R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).

[Crossref]

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, “Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2.,” Nat. Mater. 14(3), 280–284 (2015).

[Crossref]
[PubMed]

M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, “Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.,” Nat. Commun. 5(1), 3786 (2014).

[Crossref]
[PubMed]

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18(17), 7047–7054 (2018).

[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).

[Crossref]

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).

[Crossref]

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Dynamically tunable Fano metamaterials through the coupling of graphene grating and square closed ring resonator,” Plasmonics 10(6), 1833–1839 (2015).

[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).

[Crossref]
[PubMed]

Y. Bai, K. Chen, H. Liu, T. Bu, B. Cai, J. Xu, and Y. Zhu, “Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect,” Opt. Commun. 353(15), 83–89 (2015).

[Crossref]

M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, “Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.,” Nat. Commun. 5(1), 3786 (2014).

[Crossref]
[PubMed]

A. D. Humphrey, N. Meinzer, T. A. Starkey, and W. L. Barnes, “Surface lattice resonances in plasmonic arrays of asymmetric disc dimers,” ACS Photonics 3(4), 634–639 (2016).

[Crossref]

T. Timusk, J. P. Carbotte, C. C. Homes, D. N. Basov, and S. G. Sharapov, “Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity,” Phys. Rev. B Condens. Matter Mater. Phys. 87(23), 235121 (2013).

[Crossref]

M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, “Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.,” Nat. Commun. 5(1), 3786 (2014).

[Crossref]
[PubMed]

C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, “Multi-Weyl topological semimetals stabilized by point group symmetry,” Phys. Rev. Lett. 108(26), 266802 (2012).

[Crossref]
[PubMed]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).

[Crossref]

A. Halpin, N. van Hoof, A. Bhattacharya, C. Mennes, and J. G. Rivas, “Terahertz diffraction enhanced transparency probed in the near field,” Phys. Rev. B 96(8), 085110 (2017).

[Crossref]

M. C. Schaafsma, A. Bhattacharya, and J. G. Rivas, “Diffraction enhanced transparency and slow THz light in periodic arrays of detuned and displaced dipoles,” ACS Photonics 3(9), 1596–1603 (2016).

[Crossref]

M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, “Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.,” Nat. Commun. 5(1), 3786 (2014).

[Crossref]
[PubMed]

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).

[Crossref]
[PubMed]

Y. Bai, K. Chen, H. Liu, T. Bu, B. Cai, J. Xu, and Y. Zhu, “Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect,” Opt. Commun. 353(15), 83–89 (2015).

[Crossref]

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).

[Crossref]

Y. Bai, K. Chen, H. Liu, T. Bu, B. Cai, J. Xu, and Y. Zhu, “Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect,” Opt. Commun. 353(15), 83–89 (2015).

[Crossref]

Y. Liu, S. Zhan, G. Cao, J. Li, H. Yang, Q. Liu, S. Hu, G. Nie, Y. Gao, and X. Wu, “Theoretical design of plasmonic refractive index sensor based on the fixed band detection,” IEEE J. Sel. Top. Quantum Electron. 25(2), 1–6 (2019).

[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).

[Crossref]

T. Timusk, J. P. Carbotte, C. C. Homes, D. N. Basov, and S. G. Sharapov, “Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity,” Phys. Rev. B Condens. Matter Mater. Phys. 87(23), 235121 (2013).

[Crossref]

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, “Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2.,” Nat. Mater. 14(3), 280–284 (2015).

[Crossref]
[PubMed]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).

[Crossref]
[PubMed]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).

[Crossref]
[PubMed]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).

[Crossref]
[PubMed]

M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, “Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.,” Nat. Commun. 5(1), 3786 (2014).

[Crossref]
[PubMed]

Z. Guo, H. Jiang, Y. Li, H. Chen, and G. S. Agarwal, “Enhancement of electromagnetically induced transparency in metamaterials using long range coupling mediated by a hyperbolic material,” Opt. Express 26(2), 627–641 (2018).

[Crossref]
[PubMed]

H. Chen, H. Zhang, M. Liu, Y. Zhao, X. Guo, and Y. Zhang, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).

[Crossref]

Y. Bai, K. Chen, H. Liu, T. Bu, B. Cai, J. Xu, and Y. Zhu, “Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect,” Opt. Commun. 353(15), 83–89 (2015).

[Crossref]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).

[Crossref]
[PubMed]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).

