Abstract

In this study, we experimentally prepared composite structures of 170 nm gold nanocube, poly(methyl methacrylate) (PMMA) spacer layers with different thicknesses, and 50 nm gold film as substrates for surface plasmons excitation and surface-enhanced Raman scattering (SERS). The SERS spectra of gold nanocube and the composite structure were studied by using a 633 nm laser as an excitation source and rhodamine 6G (R6G) as the Raman probe molecule with 5.625 µg/mL gold nanocube aqueous solution. It was found that the composite structures produced much stronger SERS signals than that with the single gold nanocube structure. The relationship between the intensities of SERS Raman peaks and the PMMA spacer layer thicknessess of the composite structures was found to have the same trend as that between the Raman enhancement factor and PMMA spacer layer thickness obtained by the finite element method simulation. Furthermore, a R6G concentration as low as 10−12 M could be detected by the composite structure.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
ZnO/graphene/Ag composite as recyclable surface-enhanced Raman scattering substrates

Jie Zhang, Xiaolei Zhang, Yimin Ding, and Yong Zhu
Appl. Opt. 55(32) 9105-9112 (2016)

Surface enhanced Raman scattering of gold nanoparticles aggregated by a gold-nanofilm-coated nanofiber

Chang Cheng, Juan Li, Hongxiang Lei, and Baojun Li
Photon. Res. 6(5) 357-362 (2018)

Three-dimensional multi-walled carbon nanotube arrays coated by gold-sol as a surface-enhanced Raman scattering substrate

Jie Zhang, Tuo Fan, Xiaolei Zhang, Chunhong Lai, and Yong Zhu
Appl. Opt. 53(6) 1159-1165 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824 (2003).
    [Crossref]
  2. L. Yang, J. Wang, L. Yang, Z. Hu, X. Wu, and G. Zheng, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8(1), 2560 (2018).
    [Crossref]
  3. Y. Qi, P. Zhou, X. Zhang, C. Yan, and X. Wang, “Enhanced optical transmission by exciting hybrid states of Tamm and surface plasmon polaritons in single slit with multi-pair groove nanostructure,” Acta Phys. Sin-CH Ed 67(10), 107104 (2018).
    [Crossref]
  4. C. Cen, L. Liu, Y. Zhang, X. Chen, Z. Zhou, Z. Yi, X. Ye, Y. Tang, Y. Yi, and S. Xiao, “Tunable absorption enhancement in periodic elliptical hollow graphene arrays,” Opt. Mater. Express 9(2), 706–716 (2019).
    [Crossref]
  5. H. Lin, X. Ye, X. Chen, Z. Zhou, Z. Yi, G. Niu, Y. Yi, Y. Hua, J. Hua, and S. Xiao, “Plasmonic absorption enhancement in grapheme circular and Elliptical disk arrays,” Mater. Res. Express 6(4), 045807 (2019).
    [Crossref]
  6. Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
    [Crossref]
  7. C. Cen, J. Chen, C. Liang, J. Huang, X. Chen, Y. Tang, Z. Yi, X. Xu, Y. Yi, and S. Xiao, “Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays,” Phys. E 103, 93–98 (2018).
    [Crossref]
  8. L. Liu, J. Chen, Z. Zhou, Z. Yi, and X. Ye, “Tunable absorption enhancement in electric split-ring resonators-shaped graphene array,” Mater. Res. Express 5(4), 045802 (2018).
    [Crossref]
  9. J. Wang, C. Song, J. Hang, Z. Hu, and F. Zhang, “Tunable Fano resonance based on grating-coupled and graphene-based Otto configuration,” Opt. Express 25(20), 23880–23892 (2017).
    [Crossref]
  10. X. Zhang, Y. Qi, P. Zhou, H. Gong, B. Hu, and C. Yan, “Refractive Index Sensor Based on Fano Resonances in Plasmonic Waveguide With Dual Side-Coupled Ring Resonators,” Photonic Sens. 8(4), 367–374 (2018).
    [Crossref]
  11. Q. Zhao, Z. Yang, and J. He, “Fano resonances in heterogeneous dimers of silicon and gold nanospheres,” Front. Phys. 13(3), 137801 (2018).
    [Crossref]
  12. C. Liu, W. Su, Q. Liu, X. Lu, F. Wang, T. Sun, and K. C. Paul, “Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing,” Opt. Express 26(7), 9039–9049 (2018).
    [Crossref]
  13. C. Liu, Y. Lin, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Express 25(13), 14227–14237 (2017).
    [Crossref]
  14. Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C 3(17), 4222–4226 (2015).
    [Crossref]
  15. Y. Qi, X. Zhang, P. Zhou, B. Hu, and X. Wang, “Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embedded by cross structure,” Acta Phys. Sin-CH ED 67(19), 197301 (2018).
    [Crossref]
  16. X. Wang, X. Wu, Y. Chen, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Investigation of wide-range refractive index sensor based on asymmetric metal-cladding dielectric waveguide structure,” AIP Adv. 8(10), 105029 (2018).
    [Crossref]
  17. X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with an SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).
  18. W. Hou and B. C. Stephen, “A Review of Surface Plasmon Resonance-Enhanced Photocatalysis,” Adv. Funct. Mater. 23(13), 1612–1619 (2013).
    [Crossref]
  19. X. Zhao, H. Yang, S. Li, Z. Cui, and C. Zhang, “Synthesis and theoretical study of large-sized Bi4Ti3O12 square nanosheets with high photocatalytic activity,” Mater. Res. Bull. 107, 180–188 (2018).
    [Crossref]
  20. L. Di, H. Yang, T. Xian, and X. Chen, “Facile synthesis and enhanced visible-light photocatalytic activity of novel p-Ag3PO4/n-BiFeO3 heterojunction composites for dye degradation,” Nanoscale Res Lett. 13, 257 (2018).
    [Crossref]
  21. L. Di, H. Yang, T. Xian, and X. Chen, “Construction of Z-scheme g-C3N4/CNT/Bi2Fe4O9 composites with improved simulated-sunlight photocatalytic acticity for the dye degradation,” Micromachines 9(12), 613 (2018).
    [Crossref]
  22. Y. Yan, H. Yang, X. Zhao, R. Li, and X. Wang, “Enhanced photocatalytic activity of surface disorder-engineered CaTiO3,” Mater. Res. Bull 105, 286–290 (2018).
    [Crossref]
  23. C. Zheng, H. Yang, Z. Cui, H. Zhang, and X. Wang, “A novel Bi4Ti3O12/Ag3PO4 heterojunction photocatalyst with enhanced photocatalytic performance,” Nanoscale Res. Lett. 12(1), 608 (2017).
    [Crossref]
  24. X. Wang, J. Zhang, X. Zhang, and Y. Zhu, “Characterization, uniformity and photocatalytic properties of graphene/TiO2 nanocomposites via Raman mapping,” Opt. Express 25(18), 21496–21508 (2017).
    [Crossref]
  25. Y. Zeng, X. Chen, Z. Yi, Y. Yi, and X. Xu, “Fabrication of p-n heterostructure ZnO/Si moth-eye structures: Antireflection, enhanced charge separation and photocatalytic properties,” Appl. Surf. Sci. 441, 40–48 (2018).
    [Crossref]
  26. X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structures fabrication based on multiexposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
    [Crossref]
  27. Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
    [Crossref]
  28. X. Wang, H. Tong, Z. Pang, J. Zhu, X. Wu, H. Yang, and Y. Qi, “Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation,” Opt. Quantum Electron. 51(2), 38 (2019).
    [Crossref]
  29. S. Safari and B. Jazi, “The role of terahertz surface plasmons in the scattering pattern of electromagnetic waves in an unstable elliptical plasma antenna,” Phys. Plasmas 24(7), 072112 (2017).
    [Crossref]
  30. H. Du, L. Zhang, and D. Li, “THz plasma wave instability in field effect transistor with electron diffusion current density,” Plasma Sci. Technol. 20(11), 115001 (2018).
    [Crossref]
  31. D. Li, L. Zhang, and H. Du, “The instability of terahertz plasma waves in cylindrical FET,” Plasma Sci. Technol. 21(4), 045002 (2019).
    [Crossref]
  32. J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
    [Crossref]
  33. J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-plasmon-polaritons-assisted enhanced magnetic response at optical frequencies in metamaterials,” IEEE Photonics J. 8(1), 4800107 (2016).
    [Crossref]
  34. Z. Yang, Q. Zhao, and J. He, “Boosting magnetic field enhancement with radiative couplings of magnetic modes in dielectric nanostructures,” Opt. Express 25(14), 15927–15937 (2017).
    [Crossref]
  35. X. Wang, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering effect of a composite structure with gold nano-cubes and gold film separated by Polymethylmethacrylate film,” Acta Phys. Sin-CH ED 68(3), 037301 (2019).
    [Crossref]
  36. G. Liu, M. Yu, Z. Liu, X. Liu, S. Huang, P. Pan, Y. Wang, M. Liu, and G. Gu, “One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering,” Nanotechnology 26(18), 185702 (2015).
    [Crossref]
  37. M. Yu, Z. Huang, Z. Liu, J. Chen, Y. Liu, L. Tang, and G. Liu, “Annealed gold nanoshells with highly-dense hotspots for large-area efficient Raman scattering substrates,” Sens. Actuators, B 262, 845–851 (2018).
    [Crossref]
  38. R. M. Gonçalves, “Plasmonic nanoparticles: fabrication, simulation and experiments,” J. Phys. D: Appl. Phys. 47(21), 213001 (2014).
    [Crossref]
  39. M. Yi, D. Zhang, P. Wang, X. Jiao, S. Blair, X. Wen, Q. Fu, Y. Lu, and H. Ming, “Plasmonic Interaction Between Silver Nano-Cubes and a Silver Ground Plane Studied by Surface-Enhanced Raman Scattering,” Plasmonics 6(3), 515–519 (2011).
    [Crossref]
  40. Z. Dai, X. Xiao, W. Wu, L. Liao, F. Mei, X. Yu, S. Gou, J. Ying, R. Feng, and C. Jiang, “Side-to-side alignment of gold nanorods with polarization-free characteristic for highly reproducible surface enhanced Raman scattering,” Appl. Phys. Lett. 105(21), 211902 (2014).
    [Crossref]
  41. C. Chen and Z. Qi, “Nanoporous gold films prepared by sputtering dealloying combination for total internal reflection SERS measuremen,” Opt. Mater. Express 6(5), 1561–1569 (2016).
    [Crossref]
  42. X. Wang, X. Bai, Z. Pang, H. Yang, and Y. Qi, “Investigation of surface plasmons in Kretschmann structure loaded with a silver nano-cube,” Results Phys. 12, 1866–1870 (2019).
    [Crossref]
  43. S. Hayashi, T. Kume, T. Amano, and K. Yamamoto, “A new method of surface plasmon excitation mediated by metallic nanoparticles,” Jpn. J. Appl. Phys. 35(Part 2, No. 3A), L331–L334 (1996).
    [Crossref]
  44. G. Lévêque and O. J. Martin, “Tunable composite nanoparticle for plasmonics,” Opt. Lett. 31(18), 2750–2752 (2006).
    [Crossref]
  45. S. Sadrieyeh and R. Malekfar, “Mesoporous plasmonic nanocomposites based on Au/Ag-TiO2 aerogels as SERS substrates,” Appl. Opt. 57(36), 10510–10516 (2018).
    [Crossref]
  46. J. Zhang, Z. Yin, X. Zhang, and Y. Zhu, “Quantitative SERS by electromagnetic enhancement normalization with carbon nanotube as an internal standard,” Opt. Express 26(18), 23534–23539 (2018).
    [Crossref]
  47. J. Zhu, N. Wu, F. Zhang, X. Li, J. Li, and J. Zhao, “SERS detection of 4-Aminobenzenethiol based on triangular Au-AuAg hierarchical-multishell nanostructure,” Spectrochim. Acta, Part A 204, 754–762 (2018).
    [Crossref]
  48. S. S. Singha, S. Mondal, T. S. Bhattacharya, L. Daset, K. Senal, B. Satpati, K. Das, and A. Singha, “Au nanoparticles functionalized 3D-MoS2 nanoflower: An efficient SERS matrix for biomolecule sensing,” Biosens. Bioelectron. 119, 10–17 (2018).
    [Crossref]
  49. C. Zhang, S. Jiang, Y. Huo, A. Liu, S. Xu, X. Liu, Z. Sun, Y. Xu, Z. Li, and B. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
    [Crossref]
  50. J. Li, W. Zhang, H. Lei, and B. Li, “Ag nanowire/nanoparticle-decorated MoS2 monolayers for surface-enhanced Raman scattering applications,” Nano Res. 11(4), 2181–2189 (2018).
    [Crossref]
  51. X. Wang, X. Wu, J. Zhu, Z. Pang, H. Yang, and Y. Qi, “Theoretical Investigation of a Highly Sensitive Refractive-Index Sensor Based on TM0 Waveguide Mode Resonance Excited in an Asymmetric Metal-Cladding Dielectric Waveguide Structure,” Sensors 19(5), 1187 (2019).
    [Crossref]

