Abstract

Plasmonics has been extensively exploited to trap the incident light and enhance the absorption in optoelectronic devices. The availability of graphene as a plasmonic material with a continuously tunable surface conductivity makes it promising to modulate the absorption enhancement with graphene surface plasmon resonance dynamically. In this contribution, we numerically demonstrate that tunable light trapping and absorption enhancement can be realized with graphene-based complementary metasurfaces. Furthermore, we also explore the polarization sensitivity in the proposed device, in which case either a TM or TE plane wave at the specific wavelength can be efficiently absorbed by simply manipulating the Fermi level of graphene. Therefore, this work can find potential applications in the next generation of photodetectors with tunable spectral and polarization selectivity in the mid-infrared and terahertz regions.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Hollow-petal graphene metasurface for broadband tunable THz absorption

Shuang Wu and Jiu-sheng Li
Appl. Opt. 58(11) 3023-3028 (2019)

Tunable absorption enhancement in periodic elliptical hollow graphene arrays

Chunlian Cen, Lin Liu, Yubin Zhang, Xifang Chen, Zigang Zhou, Zao Yi, Xin Ye, Yongjian Tang, Yougen Yi, and Shuyuan Xiao
Opt. Mater. Express 9(2) 706-716 (2019)

Tunable multifunctional reflection polarizer based on a graphene metasurface

Zhifei Yao, Tongtong Wei, Yueke Wang, Mengjia Lu, Chunyang Zhang, and Lulu Zhang
Appl. Opt. 58(13) 3570-3574 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in si wire arrays for photovoltaic applications,” Nat. Mater. 9, 239 (2010).
    [Crossref]
  2. Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H.-T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys. 107, 093104 (2010).
    [Crossref]
  3. G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status solidi-R 4, 295–297 (2010).
    [Crossref]
  4. H. Liu, G. Ren, Y. Gao, Y. Lian, Y. Qi, and S. Jian, “Tunable subwavelength terahertz plasmon-induced transparency in the insb slot waveguide side-coupled with two stub resonators,” Appl. Opt. 54, 3918–3924 (2015).
    [Crossref]
  5. B. Vaseghi, M. Mousavi, S. Khorshidian, and Z. Vafapour, “Spin-orbit interaction effects on the electronic structure of spherical quantum dot with different confinement potentials,” Superlattice Microst. 111, 671–677 (2017).
    [Crossref]
  6. Z. Vafapour and H. Ghahraloud, “Semiconductor-based far-infrared biosensor by optical control of light propagation using thz metamaterial,” JOSA B 35, 1192–1199 (2018).
    [Crossref]
  7. A. Keshavarz and Z. Vafapour, “Water-based terahertz metamaterial for skin cancer detection application,” IEEE Sensors J. 99, 1 (2018).
    [Crossref]
  8. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
    [Crossref]
  9. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
    [Crossref]
  10. Z. Vafapour, “Large group delay in a microwave metamaterial analog of electromagnetically induced reflectance,” JOSA A 35, 417–422 (2018).
    [Crossref] [PubMed]
  11. A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sensors J. 18, 7047–7054 (2018).
    [Crossref]
  12. J. Le Perchec, Y. Desieres, and R. Espiau de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett. 94, 181104 (2009).
    [Crossref]
  13. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
    [Crossref]
  14. V. V. Khardikov, E. O. Iarko, and S. L. Prosvirnin, “Trapping of light by metal arrays,” J. Opt. 12, 045102 (2010).
    [Crossref]
  15. F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Ultrabroadband, more than one order absorption enhancement in graphene with plasmonic light trapping,” Sci. Rep. 5, 16998 (2015).
    [Crossref]
  16. Y. Cai, J. Zhu, Q. H. Liu, T. Lin, J. Zhou, L. Ye, and Z. Cai, “Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits,” Opt. Express 23, 32318–32328 (2015).
    [Crossref] [PubMed]
  17. B.-X. Wang, G.-Z. Wang, and T. Sang, “Simple design of novel triple-band terahertz metamaterial absorber for sensing application,” J. Phys. D: Appl. Phys. 49, 165307 (2016).
    [Crossref]
  18. H. Lu, X. Gan, B. Jia, D. Mao, and J. Zhao, “Tunable high-efficiency light absorption of monolayer graphene via tamm plasmon polaritons,” Opt. Lett. 41, 4743–4746 (2016).
    [Crossref] [PubMed]
  19. H. Lu, X. Gan, D. Mao, Y. Fan, D. Yang, and J. Zhao, “Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures,” Opt. Express 25, 21630–21636 (2017).
    [Crossref]
  20. W. Zhao, S. Xiao, Y. Zhang, D. Pan, J. Wen, X. Qian, D. Wang, H. Cao, W. He, M. Quan, and et al.,“Binary "island" shaped arrays with high-density hot spots for surface-enhanced raman scattering substrates,” Nanoscale 10, 14220–14229 (2018).
    [Crossref]
  21. Y. Cai, Z. Wang, S. Yan, L. Ye, and J. Zhu, “Ultraviolet absorption band engineering of graphene by integrated plasmonic structures,” Opt. Mater. Express 8, 3295–3306 (2018).
    [Crossref]
  22. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
    [Crossref]
  23. F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
    [Crossref]
  24. A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
    [Crossref]
  25. X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8, 10388–10397 (2016).
    [Crossref] [PubMed]
  26. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and et al., “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
    [Crossref]
  27. X. He, “Tunable terahertz graphene metamaterials,” Carbon 82, 229–237 (2015).
    [Crossref]
  28. Q. Lin, X. Zhai, L. Wang, B. Wang, G. Liu, and S. Xia, “Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings,” EPL (Europhysics Letters) 111, 34004 (2015).
    [Crossref]
  29. S.-X. Xia, X. Zhai, L.-L. Wang, B. Sun, J.-Q. Liu, and S.-C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24, 17886–17899 (2016).
    [Crossref] [PubMed]
  30. S.-X. Xia, X. Zhai, Y. Huang, J.-Q. Liu, L.-L. Wang, and S.-C. Wen, “Graphene surface plasmons with dielectric metasurfaces,” J. Lightwave Technol. 35, 4553–4558 (2017).
    [Crossref]
  31. G.-D. Liu, X. Zhai, S.-X. Xia, Q. Lin, C.-J. Zhao, and L.-L. Wang, “Toroidal resonance based optical modulator employing hybrid graphene-dielectric metasurface,” Opt. Express 25, 26045–26054 (2017).
    [Crossref]
  32. J. Chen, Z. Yi, S. Xiao, and X. Xu, “Absorption enhancement in double-layer cross-shaped graphene arrays,” Mater. Res. Express 5, 015605 (2018).
    [Crossref]
  33. J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8, 175 (2018).
    [Crossref]
  34. H. Lu, D. Mao, C. Zeng, F. Xiao, D. Yang, T. Mei, and J. Zhao, “Plasmonic fano spectral response from graphene metasurfaces in the mir region,” Opt. Mater. Express 8, 1058–1068 (2018).
    [Crossref]
  35. Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
    [Crossref]
  36. S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23, 8888–8900 (2015).
    [Crossref]
  37. G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the thz range,” Opt. Express 24, 1518–1527 (2016).
    [Crossref] [PubMed]
  38. S.-X. Xia, X. Zhai, Y. Huang, J.-Q. Liu, L.-L. Wang, and S.-C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42, 3052–3055 (2017).
    [Crossref]
  39. A. Safaei, S. Chandra, A. Vázquez-Guardado, J. Calderon, D. Franklin, L. Tetard, L. Zhai, M. N. Leuenberger, and D. Chanda, “Dynamically tunable extraordinary light absorption in monolayer graphene,” Phys. Rev. B 96, 165431 (2017).
    [Crossref]
  40. A. Safaei, S. Chandra, M. N. Leuenberger, and D. Chanda, “Tunable enhanced mid-infrared light absorption in graphene,” in CLEO Applications and Technology, (Optical Society of America, 2017), pp. ATh3B–3.
  41. S. Kim, M. S. Jang, V. W. Brar, K. W. Mauser, L. Kim, and H. A. Atwater, “Electronically tunable perfect absorption in graphene,” Nano Lett. 18, 971–979 (2018).
    [Crossref]
  42. M. Huang, Y. Cheng, Z. Cheng, H. Chen, X. Mao, and R. Gong, “Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle,” Opt. Commun. 415, 194–201 (2018).
    [Crossref]
  43. H. Meng, X. Xue, Q. Lin, G. Liu, X. Zhai, and L. Wang, “Tunable and multi-channel perfect absorber based on graphene at mid-infrared region,” Appl. Phys. Express 11, 052002 (2018).
    [Crossref]
  44. J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7, 13530–13536 (2015).
    [Crossref] [PubMed]
  45. S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18, 26661–26669 (2016).
    [Crossref] [PubMed]
  46. S. Xiao, T. Wang, X. Jiang, B. Wang, and C. Xu, “Tunable light trapping and absorption engineering with graphene in the infrared regime,” in POEM Advanced Spectroscopy and Applications, (Optical Society of America, 2017), pp. 3–10.
  47. S. Xiao, T. Wang, X. Jiang, B. Wang, and C. Xu, “A spectrally tunable plasmonic photosensor with an ultrathin semiconductor region,” Plasmonics 13, 897–902 (2018).
    [Crossref]
  48. E. D. Palik, Handbook of optical constants of solids, vol. 3 (Academic press, 1998).
  49. A. Rogalski, “Hgcdte infrared detector material: history, status and outlook,” Rep. Prog. Phys. 68, 2267 (2005).
    [Crossref]
  50. J. Zhang, C. Guo, K. Liu, Z. Zhu, W. Ye, X. Yuan, and S. Qin, “Coherent perfect absorption and transparency in a nanostructured graphene film,” Opt. Express 22, 12524–12532 (2014).
    [Crossref] [PubMed]
  51. J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6, 38086 (2016).
    [Crossref] [PubMed]
  52. S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50, 195101 (2017).
    [Crossref]
  53. S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
    [Crossref]
  54. T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51, 415105 (2018).
    [Crossref]
  55. C. Zeng, J. Guo, and X. Liu, “High-contrast electro-optic modulation of spatial light induced by graphene-integrated fabry-pérot microcavity,” Appl. Phys. Lett. 105, 121103 (2014).
    [Crossref]
  56. S.-X. Xia, X. Zhai, L.-L. Wang, and S.-C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photonics Res. 6, 692–702 (2018).
    [Crossref]
  57. Y. Dai, Y. Xia, T. Jiang, A. Chen, Y. Zhang, Y. Bai, G. Du, F. Guan, S. Wu, X. Liu, and et al., “Dynamical tuning of graphene plasmonic resonances by ultraviolet illuminations,” Adv. Opt. Mater. 6, 1701081 (2018).
    [Crossref]
  58. A. Y. Nikitin, F. Guinea, and L. Martín-Moreno, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett. 101, 151119 (2012).
    [Crossref]
  59. Z. Wang, T. Li, K. Almdal, N. A. Mortensen, S. Xiao, and S. Ndoni, “Experimental demonstration of graphene plasmons working close to the near-infrared window,” Opt. Lett. 41, 5345–5348 (2016).
    [Crossref] [PubMed]

