liu, C.

C. Liu, Z. Yao, Y. Huang, W. Xu, Y. Tian, H. Wang, Y. Jin, and X. Xu, “Angular dependent strong coupling between localized waveguide resonance and surface plasmon resonance in complementary metamaterials,” J. Phys.: Condens. Matter 31(8), 085301 (2019).
[Crossref]

Liu, K.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3(1), 1249 (2013).
[Crossref]

Liu, L.

Liu, P. Q.

I. J. Luxmoore, P. Q. Liu, P. Li, J. Faist, and G. R. Nash, “Graphene–metamaterial photodetectors for integrated infrared sensing,” ACS Photonics 3(6), 936–941 (2016).
[Crossref]

Liu, S.

S. Zhai, X. Zhao, S. Liu, F. Shen, L. Li, and C. Luo, “Inverse doppler effects in broadband acoustic metamaterials,” Sci. Rep. 6(1), 32388 (2016).
[Crossref]

Liu, T.

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, C. Xu, and S. Xiao, “Dynamically tunable electromagnetically induced transparency in a terahertz hybrid metamaterial,” Phys. E 104, 229–232 (2018).
[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Liu, Y.

H. Gao, D. Zhou, W. Cui, Z. Liu, Y. Liu, Z. Jing, and W. Peng, “Ultraviolet broadband plasmonic absorber with dual visible and near-infrared narrow bands,” J. Opt. Soc. Am. A 36(2), 264–269 (2019).
[Crossref]

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, C. Xu, and S. Xiao, “Dynamically tunable electromagnetically induced transparency in a terahertz hybrid metamaterial,” Phys. E 104, 229–232 (2018).
[Crossref]

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref]

Liu, Z.

H. Gao, D. Zhou, W. Cui, Z. Liu, Y. Liu, Z. Jing, and W. Peng, “Ultraviolet broadband plasmonic absorber with dual visible and near-infrared narrow bands,” J. Opt. Soc. Am. A 36(2), 264–269 (2019).
[Crossref]

H. Gao, W. Peng, S. Chu, W. Cui, Z. Liu, L. Yu, and Z. Jing, “Refractory ultra-broadband perfect absorber from visible to near-infrared,” Nanomaterials 8(12), 1038 (2018).
[Crossref]

Lu, L.

Luo, C.

S. Zhai, X. Zhao, S. Liu, F. Shen, L. Li, and C. Luo, “Inverse doppler effects in broadband acoustic metamaterials,” Sci. Rep. 6(1), 32388 (2016).
[Crossref]

Luo, H.

H. Luo and Y. Z. Cheng, “Design of an ultrabroadband visible metamaterial absorber based on three-dimensional metallic nanostructures,” Mod. Phys. Lett. B 31(25), 1750231 (2017).
[Crossref]

Luxmoore, I. J.

I. J. Luxmoore, P. Q. Liu, P. Li, J. Faist, and G. R. Nash, “Graphene–metamaterial photodetectors for integrated infrared sensing,” ACS Photonics 3(6), 936–941 (2016).
[Crossref]

Majewski, M. L.

Majlis, B. Y.

M. Ghasemi, P. K. Choudhury, M. A. Baqir, M. A. Mohamed, A. R. M. Zain, and B. Y. Majlis, “Metamaterial absorber comprising chromium–gold nanorods-based columnar thin films,” J. Nanophotonics 11(4), 043505 (2017).
[Crossref]

Mehmood, M. Q.

A. S. Rana, M. Q. Mehmood, H. Jeong, I. Kim, and J. Rho, “Tungsten-based ultrathin absorber for visible regime,” Sci. Rep. 8(1), 2443 (2018).
[Crossref]

Meng, L.

Mir, A.

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18(17), 7047–7054 (2018).
[Crossref]

M. A. Baqir, A. Farmani, T. Fatima, M. Raza, S. Shaukat, and A. Mir, “Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range,” Appl. Opt. 57(31), 9447–9454 (2018).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Mohamed, M. A.