[Crossref]
[PubMed]

Y. Q. Chen, L. J. Dong, Y. Fang, X. Z. Wu, Q. Y. Wu, J. Jiang, and Y. L. Shi, “Bistable switching in electromagnetically induced-transparency-like meta-molecule,” App. Phys. A 125(1), 22 (2019).

[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).

[Crossref]

M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, “Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.,” Nat. Commun. 5(1), 3786 (2014).

[Crossref]
[PubMed]

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).

[Crossref]

D. R. Chowdhury, X. Su, Y. Zeng, X. Chen, A. J. Taylor, and A. Azad, “Excitation of dark plasmonic modes in symmetry broken terahertz metamaterials,” Opt. Express 22(16), 19401–19410 (2014).

[Crossref]
[PubMed]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).

[Crossref]

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).

[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).

[Crossref]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).

[Crossref]
[PubMed]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).

[Crossref]
[PubMed]

C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, “Multi-Weyl topological semimetals stabilized by point group symmetry,” Phys. Rev. Lett. 108(26), 266802 (2012).

[Crossref]
[PubMed]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).

[Crossref]
[PubMed]

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Dynamically tunable Fano metamaterials through the coupling of graphene grating and square closed ring resonator,” Plasmonics 10(6), 1833–1839 (2015).

[Crossref]

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7(1), 40441 (2017).

[Crossref]
[PubMed]

L. Zhu and L. Dong, “Electromagnetically induced transparency with wide band in all-dielectric microstructure based on Mie resonances,” J. Opt. 16(12), 125105 (2014).

[Crossref]

Y. Q. Chen, L. J. Dong, Y. Fang, X. Z. Wu, Q. Y. Wu, J. Jiang, and Y. L. Shi, “Bistable switching in electromagnetically induced-transparency-like meta-molecule,” App. Phys. A 125(1), 22 (2019).

[Crossref]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).

[Crossref]
[PubMed]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).

[Crossref]
[PubMed]

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).

[Crossref]

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7(1), 40441 (2017).

[Crossref]
[PubMed]

C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, “Multi-Weyl topological semimetals stabilized by point group symmetry,” Phys. Rev. Lett. 108(26), 266802 (2012).

[Crossref]
[PubMed]

Y. Q. Chen, L. J. Dong, Y. Fang, X. Z. Wu, Q. Y. Wu, J. Jiang, and Y. L. Shi, “Bistable switching in electromagnetically induced-transparency-like meta-molecule,” App. Phys. A 125(1), 22 (2019).

[Crossref]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).

[Crossref]
[PubMed]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).

[Crossref]
[PubMed]

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18(17), 7047–7054 (2018).

[Crossref]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).

[Crossref]
[PubMed]

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7(1), 40441 (2017).

[Crossref]
[PubMed]

Y. Liu, S. Zhan, G. Cao, J. Li, H. Yang, Q. Liu, S. Hu, G. Nie, Y. Gao, and X. Wu, “Theoretical design of plasmonic refractive index sensor based on the fixed band detection,” IEEE J. Sel. Top. Quantum Electron. 25(2), 1–6 (2019).

[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).

[Crossref]
[PubMed]

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, “Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2.,” Nat. Mater. 14(3), 280–284 (2015).

[Crossref]
[PubMed]

C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, “Multi-Weyl topological semimetals stabilized by point group symmetry,” Phys. Rev. Lett. 108(26), 266802 (2012).

[Crossref]
[PubMed]

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).

[Crossref]
[PubMed]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).

[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).

[Crossref]
[PubMed]

A. Halpin, N. van Hoof, A. Bhattacharya, C. Mennes, and J. G. Rivas, “Terahertz diffraction enhanced transparency probed in the near field,” Phys. Rev. B 96(8), 085110 (2017).

[Crossref]

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).

[Crossref]
[PubMed]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).

[Crossref]
[PubMed]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).

[Crossref]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).

[Crossref]

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).

[Crossref]
[PubMed]

M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, “Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.,” Nat. Commun. 5(1), 3786 (2014).

[Crossref]
[PubMed]

X. He, Y. Yao, X. Yang, G. Lu, W. Yang, Y. Yang, F. Wu, Z. Yu, and J. Jiang, “Dynamically controlled electromagnetically induced transparency in terahertz graphene metamaterial for modulation and slow light applications,” Opt. Commun. 410, 206–210 (2018).

[Crossref]

X. He, X. Yang, G. Lu, W. Yang, F. Wu, Z. Yu, and J. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).

[Crossref]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).

[Crossref]
[PubMed]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).