2018 (17)

Z. Vafapour and H. Ghahraloud, “Semiconductor-based far-infrared biosensor by optical control of light propagation using thz metamaterial,” JOSA B 35, 1192–1199 (2018).
[Crossref]

A. Keshavarz and Z. Vafapour, “Water-based terahertz metamaterial for skin cancer detection application,” IEEE Sensors J. 99, 1 (2018).
[Crossref]

Z. Vafapour, “Large group delay in a microwave metamaterial analog of electromagnetically induced reflectance,” JOSA A 35, 417–422 (2018).
[Crossref] [PubMed]

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sensors J. 18, 7047–7054 (2018).
[Crossref]

W. Zhao, S. Xiao, Y. Zhang, D. Pan, J. Wen, X. Qian, D. Wang, H. Cao, W. He, M. Quan, and et al.,“Binary "island" shaped arrays with high-density hot spots for surface-enhanced raman scattering substrates,” Nanoscale 10, 14220–14229 (2018).
[Crossref]

Y. Cai, Z. Wang, S. Yan, L. Ye, and J. Zhu, “Ultraviolet absorption band engineering of graphene by integrated plasmonic structures,” Opt. Mater. Express 8, 3295–3306 (2018).
[Crossref]

J. Chen, Z. Yi, S. Xiao, and X. Xu, “Absorption enhancement in double-layer cross-shaped graphene arrays,” Mater. Res. Express 5, 015605 (2018).
[Crossref]

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8, 175 (2018).
[Crossref]

H. Lu, D. Mao, C. Zeng, F. Xiao, D. Yang, T. Mei, and J. Zhao, “Plasmonic fano spectral response from graphene metasurfaces in the mir region,” Opt. Mater. Express 8, 1058–1068 (2018).
[Crossref]

S. Kim, M. S. Jang, V. W. Brar, K. W. Mauser, L. Kim, and H. A. Atwater, “Electronically tunable perfect absorption in graphene,” Nano Lett. 18, 971–979 (2018).
[Crossref]

M. Huang, Y. Cheng, Z. Cheng, H. Chen, X. Mao, and R. Gong, “Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle,” Opt. Commun. 415, 194–201 (2018).
[Crossref]

H. Meng, X. Xue, Q. Lin, G. Liu, X. Zhai, and L. Wang, “Tunable and multi-channel perfect absorber based on graphene at mid-infrared region,” Appl. Phys. Express 11, 052002 (2018).
[Crossref]