M. Ghasemi, P. K. Choudhury, M. A. Baqir, M. A. Mohamed, A. R. M. Zain, and B. Y. Majlis, “Metamaterial absorber comprising chromium–gold nanorods-based columnar thin films,” J. Nanophotonics 11(4), 043505 (2017).
[Crossref]

Mu, H.

J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu, K. Zhang, B. Sun, S. Lin, S. Li, and Q. Bao, “Few-layer platinum diselenide as a new saturable absorber for ultrafast fiber lasers,” ACS Appl. Mater. Interfaces 10(25), 21534–21540 (2018).
[Crossref]

Mughal, M.

M. A. Baqir, P. K. Choudhury, and M. Mughal, “Gold nanowires-based hyperbolic metamaterial multiband absorber operating in the visible and near-infrared regimes,” Plasmonics 14(2), 485–492 (2019).
[Crossref]

Nash, G. R.

I. J. Luxmoore, P. Q. Liu, P. Li, J. Faist, and G. R. Nash, “Graphene–metamaterial photodetectors for integrated infrared sensing,” ACS Photonics 3(6), 936–941 (2016).
[Crossref]

Nguyen, T. T.

H. Jeong, T. T. Nguyen, and S. Lim, “Subwavelength metamaterial unit cell for low-frequency electromagnetic absorber applications,” Sci. Rep. 8(1), 16774 (2018).
[Crossref]

Niu, X.

H. Jiao, X. Niu, X. Zhang, J. Zhang, X. Cheng, and Z. Wang, “Ultra-broadband perfect absorber based on successive nano-cr-film,” in Advances in Optical Thin Films VI, Vol. 10691 (International Society for Optics and Photonics, 2018), p. 106911S.

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Paudel, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Pendry, J. B.

J. B. Pendry, “Negative refraction,” Contemp. Phys. 45(3), 191–202 (2004).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref]

Peng, W.

H. Gao, D. Zhou, W. Cui, Z. Liu, Y. Liu, Z. Jing, and W. Peng, “Ultraviolet broadband plasmonic absorber with dual visible and near-infrared narrow bands,” J. Opt. Soc. Am. A 36(2), 264–269 (2019).
[Crossref]

H. Gao, W. Peng, S. Chu, W. Cui, Z. Liu, L. Yu, and Z. Jing, “Refractory ultra-broadband perfect absorber from visible to near-infrared,” Nanomaterials 8(12), 1038 (2018).
[Crossref]

Qi, L.

Qiu, M.

Rakic, A. D.

Rana, A. S.

A. S. Rana, M. Q. Mehmood, H. Jeong, I. Kim, and J. Rho, “Tungsten-based ultrathin absorber for visible regime,” Sci. Rep. 8(1), 2443 (2018).
[Crossref]

Raza, M.

Ren, Z.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Rho, J.

A. S. Rana, M. Q. Mehmood, H. Jeong, I. Kim, and J. Rho, “Tungsten-based ultrathin absorber for visible regime,” Sci. Rep. 8(1), 2443 (2018).
[Crossref]

Sabah, C.

E. Ünal, M. Bağmancı, M. Karaaslan, O. Akgol, H. T. Arat, and C. Sabah, “Zinc oxide–tungsten-based pyramids in construction of ultra-broadband metamaterial absorber for solar energy harvesting,” IET Optoelectron. 11(3), 114–120 (2017).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Shaukat, S.

Shen, F.

S. Zhai, X. Zhao, S. Liu, F. Shen, L. Li, and C. Luo, “Inverse doppler effects in broadband acoustic metamaterials,” Sci. Rep. 6(1), 32388 (2016).
[Crossref]

Sihvola, A.

S. Tretyakov, A. Sihvola, and L. Jylhä, “Backward-wave regime and negative refraction in chiral composites,” Photonics Nanostructures-Fundamentals Appl. 3(2-3), 107–115 (2005).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Song, J.

Soukoulis, C. M.