[Crossref]
[PubMed]

T. Timusk, J. P. Carbotte, C. C. Homes, D. N. Basov, and S. G. Sharapov, “Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity,” Phys. Rev. B Condens. Matter Mater. Phys. 87(23), 235121 (2013).

[Crossref]

Y. Liu, S. Zhan, G. Cao, J. Li, H. Yang, Q. Liu, S. Hu, G. Nie, Y. Gao, and X. Wu, “Theoretical design of plasmonic refractive index sensor based on the fixed band detection,” IEEE J. Sel. Top. Quantum Electron. 25(2), 1–6 (2019).

[Crossref]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).

[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).

[Crossref]
[PubMed]

A. D. Humphrey, N. Meinzer, T. A. Starkey, and W. L. Barnes, “Surface lattice resonances in plasmonic arrays of asymmetric disc dimers,” ACS Photonics 3(4), 634–639 (2016).

[Crossref]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).

[Crossref]
[PubMed]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).

[Crossref]
[PubMed]

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).

[Crossref]
[PubMed]

M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, “Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.,” Nat. Commun. 5(1), 3786 (2014).

[Crossref]
[PubMed]

Y. Q. Chen, L. J. Dong, Y. Fang, X. Z. Wu, Q. Y. Wu, J. Jiang, and Y. L. Shi, “Bistable switching in electromagnetically induced-transparency-like meta-molecule,” App. Phys. A 125(1), 22 (2019).

[Crossref]

X. He, Y. Yao, X. Yang, G. Lu, W. Yang, Y. Yang, F. Wu, Z. Yu, and J. Jiang, “Dynamically controlled electromagnetically induced transparency in terahertz graphene metamaterial for modulation and slow light applications,” Opt. Commun. 410, 206–210 (2018).

[Crossref]

X. He, X. Yang, G. Lu, W. Yang, F. Wu, Z. Yu, and J. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).

[Crossref]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).

[Crossref]
[PubMed]

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).

[Crossref]
[PubMed]

S. M. Young, S. Zaheer, J. C. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108(14), 140405 (2012).

[Crossref]
[PubMed]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband Slow Light Metamaterial Based on a Double-Continuum Fano Resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).

[Crossref]
[PubMed]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).

[Crossref]
[PubMed]

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7(1), 40441 (2017).

[Crossref]
[PubMed]

O. V. Kotov and Y. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).

[Crossref]

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).

[Crossref]

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7(1), 40441 (2017).

[Crossref]
[PubMed]

Y. Liu, S. Zhan, G. Cao, J. Li, H. Yang, Q. Liu, S. Hu, G. Nie, Y. Gao, and X. Wu, “Theoretical design of plasmonic refractive index sensor based on the fixed band detection,” IEEE J. Sel. Top. Quantum Electron. 25(2), 1–6 (2019).

[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).

[Crossref]
[PubMed]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).

[Crossref]

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).

[Crossref]
[PubMed]

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, “Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2.,” Nat. Mater. 14(3), 280–284 (2015).

[Crossref]
[PubMed]

M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, “Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.,” Nat. Commun. 5(1), 3786 (2014).

[Crossref]
[PubMed]

G. D. Liu, X. Zhai, H. Y. Meng, Q. Lin, Y. Huang, C. J. Zhao, and L. L. Wang, “Dirac semimetals based tunable narrowband absorber at terahertz frequencies,” Opt. Express 26(9), 11471–11480 (2018).

[Crossref]
[PubMed]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).

[Crossref]
[PubMed]

C. Liu, P. Liu, C. Yang, Y. Lin, and H. Liu, “Analogue of dual-controlled electromagnetically induced transparency based on graphene metamaterial,” Carbon 142, 354–362 (2019).

[Crossref]

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Dynamically tunable Fano metamaterials through the coupling of graphene grating and square closed ring resonator,” Plasmonics 10(6), 1833–1839 (2015).

[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).

[Crossref]
[PubMed]

C. Liu, P. Liu, C. Yang, Y. Lin, and H. Liu, “Analogue of dual-controlled electromagnetically induced transparency based on graphene metamaterial,” Carbon 142, 354–362 (2019).

[Crossref]

M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, “Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.,” Nat. Commun. 5(1), 3786 (2014).

[Crossref]
[PubMed]

C. Liu, P. Liu, C. Yang, Y. Lin, and H. Liu, “Analogue of dual-controlled electromagnetically induced transparency based on graphene metamaterial,” Carbon 142, 354–362 (2019).

[Crossref]

Y. Bai, K. Chen, H. Liu, T. Bu, B. Cai, J. Xu, and Y. Zhu, “Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect,” Opt. Commun. 353(15), 83–89 (2015).