2019 (9)

H. Lin, X. Ye, X. Chen, Z. Zhou, Z. Yi, G. Niu, Y. Yi, Y. Hua, J. Hua, and S. Xiao, “Plasmonic absorption enhancement in grapheme circular and Elliptical disk arrays,” Mater. Res. Express 6(4), 045807 (2019).
[Crossref]

X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with an SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).

X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structures fabrication based on multiexposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]

X. Wang, H. Tong, Z. Pang, J. Zhu, X. Wu, H. Yang, and Y. Qi, “Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation,” Opt. Quantum Electron. 51(2), 38 (2019).
[Crossref]

D. Li, L. Zhang, and H. Du, “The instability of terahertz plasma waves in cylindrical FET,” Plasma Sci. Technol. 21(4), 045002 (2019).
[Crossref]

X. Wang, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering effect of a composite structure with gold nano-cubes and gold film separated by Polymethylmethacrylate film,” Acta Phys. Sin-CH ED 68(3), 037301 (2019).
[Crossref]

X. Wang, X. Bai, Z. Pang, H. Yang, and Y. Qi, “Investigation of surface plasmons in Kretschmann structure loaded with a silver nano-cube,” Results Phys. 12, 1866–1870 (2019).
[Crossref]

X. Wang, X. Wu, J. Zhu, Z. Pang, H. Yang, and Y. Qi, “Theoretical Investigation of a Highly Sensitive Refractive-Index Sensor Based on TM0 Waveguide Mode Resonance Excited in an Asymmetric Metal-Cladding Dielectric Waveguide Structure,” Sensors 19(5), 1187 (2019).
[Crossref]

C. Cen, L. Liu, Y. Zhang, X. Chen, Z. Zhou, Z. Yi, X. Ye, Y. Tang, Y. Yi, and S. Xiao, “Tunable absorption enhancement in periodic elliptical hollow graphene arrays,” Opt. Mater. Express 9(2), 706–716 (2019).
[Crossref]

2018 (22)

C. Liu, W. Su, Q. Liu, X. Lu, F. Wang, T. Sun, and K. C. Paul, “Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing,” Opt. Express 26(7), 9039–9049 (2018).
[Crossref]

J. Zhang, Z. Yin, X. Zhang, and Y. Zhu, “Quantitative SERS by electromagnetic enhancement normalization with carbon nanotube as an internal standard,” Opt. Express 26(18), 23534–23539 (2018).
[Crossref]

S. Sadrieyeh and R. Malekfar, “Mesoporous plasmonic nanocomposites based on Au/Ag-TiO2 aerogels as SERS substrates,” Appl. Opt. 57(36), 10510–10516 (2018).
[Crossref]

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

M. Yu, Z. Huang, Z. Liu, J. Chen, Y. Liu, L. Tang, and G. Liu, “Annealed gold nanoshells with highly-dense hotspots for large-area efficient Raman scattering substrates,” Sens. Actuators, B 262, 845–851 (2018).
[Crossref]

H. Du, L. Zhang, and D. Li, “THz plasma wave instability in field effect transistor with electron diffusion current density,” Plasma Sci. Technol. 20(11), 115001 (2018).
[Crossref]

X. Zhang, Y. Qi, P. Zhou, H. Gong, B. Hu, and C. Yan, “Refractive Index Sensor Based on Fano Resonances in Plasmonic Waveguide With Dual Side-Coupled Ring Resonators,” Photonic Sens. 8(4), 367–374 (2018).
[Crossref]

Q. Zhao, Z. Yang, and J. He, “Fano resonances in heterogeneous dimers of silicon and gold nanospheres,” Front. Phys. 13(3), 137801 (2018).
[Crossref]

J. Zhu, N. Wu, F. Zhang, X. Li, J. Li, and J. Zhao, “SERS detection of 4-Aminobenzenethiol based on triangular Au-AuAg hierarchical-multishell nanostructure,” Spectrochim. Acta, Part A 204, 754–762 (2018).
[Crossref]

S. S. Singha, S. Mondal, T. S. Bhattacharya, L. Daset, K. Senal, B. Satpati, K. Das, and A. Singha, “Au nanoparticles functionalized 3D-MoS2 nanoflower: An efficient SERS matrix for biomolecule sensing,” Biosens. Bioelectron. 119, 10–17 (2018).
[Crossref]

J. Li, W. Zhang, H. Lei, and B. Li, “Ag nanowire/nanoparticle-decorated MoS2 monolayers for surface-enhanced Raman scattering applications,” Nano Res. 11(4), 2181–2189 (2018).
[Crossref]

Y. Zeng, X. Chen, Z. Yi, Y. Yi, and X. Xu, “Fabrication of p-n heterostructure ZnO/Si moth-eye structures: Antireflection, enhanced charge separation and photocatalytic properties,” Appl. Surf. Sci. 441, 40–48 (2018).
[Crossref]

X. Zhao, H. Yang, S. Li, Z. Cui, and C. Zhang, “Synthesis and theoretical study of large-sized Bi4Ti3O12 square nanosheets with high photocatalytic activity,” Mater. Res. Bull. 107, 180–188 (2018).
[Crossref]

L. Di, H. Yang, T. Xian, and X. Chen, “Facile synthesis and enhanced visible-light photocatalytic activity of novel p-Ag3PO4/n-BiFeO3 heterojunction composites for dye degradation,” Nanoscale Res Lett. 13, 257 (2018).
[Crossref]

L. Di, H. Yang, T. Xian, and X. Chen, “Construction of Z-scheme g-C3N4/CNT/Bi2Fe4O9 composites with improved simulated-sunlight photocatalytic acticity for the dye degradation,” Micromachines 9(12), 613 (2018).
[Crossref]

Y. Yan, H. Yang, X. Zhao, R. Li, and X. Wang, “Enhanced photocatalytic activity of surface disorder-engineered CaTiO3,” Mater. Res. Bull 105, 286–290 (2018).
[Crossref]

L. Yang, J. Wang, L. Yang, Z. Hu, X. Wu, and G. Zheng, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8(1), 2560 (2018).
[Crossref]

Y. Qi, P. Zhou, X. Zhang, C. Yan, and X. Wang, “Enhanced optical transmission by exciting hybrid states of Tamm and surface plasmon polaritons in single slit with multi-pair groove nanostructure,” Acta Phys. Sin-CH Ed 67(10), 107104 (2018).
[Crossref]

C. Cen, J. Chen, C. Liang, J. Huang, X. Chen, Y. Tang, Z. Yi, X. Xu, Y. Yi, and S. Xiao, “Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays,” Phys. E 103, 93–98 (2018).
[Crossref]

L. Liu, J. Chen, Z. Zhou, Z. Yi, and X. Ye, “Tunable absorption enhancement in electric split-ring resonators-shaped graphene array,” Mater. Res. Express 5(4), 045802 (2018).
[Crossref]

Y. Qi, X. Zhang, P. Zhou, B. Hu, and X. Wang, “Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embedded by cross structure,” Acta Phys. Sin-CH ED 67(19), 197301 (2018).
[Crossref]

X. Wang, X. Wu, Y. Chen, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Investigation of wide-range refractive index sensor based on asymmetric metal-cladding dielectric waveguide structure,” AIP Adv. 8(10), 105029 (2018).
[Crossref]

2017 (6)

2016 (3)

C. Chen and Z. Qi, “Nanoporous gold films prepared by sputtering dealloying combination for total internal reflection SERS measuremen,” Opt. Mater. Express 6(5), 1561–1569 (2016).
[Crossref]

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]

J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-plasmon-polaritons-assisted enhanced magnetic response at optical frequencies in metamaterials,” IEEE Photonics J. 8(1), 4800107 (2016).
[Crossref]

2015 (4)

G. Liu, M. Yu, Z. Liu, X. Liu, S. Huang, P. Pan, Y. Wang, M. Liu, and G. Gu, “One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering,” Nanotechnology 26(18), 185702 (2015).
[Crossref]

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C 3(17), 4222–4226 (2015).
[Crossref]

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref]

C. Zhang, S. Jiang, Y. Huo, A. Liu, S. Xu, X. Liu, Z. Sun, Y. Xu, Z. Li, and B. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref]

2014 (2)

Z. Dai, X. Xiao, W. Wu, L. Liao, F. Mei, X. Yu, S. Gou, J. Ying, R. Feng, and C. Jiang, “Side-to-side alignment of gold nanorods with polarization-free characteristic for highly reproducible surface enhanced Raman scattering,” Appl. Phys. Lett. 105(21), 211902 (2014).
[Crossref]

R. M. Gonçalves, “Plasmonic nanoparticles: fabrication, simulation and experiments,” J. Phys. D: Appl. Phys. 47(21), 213001 (2014).
[Crossref]

2013 (1)

W. Hou and B. C. Stephen, “A Review of Surface Plasmon Resonance-Enhanced Photocatalysis,” Adv. Funct. Mater. 23(13), 1612–1619 (2013).
[Crossref]

2011 (1)

M. Yi, D. Zhang, P. Wang, X. Jiao, S. Blair, X. Wen, Q. Fu, Y. Lu, and H. Ming, “Plasmonic Interaction Between Silver Nano-Cubes and a Silver Ground Plane Studied by Surface-Enhanced Raman Scattering,” Plasmonics 6(3), 515–519 (2011).
[Crossref]

2006 (1)

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824 (2003).
[Crossref]

1996 (1)

S. Hayashi, T. Kume, T. Amano, and K. Yamamoto, “A new method of surface plasmon excitation mediated by metallic nanoparticles,” Jpn. J. Appl. Phys. 35(Part 2, No. 3A), L331–L334 (1996).
[Crossref]

Amano, T.

S. Hayashi, T. Kume, T. Amano, and K. Yamamoto, “A new method of surface plasmon excitation mediated by metallic nanoparticles,” Jpn. J. Appl. Phys. 35(Part 2, No. 3A), L331–L334 (1996).
[Crossref]

Bai, X.