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B 79(24), 245127 (2009).
[Crossref]

Sreekanth, K. V.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref]

Stan, L.

Strangi, G.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref]

Sun, B.

J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu, K. Zhang, B. Sun, S. Lin, S. Li, and Q. Bao, “Few-layer platinum diselenide as a new saturable absorber for ultrafast fiber lasers,” ACS Appl. Mater. Interfaces 10(25), 21534–21540 (2018).
[Crossref]

Sun, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Tian, Y.

C. Liu, Z. Yao, Y. Huang, W. Xu, Y. Tian, H. Wang, Y. Jin, and X. Xu, “Angular dependent strong coupling between localized waveguide resonance and surface plasmon resonance in complementary metamaterials,” J. Phys.: Condens. Matter 31(8), 085301 (2019).
[Crossref]

Tretyakov, S.

S. Tretyakov, A. Sihvola, and L. Jylhä, “Backward-wave regime and negative refraction in chiral composites,” Photonics Nanostructures-Fundamentals Appl. 3(2-3), 107–115 (2005).
[Crossref]

Ünal, E.

E. Ünal, M. Bağmancı, M. Karaaslan, O. Akgol, H. T. Arat, and C. Sabah, “Zinc oxide–tungsten-based pyramids in construction of ultra-broadband metamaterial absorber for solar energy harvesting,” IET Optoelectron. 11(3), 114–120 (2017).
[Crossref]

Veselago, V. G.

V. G. Veselago, “Electrodynamics of materials with negative index of refraction,” Phys.-Usp. 46(7), 764–768 (2003).
[Crossref]

Wang, H.

C. Liu, Z. Yao, Y. Huang, W. Xu, Y. Tian, H. Wang, Y. Jin, and X. Xu, “Angular dependent strong coupling between localized waveguide resonance and surface plasmon resonance in complementary metamaterials,” J. Phys.: Condens. Matter 31(8), 085301 (2019).
[Crossref]

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, C. Xu, and S. Xiao, “Dynamically tunable electromagnetically induced transparency in a terahertz hybrid metamaterial,” Phys. E 104, 229–232 (2018).
[Crossref]

Wang, T.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Wang, Y.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Wang, Z.

H. Jiao, X. Niu, X. Zhang, J. Zhang, X. Cheng, and Z. Wang, “Ultra-broadband perfect absorber based on successive nano-cr-film,” in Advances in Optical Thin Films VI, Vol. 10691 (International Society for Optics and Photonics, 2018), p. 106911S.

Wu, D.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref]

Xiao, L.

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, C. Xu, and S. Xiao, “Dynamically tunable electromagnetically induced transparency in a terahertz hybrid metamaterial,” Phys. E 104, 229–232 (2018).
[Crossref]

Xiao, S.

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, C. Xu, and S. Xiao, “Dynamically tunable electromagnetically induced transparency in a terahertz hybrid metamaterial,” Phys. E 104, 229–232 (2018).
[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Xiao, Z.

X. Ling, Z. Xiao, and X. Zheng, “An ultra-broadband metamaterial absorber based on the hybrid materials in the visible region,” Opt. Quantum Electron. 49(7), 248 (2017).
[Crossref]

Xu, C.

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, C. Xu, and S. Xiao, “Dynamically tunable electromagnetically induced transparency in a terahertz hybrid metamaterial,” Phys. E 104, 229–232 (2018).
[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Xu, W.

C. Liu, Z. Yao, Y. Huang, W. Xu, Y. Tian, H. Wang, Y. Jin, and X. Xu, “Angular dependent strong coupling between localized waveguide resonance and surface plasmon resonance in complementary metamaterials,” J. Phys.: Condens. Matter 31(8), 085301 (2019).
[Crossref]

Xu, X.

C. Liu, Z. Yao, Y. Huang, W. Xu, Y. Tian, H. Wang, Y. Jin, and X. Xu, “Angular dependent strong coupling between localized waveguide resonance and surface plasmon resonance in complementary metamaterials,” J. Phys.: Condens. Matter 31(8), 085301 (2019).
[Crossref]

Yan, X.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Yang, X.