[Crossref]

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).

[Crossref]
[PubMed]

H. Chen, H. Zhang, M. Liu, Y. Zhao, X. Guo, and Y. Zhang, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).

[Crossref]

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, “Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2.,” Nat. Mater. 14(3), 280–284 (2015).

[Crossref]
[PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).

[Crossref]
[PubMed]

C. Liu, P. Liu, C. Yang, Y. Lin, and H. Liu, “Analogue of dual-controlled electromagnetically induced transparency based on graphene metamaterial,” Carbon 142, 354–362 (2019).

[Crossref]

Y. Liu, S. Zhan, G. Cao, J. Li, H. Yang, Q. Liu, S. Hu, G. Nie, Y. Gao, and X. Wu, “Theoretical design of plasmonic refractive index sensor based on the fixed band detection,” IEEE J. Sel. Top. Quantum Electron. 25(2), 1–6 (2019).

[Crossref]

S. Shen, Y. Liu, W. Liu, Q. Tan, J. Xiong, and W. Zhang, “Tunable electromagnetically induced reflection with a high Q factor in complementary Dirac semimetal metamaterials,” Mater. Res. Express 5(12), 125804 (2018).

[Crossref]

Y. Liu, S. Zhan, G. Cao, J. Li, H. Yang, Q. Liu, S. Hu, G. Nie, Y. Gao, and X. Wu, “Theoretical design of plasmonic refractive index sensor based on the fixed band detection,” IEEE J. Sel. Top. Quantum Electron. 25(2), 1–6 (2019).

[Crossref]

S. Shen, Y. Liu, W. Liu, Q. Tan, J. Xiong, and W. Zhang, “Tunable electromagnetically induced reflection with a high Q factor in complementary Dirac semimetal metamaterials,” Mater. Res. Express 5(12), 125804 (2018).

[Crossref]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).

[Crossref]
[PubMed]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).

[Crossref]
[PubMed]

O. V. Kotov and Y. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).

[Crossref]

X. He, Y. Yao, X. Yang, G. Lu, W. Yang, Y. Yang, F. Wu, Z. Yu, and J. Jiang, “Dynamically controlled electromagnetically induced transparency in terahertz graphene metamaterial for modulation and slow light applications,” Opt. Commun. 410, 206–210 (2018).

[Crossref]

X. He, X. Yang, G. Lu, W. Yang, F. Wu, Z. Yu, and J. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).

[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).

[Crossref]
[PubMed]

X. Zhao, C. Yuan, W. Lv, S. Xu, and J. Yao, “Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators,” IEEE Photonic. Tech. L. 27(12), 1321–1324 (2015).

[Crossref]

W. Pan, Y. Yan, Y. Ma, and D. Shen, “A terahertz metamaterial based on electromagnetically induced transparency effect and its sensing performance,” Opt. Commun. 431(15), 115–119 (2019).

[Crossref]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).

[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).

[Crossref]
[PubMed]

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).

[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).

[Crossref]

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).

[Crossref]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).

[Crossref]
[PubMed]

A. D. Humphrey, N. Meinzer, T. A. Starkey, and W. L. Barnes, “Surface lattice resonances in plasmonic arrays of asymmetric disc dimers,” ACS Photonics 3(4), 634–639 (2016).

[Crossref]

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).

[Crossref]

S. M. Young, S. Zaheer, J. C. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108(14), 140405 (2012).

[Crossref]
[PubMed]

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).

[Crossref]

A. Halpin, N. van Hoof, A. Bhattacharya, C. Mennes, and J. G. Rivas, “Terahertz diffraction enhanced transparency probed in the near field,” Phys. Rev. B 96(8), 085110 (2017).

[Crossref]

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18(17), 7047–7054 (2018).

[Crossref]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).

[Crossref]
[PubMed]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).

[Crossref]
[PubMed]

M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, “Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.,” Nat. Commun. 5(1), 3786 (2014).

[Crossref]
[PubMed]

Y. Liu, S. Zhan, G. Cao, J. Li, H. Yang, Q. Liu, S. Hu, G. Nie, Y. Gao, and X. Wu, “Theoretical design of plasmonic refractive index sensor based on the fixed band detection,” IEEE J. Sel. Top. Quantum Electron. 25(2), 1–6 (2019).

[Crossref]

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, “Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2.,” Nat. Mater. 14(3), 280–284 (2015).

[Crossref]
[PubMed]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).