X. Wang, X. Bai, Z. Pang, H. Yang, and Y. Qi, “Investigation of surface plasmons in Kretschmann structure loaded with a silver nano-cube,” Results Phys. 12, 1866–1870 (2019).
[Crossref]

X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structures fabrication based on multiexposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]

X. Wang, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering effect of a composite structure with gold nano-cubes and gold film separated by Polymethylmethacrylate film,” Acta Phys. Sin-CH ED 68(3), 037301 (2019).
[Crossref]

X. Wang, X. Wu, Y. Chen, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Investigation of wide-range refractive index sensor based on asymmetric metal-cladding dielectric waveguide structure,” AIP Adv. 8(10), 105029 (2018).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824 (2003).
[Crossref]

Bhattacharya, T. S.

S. S. Singha, S. Mondal, T. S. Bhattacharya, L. Daset, K. Senal, B. Satpati, K. Das, and A. Singha, “Au nanoparticles functionalized 3D-MoS2 nanoflower: An efficient SERS matrix for biomolecule sensing,” Biosens. Bioelectron. 119, 10–17 (2018).
[Crossref]

Blair, S.

M. Yi, D. Zhang, P. Wang, X. Jiao, S. Blair, X. Wen, Q. Fu, Y. Lu, and H. Ming, “Plasmonic Interaction Between Silver Nano-Cubes and a Silver Ground Plane Studied by Surface-Enhanced Raman Scattering,” Plasmonics 6(3), 515–519 (2011).
[Crossref]

Cen, C.

C. Cen, L. Liu, Y. Zhang, X. Chen, Z. Zhou, Z. Yi, X. Ye, Y. Tang, Y. Yi, and S. Xiao, “Tunable absorption enhancement in periodic elliptical hollow graphene arrays,” Opt. Mater. Express 9(2), 706–716 (2019).
[Crossref]

C. Cen, J. Chen, C. Liang, J. Huang, X. Chen, Y. Tang, Z. Yi, X. Xu, Y. Yi, and S. Xiao, “Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays,” Phys. E 103, 93–98 (2018).
[Crossref]

Chen, C.

Chen, J.

L. Liu, J. Chen, Z. Zhou, Z. Yi, and X. Ye, “Tunable absorption enhancement in electric split-ring resonators-shaped graphene array,” Mater. Res. Express 5(4), 045802 (2018).
[Crossref]

M. Yu, Z. Huang, Z. Liu, J. Chen, Y. Liu, L. Tang, and G. Liu, “Annealed gold nanoshells with highly-dense hotspots for large-area efficient Raman scattering substrates,” Sens. Actuators, B 262, 845–851 (2018).
[Crossref]

C. Cen, J. Chen, C. Liang, J. Huang, X. Chen, Y. Tang, Z. Yi, X. Xu, Y. Yi, and S. Xiao, “Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays,” Phys. E 103, 93–98 (2018).
[Crossref]

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]

J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-plasmon-polaritons-assisted enhanced magnetic response at optical frequencies in metamaterials,” IEEE Photonics J. 8(1), 4800107 (2016).
[Crossref]

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref]

Chen, X.

C. Cen, L. Liu, Y. Zhang, X. Chen, Z. Zhou, Z. Yi, X. Ye, Y. Tang, Y. Yi, and S. Xiao, “Tunable absorption enhancement in periodic elliptical hollow graphene arrays,” Opt. Mater. Express 9(2), 706–716 (2019).
[Crossref]

H. Lin, X. Ye, X. Chen, Z. Zhou, Z. Yi, G. Niu, Y. Yi, Y. Hua, J. Hua, and S. Xiao, “Plasmonic absorption enhancement in grapheme circular and Elliptical disk arrays,” Mater. Res. Express 6(4), 045807 (2019).
[Crossref]

L. Di, H. Yang, T. Xian, and X. Chen, “Facile synthesis and enhanced visible-light photocatalytic activity of novel p-Ag3PO4/n-BiFeO3 heterojunction composites for dye degradation,” Nanoscale Res Lett. 13, 257 (2018).
[Crossref]

C. Cen, J. Chen, C. Liang, J. Huang, X. Chen, Y. Tang, Z. Yi, X. Xu, Y. Yi, and S. Xiao, “Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays,” Phys. E 103, 93–98 (2018).
[Crossref]

Y. Zeng, X. Chen, Z. Yi, Y. Yi, and X. Xu, “Fabrication of p-n heterostructure ZnO/Si moth-eye structures: Antireflection, enhanced charge separation and photocatalytic properties,” Appl. Surf. Sci. 441, 40–48 (2018).
[Crossref]

L. Di, H. Yang, T. Xian, and X. Chen, “Construction of Z-scheme g-C3N4/CNT/Bi2Fe4O9 composites with improved simulated-sunlight photocatalytic acticity for the dye degradation,” Micromachines 9(12), 613 (2018).
[Crossref]

Chen, Y.

X. Wang, X. Wu, Y. Chen, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Investigation of wide-range refractive index sensor based on asymmetric metal-cladding dielectric waveguide structure,” AIP Adv. 8(10), 105029 (2018).
[Crossref]

Chu, P.

Cui, Z.

X. Zhao, H. Yang, S. Li, Z. Cui, and C. Zhang, “Synthesis and theoretical study of large-sized Bi4Ti3O12 square nanosheets with high photocatalytic activity,” Mater. Res. Bull. 107, 180–188 (2018).
[Crossref]

C. Zheng, H. Yang, Z. Cui, H. Zhang, and X. Wang, “A novel Bi4Ti3O12/Ag3PO4 heterojunction photocatalyst with enhanced photocatalytic performance,” Nanoscale Res. Lett. 12(1), 608 (2017).
[Crossref]

Dai, Z.

Z. Dai, X. Xiao, W. Wu, L. Liao, F. Mei, X. Yu, S. Gou, J. Ying, R. Feng, and C. Jiang, “Side-to-side alignment of gold nanorods with polarization-free characteristic for highly reproducible surface enhanced Raman scattering,” Appl. Phys. Lett. 105(21), 211902 (2014).
[Crossref]

Das, K.

S. S. Singha, S. Mondal, T. S. Bhattacharya, L. Daset, K. Senal, B. Satpati, K. Das, and A. Singha, “Au nanoparticles functionalized 3D-MoS2 nanoflower: An efficient SERS matrix for biomolecule sensing,” Biosens. Bioelectron. 119, 10–17 (2018).
[Crossref]

Daset, L.

S. S. Singha, S. Mondal, T. S. Bhattacharya, L. Daset, K. Senal, B. Satpati, K. Das, and A. Singha, “Au nanoparticles functionalized 3D-MoS2 nanoflower: An efficient SERS matrix for biomolecule sensing,” Biosens. Bioelectron. 119, 10–17 (2018).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824 (2003).
[Crossref]

Di, L.

L. Di, H. Yang, T. Xian, and X. Chen, “Facile synthesis and enhanced visible-light photocatalytic activity of novel p-Ag3PO4/n-BiFeO3 heterojunction composites for dye degradation,” Nanoscale Res Lett. 13, 257 (2018).
[Crossref]

L. Di, H. Yang, T. Xian, and X. Chen, “Construction of Z-scheme g-C3N4/CNT/Bi2Fe4O9 composites with improved simulated-sunlight photocatalytic acticity for the dye degradation,” Micromachines 9(12), 613 (2018).
[Crossref]

Du, H.

D. Li, L. Zhang, and H. Du, “The instability of terahertz plasma waves in cylindrical FET,” Plasma Sci. Technol. 21(4), 045002 (2019).
[Crossref]

H. Du, L. Zhang, and D. Li, “THz plasma wave instability in field effect transistor with electron diffusion current density,” Plasma Sci. Technol. 20(11), 115001 (2018).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824 (2003).
[Crossref]

Feng, R.

Z. Dai, X. Xiao, W. Wu, L. Liao, F. Mei, X. Yu, S. Gou, J. Ying, R. Feng, and C. Jiang, “Side-to-side alignment of gold nanorods with polarization-free characteristic for highly reproducible surface enhanced Raman scattering,” Appl. Phys. Lett. 105(21), 211902 (2014).
[Crossref]

Fu, Q.

M. Yi, D. Zhang, P. Wang, X. Jiao, S. Blair, X. Wen, Q. Fu, Y. Lu, and H. Ming, “Plasmonic Interaction Between Silver Nano-Cubes and a Silver Ground Plane Studied by Surface-Enhanced Raman Scattering,” Plasmonics 6(3), 515–519 (2011).
[Crossref]

Gao, D.

J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-plasmon-polaritons-assisted enhanced magnetic response at optical frequencies in metamaterials,” IEEE Photonics J. 8(1), 4800107 (2016).
[Crossref]

Gonçalves, R. M.

R. M. Gonçalves, “Plasmonic nanoparticles: fabrication, simulation and experiments,” J. Phys. D: Appl. Phys. 47(21), 213001 (2014).
[Crossref]

Gong, H.

X. Zhang, Y. Qi, P. Zhou, H. Gong, B. Hu, and C. Yan, “Refractive Index Sensor Based on Fano Resonances in Plasmonic Waveguide With Dual Side-Coupled Ring Resonators,” Photonic Sens. 8(4), 367–374 (2018).
[Crossref]

Gou, S.

Z. Dai, X. Xiao, W. Wu, L. Liao, F. Mei, X. Yu, S. Gou, J. Ying, R. Feng, and C. Jiang, “Side-to-side alignment of gold nanorods with polarization-free characteristic for highly reproducible surface enhanced Raman scattering,” Appl. Phys. Lett. 105(21), 211902 (2014).
[Crossref]

Gu, G.

G. Liu, M. Yu, Z. Liu, X. Liu, S. Huang, P. Pan, Y. Wang, M. Liu, and G. Gu, “One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering,” Nanotechnology 26(18), 185702 (2015).
[Crossref]

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref]

Hang, J.

Hayashi, S.

S. Hayashi, T. Kume, T. Amano, and K. Yamamoto, “A new method of surface plasmon excitation mediated by metallic nanoparticles,” Jpn. J. Appl. Phys. 35(Part 2, No. 3A), L331–L334 (1996).
[Crossref]

He, J.

Q. Zhao, Z. Yang, and J. He, “Fano resonances in heterogeneous dimers of silicon and gold nanospheres,” Front. Phys. 13(3), 137801 (2018).
[Crossref]

Z. Yang, Q. Zhao, and J. He, “Boosting magnetic field enhancement with radiative couplings of magnetic modes in dielectric nanostructures,” Opt. Express 25(14), 15927–15937 (2017).
[Crossref]

Hou, W.

W. Hou and B. C. Stephen, “A Review of Surface Plasmon Resonance-Enhanced Photocatalysis,” Adv. Funct. Mater. 23(13), 1612–1619 (2013).
[Crossref]

Hu, B.

Y. Qi, X. Zhang, P. Zhou, B. Hu, and X. Wang, “Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embedded by cross structure,” Acta Phys. Sin-CH ED 67(19), 197301 (2018).
[Crossref]

X. Zhang, Y. Qi, P. Zhou, H. Gong, B. Hu, and C. Yan, “Refractive Index Sensor Based on Fano Resonances in Plasmonic Waveguide With Dual Side-Coupled Ring Resonators,” Photonic Sens. 8(4), 367–374 (2018).
[Crossref]

Hu, Z.

L. Yang, J. Wang, L. Yang, Z. Hu, X. Wu, and G. Zheng, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8(1), 2560 (2018).
[Crossref]

J. Wang, C. Song, J. Hang, Z. Hu, and F. Zhang, “Tunable Fano resonance based on grating-coupled and graphene-based Otto configuration,” Opt. Express 25(20), 23880–23892 (2017).
[Crossref]

Hua, J.