Yao, Z.

C. Liu, Z. Yao, Y. Huang, W. Xu, Y. Tian, H. Wang, Y. Jin, and X. Xu, “Angular dependent strong coupling between localized waveguide resonance and surface plasmon resonance in complementary metamaterials,” J. Phys.: Condens. Matter 31(8), 085301 (2019).
[Crossref]

Ye, H.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref]

Yu, L.

H. Gao, W. Peng, S. Chu, W. Cui, Z. Liu, L. Yu, and Z. Jing, “Refractory ultra-broadband perfect absorber from visible to near-infrared,” Nanomaterials 8(12), 1038 (2018).
[Crossref]

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref]

Yu, W.

J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu, K. Zhang, B. Sun, S. Lin, S. Li, and Q. Bao, “Few-layer platinum diselenide as a new saturable absorber for ultrafast fiber lasers,” ACS Appl. Mater. Interfaces 10(25), 21534–21540 (2018).
[Crossref]

Yu, Z.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref]

Yuan, J.

J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu, K. Zhang, B. Sun, S. Lin, S. Li, and Q. Bao, “Few-layer platinum diselenide as a new saturable absorber for ultrafast fiber lasers,” ACS Appl. Mater. Interfaces 10(25), 21534–21540 (2018).
[Crossref]

Zain, A. R. M.

M. Ghasemi, P. K. Choudhury, M. A. Baqir, M. A. Mohamed, A. R. M. Zain, and B. Y. Majlis, “Metamaterial absorber comprising chromium–gold nanorods-based columnar thin films,” J. Nanophotonics 11(4), 043505 (2017).
[Crossref]

Zeng, X.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3(1), 1249 (2013).
[Crossref]

Zhai, S.

S. Zhai, X. Zhao, S. Liu, F. Shen, L. Li, and C. Luo, “Inverse doppler effects in broadband acoustic metamaterials,” Sci. Rep. 6(1), 32388 (2016).
[Crossref]

Zhang, B.

Zhang, J.

H. Jiao, X. Niu, X. Zhang, J. Zhang, X. Cheng, and Z. Wang, “Ultra-broadband perfect absorber based on successive nano-cr-film,” in Advances in Optical Thin Films VI, Vol. 10691 (International Society for Optics and Photonics, 2018), p. 106911S.

Zhang, K.

J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu, K. Zhang, B. Sun, S. Lin, S. Li, and Q. Bao, “Few-layer platinum diselenide as a new saturable absorber for ultrafast fiber lasers,” ACS Appl. Mater. Interfaces 10(25), 21534–21540 (2018).
[Crossref]

Zhang, X.

X. Zhang, Y. Fan, L. Qi, and H. Li, “Broadband plasmonic metamaterial absorber with fish-scale structure at visible frequencies,” Opt. Mater. Express 6(7), 2448–2457 (2016).
[Crossref]

H. Jiao, X. Niu, X. Zhang, J. Zhang, X. Cheng, and Z. Wang, “Ultra-broadband perfect absorber based on successive nano-cr-film,” in Advances in Optical Thin Films VI, Vol. 10691 (International Society for Optics and Photonics, 2018), p. 106911S.

Zhang, Y.

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
[Crossref]

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Zhang, Z.

Zhao, D.

Zhao, J.

Zhao, L.

Zhao, X.

S. Zhai, X. Zhao, S. Liu, F. Shen, L. Li, and C. Luo, “Inverse doppler effects in broadband acoustic metamaterials,” Sci. Rep. 6(1), 32388 (2016).
[Crossref]

Zheng, X.

X. Ling, Z. Xiao, and X. Zheng, “An ultra-broadband metamaterial absorber based on the hybrid materials in the visible region,” Opt. Quantum Electron. 49(7), 248 (2017).
[Crossref]

Zhou, C.