[Crossref]
[PubMed]

W. Pan, Y. Yan, Y. Ma, and D. Shen, “A terahertz metamaterial based on electromagnetically induced transparency effect and its sensing performance,” Opt. Commun. 431(15), 115–119 (2019).

[Crossref]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).

[Crossref]
[PubMed]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).

[Crossref]
[PubMed]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).

[Crossref]
[PubMed]

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7(1), 40441 (2017).

[Crossref]
[PubMed]

S. M. Young, S. Zaheer, J. C. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108(14), 140405 (2012).

[Crossref]
[PubMed]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).

[Crossref]
[PubMed]

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Dynamically tunable Fano metamaterials through the coupling of graphene grating and square closed ring resonator,” Plasmonics 10(6), 1833–1839 (2015).

[Crossref]

A. Halpin, N. van Hoof, A. Bhattacharya, C. Mennes, and J. G. Rivas, “Terahertz diffraction enhanced transparency probed in the near field,” Phys. Rev. B 96(8), 085110 (2017).

[Crossref]

M. C. Schaafsma, A. Bhattacharya, and J. G. Rivas, “Diffraction enhanced transparency and slow THz light in periodic arrays of detuned and displaced dipoles,” ACS Photonics 3(9), 1596–1603 (2016).

[Crossref]

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).

[Crossref]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).

[Crossref]
[PubMed]

M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, “Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.,” Nat. Commun. 5(1), 3786 (2014).

[Crossref]
[PubMed]

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).

[Crossref]

X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, “Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates,” Phys. Rev. B Condens. Matter Mater. Phys. 83(20), 205101 (2011).

[Crossref]

M. C. Schaafsma, A. Bhattacharya, and J. G. Rivas, “Diffraction enhanced transparency and slow THz light in periodic arrays of detuned and displaced dipoles,” ACS Photonics 3(9), 1596–1603 (2016).

[Crossref]

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).

[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).

[Crossref]
[PubMed]

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Dynamically tunable Fano metamaterials through the coupling of graphene grating and square closed ring resonator,” Plasmonics 10(6), 1833–1839 (2015).

[Crossref]

T. Timusk, J. P. Carbotte, C. C. Homes, D. N. Basov, and S. G. Sharapov, “Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity,” Phys. Rev. B Condens. Matter Mater. Phys. 87(23), 235121 (2013).

[Crossref]

W. Pan, Y. Yan, Y. Ma, and D. Shen, “A terahertz metamaterial based on electromagnetically induced transparency effect and its sensing performance,” Opt. Commun. 431(15), 115–119 (2019).

[Crossref]

S. Shen, Y. Liu, W. Liu, Q. Tan, J. Xiong, and W. Zhang, “Tunable electromagnetically induced reflection with a high Q factor in complementary Dirac semimetal metamaterials,” Mater. Res. Express 5(12), 125804 (2018).

[Crossref]

Z. Shen, T. Xiang, J. Wu, Z. Yu, and H. Yang, “Tunable and polarization insensitive electromagnetically induced transparency using planar metamaterial,” J. Magn. Magn. Mater. 476, 69–74 (2019).

[Crossref]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).

[Crossref]
[PubMed]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).

[Crossref]
[PubMed]

X. Shi, X. Su, and Y. Yang, “Enhanced tunability of plasmon induced transparency in graphene strips,” J. Appl. Phys. 117(14), 143101 (2015).

[Crossref]

Y. Q. Chen, L. J. Dong, Y. Fang, X. Z. Wu, Q. Y. Wu, J. Jiang, and Y. L. Shi, “Bistable switching in electromagnetically induced-transparency-like meta-molecule,” App. Phys. A 125(1), 22 (2019).

[Crossref]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband Slow Light Metamaterial Based on a Double-Continuum Fano Resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).

[Crossref]
[PubMed]

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).

[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).

[Crossref]

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).

[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).

[Crossref]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).

[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).

[Crossref]
[PubMed]

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).

[Crossref]

A. D. Humphrey, N. Meinzer, T. A. Starkey, and W. L. Barnes, “Surface lattice resonances in plasmonic arrays of asymmetric disc dimers,” ACS Photonics 3(4), 634–639 (2016).

[Crossref]

X. Shi, X. Su, and Y. Yang, “Enhanced tunability of plasmon induced transparency in graphene strips,” J. Appl. Phys. 117(14), 143101 (2015).