S. Xiao, T. Wang, X. Jiang, B. Wang, and C. Xu, “A spectrally tunable plasmonic photosensor with an ultrathin semiconductor region,” Plasmonics 13, 897–902 (2018).
[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51, 415105 (2018).
[Crossref]

S.-X. Xia, X. Zhai, L.-L. Wang, and S.-C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photonics Res. 6, 692–702 (2018).
[Crossref]

Y. Dai, Y. Xia, T. Jiang, A. Chen, Y. Zhang, Y. Bai, G. Du, F. Guan, S. Wu, X. Liu, and et al., “Dynamical tuning of graphene plasmonic resonances by ultraviolet illuminations,” Adv. Opt. Mater. 6, 1701081 (2018).
[Crossref]

2017 (7)

S.-X. Xia, X. Zhai, Y. Huang, J.-Q. Liu, L.-L. Wang, and S.-C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42, 3052–3055 (2017).
[Crossref]

A. Safaei, S. Chandra, A. Vázquez-Guardado, J. Calderon, D. Franklin, L. Tetard, L. Zhai, M. N. Leuenberger, and D. Chanda, “Dynamically tunable extraordinary light absorption in monolayer graphene,” Phys. Rev. B 96, 165431 (2017).
[Crossref]

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50, 195101 (2017).
[Crossref]

S.-X. Xia, X. Zhai, Y. Huang, J.-Q. Liu, L.-L. Wang, and S.-C. Wen, “Graphene surface plasmons with dielectric metasurfaces,” J. Lightwave Technol. 35, 4553–4558 (2017).
[Crossref]

G.-D. Liu, X. Zhai, S.-X. Xia, Q. Lin, C.-J. Zhao, and L.-L. Wang, “Toroidal resonance based optical modulator employing hybrid graphene-dielectric metasurface,” Opt. Express 25, 26045–26054 (2017).
[Crossref]

B. Vaseghi, M. Mousavi, S. Khorshidian, and Z. Vafapour, “Spin-orbit interaction effects on the electronic structure of spherical quantum dot with different confinement potentials,” Superlattice Microst. 111, 671–677 (2017).
[Crossref]

H. Lu, X. Gan, D. Mao, Y. Fan, D. Yang, and J. Zhao, “Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures,” Opt. Express 25, 21630–21636 (2017).
[Crossref]

2016 (8)

B.-X. Wang, G.-Z. Wang, and T. Sang, “Simple design of novel triple-band terahertz metamaterial absorber for sensing application,” J. Phys. D: Appl. Phys. 49, 165307 (2016).
[Crossref]

H. Lu, X. Gan, B. Jia, D. Mao, and J. Zhao, “Tunable high-efficiency light absorption of monolayer graphene via tamm plasmon polaritons,” Opt. Lett. 41, 4743–4746 (2016).
[Crossref] [PubMed]

S.-X. Xia, X. Zhai, L.-L. Wang, B. Sun, J.-Q. Liu, and S.-C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24, 17886–17899 (2016).
[Crossref] [PubMed]

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8, 10388–10397 (2016).
[Crossref] [PubMed]

Z. Wang, T. Li, K. Almdal, N. A. Mortensen, S. Xiao, and S. Ndoni, “Experimental demonstration of graphene plasmons working close to the near-infrared window,” Opt. Lett. 41, 5345–5348 (2016).
[Crossref] [PubMed]

G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the thz range,” Opt. Express 24, 1518–1527 (2016).
[Crossref] [PubMed]

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18, 26661–26669 (2016).
[Crossref] [PubMed]

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6, 38086 (2016).
[Crossref] [PubMed]

2015 (7)

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7, 13530–13536 (2015).
[Crossref] [PubMed]

X. He, “Tunable terahertz graphene metamaterials,” Carbon 82, 229–237 (2015).
[Crossref]

Q. Lin, X. Zhai, L. Wang, B. Wang, G. Liu, and S. Xia, “Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings,” EPL (Europhysics Letters) 111, 34004 (2015).
[Crossref]

S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23, 8888–8900 (2015).
[Crossref]

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Ultrabroadband, more than one order absorption enhancement in graphene with plasmonic light trapping,” Sci. Rep. 5, 16998 (2015).
[Crossref]

Y. Cai, J. Zhu, Q. H. Liu, T. Lin, J. Zhou, L. Ye, and Z. Cai, “Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits,” Opt. Express 23, 32318–32328 (2015).
[Crossref] [PubMed]

H. Liu, G. Ren, Y. Gao, Y. Lian, Y. Qi, and S. Jian, “Tunable subwavelength terahertz plasmon-induced transparency in the insb slot waveguide side-coupled with two stub resonators,” Appl. Opt. 54, 3918–3924 (2015).
[Crossref]

2014 (2)

J. Zhang, C. Guo, K. Liu, Z. Zhu, W. Ye, X. Yuan, and S. Qin, “Coherent perfect absorption and transparency in a nanostructured graphene film,” Opt. Express 22, 12524–12532 (2014).
[Crossref] [PubMed]

C. Zeng, J. Guo, and X. Liu, “High-contrast electro-optic modulation of spatial light induced by graphene-integrated fabry-pérot microcavity,” Appl. Phys. Lett. 105, 121103 (2014).
[Crossref]

2013 (1)

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

2012 (2)

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

A. Y. Nikitin, F. Guinea, and L. Martín-Moreno, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett. 101, 151119 (2012).
[Crossref]

2011 (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and et al., “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

2010 (6)

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in si wire arrays for photovoltaic applications,” Nat. Mater. 9, 239 (2010).
[Crossref]

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H.-T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys. 107, 093104 (2010).
[Crossref]

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status solidi-R 4, 295–297 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

V. V. Khardikov, E. O. Iarko, and S. L. Prosvirnin, “Trapping of light by metal arrays,” J. Opt. 12, 045102 (2010).
[Crossref]

2009 (1)

J. Le Perchec, Y. Desieres, and R. Espiau de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett. 94, 181104 (2009).
[Crossref]

2007 (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

2005 (1)

A. Rogalski, “Hgcdte infrared detector material: history, status and outlook,” Rep. Prog. Phys. 68, 2267 (2005).
[Crossref]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[Crossref]

Ajayan, P. M.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

Alipour, A.

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sensors J. 18, 7047–7054 (2018).
[Crossref]

Almdal, K.

Atwater, H. A.

S. Kim, M. S. Jang, V. W. Brar, K. W. Mauser, L. Kim, and H. A. Atwater, “Electronically tunable perfect absorption in graphene,” Nano Lett. 18, 971–979 (2018).
[Crossref]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in si wire arrays for photovoltaic applications,” Nat. Mater. 9, 239 (2010).
[Crossref]

Bai, Q.

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H.-T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys. 107, 093104 (2010).
[Crossref]

Bai, Y.