H. Lin, X. Ye, X. Chen, Z. Zhou, Z. Yi, G. Niu, Y. Yi, Y. Hua, J. Hua, and S. Xiao, “Plasmonic absorption enhancement in grapheme circular and Elliptical disk arrays,” Mater. Res. Express 6(4), 045807 (2019).
[Crossref]

Hua, Y.

H. Lin, X. Ye, X. Chen, Z. Zhou, Z. Yi, G. Niu, Y. Yi, Y. Hua, J. Hua, and S. Xiao, “Plasmonic absorption enhancement in grapheme circular and Elliptical disk arrays,” Mater. Res. Express 6(4), 045807 (2019).
[Crossref]

Huang, J.

C. Cen, J. Chen, C. Liang, J. Huang, X. Chen, Y. Tang, Z. Yi, X. Xu, Y. Yi, and S. Xiao, “Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays,” Phys. E 103, 93–98 (2018).
[Crossref]

Huang, S.

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C 3(17), 4222–4226 (2015).
[Crossref]

G. Liu, M. Yu, Z. Liu, X. Liu, S. Huang, P. Pan, Y. Wang, M. Liu, and G. Gu, “One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering,” Nanotechnology 26(18), 185702 (2015).
[Crossref]

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref]

Huang, Z.

M. Yu, Z. Huang, Z. Liu, J. Chen, Y. Liu, L. Tang, and G. Liu, “Annealed gold nanoshells with highly-dense hotspots for large-area efficient Raman scattering substrates,” Sens. Actuators, B 262, 845–851 (2018).
[Crossref]

Huo, Y.

Jazi, B.

S. Safari and B. Jazi, “The role of terahertz surface plasmons in the scattering pattern of electromagnetic waves in an unstable elliptical plasma antenna,” Phys. Plasmas 24(7), 072112 (2017).
[Crossref]

Jiang, C.

Z. Dai, X. Xiao, W. Wu, L. Liao, F. Mei, X. Yu, S. Gou, J. Ying, R. Feng, and C. Jiang, “Side-to-side alignment of gold nanorods with polarization-free characteristic for highly reproducible surface enhanced Raman scattering,” Appl. Phys. Lett. 105(21), 211902 (2014).
[Crossref]

Jiang, S.

Jiao, X.

M. Yi, D. Zhang, P. Wang, X. Jiao, S. Blair, X. Wen, Q. Fu, Y. Lu, and H. Ming, “Plasmonic Interaction Between Silver Nano-Cubes and a Silver Ground Plane Studied by Surface-Enhanced Raman Scattering,” Plasmonics 6(3), 515–519 (2011).
[Crossref]

Kume, T.

S. Hayashi, T. Kume, T. Amano, and K. Yamamoto, “A new method of surface plasmon excitation mediated by metallic nanoparticles,” Jpn. J. Appl. Phys. 35(Part 2, No. 3A), L331–L334 (1996).
[Crossref]

Lei, H.

J. Li, W. Zhang, H. Lei, and B. Li, “Ag nanowire/nanoparticle-decorated MoS2 monolayers for surface-enhanced Raman scattering applications,” Nano Res. 11(4), 2181–2189 (2018).
[Crossref]

Lévêque, G.

Li, B.

J. Li, W. Zhang, H. Lei, and B. Li, “Ag nanowire/nanoparticle-decorated MoS2 monolayers for surface-enhanced Raman scattering applications,” Nano Res. 11(4), 2181–2189 (2018).
[Crossref]

Li, D.

D. Li, L. Zhang, and H. Du, “The instability of terahertz plasma waves in cylindrical FET,” Plasma Sci. Technol. 21(4), 045002 (2019).
[Crossref]

H. Du, L. Zhang, and D. Li, “THz plasma wave instability in field effect transistor with electron diffusion current density,” Plasma Sci. Technol. 20(11), 115001 (2018).
[Crossref]

Li, J.

J. Li, W. Zhang, H. Lei, and B. Li, “Ag nanowire/nanoparticle-decorated MoS2 monolayers for surface-enhanced Raman scattering applications,” Nano Res. 11(4), 2181–2189 (2018).
[Crossref]

J. Zhu, N. Wu, F. Zhang, X. Li, J. Li, and J. Zhao, “SERS detection of 4-Aminobenzenethiol based on triangular Au-AuAg hierarchical-multishell nanostructure,” Spectrochim. Acta, Part A 204, 754–762 (2018).
[Crossref]

Li, R.

Y. Yan, H. Yang, X. Zhao, R. Li, and X. Wang, “Enhanced photocatalytic activity of surface disorder-engineered CaTiO3,” Mater. Res. Bull 105, 286–290 (2018).
[Crossref]

Li, S.

X. Zhao, H. Yang, S. Li, Z. Cui, and C. Zhang, “Synthesis and theoretical study of large-sized Bi4Ti3O12 square nanosheets with high photocatalytic activity,” Mater. Res. Bull. 107, 180–188 (2018).
[Crossref]

Li, X.

J. Zhu, N. Wu, F. Zhang, X. Li, J. Li, and J. Zhao, “SERS detection of 4-Aminobenzenethiol based on triangular Au-AuAg hierarchical-multishell nanostructure,” Spectrochim. Acta, Part A 204, 754–762 (2018).
[Crossref]

Li, Z.

Liang, C.

C. Cen, J. Chen, C. Liang, J. Huang, X. Chen, Y. Tang, Z. Yi, X. Xu, Y. Yi, and S. Xiao, “Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays,” Phys. E 103, 93–98 (2018).
[Crossref]

Liao, L.

Z. Dai, X. Xiao, W. Wu, L. Liao, F. Mei, X. Yu, S. Gou, J. Ying, R. Feng, and C. Jiang, “Side-to-side alignment of gold nanorods with polarization-free characteristic for highly reproducible surface enhanced Raman scattering,” Appl. Phys. Lett. 105(21), 211902 (2014).
[Crossref]

Lin, H.

H. Lin, X. Ye, X. Chen, Z. Zhou, Z. Yi, G. Niu, Y. Yi, Y. Hua, J. Hua, and S. Xiao, “Plasmonic absorption enhancement in grapheme circular and Elliptical disk arrays,” Mater. Res. Express 6(4), 045807 (2019).
[Crossref]

Lin, Y.

Liu, A.

Liu, C.

Liu, G.

M. Yu, Z. Huang, Z. Liu, J. Chen, Y. Liu, L. Tang, and G. Liu, “Annealed gold nanoshells with highly-dense hotspots for large-area efficient Raman scattering substrates,” Sens. Actuators, B 262, 845–851 (2018).
[Crossref]

G. Liu, M. Yu, Z. Liu, X. Liu, S. Huang, P. Pan, Y. Wang, M. Liu, and G. Gu, “One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering,” Nanotechnology 26(18), 185702 (2015).
[Crossref]

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref]

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C 3(17), 4222–4226 (2015).
[Crossref]

Liu, L.

C. Cen, L. Liu, Y. Zhang, X. Chen, Z. Zhou, Z. Yi, X. Ye, Y. Tang, Y. Yi, and S. Xiao, “Tunable absorption enhancement in periodic elliptical hollow graphene arrays,” Opt. Mater. Express 9(2), 706–716 (2019).
[Crossref]

L. Liu, J. Chen, Z. Zhou, Z. Yi, and X. Ye, “Tunable absorption enhancement in electric split-ring resonators-shaped graphene array,” Mater. Res. Express 5(4), 045802 (2018).
[Crossref]

Liu, M.

G. Liu, M. Yu, Z. Liu, X. Liu, S. Huang, P. Pan, Y. Wang, M. Liu, and G. Gu, “One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering,” Nanotechnology 26(18), 185702 (2015).
[Crossref]

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C 3(17), 4222–4226 (2015).
[Crossref]

Liu, Q.

Liu, X.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref]

G. Liu, M. Yu, Z. Liu, X. Liu, S. Huang, P. Pan, Y. Wang, M. Liu, and G. Gu, “One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering,” Nanotechnology 26(18), 185702 (2015).
[Crossref]

C. Zhang, S. Jiang, Y. Huo, A. Liu, S. Xu, X. Liu, Z. Sun, Y. Xu, Z. Li, and B. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref]

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C 3(17), 4222–4226 (2015).
[Crossref]

Liu, Y.

M. Yu, Z. Huang, Z. Liu, J. Chen, Y. Liu, L. Tang, and G. Liu, “Annealed gold nanoshells with highly-dense hotspots for large-area efficient Raman scattering substrates,” Sens. Actuators, B 262, 845–851 (2018).
[Crossref]

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]

Liu, Z.

M. Yu, Z. Huang, Z. Liu, J. Chen, Y. Liu, L. Tang, and G. Liu, “Annealed gold nanoshells with highly-dense hotspots for large-area efficient Raman scattering substrates,” Sens. Actuators, B 262, 845–851 (2018).
[Crossref]

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]

G. Liu, M. Yu, Z. Liu, X. Liu, S. Huang, P. Pan, Y. Wang, M. Liu, and G. Gu, “One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering,” Nanotechnology 26(18), 185702 (2015).
[Crossref]

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref]

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C 3(17), 4222–4226 (2015).
[Crossref]

Lu, X.

Lu, Y.

M. Yi, D. Zhang, P. Wang, X. Jiao, S. Blair, X. Wen, Q. Fu, Y. Lu, and H. Ming, “Plasmonic Interaction Between Silver Nano-Cubes and a Silver Ground Plane Studied by Surface-Enhanced Raman Scattering,” Plasmonics 6(3), 515–519 (2011).
[Crossref]

Lv, J.

Malekfar, R.

Man, B.

Mao, P.

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]

J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-plasmon-polaritons-assisted enhanced magnetic response at optical frequencies in metamaterials,” IEEE Photonics J. 8(1), 4800107 (2016).
[Crossref]

Martin, O. J.

Mei, F.

Z. Dai, X. Xiao, W. Wu, L. Liao, F. Mei, X. Yu, S. Gou, J. Ying, R. Feng, and C. Jiang, “Side-to-side alignment of gold nanorods with polarization-free characteristic for highly reproducible surface enhanced Raman scattering,” Appl. Phys. Lett. 105(21), 211902 (2014).
[Crossref]

Ming, H.

M. Yi, D. Zhang, P. Wang, X. Jiao, S. Blair, X. Wen, Q. Fu, Y. Lu, and H. Ming, “Plasmonic Interaction Between Silver Nano-Cubes and a Silver Ground Plane Studied by Surface-Enhanced Raman Scattering,” Plasmonics 6(3), 515–519 (2011).
[Crossref]

Mondal, S.

S. S. Singha, S. Mondal, T. S. Bhattacharya, L. Daset, K. Senal, B. Satpati, K. Das, and A. Singha, “Au nanoparticles functionalized 3D-MoS2 nanoflower: An efficient SERS matrix for biomolecule sensing,” Biosens. Bioelectron. 119, 10–17 (2018).
[Crossref]

Mu, H.

Niu, G.

H. Lin, X. Ye, X. Chen, Z. Zhou, Z. Yi, G. Niu, Y. Yi, Y. Hua, J. Hua, and S. Xiao, “Plasmonic absorption enhancement in grapheme circular and Elliptical disk arrays,” Mater. Res. Express 6(4), 045807 (2019).
[Crossref]

Pan, P.

G. Liu, M. Yu, Z. Liu, X. Liu, S. Huang, P. Pan, Y. Wang, M. Liu, and G. Gu, “One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering,” Nanotechnology 26(18), 185702 (2015).
[Crossref]

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref]

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C 3(17), 4222–4226 (2015).
[Crossref]

Pang, Z.