[Crossref]

D. R. Chowdhury, X. Su, Y. Zeng, X. Chen, A. J. Taylor, and A. Azad, “Excitation of dark plasmonic modes in symmetry broken terahertz metamaterials,” Opt. Express 22(16), 19401–19410 (2014).

[Crossref]
[PubMed]

S. Shen, Y. Liu, W. Liu, Q. Tan, J. Xiong, and W. Zhang, “Tunable electromagnetically induced reflection with a high Q factor in complementary Dirac semimetal metamaterials,” Mater. Res. Express 5(12), 125804 (2018).

[Crossref]

S. M. Young, S. Zaheer, J. C. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108(14), 140405 (2012).

[Crossref]
[PubMed]

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).

[Crossref]
[PubMed]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).

[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).

[Crossref]
[PubMed]

T. Timusk, J. P. Carbotte, C. C. Homes, D. N. Basov, and S. G. Sharapov, “Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity,” Phys. Rev. B Condens. Matter Mater. Phys. 87(23), 235121 (2013).

[Crossref]

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).

[Crossref]
[PubMed]

X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, “Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates,” Phys. Rev. B Condens. Matter Mater. Phys. 83(20), 205101 (2011).

[Crossref]

A. Keshavarz and Z. Vafapour, “Thermo-optical applications of a novel terahertz semiconductor metamaterial design,” J. Opt. Soc. Am. B 36(1), 35–41 (2019).

[Crossref]

Z. Vafapour and H. Ghahraloud, “Semiconductor-based far-infrared biosensor by optical control of light propagation using THz metamaterial,” J. Opt. Soc. Am. B 35(5), 1192–1199 (2018).

[Crossref]

Z. Vafapour, “Slowing down light using terahertz semiconductor metamaterial for dual-band thermally tunable modulator applications,” Appl. Opt. 57(4), 722–729 (2018).

[Crossref]
[PubMed]

Z. Vafapour, “Large group delay in a microwave metamaterial analog of electromagnetically induced reflectance,” J. Opt. Soc. Am. A 35(3), 417–422 (2018).

[Crossref]
[PubMed]

A. Keshavarz and Z. Vafapour, “Water-based Terahertz Metamaterial for Skin Cancer Detection Application,” IEEE Sens. J. 19, 1519–1524 (2018).

[Crossref]

A. Halpin, N. van Hoof, A. Bhattacharya, C. Mennes, and J. G. Rivas, “Terahertz diffraction enhanced transparency probed in the near field,” Phys. Rev. B 96(8), 085110 (2017).

[Crossref]

X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, “Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates,” Phys. Rev. B Condens. Matter Mater. Phys. 83(20), 205101 (2011).

[Crossref]

X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, “Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates,” Phys. Rev. B Condens. Matter Mater. Phys. 83(20), 205101 (2011).

[Crossref]

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).

[Crossref]
[PubMed]

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).

[Crossref]
[PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).

[Crossref]
[PubMed]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).

[Crossref]
[PubMed]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).

[Crossref]
[PubMed]

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).

[Crossref]
[PubMed]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).

[Crossref]
[PubMed]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).

[Crossref]
[PubMed]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).

[Crossref]
[PubMed]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).

[Crossref]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband Slow Light Metamaterial Based on a Double-Continuum Fano Resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).

[Crossref]
[PubMed]

X. He, Y. Yao, X. Yang, G. Lu, W. Yang, Y. Yang, F. Wu, Z. Yu, and J. Jiang, “Dynamically controlled electromagnetically induced transparency in terahertz graphene metamaterial for modulation and slow light applications,” Opt. Commun. 410, 206–210 (2018).

[Crossref]

X. He, X. Yang, G. Lu, W. Yang, F. Wu, Z. Yu, and J. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).

[Crossref]

Z. Shen, T. Xiang, J. Wu, Z. Yu, and H. Yang, “Tunable and polarization insensitive electromagnetically induced transparency using planar metamaterial,” J. Magn. Magn. Mater. 476, 69–74 (2019).

[Crossref]

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).

[Crossref]

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).

[Crossref]

Y. Q. Chen, L. J. Dong, Y. Fang, X. Z. Wu, Q. Y. Wu, J. Jiang, and Y. L. Shi, “Bistable switching in electromagnetically induced-transparency-like meta-molecule,” App. Phys. A 125(1), 22 (2019).

[Crossref]

Y. Liu, S. Zhan, G. Cao, J. Li, H. Yang, Q. Liu, S. Hu, G. Nie, Y. Gao, and X. Wu, “Theoretical design of plasmonic refractive index sensor based on the fixed band detection,” IEEE J. Sel. Top. Quantum Electron. 25(2), 1–6 (2019).