Y. Dai, Y. Xia, T. Jiang, A. Chen, Y. Zhang, Y. Bai, G. Du, F. Guan, S. Wu, X. Liu, and et al., “Dynamical tuning of graphene plasmonic resonances by ultraviolet illuminations,” Adv. Opt. Mater. 6, 1701081 (2018).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[Crossref]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and et al., “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Boettcher, S. W.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in si wire arrays for photovoltaic applications,” Nat. Mater. 9, 239 (2010).
[Crossref]

Boltasseva, A.

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status solidi-R 4, 295–297 (2010).
[Crossref]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Brar, V. W.

S. Kim, M. S. Jang, V. W. Brar, K. W. Mauser, L. Kim, and H. A. Atwater, “Electronically tunable perfect absorption in graphene,” Nano Lett. 18, 971–979 (2018).
[Crossref]

Briggs, R. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in si wire arrays for photovoltaic applications,” Nat. Mater. 9, 239 (2010).
[Crossref]

Cai, Y.

Cai, Z.

Calderon, J.

A. Safaei, S. Chandra, A. Vázquez-Guardado, J. Calderon, D. Franklin, L. Tetard, L. Zhai, M. N. Leuenberger, and D. Chanda, “Dynamically tunable extraordinary light absorption in monolayer graphene,” Phys. Rev. B 96, 165431 (2017).
[Crossref]

Cao, H.

W. Zhao, S. Xiao, Y. Zhang, D. Pan, J. Wen, X. Qian, D. Wang, H. Cao, W. He, M. Quan, and et al.,“Binary "island" shaped arrays with high-density hot spots for surface-enhanced raman scattering substrates,” Nanoscale 10, 14220–14229 (2018).
[Crossref]

Chanda, D.

A. Safaei, S. Chandra, A. Vázquez-Guardado, J. Calderon, D. Franklin, L. Tetard, L. Zhai, M. N. Leuenberger, and D. Chanda, “Dynamically tunable extraordinary light absorption in monolayer graphene,” Phys. Rev. B 96, 165431 (2017).
[Crossref]

A. Safaei, S. Chandra, M. N. Leuenberger, and D. Chanda, “Tunable enhanced mid-infrared light absorption in graphene,” in CLEO Applications and Technology, (Optical Society of America, 2017), pp. ATh3B–3.

Chandra, S.

A. Safaei, S. Chandra, A. Vázquez-Guardado, J. Calderon, D. Franklin, L. Tetard, L. Zhai, M. N. Leuenberger, and D. Chanda, “Dynamically tunable extraordinary light absorption in monolayer graphene,” Phys. Rev. B 96, 165431 (2017).
[Crossref]

A. Safaei, S. Chandra, M. N. Leuenberger, and D. Chanda, “Tunable enhanced mid-infrared light absorption in graphene,” in CLEO Applications and Technology, (Optical Society of America, 2017), pp. ATh3B–3.

Chen, A.

Y. Dai, Y. Xia, T. Jiang, A. Chen, Y. Zhang, Y. Bai, G. Du, F. Guan, S. Wu, X. Liu, and et al., “Dynamical tuning of graphene plasmonic resonances by ultraviolet illuminations,” Adv. Opt. Mater. 6, 1701081 (2018).
[Crossref]

Chen, H.

M. Huang, Y. Cheng, Z. Cheng, H. Chen, X. Mao, and R. Gong, “Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle,” Opt. Commun. 415, 194–201 (2018).
[Crossref]

Chen, J.

J. Chen, Z. Yi, S. Xiao, and X. Xu, “Absorption enhancement in double-layer cross-shaped graphene arrays,” Mater. Res. Express 5, 015605 (2018).
[Crossref]

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8, 175 (2018).
[Crossref]

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H.-T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys. 107, 093104 (2010).
[Crossref]

Chen, X.

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8, 175 (2018).
[Crossref]

Cheng, C.

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H.-T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys. 107, 093104 (2010).
[Crossref]

Cheng, L.

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50, 195101 (2017).
[Crossref]

Cheng, Y.

M. Huang, Y. Cheng, Z. Cheng, H. Chen, X. Mao, and R. Gong, “Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle,” Opt. Commun. 415, 194–201 (2018).
[Crossref]

Cheng, Z.

M. Huang, Y. Cheng, Z. Cheng, H. Chen, X. Mao, and R. Gong, “Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle,” Opt. Commun. 415, 194–201 (2018).
[Crossref]

Dai, Y.

Y. Dai, Y. Xia, T. Jiang, A. Chen, Y. Zhang, Y. Bai, G. Du, F. Guan, S. Wu, X. Liu, and et al., “Dynamical tuning of graphene plasmonic resonances by ultraviolet illuminations,” Adv. Opt. Mater. 6, 1701081 (2018).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[Crossref]

Desieres, Y.

J. Le Perchec, Y. Desieres, and R. Espiau de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett. 94, 181104 (2009).
[Crossref]

Du, G.

Y. Dai, Y. Xia, T. Jiang, A. Chen, Y. Zhang, Y. Bai, G. Du, F. Guan, S. Wu, X. Liu, and et al., “Dynamical tuning of graphene plasmonic resonances by ultraviolet illuminations,” Adv. Opt. Mater. 6, 1701081 (2018).
[Crossref]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[Crossref]

Espiau de Lamaestre, R.

J. Le Perchec, Y. Desieres, and R. Espiau de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett. 94, 181104 (2009).
[Crossref]

Fan, Y.

Fang, Z.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

Farmani, A.

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sensors J. 18, 7047–7054 (2018).
[Crossref]

Ferrari, A.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Franklin, D.

A. Safaei, S. Chandra, A. Vázquez-Guardado, J. Calderon, D. Franklin, L. Tetard, L. Zhai, M. N. Leuenberger, and D. Chanda, “Dynamically tunable extraordinary light absorption in monolayer graphene,” Phys. Rev. B 96, 165431 (2017).
[Crossref]

Gan, X.

Gao, P.

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8, 10388–10397 (2016).
[Crossref] [PubMed]

Gao, Y.

García de Abajo, F. J.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and et al., “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Ghahraloud, H.

Z. Vafapour and H. Ghahraloud, “Semiconductor-based far-infrared biosensor by optical control of light propagation using thz metamaterial,” JOSA B 35, 1192–1199 (2018).
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and et al., “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Gong, R.

M. Huang, Y. Cheng, Z. Cheng, H. Chen, X. Mao, and R. Gong, “Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle,” Opt. Commun. 415, 194–201 (2018).
[Crossref]

Grigorenko, A.

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Guan, F.

Y. Dai, Y. Xia, T. Jiang, A. Chen, Y. Zhang, Y. Bai, G. Du, F. Guan, S. Wu, X. Liu, and et al., “Dynamical tuning of graphene plasmonic resonances by ultraviolet illuminations,” Adv. Opt. Mater. 6, 1701081 (2018).
[Crossref]

Guinea, F.