X. Wang, H. Tong, Z. Pang, J. Zhu, X. Wu, H. Yang, and Y. Qi, “Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation,” Opt. Quantum Electron. 51(2), 38 (2019).
[Crossref]

X. Wang, X. Bai, Z. Pang, H. Yang, and Y. Qi, “Investigation of surface plasmons in Kretschmann structure loaded with a silver nano-cube,” Results Phys. 12, 1866–1870 (2019).
[Crossref]

X. Wang, X. Wu, J. Zhu, Z. Pang, H. Yang, and Y. Qi, “Theoretical Investigation of a Highly Sensitive Refractive-Index Sensor Based on TM0 Waveguide Mode Resonance Excited in an Asymmetric Metal-Cladding Dielectric Waveguide Structure,” Sensors 19(5), 1187 (2019).
[Crossref]

X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with an SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).

X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structures fabrication based on multiexposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]

X. Wang, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering effect of a composite structure with gold nano-cubes and gold film separated by Polymethylmethacrylate film,” Acta Phys. Sin-CH ED 68(3), 037301 (2019).
[Crossref]

X. Wang, X. Wu, Y. Chen, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Investigation of wide-range refractive index sensor based on asymmetric metal-cladding dielectric waveguide structure,” AIP Adv. 8(10), 105029 (2018).
[Crossref]

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

Paul, K. C.

Peng, C.

J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-plasmon-polaritons-assisted enhanced magnetic response at optical frequencies in metamaterials,” IEEE Photonics J. 8(1), 4800107 (2016).
[Crossref]

Qi, Y.

X. Wang, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering effect of a composite structure with gold nano-cubes and gold film separated by Polymethylmethacrylate film,” Acta Phys. Sin-CH ED 68(3), 037301 (2019).
[Crossref]

X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structures fabrication based on multiexposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]

X. Wang, X. Wu, J. Zhu, Z. Pang, H. Yang, and Y. Qi, “Theoretical Investigation of a Highly Sensitive Refractive-Index Sensor Based on TM0 Waveguide Mode Resonance Excited in an Asymmetric Metal-Cladding Dielectric Waveguide Structure,” Sensors 19(5), 1187 (2019).
[Crossref]

X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with an SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).

X. Wang, X. Bai, Z. Pang, H. Yang, and Y. Qi, “Investigation of surface plasmons in Kretschmann structure loaded with a silver nano-cube,” Results Phys. 12, 1866–1870 (2019).
[Crossref]

X. Wang, H. Tong, Z. Pang, J. Zhu, X. Wu, H. Yang, and Y. Qi, “Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation,” Opt. Quantum Electron. 51(2), 38 (2019).
[Crossref]

Y. Qi, P. Zhou, X. Zhang, C. Yan, and X. Wang, “Enhanced optical transmission by exciting hybrid states of Tamm and surface plasmon polaritons in single slit with multi-pair groove nanostructure,” Acta Phys. Sin-CH Ed 67(10), 107104 (2018).
[Crossref]

X. Zhang, Y. Qi, P. Zhou, H. Gong, B. Hu, and C. Yan, “Refractive Index Sensor Based on Fano Resonances in Plasmonic Waveguide With Dual Side-Coupled Ring Resonators,” Photonic Sens. 8(4), 367–374 (2018).
[Crossref]

Y. Qi, X. Zhang, P. Zhou, B. Hu, and X. Wang, “Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embedded by cross structure,” Acta Phys. Sin-CH ED 67(19), 197301 (2018).
[Crossref]

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

X. Wang, X. Wu, Y. Chen, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Investigation of wide-range refractive index sensor based on asymmetric metal-cladding dielectric waveguide structure,” AIP Adv. 8(10), 105029 (2018).
[Crossref]

Qi, Z.

Sadrieyeh, S.

Safari, S.

S. Safari and B. Jazi, “The role of terahertz surface plasmons in the scattering pattern of electromagnetic waves in an unstable elliptical plasma antenna,” Phys. Plasmas 24(7), 072112 (2017).
[Crossref]

Satpati, B.

S. S. Singha, S. Mondal, T. S. Bhattacharya, L. Daset, K. Senal, B. Satpati, K. Das, and A. Singha, “Au nanoparticles functionalized 3D-MoS2 nanoflower: An efficient SERS matrix for biomolecule sensing,” Biosens. Bioelectron. 119, 10–17 (2018).
[Crossref]

Senal, K.

S. S. Singha, S. Mondal, T. S. Bhattacharya, L. Daset, K. Senal, B. Satpati, K. Das, and A. Singha, “Au nanoparticles functionalized 3D-MoS2 nanoflower: An efficient SERS matrix for biomolecule sensing,” Biosens. Bioelectron. 119, 10–17 (2018).
[Crossref]

Singha, A.

S. S. Singha, S. Mondal, T. S. Bhattacharya, L. Daset, K. Senal, B. Satpati, K. Das, and A. Singha, “Au nanoparticles functionalized 3D-MoS2 nanoflower: An efficient SERS matrix for biomolecule sensing,” Biosens. Bioelectron. 119, 10–17 (2018).
[Crossref]

Singha, S. S.

S. S. Singha, S. Mondal, T. S. Bhattacharya, L. Daset, K. Senal, B. Satpati, K. Das, and A. Singha, “Au nanoparticles functionalized 3D-MoS2 nanoflower: An efficient SERS matrix for biomolecule sensing,” Biosens. Bioelectron. 119, 10–17 (2018).
[Crossref]

Song, C.

Stephen, B. C.

W. Hou and B. C. Stephen, “A Review of Surface Plasmon Resonance-Enhanced Photocatalysis,” Adv. Funct. Mater. 23(13), 1612–1619 (2013).
[Crossref]

Su, W.

Sun, T.

Sun, Z.

Tang, C.

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]

J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-plasmon-polaritons-assisted enhanced magnetic response at optical frequencies in metamaterials,” IEEE Photonics J. 8(1), 4800107 (2016).
[Crossref]

Tang, L.

M. Yu, Z. Huang, Z. Liu, J. Chen, Y. Liu, L. Tang, and G. Liu, “Annealed gold nanoshells with highly-dense hotspots for large-area efficient Raman scattering substrates,” Sens. Actuators, B 262, 845–851 (2018).
[Crossref]

Tang, Y.

C. Cen, L. Liu, Y. Zhang, X. Chen, Z. Zhou, Z. Yi, X. Ye, Y. Tang, Y. Yi, and S. Xiao, “Tunable absorption enhancement in periodic elliptical hollow graphene arrays,” Opt. Mater. Express 9(2), 706–716 (2019).
[Crossref]

C. Cen, J. Chen, C. Liang, J. Huang, X. Chen, Y. Tang, Z. Yi, X. Xu, Y. Yi, and S. Xiao, “Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays,” Phys. E 103, 93–98 (2018).
[Crossref]

Tong, H.

X. Wang, H. Tong, Z. Pang, J. Zhu, X. Wu, H. Yang, and Y. Qi, “Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation,” Opt. Quantum Electron. 51(2), 38 (2019).
[Crossref]

X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with an SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).

X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structures fabrication based on multiexposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

Wang, F.

Wang, J.

L. Yang, J. Wang, L. Yang, Z. Hu, X. Wu, and G. Zheng, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8(1), 2560 (2018).
[Crossref]

J. Wang, C. Song, J. Hang, Z. Hu, and F. Zhang, “Tunable Fano resonance based on grating-coupled and graphene-based Otto configuration,” Opt. Express 25(20), 23880–23892 (2017).
[Crossref]

Wang, P.

M. Yi, D. Zhang, P. Wang, X. Jiao, S. Blair, X. Wen, Q. Fu, Y. Lu, and H. Ming, “Plasmonic Interaction Between Silver Nano-Cubes and a Silver Ground Plane Studied by Surface-Enhanced Raman Scattering,” Plasmonics 6(3), 515–519 (2011).
[Crossref]

Wang, Q.

J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-plasmon-polaritons-assisted enhanced magnetic response at optical frequencies in metamaterials,” IEEE Photonics J. 8(1), 4800107 (2016).
[Crossref]

Wang, X.

X. Wang, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering effect of a composite structure with gold nano-cubes and gold film separated by Polymethylmethacrylate film,” Acta Phys. Sin-CH ED 68(3), 037301 (2019).
[Crossref]

X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structures fabrication based on multiexposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]

X. Wang, H. Tong, Z. Pang, J. Zhu, X. Wu, H. Yang, and Y. Qi, “Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation,” Opt. Quantum Electron. 51(2), 38 (2019).
[Crossref]

X. Wang, X. Bai, Z. Pang, H. Yang, and Y. Qi, “Investigation of surface plasmons in Kretschmann structure loaded with a silver nano-cube,” Results Phys. 12, 1866–1870 (2019).
[Crossref]

X. Wang, X. Wu, J. Zhu, Z. Pang, H. Yang, and Y. Qi, “Theoretical Investigation of a Highly Sensitive Refractive-Index Sensor Based on TM0 Waveguide Mode Resonance Excited in an Asymmetric Metal-Cladding Dielectric Waveguide Structure,” Sensors 19(5), 1187 (2019).
[Crossref]

X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with an SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).

Y. Qi, X. Zhang, P. Zhou, B. Hu, and X. Wang, “Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embedded by cross structure,” Acta Phys. Sin-CH ED 67(19), 197301 (2018).
[Crossref]

Y. Qi, P. Zhou, X. Zhang, C. Yan, and X. Wang, “Enhanced optical transmission by exciting hybrid states of Tamm and surface plasmon polaritons in single slit with multi-pair groove nanostructure,” Acta Phys. Sin-CH Ed 67(10), 107104 (2018).
[Crossref]

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

X. Wang, X. Wu, Y. Chen, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Investigation of wide-range refractive index sensor based on asymmetric metal-cladding dielectric waveguide structure,” AIP Adv. 8(10), 105029 (2018).
[Crossref]

Y. Yan, H. Yang, X. Zhao, R. Li, and X. Wang, “Enhanced photocatalytic activity of surface disorder-engineered CaTiO3,” Mater. Res. Bull 105, 286–290 (2018).
[Crossref]

C. Zheng, H. Yang, Z. Cui, H. Zhang, and X. Wang, “A novel Bi4Ti3O12/Ag3PO4 heterojunction photocatalyst with enhanced photocatalytic performance,” Nanoscale Res. Lett. 12(1), 608 (2017).
[Crossref]

X. Wang, J. Zhang, X. Zhang, and Y. Zhu, “Characterization, uniformity and photocatalytic properties of graphene/TiO2 nanocomposites via Raman mapping,” Opt. Express 25(18), 21496–21508 (2017).
[Crossref]

Wang, Y.

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C 3(17), 4222–4226 (2015).
[Crossref]

G. Liu, M. Yu, Z. Liu, X. Liu, S. Huang, P. Pan, Y. Wang, M. Liu, and G. Gu, “One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering,” Nanotechnology 26(18), 185702 (2015).
[Crossref]

Wen, X.

X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structures fabrication based on multiexposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]

X. Wang, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering effect of a composite structure with gold nano-cubes and gold film separated by Polymethylmethacrylate film,” Acta Phys. Sin-CH ED 68(3), 037301 (2019).
[Crossref]

X. Wang, X. Wu, Y. Chen, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Investigation of wide-range refractive index sensor based on asymmetric metal-cladding dielectric waveguide structure,” AIP Adv. 8(10), 105029 (2018).
[Crossref]

M. Yi, D. Zhang, P. Wang, X. Jiao, S. Blair, X. Wen, Q. Fu, Y. Lu, and H. Ming, “Plasmonic Interaction Between Silver Nano-Cubes and a Silver Ground Plane Studied by Surface-Enhanced Raman Scattering,” Plasmonics 6(3), 515–519 (2011).
[Crossref]

Wu, N.