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, C. Xu, and S. Xiao, “Dynamically tunable electromagnetically induced transparency in a terahertz hybrid metamaterial,” Phys. E 104, 229–232 (2018).
[Crossref]

Zhou, D.

Zhou, K.

Zhu, B.

Ziolkowski, R. W.

R. W. Ziolkowski and A. Erentok, “Metamaterial-based efficient electrically small antennas,” IEEE Trans. Antennas Propag. 54(7), 2113–2130 (2006).
[Crossref]

ACS Appl. Mater. Interfaces (1)

J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu, K. Zhang, B. Sun, S. Lin, S. Li, and Q. Bao, “Few-layer platinum diselenide as a new saturable absorber for ultrafast fiber lasers,” ACS Appl. Mater. Interfaces 10(25), 21534–21540 (2018).
[Crossref]

ACS Photonics (1)

I. J. Luxmoore, P. Q. Liu, P. Li, J. Faist, and G. R. Nash, “Graphene–metamaterial photodetectors for integrated infrared sensing,” ACS Photonics 3(6), 936–941 (2016).
[Crossref]

Appl. Opt. (3)

Carbon (1)

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Contemp. Phys. (1)

J. B. Pendry, “Negative refraction,” Contemp. Phys. 45(3), 191–202 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (2)

M. A. Baqir and P. Choudhury, “Hyperbolic metamaterial-based uv absorber,” IEEE Photonics Technol. Lett. 29(18), 1548–1551 (2017).
[Crossref]

M. Ghasemi, M. A. Baqir, and P. K. Choudhury, “On the metasurface-based comb filters,” IEEE Photonics Technol. Lett. 28(10), 1100–1103 (2016).
[Crossref]

IEEE Sens. J. (1)

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18(17), 7047–7054 (2018).
[Crossref]

IEEE Trans. Antennas Propag. (1)

R. W. Ziolkowski and A. Erentok, “Metamaterial-based efficient electrically small antennas,” IEEE Trans. Antennas Propag. 54(7), 2113–2130 (2006).
[Crossref]

IET Optoelectron. (1)

E. Ünal, M. Bağmancı, M. Karaaslan, O. Akgol, H. T. Arat, and C. Sabah, “Zinc oxide–tungsten-based pyramids in construction of ultra-broadband metamaterial absorber for solar energy harvesting,” IET Optoelectron. 11(3), 114–120 (2017).
[Crossref]

J. Nanophotonics (1)

M. Ghasemi, P. K. Choudhury, M. A. Baqir, M. A. Mohamed, A. R. M. Zain, and B. Y. Majlis, “Metamaterial absorber comprising chromium–gold nanorods-based columnar thin films,” J. Nanophotonics 11(4), 043505 (2017).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

J. Phys.: Condens. Matter (1)

C. Liu, Z. Yao, Y. Huang, W. Xu, Y. Tian, H. Wang, Y. Jin, and X. Xu, “Angular dependent strong coupling between localized waveguide resonance and surface plasmon resonance in complementary metamaterials,” J. Phys.: Condens. Matter 31(8), 085301 (2019).
[Crossref]

Mod. Phys. Lett. B (1)

H. Luo and Y. Z. Cheng, “Design of an ultrabroadband visible metamaterial absorber based on three-dimensional metallic nanostructures,” Mod. Phys. Lett. B 31(25), 1750231 (2017).
[Crossref]

Nano Lett. (1)

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Nanomaterials (1)

H. Gao, W. Peng, S. Chu, W. Cui, Z. Liu, L. Yu, and Z. Jing, “Refractory ultra-broadband perfect absorber from visible to near-infrared,” Nanomaterials 8(12), 1038 (2018).
[Crossref]

Nanoscale Res. Lett. (1)

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref]

Nat. Mater. (1)

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref]

Opt. Express (5)

Opt. Mater. Express (2)

Opt. Quantum Electron. (1)

X. Ling, Z. Xiao, and X. Zheng, “An ultra-broadband metamaterial absorber based on the hybrid materials in the visible region,” Opt. Quantum Electron. 49(7), 248 (2017).
[Crossref]