A. Y. Nikitin, F. Guinea, and L. Martín-Moreno, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett. 101, 151119 (2012).
[Crossref]

Guo, C.

Guo, J.

C. Zeng, J. Guo, and X. Liu, “High-contrast electro-optic modulation of spatial light induced by graphene-integrated fabry-pérot microcavity,” Appl. Phys. Lett. 105, 121103 (2014).
[Crossref]

Halas, N. J.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

Han, X.

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18, 26661–26669 (2016).
[Crossref] [PubMed]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and et al., “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

He, W.

W. Zhao, S. Xiao, Y. Zhang, D. Pan, J. Wen, X. Qian, D. Wang, H. Cao, W. He, M. Quan, and et al.,“Binary "island" shaped arrays with high-density hot spots for surface-enhanced raman scattering substrates,” Nanoscale 10, 14220–14229 (2018).
[Crossref]

He, X.

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8, 10388–10397 (2016).
[Crossref] [PubMed]

X. He, “Tunable terahertz graphene metamaterials,” Carbon 82, 229–237 (2015).
[Crossref]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and et al., “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Huang, H.

Huang, M.

M. Huang, Y. Cheng, Z. Cheng, H. Chen, X. Mao, and R. Gong, “Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle,” Opt. Commun. 415, 194–201 (2018).
[Crossref]

Huang, Y.

Iarko, E. O.

V. V. Khardikov, E. O. Iarko, and S. L. Prosvirnin, “Trapping of light by metal arrays,” J. Opt. 12, 045102 (2010).
[Crossref]

Jang, M. S.

S. Kim, M. S. Jang, V. W. Brar, K. W. Mauser, L. Kim, and H. A. Atwater, “Electronically tunable perfect absorption in graphene,” Nano Lett. 18, 971–979 (2018).
[Crossref]

Ji, J.

Jia, B.

Jian, S.

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Jiang, T.

Y. Dai, Y. Xia, T. Jiang, A. Chen, Y. Zhang, Y. Bai, G. Du, F. Guan, S. Wu, X. Liu, and et al., “Dynamical tuning of graphene plasmonic resonances by ultraviolet illuminations,” Adv. Opt. Mater. 6, 1701081 (2018).
[Crossref]

Jiang, X.

S. Xiao, T. Wang, X. Jiang, B. Wang, and C. Xu, “A spectrally tunable plasmonic photosensor with an ultrathin semiconductor region,” Plasmonics 13, 897–902 (2018).
[Crossref]

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50, 195101 (2017).
[Crossref]

S. Xiao, T. Wang, X. Jiang, B. Wang, and C. Xu, “Tunable light trapping and absorption engineering with graphene in the infrared regime,” in POEM Advanced Spectroscopy and Applications, (Optical Society of America, 2017), pp. 3–10.

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and et al., “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Kang, M.

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H.-T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys. 107, 093104 (2010).
[Crossref]

Ke, S.

Kelzenberg, M. D.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in si wire arrays for photovoltaic applications,” Nat. Mater. 9, 239 (2010).
[Crossref]

Keshavarz, A.

A. Keshavarz and Z. Vafapour, “Water-based terahertz metamaterial for skin cancer detection application,” IEEE Sensors J. 99, 1 (2018).
[Crossref]

Khardikov, V. V.

V. V. Khardikov, E. O. Iarko, and S. L. Prosvirnin, “Trapping of light by metal arrays,” J. Opt. 12, 045102 (2010).
[Crossref]

Khorshidian, S.

B. Vaseghi, M. Mousavi, S. Khorshidian, and Z. Vafapour, “Spin-orbit interaction effects on the electronic structure of spherical quantum dot with different confinement potentials,” Superlattice Microst. 111, 671–677 (2017).
[Crossref]

Kim, L.

S. Kim, M. S. Jang, V. W. Brar, K. W. Mauser, L. Kim, and H. A. Atwater, “Electronically tunable perfect absorption in graphene,” Nano Lett. 18, 971–979 (2018).
[Crossref]

Kim, S.

S. Kim, M. S. Jang, V. W. Brar, K. W. Mauser, L. Kim, and H. A. Atwater, “Electronically tunable perfect absorption in graphene,” Nano Lett. 18, 971–979 (2018).
[Crossref]

Leuenberger, M. N.

A. Safaei, S. Chandra, A. Vázquez-Guardado, J. Calderon, D. Franklin, L. Tetard, L. Zhai, M. N. Leuenberger, and D. Chanda, “Dynamically tunable extraordinary light absorption in monolayer graphene,” Phys. Rev. B 96, 165431 (2017).
[Crossref]

A. Safaei, S. Chandra, M. N. Leuenberger, and D. Chanda, “Tunable enhanced mid-infrared light absorption in graphene,” in CLEO Applications and Technology, (Optical Society of America, 2017), pp. ATh3B–3.

Lewis, N. S.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in si wire arrays for photovoltaic applications,” Nat. Mater. 9, 239 (2010).
[Crossref]

Li, T.

Li, Z.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Lian, Y.

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and et al., “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Lin, Q.

H. Meng, X. Xue, Q. Lin, G. Liu, X. Zhai, and L. Wang, “Tunable and multi-channel perfect absorber based on graphene at mid-infrared region,” Appl. Phys. Express 11, 052002 (2018).
[Crossref]

G.-D. Liu, X. Zhai, S.-X. Xia, Q. Lin, C.-J. Zhao, and L.-L. Wang, “Toroidal resonance based optical modulator employing hybrid graphene-dielectric metasurface,” Opt. Express 25, 26045–26054 (2017).
[Crossref]

Q. Lin, X. Zhai, L. Wang, B. Wang, G. Liu, and S. Xia, “Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings,” EPL (Europhysics Letters) 111, 34004 (2015).
[Crossref]

Lin, T.

Ling, F.

Liu, C.

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H.-T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys. 107, 093104 (2010).
[Crossref]

Liu, G.

H. Meng, X. Xue, Q. Lin, G. Liu, X. Zhai, and L. Wang, “Tunable and multi-channel perfect absorber based on graphene at mid-infrared region,” Appl. Phys. Express 11, 052002 (2018).
[Crossref]

Q. Lin, X. Zhai, L. Wang, B. Wang, G. Liu, and S. Xia, “Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings,” EPL (Europhysics Letters) 111, 34004 (2015).
[Crossref]

Liu, G.-D.

Liu, H.

Liu, J.-Q.

Liu, K.

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Liu, Q. H.

Liu, T.

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51, 415105 (2018).
[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Liu, W.

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6, 38086 (2016).
[Crossref] [PubMed]

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7, 13530–13536 (2015).
[Crossref] [PubMed]

Liu, X.