[Crossref]

Y. Q. Chen, L. J. Dong, Y. Fang, X. Z. Wu, Q. Y. Wu, J. Jiang, and Y. L. Shi, “Bistable switching in electromagnetically induced-transparency-like meta-molecule,” App. Phys. A 125(1), 22 (2019).

[Crossref]

Z. Shen, T. Xiang, J. Wu, Z. Yu, and H. Yang, “Tunable and polarization insensitive electromagnetically induced transparency using planar metamaterial,” J. Magn. Magn. Mater. 476, 69–74 (2019).

[Crossref]

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).

[Crossref]
[PubMed]

S. Shen, Y. Liu, W. Liu, Q. Tan, J. Xiong, and W. Zhang, “Tunable electromagnetically induced reflection with a high Q factor in complementary Dirac semimetal metamaterials,” Mater. Res. Express 5(12), 125804 (2018).

[Crossref]

W. Luo, W. Cai, Y. Xiang, L. Wang, M. Ren, X. Zhang, and J. Xu, “Flexible modulation of plasmon-induced transparency in a strongly coupled graphene grating-sheet system,” Opt. Express 24(6), 5784–5793 (2016).

[Crossref]
[PubMed]

Y. Bai, K. Chen, H. Liu, T. Bu, B. Cai, J. Xu, and Y. Zhu, “Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect,” Opt. Commun. 353(15), 83–89 (2015).

[Crossref]

X. Zhao, C. Yuan, W. Lv, S. Xu, and J. Yao, “Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators,” IEEE Photonic. Tech. L. 27(12), 1321–1324 (2015).

[Crossref]

M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, “Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.,” Nat. Commun. 5(1), 3786 (2014).

[Crossref]
[PubMed]

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).

[Crossref]

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).

[Crossref]
[PubMed]

W. Pan, Y. Yan, Y. Ma, and D. Shen, “A terahertz metamaterial based on electromagnetically induced transparency effect and its sensing performance,” Opt. Commun. 431(15), 115–119 (2019).

[Crossref]

C. Liu, P. Liu, C. Yang, Y. Lin, and H. Liu, “Analogue of dual-controlled electromagnetically induced transparency based on graphene metamaterial,” Carbon 142, 354–362 (2019).

[Crossref]

Z. Shen, T. Xiang, J. Wu, Z. Yu, and H. Yang, “Tunable and polarization insensitive electromagnetically induced transparency using planar metamaterial,” J. Magn. Magn. Mater. 476, 69–74 (2019).

[Crossref]

Y. Liu, S. Zhan, G. Cao, J. Li, H. Yang, Q. Liu, S. Hu, G. Nie, Y. Gao, and X. Wu, “Theoretical design of plasmonic refractive index sensor based on the fixed band detection,” IEEE J. Sel. Top. Quantum Electron. 25(2), 1–6 (2019).

[Crossref]

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).

[Crossref]
[PubMed]

X. He, Y. Yao, X. Yang, G. Lu, W. Yang, Y. Yang, F. Wu, Z. Yu, and J. Jiang, “Dynamically controlled electromagnetically induced transparency in terahertz graphene metamaterial for modulation and slow light applications,” Opt. Commun. 410, 206–210 (2018).

[Crossref]

X. He, X. Yang, G. Lu, W. Yang, F. Wu, Z. Yu, and J. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).

[Crossref]

X. He, Y. Yao, X. Yang, G. Lu, W. Yang, Y. Yang, F. Wu, Z. Yu, and J. Jiang, “Dynamically controlled electromagnetically induced transparency in terahertz graphene metamaterial for modulation and slow light applications,” Opt. Commun. 410, 206–210 (2018).

[Crossref]

X. He, X. Yang, G. Lu, W. Yang, F. Wu, Z. Yu, and J. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).

[Crossref]

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).

[Crossref]
[PubMed]

X. He, Y. Yao, X. Yang, G. Lu, W. Yang, Y. Yang, F. Wu, Z. Yu, and J. Jiang, “Dynamically controlled electromagnetically induced transparency in terahertz graphene metamaterial for modulation and slow light applications,” Opt. Commun. 410, 206–210 (2018).

[Crossref]

X. Shi, X. Su, and Y. Yang, “Enhanced tunability of plasmon induced transparency in graphene strips,” J. Appl. Phys. 117(14), 143101 (2015).

[Crossref]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).

[Crossref]

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).