J. Zhu, N. Wu, F. Zhang, X. Li, J. Li, and J. Zhao, “SERS detection of 4-Aminobenzenethiol based on triangular Au-AuAg hierarchical-multishell nanostructure,” Spectrochim. Acta, Part A 204, 754–762 (2018).
[Crossref]

Wu, W.

Z. Dai, X. Xiao, W. Wu, L. Liao, F. Mei, X. Yu, S. Gou, J. Ying, R. Feng, and C. Jiang, “Side-to-side alignment of gold nanorods with polarization-free characteristic for highly reproducible surface enhanced Raman scattering,” Appl. Phys. Lett. 105(21), 211902 (2014).
[Crossref]

Wu, X.

X. Wang, X. Wu, J. Zhu, Z. Pang, H. Yang, and Y. Qi, “Theoretical Investigation of a Highly Sensitive Refractive-Index Sensor Based on TM0 Waveguide Mode Resonance Excited in an Asymmetric Metal-Cladding Dielectric Waveguide Structure,” Sensors 19(5), 1187 (2019).
[Crossref]

X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with an SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).

X. Wang, H. Tong, Z. Pang, J. Zhu, X. Wu, H. Yang, and Y. Qi, “Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation,” Opt. Quantum Electron. 51(2), 38 (2019).
[Crossref]

X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structures fabrication based on multiexposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

X. Wang, X. Wu, Y. Chen, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Investigation of wide-range refractive index sensor based on asymmetric metal-cladding dielectric waveguide structure,” AIP Adv. 8(10), 105029 (2018).
[Crossref]

L. Yang, J. Wang, L. Yang, Z. Hu, X. Wu, and G. Zheng, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8(1), 2560 (2018).
[Crossref]

Xian, T.

L. Di, H. Yang, T. Xian, and X. Chen, “Construction of Z-scheme g-C3N4/CNT/Bi2Fe4O9 composites with improved simulated-sunlight photocatalytic acticity for the dye degradation,” Micromachines 9(12), 613 (2018).
[Crossref]

L. Di, H. Yang, T. Xian, and X. Chen, “Facile synthesis and enhanced visible-light photocatalytic activity of novel p-Ag3PO4/n-BiFeO3 heterojunction composites for dye degradation,” Nanoscale Res Lett. 13, 257 (2018).
[Crossref]

Xiao, S.

H. Lin, X. Ye, X. Chen, Z. Zhou, Z. Yi, G. Niu, Y. Yi, Y. Hua, J. Hua, and S. Xiao, “Plasmonic absorption enhancement in grapheme circular and Elliptical disk arrays,” Mater. Res. Express 6(4), 045807 (2019).
[Crossref]

C. Cen, L. Liu, Y. Zhang, X. Chen, Z. Zhou, Z. Yi, X. Ye, Y. Tang, Y. Yi, and S. Xiao, “Tunable absorption enhancement in periodic elliptical hollow graphene arrays,” Opt. Mater. Express 9(2), 706–716 (2019).
[Crossref]

C. Cen, J. Chen, C. Liang, J. Huang, X. Chen, Y. Tang, Z. Yi, X. Xu, Y. Yi, and S. Xiao, “Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays,” Phys. E 103, 93–98 (2018).
[Crossref]

Xiao, X.

Z. Dai, X. Xiao, W. Wu, L. Liao, F. Mei, X. Yu, S. Gou, J. Ying, R. Feng, and C. Jiang, “Side-to-side alignment of gold nanorods with polarization-free characteristic for highly reproducible surface enhanced Raman scattering,” Appl. Phys. Lett. 105(21), 211902 (2014).
[Crossref]

Xu, S.

Xu, X.

C. Cen, J. Chen, C. Liang, J. Huang, X. Chen, Y. Tang, Z. Yi, X. Xu, Y. Yi, and S. Xiao, “Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays,” Phys. E 103, 93–98 (2018).
[Crossref]

Y. Zeng, X. Chen, Z. Yi, Y. Yi, and X. Xu, “Fabrication of p-n heterostructure ZnO/Si moth-eye structures: Antireflection, enhanced charge separation and photocatalytic properties,” Appl. Surf. Sci. 441, 40–48 (2018).
[Crossref]

Xu, Y.

Yamamoto, K.

S. Hayashi, T. Kume, T. Amano, and K. Yamamoto, “A new method of surface plasmon excitation mediated by metallic nanoparticles,” Jpn. J. Appl. Phys. 35(Part 2, No. 3A), L331–L334 (1996).
[Crossref]

Yan, C.

X. Zhang, Y. Qi, P. Zhou, H. Gong, B. Hu, and C. Yan, “Refractive Index Sensor Based on Fano Resonances in Plasmonic Waveguide With Dual Side-Coupled Ring Resonators,” Photonic Sens. 8(4), 367–374 (2018).
[Crossref]

Y. Qi, P. Zhou, X. Zhang, C. Yan, and X. Wang, “Enhanced optical transmission by exciting hybrid states of Tamm and surface plasmon polaritons in single slit with multi-pair groove nanostructure,” Acta Phys. Sin-CH Ed 67(10), 107104 (2018).
[Crossref]

Yan, Y.

Y. Yan, H. Yang, X. Zhao, R. Li, and X. Wang, “Enhanced photocatalytic activity of surface disorder-engineered CaTiO3,” Mater. Res. Bull 105, 286–290 (2018).
[Crossref]

Yang, H.

X. Wang, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering effect of a composite structure with gold nano-cubes and gold film separated by Polymethylmethacrylate film,” Acta Phys. Sin-CH ED 68(3), 037301 (2019).
[Crossref]

X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structures fabrication based on multiexposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]

X. Wang, H. Tong, Z. Pang, J. Zhu, X. Wu, H. Yang, and Y. Qi, “Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation,” Opt. Quantum Electron. 51(2), 38 (2019).
[Crossref]

X. Wang, X. Bai, Z. Pang, H. Yang, and Y. Qi, “Investigation of surface plasmons in Kretschmann structure loaded with a silver nano-cube,” Results Phys. 12, 1866–1870 (2019).
[Crossref]

X. Wang, X. Wu, J. Zhu, Z. Pang, H. Yang, and Y. Qi, “Theoretical Investigation of a Highly Sensitive Refractive-Index Sensor Based on TM0 Waveguide Mode Resonance Excited in an Asymmetric Metal-Cladding Dielectric Waveguide Structure,” Sensors 19(5), 1187 (2019).
[Crossref]

X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with an SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).

X. Zhao, H. Yang, S. Li, Z. Cui, and C. Zhang, “Synthesis and theoretical study of large-sized Bi4Ti3O12 square nanosheets with high photocatalytic activity,” Mater. Res. Bull. 107, 180–188 (2018).
[Crossref]

L. Di, H. Yang, T. Xian, and X. Chen, “Construction of Z-scheme g-C3N4/CNT/Bi2Fe4O9 composites with improved simulated-sunlight photocatalytic acticity for the dye degradation,” Micromachines 9(12), 613 (2018).
[Crossref]

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

X. Wang, X. Wu, Y. Chen, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Investigation of wide-range refractive index sensor based on asymmetric metal-cladding dielectric waveguide structure,” AIP Adv. 8(10), 105029 (2018).
[Crossref]

Y. Yan, H. Yang, X. Zhao, R. Li, and X. Wang, “Enhanced photocatalytic activity of surface disorder-engineered CaTiO3,” Mater. Res. Bull 105, 286–290 (2018).
[Crossref]

L. Di, H. Yang, T. Xian, and X. Chen, “Facile synthesis and enhanced visible-light photocatalytic activity of novel p-Ag3PO4/n-BiFeO3 heterojunction composites for dye degradation,” Nanoscale Res Lett. 13, 257 (2018).
[Crossref]

C. Zheng, H. Yang, Z. Cui, H. Zhang, and X. Wang, “A novel Bi4Ti3O12/Ag3PO4 heterojunction photocatalyst with enhanced photocatalytic performance,” Nanoscale Res. Lett. 12(1), 608 (2017).
[Crossref]

Yang, L.

L. Yang, J. Wang, L. Yang, Z. Hu, X. Wu, and G. Zheng, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8(1), 2560 (2018).
[Crossref]

L. Yang, J. Wang, L. Yang, Z. Hu, X. Wu, and G. Zheng, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8(1), 2560 (2018).
[Crossref]

Yang, X.

X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with an SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).

Yang, Z.

Q. Zhao, Z. Yang, and J. He, “Fano resonances in heterogeneous dimers of silicon and gold nanospheres,” Front. Phys. 13(3), 137801 (2018).
[Crossref]

Z. Yang, Q. Zhao, and J. He, “Boosting magnetic field enhancement with radiative couplings of magnetic modes in dielectric nanostructures,” Opt. Express 25(14), 15927–15937 (2017).
[Crossref]

Ye, X.

C. Cen, L. Liu, Y. Zhang, X. Chen, Z. Zhou, Z. Yi, X. Ye, Y. Tang, Y. Yi, and S. Xiao, “Tunable absorption enhancement in periodic elliptical hollow graphene arrays,” Opt. Mater. Express 9(2), 706–716 (2019).
[Crossref]

H. Lin, X. Ye, X. Chen, Z. Zhou, Z. Yi, G. Niu, Y. Yi, Y. Hua, J. Hua, and S. Xiao, “Plasmonic absorption enhancement in grapheme circular and Elliptical disk arrays,” Mater. Res. Express 6(4), 045807 (2019).
[Crossref]

L. Liu, J. Chen, Z. Zhou, Z. Yi, and X. Ye, “Tunable absorption enhancement in electric split-ring resonators-shaped graphene array,” Mater. Res. Express 5(4), 045802 (2018).
[Crossref]

Yi, M.

M. Yi, D. Zhang, P. Wang, X. Jiao, S. Blair, X. Wen, Q. Fu, Y. Lu, and H. Ming, “Plasmonic Interaction Between Silver Nano-Cubes and a Silver Ground Plane Studied by Surface-Enhanced Raman Scattering,” Plasmonics 6(3), 515–519 (2011).
[Crossref]

Yi, Y.

C. Cen, L. Liu, Y. Zhang, X. Chen, Z. Zhou, Z. Yi, X. Ye, Y. Tang, Y. Yi, and S. Xiao, “Tunable absorption enhancement in periodic elliptical hollow graphene arrays,” Opt. Mater. Express 9(2), 706–716 (2019).
[Crossref]

H. Lin, X. Ye, X. Chen, Z. Zhou, Z. Yi, G. Niu, Y. Yi, Y. Hua, J. Hua, and S. Xiao, “Plasmonic absorption enhancement in grapheme circular and Elliptical disk arrays,” Mater. Res. Express 6(4), 045807 (2019).
[Crossref]

Y. Zeng, X. Chen, Z. Yi, Y. Yi, and X. Xu, “Fabrication of p-n heterostructure ZnO/Si moth-eye structures: Antireflection, enhanced charge separation and photocatalytic properties,” Appl. Surf. Sci. 441, 40–48 (2018).
[Crossref]

C. Cen, J. Chen, C. Liang, J. Huang, X. Chen, Y. Tang, Z. Yi, X. Xu, Y. Yi, and S. Xiao, “Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays,” Phys. E 103, 93–98 (2018).
[Crossref]

Yi, Z.