Y. Dai, Y. Xia, T. Jiang, A. Chen, Y. Zhang, Y. Bai, G. Du, F. Guan, S. Wu, X. Liu, and et al., “Dynamical tuning of graphene plasmonic resonances by ultraviolet illuminations,” Adv. Opt. Mater. 6, 1701081 (2018).
[Crossref]

C. Zeng, J. Guo, and X. Liu, “High-contrast electro-optic modulation of spatial light induced by graphene-integrated fabry-pérot microcavity,” Appl. Phys. Lett. 105, 121103 (2014).
[Crossref]

Liu, Y.

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51, 415105 (2018).
[Crossref]

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51, 415105 (2018).
[Crossref]

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18, 26661–26669 (2016).
[Crossref] [PubMed]

Liu, Z.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

Long, H.

Lu, H.

Lu, P.

Luo, C.

Mao, D.

Mao, X.

M. Huang, Y. Cheng, Z. Cheng, H. Chen, X. Mao, and R. Gong, “Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle,” Opt. Commun. 415, 194–201 (2018).
[Crossref]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and et al., “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Martín-Moreno, L.

A. Y. Nikitin, F. Guinea, and L. Martín-Moreno, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett. 101, 151119 (2012).
[Crossref]

Mauser, K. W.

S. Kim, M. S. Jang, V. W. Brar, K. W. Mauser, L. Kim, and H. A. Atwater, “Electronically tunable perfect absorption in graphene,” Nano Lett. 18, 971–979 (2018).
[Crossref]

Mei, T.

Meng, H.

H. Meng, X. Xue, Q. Lin, G. Liu, X. Zhai, and L. Wang, “Tunable and multi-channel perfect absorber based on graphene at mid-infrared region,” Appl. Phys. Express 11, 052002 (2018).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Mir, A.

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sensors J. 18, 7047–7054 (2018).
[Crossref]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Mortensen, N. A.

Mousavi, M.

B. Vaseghi, M. Mousavi, S. Khorshidian, and Z. Vafapour, “Spin-orbit interaction effects on the electronic structure of spherical quantum dot with different confinement potentials,” Superlattice Microst. 111, 671–677 (2017).
[Crossref]

Naik, G. V.

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status solidi-R 4, 295–297 (2010).
[Crossref]

Ndoni, S.

Nikitin, A. Y.

A. Y. Nikitin, F. Guinea, and L. Martín-Moreno, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett. 101, 151119 (2012).
[Crossref]

Nordlander, P.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

Novoselov, K.

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of optical constants of solids, vol. 3 (Academic press, 1998).

Pan, D.

W. Zhao, S. Xiao, Y. Zhang, D. Pan, J. Wen, X. Qian, D. Wang, H. Cao, W. He, M. Quan, and et al.,“Binary "island" shaped arrays with high-density hot spots for surface-enhanced raman scattering substrates,” Nanoscale 10, 14220–14229 (2018).
[Crossref]

Perchec, J. Le

J. Le Perchec, Y. Desieres, and R. Espiau de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett. 94, 181104 (2009).
[Crossref]

Petykiewicz, J. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in si wire arrays for photovoltaic applications,” Nat. Mater. 9, 239 (2010).
[Crossref]

Polini, M.

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

Prosvirnin, S. L.

V. V. Khardikov, E. O. Iarko, and S. L. Prosvirnin, “Trapping of light by metal arrays,” J. Opt. 12, 045102 (2010).
[Crossref]

Putnam, M. C.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in si wire arrays for photovoltaic applications,” Nat. Mater. 9, 239 (2010).
[Crossref]

Qi, Y.

Qian, X.

W. Zhao, S. Xiao, Y. Zhang, D. Pan, J. Wen, X. Qian, D. Wang, H. Cao, W. He, M. Quan, and et al.,“Binary "island" shaped arrays with high-density hot spots for surface-enhanced raman scattering substrates,” Nanoscale 10, 14220–14229 (2018).
[Crossref]

Qin, S.

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6, 38086 (2016).
[Crossref] [PubMed]

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Ultrabroadband, more than one order absorption enhancement in graphene with plasmonic light trapping,” Sci. Rep. 5, 16998 (2015).
[Crossref]

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7, 13530–13536 (2015).
[Crossref] [PubMed]

J. Zhang, C. Guo, K. Liu, Z. Zhu, W. Ye, X. Yuan, and S. Qin, “Coherent perfect absorption and transparency in a nanostructured graphene film,” Opt. Express 22, 12524–12532 (2014).
[Crossref] [PubMed]

Quan, M.

W. Zhao, S. Xiao, Y. Zhang, D. Pan, J. Wen, X. Qian, D. Wang, H. Cao, W. He, M. Quan, and et al.,“Binary "island" shaped arrays with high-density hot spots for surface-enhanced raman scattering substrates,” Nanoscale 10, 14220–14229 (2018).
[Crossref]

Ren, G.

Rogalski, A.

A. Rogalski, “Hgcdte infrared detector material: history, status and outlook,” Rep. Prog. Phys. 68, 2267 (2005).
[Crossref]

Safaei, A.

A. Safaei, S. Chandra, A. Vázquez-Guardado, J. Calderon, D. Franklin, L. Tetard, L. Zhai, M. N. Leuenberger, and D. Chanda, “Dynamically tunable extraordinary light absorption in monolayer graphene,” Phys. Rev. B 96, 165431 (2017).
[Crossref]

A. Safaei, S. Chandra, M. N. Leuenberger, and D. Chanda, “Tunable enhanced mid-infrared light absorption in graphene,” in CLEO Applications and Technology, (Optical Society of America, 2017), pp. ATh3B–3.

Sang, T.

B.-X. Wang, G.-Z. Wang, and T. Sang, “Simple design of novel triple-band terahertz metamaterial absorber for sensing application,” J. Phys. D: Appl. Phys. 49, 165307 (2016).
[Crossref]

Schlather, A. E.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and et al., “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Shi, P.

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8, 175 (2018).
[Crossref]

Shi, W.

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8, 10388–10397 (2016).
[Crossref] [PubMed]

Spurgeon, J. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in si wire arrays for photovoltaic applications,” Nat. Mater. 9, 239 (2010).
[Crossref]

Sun, B.

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Tetard, L.

A. Safaei, S. Chandra, A. Vázquez-Guardado, J. Calderon, D. Franklin, L. Tetard, L. Zhai, M. N. Leuenberger, and D. Chanda, “Dynamically tunable extraordinary light absorption in monolayer graphene,” Phys. Rev. B 96, 165431 (2017).
[Crossref]

Turner-Evans, D. B.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in si wire arrays for photovoltaic applications,” Nat. Mater. 9, 239 (2010).
[Crossref]

Vafapour, Z.