[Crossref]
[PubMed]

X. Zhao, C. Yuan, W. Lv, S. Xu, and J. Yao, “Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators,” IEEE Photonic. Tech. L. 27(12), 1321–1324 (2015).

[Crossref]

X. He, Y. Yao, X. Yang, G. Lu, W. Yang, Y. Yang, F. Wu, Z. Yu, and J. Jiang, “Dynamically controlled electromagnetically induced transparency in terahertz graphene metamaterial for modulation and slow light applications,” Opt. Commun. 410, 206–210 (2018).

[Crossref]

S. M. Young, S. Zaheer, J. C. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108(14), 140405 (2012).

[Crossref]
[PubMed]

Z. Shen, T. Xiang, J. Wu, Z. Yu, and H. Yang, “Tunable and polarization insensitive electromagnetically induced transparency using planar metamaterial,” J. Magn. Magn. Mater. 476, 69–74 (2019).

[Crossref]

X. He, Y. Yao, X. Yang, G. Lu, W. Yang, Y. Yang, F. Wu, Z. Yu, and J. Jiang, “Dynamically controlled electromagnetically induced transparency in terahertz graphene metamaterial for modulation and slow light applications,” Opt. Commun. 410, 206–210 (2018).

[Crossref]

X. He, X. Yang, G. Lu, W. Yang, F. Wu, Z. Yu, and J. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).

[Crossref]

X. Zhao, C. Yuan, W. Lv, S. Xu, and J. Yao, “Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators,” IEEE Photonic. Tech. L. 27(12), 1321–1324 (2015).

[Crossref]

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).

[Crossref]
[PubMed]

S. M. Young, S. Zaheer, J. C. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108(14), 140405 (2012).

[Crossref]
[PubMed]

Y. Liu, S. Zhan, G. Cao, J. Li, H. Yang, Q. Liu, S. Hu, G. Nie, Y. Gao, and X. Wu, “Theoretical design of plasmonic refractive index sensor based on the fixed band detection,” IEEE J. Sel. Top. Quantum Electron. 25(2), 1–6 (2019).

[Crossref]

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7(1), 40441 (2017).

[Crossref]
[PubMed]

H. Chen, H. Zhang, M. Liu, Y. Zhao, X. Guo, and Y. Zhang, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).

[Crossref]

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Dynamically tunable Fano metamaterials through the coupling of graphene grating and square closed ring resonator,” Plasmonics 10(6), 1833–1839 (2015).

[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).

[Crossref]
[PubMed]

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).

[Crossref]
[PubMed]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).

[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).

[Crossref]
[PubMed]

S. Shen, Y. Liu, W. Liu, Q. Tan, J. Xiong, and W. Zhang, “Tunable electromagnetically induced reflection with a high Q factor in complementary Dirac semimetal metamaterials,” Mater. Res. Express 5(12), 125804 (2018).

[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).

[Crossref]

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).

[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).

[Crossref]

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).

[Crossref]
[PubMed]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).

[Crossref]
[PubMed]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).

[Crossref]

W. Luo, W. Cai, Y. Xiang, L. Wang, M. Ren, X. Zhang, and J. Xu, “Flexible modulation of plasmon-induced transparency in a strongly coupled graphene grating-sheet system,” Opt. Express 24(6), 5784–5793 (2016).

[Crossref]
[PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).

[Crossref]
[PubMed]

H. Chen, H. Zhang, M. Liu, Y. Zhao, X. Guo, and Y. Zhang, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).

[Crossref]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).

[Crossref]
[PubMed]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).

[Crossref]
[PubMed]

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).

[Crossref]
[PubMed]

X. Zhao, C. Yuan, W. Lv, S. Xu, and J. Yao, “Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators,” IEEE Photonic. Tech. L. 27(12), 1321–1324 (2015).

[Crossref]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).

[Crossref]
[PubMed]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).

[Crossref]
[PubMed]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).

[Crossref]
[PubMed]

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Dynamically tunable Fano metamaterials through the coupling of graphene grating and square closed ring resonator,” Plasmonics 10(6), 1833–1839 (2015).

[Crossref]

L. Zhu and L. Dong, “Electromagnetically induced transparency with wide band in all-dielectric microstructure based on Mie resonances,” J. Opt. 16(12), 125105 (2014).

[Crossref]

Y. Bai, K. Chen, H. Liu, T. Bu, B. Cai, J. Xu, and Y. Zhu, “Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect,” Opt. Commun. 353(15), 83–89 (2015).

[Crossref]

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).

[Crossref]
[PubMed]