C. Cen, L. Liu, Y. Zhang, X. Chen, Z. Zhou, Z. Yi, X. Ye, Y. Tang, Y. Yi, and S. Xiao, “Tunable absorption enhancement in periodic elliptical hollow graphene arrays,” Opt. Mater. Express 9(2), 706–716 (2019).
[Crossref]

H. Lin, X. Ye, X. Chen, Z. Zhou, Z. Yi, G. Niu, Y. Yi, Y. Hua, J. Hua, and S. Xiao, “Plasmonic absorption enhancement in grapheme circular and Elliptical disk arrays,” Mater. Res. Express 6(4), 045807 (2019).
[Crossref]

L. Liu, J. Chen, Z. Zhou, Z. Yi, and X. Ye, “Tunable absorption enhancement in electric split-ring resonators-shaped graphene array,” Mater. Res. Express 5(4), 045802 (2018).
[Crossref]

C. Cen, J. Chen, C. Liang, J. Huang, X. Chen, Y. Tang, Z. Yi, X. Xu, Y. Yi, and S. Xiao, “Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays,” Phys. E 103, 93–98 (2018).
[Crossref]

Y. Zeng, X. Chen, Z. Yi, Y. Yi, and X. Xu, “Fabrication of p-n heterostructure ZnO/Si moth-eye structures: Antireflection, enhanced charge separation and photocatalytic properties,” Appl. Surf. Sci. 441, 40–48 (2018).
[Crossref]

Yin, Z.

Ying, J.

Z. Dai, X. Xiao, W. Wu, L. Liao, F. Mei, X. Yu, S. Gou, J. Ying, R. Feng, and C. Jiang, “Side-to-side alignment of gold nanorods with polarization-free characteristic for highly reproducible surface enhanced Raman scattering,” Appl. Phys. Lett. 105(21), 211902 (2014).
[Crossref]

Yu, M.

M. Yu, Z. Huang, Z. Liu, J. Chen, Y. Liu, L. Tang, and G. Liu, “Annealed gold nanoshells with highly-dense hotspots for large-area efficient Raman scattering substrates,” Sens. Actuators, B 262, 845–851 (2018).
[Crossref]

G. Liu, M. Yu, Z. Liu, X. Liu, S. Huang, P. Pan, Y. Wang, M. Liu, and G. Gu, “One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering,” Nanotechnology 26(18), 185702 (2015).
[Crossref]

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C 3(17), 4222–4226 (2015).
[Crossref]

Yu, X.

Z. Dai, X. Xiao, W. Wu, L. Liao, F. Mei, X. Yu, S. Gou, J. Ying, R. Feng, and C. Jiang, “Side-to-side alignment of gold nanorods with polarization-free characteristic for highly reproducible surface enhanced Raman scattering,” Appl. Phys. Lett. 105(21), 211902 (2014).
[Crossref]

Yu, Y.

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]

J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-plasmon-polaritons-assisted enhanced magnetic response at optical frequencies in metamaterials,” IEEE Photonics J. 8(1), 4800107 (2016).
[Crossref]

Zeng, Y.

Y. Zeng, X. Chen, Z. Yi, Y. Yi, and X. Xu, “Fabrication of p-n heterostructure ZnO/Si moth-eye structures: Antireflection, enhanced charge separation and photocatalytic properties,” Appl. Surf. Sci. 441, 40–48 (2018).
[Crossref]

Zhang, C.

X. Zhao, H. Yang, S. Li, Z. Cui, and C. Zhang, “Synthesis and theoretical study of large-sized Bi4Ti3O12 square nanosheets with high photocatalytic activity,” Mater. Res. Bull. 107, 180–188 (2018).
[Crossref]

C. Zhang, S. Jiang, Y. Huo, A. Liu, S. Xu, X. Liu, Z. Sun, Y. Xu, Z. Li, and B. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref]

Zhang, D.

M. Yi, D. Zhang, P. Wang, X. Jiao, S. Blair, X. Wen, Q. Fu, Y. Lu, and H. Ming, “Plasmonic Interaction Between Silver Nano-Cubes and a Silver Ground Plane Studied by Surface-Enhanced Raman Scattering,” Plasmonics 6(3), 515–519 (2011).
[Crossref]

Zhang, F.

J. Zhu, N. Wu, F. Zhang, X. Li, J. Li, and J. Zhao, “SERS detection of 4-Aminobenzenethiol based on triangular Au-AuAg hierarchical-multishell nanostructure,” Spectrochim. Acta, Part A 204, 754–762 (2018).
[Crossref]

J. Wang, C. Song, J. Hang, Z. Hu, and F. Zhang, “Tunable Fano resonance based on grating-coupled and graphene-based Otto configuration,” Opt. Express 25(20), 23880–23892 (2017).
[Crossref]

Zhang, H.

C. Zheng, H. Yang, Z. Cui, H. Zhang, and X. Wang, “A novel Bi4Ti3O12/Ag3PO4 heterojunction photocatalyst with enhanced photocatalytic performance,” Nanoscale Res. Lett. 12(1), 608 (2017).
[Crossref]

Zhang, J.

Zhang, L.

D. Li, L. Zhang, and H. Du, “The instability of terahertz plasma waves in cylindrical FET,” Plasma Sci. Technol. 21(4), 045002 (2019).
[Crossref]

H. Du, L. Zhang, and D. Li, “THz plasma wave instability in field effect transistor with electron diffusion current density,” Plasma Sci. Technol. 20(11), 115001 (2018).
[Crossref]

J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-plasmon-polaritons-assisted enhanced magnetic response at optical frequencies in metamaterials,” IEEE Photonics J. 8(1), 4800107 (2016).
[Crossref]

Zhang, T.

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]

Zhang, W.

J. Li, W. Zhang, H. Lei, and B. Li, “Ag nanowire/nanoparticle-decorated MoS2 monolayers for surface-enhanced Raman scattering applications,” Nano Res. 11(4), 2181–2189 (2018).
[Crossref]

Zhang, X.

Y. Qi, X. Zhang, P. Zhou, B. Hu, and X. Wang, “Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embedded by cross structure,” Acta Phys. Sin-CH ED 67(19), 197301 (2018).
[Crossref]

X. Zhang, Y. Qi, P. Zhou, H. Gong, B. Hu, and C. Yan, “Refractive Index Sensor Based on Fano Resonances in Plasmonic Waveguide With Dual Side-Coupled Ring Resonators,” Photonic Sens. 8(4), 367–374 (2018).
[Crossref]

Y. Qi, P. Zhou, X. Zhang, C. Yan, and X. Wang, “Enhanced optical transmission by exciting hybrid states of Tamm and surface plasmon polaritons in single slit with multi-pair groove nanostructure,” Acta Phys. Sin-CH Ed 67(10), 107104 (2018).
[Crossref]

J. Zhang, Z. Yin, X. Zhang, and Y. Zhu, “Quantitative SERS by electromagnetic enhancement normalization with carbon nanotube as an internal standard,” Opt. Express 26(18), 23534–23539 (2018).
[Crossref]

X. Wang, J. Zhang, X. Zhang, and Y. Zhu, “Characterization, uniformity and photocatalytic properties of graphene/TiO2 nanocomposites via Raman mapping,” Opt. Express 25(18), 21496–21508 (2017).
[Crossref]

Zhang, Y.

Zhao, J.

J. Zhu, N. Wu, F. Zhang, X. Li, J. Li, and J. Zhao, “SERS detection of 4-Aminobenzenethiol based on triangular Au-AuAg hierarchical-multishell nanostructure,” Spectrochim. Acta, Part A 204, 754–762 (2018).
[Crossref]

Zhao, Q.

Q. Zhao, Z. Yang, and J. He, “Fano resonances in heterogeneous dimers of silicon and gold nanospheres,” Front. Phys. 13(3), 137801 (2018).
[Crossref]

Z. Yang, Q. Zhao, and J. He, “Boosting magnetic field enhancement with radiative couplings of magnetic modes in dielectric nanostructures,” Opt. Express 25(14), 15927–15937 (2017).
[Crossref]

Zhao, X.

X. Zhao, H. Yang, S. Li, Z. Cui, and C. Zhang, “Synthesis and theoretical study of large-sized Bi4Ti3O12 square nanosheets with high photocatalytic activity,” Mater. Res. Bull. 107, 180–188 (2018).
[Crossref]

Y. Yan, H. Yang, X. Zhao, R. Li, and X. Wang, “Enhanced photocatalytic activity of surface disorder-engineered CaTiO3,” Mater. Res. Bull 105, 286–290 (2018).
[Crossref]

Zheng, C.

C. Zheng, H. Yang, Z. Cui, H. Zhang, and X. Wang, “A novel Bi4Ti3O12/Ag3PO4 heterojunction photocatalyst with enhanced photocatalytic performance,” Nanoscale Res. Lett. 12(1), 608 (2017).
[Crossref]

Zheng, G.

L. Yang, J. Wang, L. Yang, Z. Hu, X. Wu, and G. Zheng, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8(1), 2560 (2018).
[Crossref]

Zhou, P.

Y. Qi, X. Zhang, P. Zhou, B. Hu, and X. Wang, “Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embedded by cross structure,” Acta Phys. Sin-CH ED 67(19), 197301 (2018).
[Crossref]

X. Zhang, Y. Qi, P. Zhou, H. Gong, B. Hu, and C. Yan, “Refractive Index Sensor Based on Fano Resonances in Plasmonic Waveguide With Dual Side-Coupled Ring Resonators,” Photonic Sens. 8(4), 367–374 (2018).
[Crossref]

Y. Qi, P. Zhou, X. Zhang, C. Yan, and X. Wang, “Enhanced optical transmission by exciting hybrid states of Tamm and surface plasmon polaritons in single slit with multi-pair groove nanostructure,” Acta Phys. Sin-CH Ed 67(10), 107104 (2018).
[Crossref]

Zhou, Z.

C. Cen, L. Liu, Y. Zhang, X. Chen, Z. Zhou, Z. Yi, X. Ye, Y. Tang, Y. Yi, and S. Xiao, “Tunable absorption enhancement in periodic elliptical hollow graphene arrays,” Opt. Mater. Express 9(2), 706–716 (2019).
[Crossref]

H. Lin, X. Ye, X. Chen, Z. Zhou, Z. Yi, G. Niu, Y. Yi, Y. Hua, J. Hua, and S. Xiao, “Plasmonic absorption enhancement in grapheme circular and Elliptical disk arrays,” Mater. Res. Express 6(4), 045807 (2019).
[Crossref]

L. Liu, J. Chen, Z. Zhou, Z. Yi, and X. Ye, “Tunable absorption enhancement in electric split-ring resonators-shaped graphene array,” Mater. Res. Express 5(4), 045802 (2018).
[Crossref]

Zhu, J.

X. Wang, X. Wu, J. Zhu, Z. Pang, H. Yang, and Y. Qi, “Theoretical Investigation of a Highly Sensitive Refractive-Index Sensor Based on TM0 Waveguide Mode Resonance Excited in an Asymmetric Metal-Cladding Dielectric Waveguide Structure,” Sensors 19(5), 1187 (2019).
[Crossref]

X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with an SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).

X. Wang, H. Tong, Z. Pang, J. Zhu, X. Wu, H. Yang, and Y. Qi, “Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation,” Opt. Quantum Electron. 51(2), 38 (2019).
[Crossref]

J. Zhu, N. Wu, F. Zhang, X. Li, J. Li, and J. Zhao, “SERS detection of 4-Aminobenzenethiol based on triangular Au-AuAg hierarchical-multishell nanostructure,” Spectrochim. Acta, Part A 204, 754–762 (2018).
[Crossref]

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

Zhu, Y.