A. Keshavarz and Z. Vafapour, “Water-based terahertz metamaterial for skin cancer detection application,” IEEE Sensors J. 99, 1 (2018).
[Crossref]

Z. Vafapour and H. Ghahraloud, “Semiconductor-based far-infrared biosensor by optical control of light propagation using thz metamaterial,” JOSA B 35, 1192–1199 (2018).
[Crossref]

Z. Vafapour, “Large group delay in a microwave metamaterial analog of electromagnetically induced reflectance,” JOSA A 35, 417–422 (2018).
[Crossref] [PubMed]

B. Vaseghi, M. Mousavi, S. Khorshidian, and Z. Vafapour, “Spin-orbit interaction effects on the electronic structure of spherical quantum dot with different confinement potentials,” Superlattice Microst. 111, 671–677 (2017).
[Crossref]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Vaseghi, B.

B. Vaseghi, M. Mousavi, S. Khorshidian, and Z. Vafapour, “Spin-orbit interaction effects on the electronic structure of spherical quantum dot with different confinement potentials,” Superlattice Microst. 111, 671–677 (2017).
[Crossref]

Vázquez-Guardado, A.

A. Safaei, S. Chandra, A. Vázquez-Guardado, J. Calderon, D. Franklin, L. Tetard, L. Zhai, M. N. Leuenberger, and D. Chanda, “Dynamically tunable extraordinary light absorption in monolayer graphene,” Phys. Rev. B 96, 165431 (2017).
[Crossref]

Wang, B.

S. Xiao, T. Wang, X. Jiang, B. Wang, and C. Xu, “A spectrally tunable plasmonic photosensor with an ultrathin semiconductor region,” Plasmonics 13, 897–902 (2018).
[Crossref]

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50, 195101 (2017).
[Crossref]

Q. Lin, X. Zhai, L. Wang, B. Wang, G. Liu, and S. Xia, “Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings,” EPL (Europhysics Letters) 111, 34004 (2015).
[Crossref]

S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23, 8888–8900 (2015).
[Crossref]

S. Xiao, T. Wang, X. Jiang, B. Wang, and C. Xu, “Tunable light trapping and absorption engineering with graphene in the infrared regime,” in POEM Advanced Spectroscopy and Applications, (Optical Society of America, 2017), pp. 3–10.

Wang, B.-X.

B.-X. Wang, G.-Z. Wang, and T. Sang, “Simple design of novel triple-band terahertz metamaterial absorber for sensing application,” J. Phys. D: Appl. Phys. 49, 165307 (2016).
[Crossref]

Wang, D.

W. Zhao, S. Xiao, Y. Zhang, D. Pan, J. Wen, X. Qian, D. Wang, H. Cao, W. He, M. Quan, and et al.,“Binary "island" shaped arrays with high-density hot spots for surface-enhanced raman scattering substrates,” Nanoscale 10, 14220–14229 (2018).
[Crossref]

Wang, G.-Z.

B.-X. Wang, G.-Z. Wang, and T. Sang, “Simple design of novel triple-band terahertz metamaterial absorber for sensing application,” J. Phys. D: Appl. Phys. 49, 165307 (2016).
[Crossref]

Wang, H.

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51, 415105 (2018).
[Crossref]

Wang, H.-T.

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H.-T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys. 107, 093104 (2010).
[Crossref]

Wang, K.

Wang, L.

H. Meng, X. Xue, Q. Lin, G. Liu, X. Zhai, and L. Wang, “Tunable and multi-channel perfect absorber based on graphene at mid-infrared region,” Appl. Phys. Express 11, 052002 (2018).
[Crossref]

Q. Lin, X. Zhai, L. Wang, B. Wang, G. Liu, and S. Xia, “Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings,” EPL (Europhysics Letters) 111, 34004 (2015).
[Crossref]

Wang, L.-L.

Wang, T.

S. Xiao, T. Wang, X. Jiang, B. Wang, and C. Xu, “A spectrally tunable plasmonic photosensor with an ultrathin semiconductor region,” Plasmonics 13, 897–902 (2018).
[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50, 195101 (2017).
[Crossref]

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18, 26661–26669 (2016).
[Crossref] [PubMed]

S. Xiao, T. Wang, X. Jiang, B. Wang, and C. Xu, “Tunable light trapping and absorption engineering with graphene in the infrared regime,” in POEM Advanced Spectroscopy and Applications, (Optical Society of America, 2017), pp. 3–10.

Wang, Y.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

Wang, Z.

Warren, E. L.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in si wire arrays for photovoltaic applications,” Nat. Mater. 9, 239 (2010).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Wen, J.

W. Zhao, S. Xiao, Y. Zhang, D. Pan, J. Wen, X. Qian, D. Wang, H. Cao, W. He, M. Quan, and et al.,“Binary "island" shaped arrays with high-density hot spots for surface-enhanced raman scattering substrates,” Nanoscale 10, 14220–14229 (2018).
[Crossref]

Wen, S.-C.

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Wu, S.

Y. Dai, Y. Xia, T. Jiang, A. Chen, Y. Zhang, Y. Bai, G. Du, F. Guan, S. Wu, X. Liu, and et al., “Dynamical tuning of graphene plasmonic resonances by ultraviolet illuminations,” Adv. Opt. Mater. 6, 1701081 (2018).
[Crossref]

Xia, S.

Q. Lin, X. Zhai, L. Wang, B. Wang, G. Liu, and S. Xia, “Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings,” EPL (Europhysics Letters) 111, 34004 (2015).
[Crossref]

Xia, S.-X.

Xia, Y.

Y. Dai, Y. Xia, T. Jiang, A. Chen, Y. Zhang, Y. Bai, G. Du, F. Guan, S. Wu, X. Liu, and et al., “Dynamical tuning of graphene plasmonic resonances by ultraviolet illuminations,” Adv. Opt. Mater. 6, 1701081 (2018).
[Crossref]

Xiao, F.

Xiao, L.

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51, 415105 (2018).
[Crossref]

Xiao, S.

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51, 415105 (2018).
[Crossref]

W. Zhao, S. Xiao, Y. Zhang, D. Pan, J. Wen, X. Qian, D. Wang, H. Cao, W. He, M. Quan, and et al.,“Binary "island" shaped arrays with high-density hot spots for surface-enhanced raman scattering substrates,” Nanoscale 10, 14220–14229 (2018).
[Crossref]

J. Chen, Z. Yi, S. Xiao, and X. Xu, “Absorption enhancement in double-layer cross-shaped graphene arrays,” Mater. Res. Express 5, 015605 (2018).
[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

S. Xiao, T. Wang, X. Jiang, B. Wang, and C. Xu, “A spectrally tunable plasmonic photosensor with an ultrathin semiconductor region,” Plasmonics 13, 897–902 (2018).
[Crossref]

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8, 175 (2018).
[Crossref]

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50, 195101 (2017).
[Crossref]

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18, 26661–26669 (2016).
[Crossref] [PubMed]

Z. Wang, T. Li, K. Almdal, N. A. Mortensen, S. Xiao, and S. Ndoni, “Experimental demonstration of graphene plasmons working close to the near-infrared window,” Opt. Lett. 41, 5345–5348 (2016).
[Crossref] [PubMed]

S. Xiao, T. Wang, X. Jiang, B. Wang, and C. Xu, “Tunable light trapping and absorption engineering with graphene in the infrared regime,” in POEM Advanced Spectroscopy and Applications, (Optical Society of America, 2017), pp. 3–10.