Photonics Nanostructures-Fundamentals Appl. (1)

S. Tretyakov, A. Sihvola, and L. Jylhä, “Backward-wave regime and negative refraction in chiral composites,” Photonics Nanostructures-Fundamentals Appl. 3(2-3), 107–115 (2005).
[Crossref]

Phys. E (1)

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, C. Xu, and S. Xiao, “Dynamically tunable electromagnetically induced transparency in a terahertz hybrid metamaterial,” Phys. E 104, 229–232 (2018).
[Crossref]

Phys. Rev. B (1)

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B 79(24), 245127 (2009).
[Crossref]

Phys. Rev. Lett. (2)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Phys.-Usp. (1)

V. G. Veselago, “Electrodynamics of materials with negative index of refraction,” Phys.-Usp. 46(7), 764–768 (2003).
[Crossref]

Plasmonics (1)

M. A. Baqir, P. K. Choudhury, and M. Mughal, “Gold nanowires-based hyperbolic metamaterial multiband absorber operating in the visible and near-infrared regimes,” Plasmonics 14(2), 485–492 (2019).
[Crossref]

Sci. Rep. (4)

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3(1), 1249 (2013).
[Crossref]

A. S. Rana, M. Q. Mehmood, H. Jeong, I. Kim, and J. Rho, “Tungsten-based ultrathin absorber for visible regime,” Sci. Rep. 8(1), 2443 (2018).
[Crossref]

S. Zhai, X. Zhao, S. Liu, F. Shen, L. Li, and C. Luo, “Inverse doppler effects in broadband acoustic metamaterials,” Sci. Rep. 6(1), 32388 (2016).
[Crossref]

H. Jeong, T. T. Nguyen, and S. Lim, “Subwavelength metamaterial unit cell for low-frequency electromagnetic absorber applications,” Sci. Rep. 8(1), 16774 (2018).
[Crossref]

Other (2)

H. Jiao, X. Niu, X. Zhang, J. Zhang, X. Cheng, and Z. Wang, “Ultra-broadband perfect absorber based on successive nano-cr-film,” in Advances in Optical Thin Films VI, Vol. 10691 (International Society for Optics and Photonics, 2018), p. 106911S.

M. A. Baqir and P. K. Choudhury, “Design of hyperbolic metamaterial-based absorber comprised of ti nanospheres,” IEEE Photonics Technol. Lett.1 (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of the metamaterial based absorber.
Fig. 2.
Fig. 2. Effective permittivity of the top metamaterial layer (a) real part (b) imaginary part.
Fig. 3.
Fig. 3. Dispersion curves of the 2D $W/SiO_{2}$ waveguide for different thickness values of the $W$.
Fig. 4.
Fig. 4. Absorptivity corresponding to different incidence angle for nanohole radius of $W$ as 50 nm for (a) TE-Mode and (b) TM-mode.
Fig. 5.
Fig. 5. Absorptivity corresponding to different incidence angle for nanohole radius of $W$ as 100 nm for (a) TE-Mode and (b) TM-mode.
Fig. 6.
Fig. 6. Absorptivity corresponding to different incidence angle for nanohole radius of $W$ as 150 nm for (a) TE-Mode and (b) TM-mode.
Fig. 7.
Fig. 7. Absorptivity corresponding to different incidence angle for nanohole radius of $W$ as 200 nm for (a) TE-Mode and (b) TM-mode.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ϵm(ω)=1f1ωp2ω(ωjγ1)+nfnωp2ωn2ω2+jωγn
ϵ¯=(ϵ000ϵ000ϵ)
ϵ(λ)=ϵm(λ)f+ϵd(1f)ϵ(λ)=ϵmϵdϵm(λ)f+ϵd(1f)
ϵ2Zγ1ϵ1γ2=tan(γ2d32)
ϵ2Zγ1ϵ1γ2=cot(γ2d32)

Metrics