ACS Appl. Mater. Interfaces (1)

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref]

Acta Phys. Sin-CH Ed (1)

Y. Qi, P. Zhou, X. Zhang, C. Yan, and X. Wang, “Enhanced optical transmission by exciting hybrid states of Tamm and surface plasmon polaritons in single slit with multi-pair groove nanostructure,” Acta Phys. Sin-CH Ed 67(10), 107104 (2018).
[Crossref]

Y. Qi, X. Zhang, P. Zhou, B. Hu, and X. Wang, “Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embedded by cross structure,” Acta Phys. Sin-CH ED 67(19), 197301 (2018).
[Crossref]

X. Wang, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering effect of a composite structure with gold nano-cubes and gold film separated by Polymethylmethacrylate film,” Acta Phys. Sin-CH ED 68(3), 037301 (2019).
[Crossref]

Adv. Funct. Mater. (1)

W. Hou and B. C. Stephen, “A Review of Surface Plasmon Resonance-Enhanced Photocatalysis,” Adv. Funct. Mater. 23(13), 1612–1619 (2013).
[Crossref]

AIP Adv. (1)

X. Wang, X. Wu, Y. Chen, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Investigation of wide-range refractive index sensor based on asymmetric metal-cladding dielectric waveguide structure,” AIP Adv. 8(10), 105029 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Z. Dai, X. Xiao, W. Wu, L. Liao, F. Mei, X. Yu, S. Gou, J. Ying, R. Feng, and C. Jiang, “Side-to-side alignment of gold nanorods with polarization-free characteristic for highly reproducible surface enhanced Raman scattering,” Appl. Phys. Lett. 105(21), 211902 (2014).
[Crossref]

Appl. Surf. Sci. (1)

Y. Zeng, X. Chen, Z. Yi, Y. Yi, and X. Xu, “Fabrication of p-n heterostructure ZnO/Si moth-eye structures: Antireflection, enhanced charge separation and photocatalytic properties,” Appl. Surf. Sci. 441, 40–48 (2018).
[Crossref]

Biosens. Bioelectron. (1)

S. S. Singha, S. Mondal, T. S. Bhattacharya, L. Daset, K. Senal, B. Satpati, K. Das, and A. Singha, “Au nanoparticles functionalized 3D-MoS2 nanoflower: An efficient SERS matrix for biomolecule sensing,” Biosens. Bioelectron. 119, 10–17 (2018).
[Crossref]

Chin. Phys. B (1)

X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with an SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).

Front. Phys. (1)

Q. Zhao, Z. Yang, and J. He, “Fano resonances in heterogeneous dimers of silicon and gold nanospheres,” Front. Phys. 13(3), 137801 (2018).
[Crossref]

IEEE Photonics J. (1)

J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-plasmon-polaritons-assisted enhanced magnetic response at optical frequencies in metamaterials,” IEEE Photonics J. 8(1), 4800107 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]

J. Mater. Chem. C (1)

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C 3(17), 4222–4226 (2015).
[Crossref]

J. Phys. D: Appl. Phys. (1)

R. M. Gonçalves, “Plasmonic nanoparticles: fabrication, simulation and experiments,” J. Phys. D: Appl. Phys. 47(21), 213001 (2014).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Hayashi, T. Kume, T. Amano, and K. Yamamoto, “A new method of surface plasmon excitation mediated by metallic nanoparticles,” Jpn. J. Appl. Phys. 35(Part 2, No. 3A), L331–L334 (1996).
[Crossref]

Mater. Res. Bull (1)

Y. Yan, H. Yang, X. Zhao, R. Li, and X. Wang, “Enhanced photocatalytic activity of surface disorder-engineered CaTiO3,” Mater. Res. Bull 105, 286–290 (2018).
[Crossref]

Mater. Res. Bull. (1)

X. Zhao, H. Yang, S. Li, Z. Cui, and C. Zhang, “Synthesis and theoretical study of large-sized Bi4Ti3O12 square nanosheets with high photocatalytic activity,” Mater. Res. Bull. 107, 180–188 (2018).
[Crossref]

Mater. Res. Express (2)

L. Liu, J. Chen, Z. Zhou, Z. Yi, and X. Ye, “Tunable absorption enhancement in electric split-ring resonators-shaped graphene array,” Mater. Res. Express 5(4), 045802 (2018).
[Crossref]

H. Lin, X. Ye, X. Chen, Z. Zhou, Z. Yi, G. Niu, Y. Yi, Y. Hua, J. Hua, and S. Xiao, “Plasmonic absorption enhancement in grapheme circular and Elliptical disk arrays,” Mater. Res. Express 6(4), 045807 (2019).
[Crossref]

Micromachines (1)

L. Di, H. Yang, T. Xian, and X. Chen, “Construction of Z-scheme g-C3N4/CNT/Bi2Fe4O9 composites with improved simulated-sunlight photocatalytic acticity for the dye degradation,” Micromachines 9(12), 613 (2018).
[Crossref]

Nano Res. (1)

J. Li, W. Zhang, H. Lei, and B. Li, “Ag nanowire/nanoparticle-decorated MoS2 monolayers for surface-enhanced Raman scattering applications,” Nano Res. 11(4), 2181–2189 (2018).
[Crossref]

Nanoscale Res Lett. (1)

L. Di, H. Yang, T. Xian, and X. Chen, “Facile synthesis and enhanced visible-light photocatalytic activity of novel p-Ag3PO4/n-BiFeO3 heterojunction composites for dye degradation,” Nanoscale Res Lett. 13, 257 (2018).
[Crossref]

Nanoscale Res. Lett. (1)

C. Zheng, H. Yang, Z. Cui, H. Zhang, and X. Wang, “A novel Bi4Ti3O12/Ag3PO4 heterojunction photocatalyst with enhanced photocatalytic performance,” Nanoscale Res. Lett. 12(1), 608 (2017).
[Crossref]

Nanotechnology (1)

G. Liu, M. Yu, Z. Liu, X. Liu, S. Huang, P. Pan, Y. Wang, M. Liu, and G. Gu, “One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering,” Nanotechnology 26(18), 185702 (2015).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824 (2003).
[Crossref]

Opt. Express (7)

Opt. Lett. (1)

Opt. Mater. Express (2)

Opt. Quantum Electron. (2)

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

X. Wang, H. Tong, Z. Pang, J. Zhu, X. Wu, H. Yang, and Y. Qi, “Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation,” Opt. Quantum Electron. 51(2), 38 (2019).
[Crossref]

Photonic Sens. (1)

X. Zhang, Y. Qi, P. Zhou, H. Gong, B. Hu, and C. Yan, “Refractive Index Sensor Based on Fano Resonances in Plasmonic Waveguide With Dual Side-Coupled Ring Resonators,” Photonic Sens. 8(4), 367–374 (2018).
[Crossref]

Phys. E (1)

C. Cen, J. Chen, C. Liang, J. Huang, X. Chen, Y. Tang, Z. Yi, X. Xu, Y. Yi, and S. Xiao, “Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays,” Phys. E 103, 93–98 (2018).
[Crossref]

Phys. Plasmas (1)

S. Safari and B. Jazi, “The role of terahertz surface plasmons in the scattering pattern of electromagnetic waves in an unstable elliptical plasma antenna,” Phys. Plasmas 24(7), 072112 (2017).
[Crossref]

Plasma Sci. Technol. (2)

H. Du, L. Zhang, and D. Li, “THz plasma wave instability in field effect transistor with electron diffusion current density,” Plasma Sci. Technol. 20(11), 115001 (2018).
[Crossref]

D. Li, L. Zhang, and H. Du, “The instability of terahertz plasma waves in cylindrical FET,” Plasma Sci. Technol. 21(4), 045002 (2019).
[Crossref]

Plasmonics (1)

M. Yi, D. Zhang, P. Wang, X. Jiao, S. Blair, X. Wen, Q. Fu, Y. Lu, and H. Ming, “Plasmonic Interaction Between Silver Nano-Cubes and a Silver Ground Plane Studied by Surface-Enhanced Raman Scattering,” Plasmonics 6(3), 515–519 (2011).
[Crossref]

Results Phys. (2)

X. Wang, X. Bai, Z. Pang, H. Yang, and Y. Qi, “Investigation of surface plasmons in Kretschmann structure loaded with a silver nano-cube,” Results Phys. 12, 1866–1870 (2019).
[Crossref]

X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structures fabrication based on multiexposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]

Sci. Rep. (1)

L. Yang, J. Wang, L. Yang, Z. Hu, X. Wu, and G. Zheng, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8(1), 2560 (2018).
[Crossref]

Sens. Actuators, B (1)

M. Yu, Z. Huang, Z. Liu, J. Chen, Y. Liu, L. Tang, and G. Liu, “Annealed gold nanoshells with highly-dense hotspots for large-area efficient Raman scattering substrates,” Sens. Actuators, B 262, 845–851 (2018).
[Crossref]

Sensors (1)

X. Wang, X. Wu, J. Zhu, Z. Pang, H. Yang, and Y. Qi, “Theoretical Investigation of a Highly Sensitive Refractive-Index Sensor Based on TM0 Waveguide Mode Resonance Excited in an Asymmetric Metal-Cladding Dielectric Waveguide Structure,” Sensors 19(5), 1187 (2019).
[Crossref]

Spectrochim. Acta, Part A (1)

J. Zhu, N. Wu, F. Zhang, X. Li, J. Li, and J. Zhao, “SERS detection of 4-Aminobenzenethiol based on triangular Au-AuAg hierarchical-multishell nanostructure,” Spectrochim. Acta, Part A 204, 754–762 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic of the preparation process of the proposed composite structure: I) clean glass substrate; II) sputtering of 5 nm Ti film; III) sputtering of 50 nm Au film; IV) spin-coating of PMMA film; V) dropping of mixed aqueous solution of gold nanocube and R6G; and VI) measurement of SERS spectrum with 633 nm laser.
Fig. 2.
Fig. 2. (a) SEM image of gold nanocube. (b) Ultraviolet-visible absorption spectrum of gold nanocube aqueous solution.
Fig. 3.
Fig. 3. SERS spectra of single gold nanocube structure and composite structure with 30 nm PMMA in the condition of the mixed aqueous solution of 5.625 µg/mL gold nanocube and 10−4 M R6G.
Fig. 4.
Fig. 4. SERS spectra of composite structures in the condition of 5.625 µg/mL gold nanocube and 10−4 M R6G with different PMMA thicknesses of (a) 0 nm; (b) 14 nm; (c) 25 nm; (d) 30 nm; (e) 36 nm; (f) 50 nm; and (g) 70 nm.
Fig. 5.
Fig. 5. Relationship between the intensity of 1502 cm−1 Raman peak and PMMA thickness.
Fig. 6.
Fig. 6. Electric field distributions of single nanocube structure on glass(a) and composite structures with PMMA = 0 nm (b) and PMMA = 35 nm (c), the relationship between Raman enhancement factor and the PMMA thickness of composite structures(d).
Fig. 7.
Fig. 7. SERS spectra of composite structures: (a) Different concentrations of R6G, and (b) R6G with 10−12 M concentration.
Fig. 8.
Fig. 8. SERS spectra of composite structure with 30-nm PMMA spacer after preparation and 112 days later.

Tables (1)

Tables Icon

Table 1. Raman peak intensities of composite structures with different PMMA thicknesses.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ksp=2πλεmεdεm+εd

Metrics