Xiong, F.

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Ultrabroadband, more than one order absorption enhancement in graphene with plasmonic light trapping,” Sci. Rep. 5, 16998 (2015).
[Crossref]

Xu, C.

S. Xiao, T. Wang, X. Jiang, B. Wang, and C. Xu, “A spectrally tunable plasmonic photosensor with an ultrathin semiconductor region,” Plasmonics 13, 897–902 (2018).
[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51, 415105 (2018).
[Crossref]

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50, 195101 (2017).
[Crossref]

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18, 26661–26669 (2016).
[Crossref] [PubMed]

S. Xiao, T. Wang, X. Jiang, B. Wang, and C. Xu, “Tunable light trapping and absorption engineering with graphene in the infrared regime,” in POEM Advanced Spectroscopy and Applications, (Optical Society of America, 2017), pp. 3–10.

Xu, X.

J. Chen, Z. Yi, S. Xiao, and X. Xu, “Absorption enhancement in double-layer cross-shaped graphene arrays,” Mater. Res. Express 5, 015605 (2018).
[Crossref]

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8, 175 (2018).
[Crossref]

Xue, X.

H. Meng, X. Xue, Q. Lin, G. Liu, X. Zhai, and L. Wang, “Tunable and multi-channel perfect absorber based on graphene at mid-infrared region,” Appl. Phys. Express 11, 052002 (2018).
[Crossref]

Yan, S.

Yan, X.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50, 195101 (2017).
[Crossref]

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18, 26661–26669 (2016).
[Crossref] [PubMed]

Yang, D.

Yao, G.

Yao, J.

Ye, L.

Ye, W.

Ye, X.

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8, 175 (2018).
[Crossref]

Yi, Y.

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8, 175 (2018).
[Crossref]

Yi, Z.

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8, 175 (2018).
[Crossref]

J. Chen, Z. Yi, S. Xiao, and X. Xu, “Absorption enhancement in double-layer cross-shaped graphene arrays,” Mater. Res. Express 5, 015605 (2018).
[Crossref]

Yuan, X.

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6, 38086 (2016).
[Crossref] [PubMed]

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Ultrabroadband, more than one order absorption enhancement in graphene with plasmonic light trapping,” Sci. Rep. 5, 16998 (2015).
[Crossref]

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7, 13530–13536 (2015).
[Crossref] [PubMed]

J. Zhang, C. Guo, K. Liu, Z. Zhu, W. Ye, X. Yuan, and S. Qin, “Coherent perfect absorption and transparency in a nanostructured graphene film,” Opt. Express 22, 12524–12532 (2014).
[Crossref] [PubMed]

Yue, J.

Zeng, C.

H. Lu, D. Mao, C. Zeng, F. Xiao, D. Yang, T. Mei, and J. Zhao, “Plasmonic fano spectral response from graphene metasurfaces in the mir region,” Opt. Mater. Express 8, 1058–1068 (2018).
[Crossref]

C. Zeng, J. Guo, and X. Liu, “High-contrast electro-optic modulation of spatial light induced by graphene-integrated fabry-pérot microcavity,” Appl. Phys. Lett. 105, 121103 (2014).
[Crossref]

Zeng, Y.

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8, 175 (2018).
[Crossref]

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and et al., “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Zhai, L.

A. Safaei, S. Chandra, A. Vázquez-Guardado, J. Calderon, D. Franklin, L. Tetard, L. Zhai, M. N. Leuenberger, and D. Chanda, “Dynamically tunable extraordinary light absorption in monolayer graphene,” Phys. Rev. B 96, 165431 (2017).
[Crossref]

Zhai, X.

S.-X. Xia, X. Zhai, L.-L. Wang, and S.-C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photonics Res. 6, 692–702 (2018).
[Crossref]

H. Meng, X. Xue, Q. Lin, G. Liu, X. Zhai, and L. Wang, “Tunable and multi-channel perfect absorber based on graphene at mid-infrared region,” Appl. Phys. Express 11, 052002 (2018).
[Crossref]

G.-D. Liu, X. Zhai, S.-X. Xia, Q. Lin, C.-J. Zhao, and L.-L. Wang, “Toroidal resonance based optical modulator employing hybrid graphene-dielectric metasurface,” Opt. Express 25, 26045–26054 (2017).
[Crossref]

S.-X. Xia, X. Zhai, Y. Huang, J.-Q. Liu, L.-L. Wang, and S.-C. Wen, “Graphene surface plasmons with dielectric metasurfaces,” J. Lightwave Technol. 35, 4553–4558 (2017).
[Crossref]

S.-X. Xia, X. Zhai, Y. Huang, J.-Q. Liu, L.-L. Wang, and S.-C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42, 3052–3055 (2017).
[Crossref]

S.-X. Xia, X. Zhai, L.-L. Wang, B. Sun, J.-Q. Liu, and S.-C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24, 17886–17899 (2016).
[Crossref] [PubMed]

Q. Lin, X. Zhai, L. Wang, B. Wang, G. Liu, and S. Xia, “Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings,” EPL (Europhysics Letters) 111, 34004 (2015).
[Crossref]

Zhang, J.

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6, 38086 (2016).
[Crossref] [PubMed]

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Ultrabroadband, more than one order absorption enhancement in graphene with plasmonic light trapping,” Sci. Rep. 5, 16998 (2015).
[Crossref]

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7, 13530–13536 (2015).
[Crossref] [PubMed]

J. Zhang, C. Guo, K. Liu, Z. Zhu, W. Ye, X. Yuan, and S. Qin, “Coherent perfect absorption and transparency in a nanostructured graphene film,” Opt. Express 22, 12524–12532 (2014).
[Crossref] [PubMed]

Zhang, Y.

W. Zhao, S. Xiao, Y. Zhang, D. Pan, J. Wen, X. Qian, D. Wang, H. Cao, W. He, M. Quan, and et al.,“Binary "island" shaped arrays with high-density hot spots for surface-enhanced raman scattering substrates,” Nanoscale 10, 14220–14229 (2018).
[Crossref]

Y. Dai, Y. Xia, T. Jiang, A. Chen, Y. Zhang, Y. Bai, G. Du, F. Guan, S. Wu, X. Liu, and et al., “Dynamical tuning of graphene plasmonic resonances by ultraviolet illuminations,” Adv. Opt. Mater. 6, 1701081 (2018).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Zhao, C.-J.

Zhao, J.

Zhao, W.

W. Zhao, S. Xiao, Y. Zhang, D. Pan, J. Wen, X. Qian, D. Wang, H. Cao, W. He, M. Quan, and et al.,“Binary "island" shaped arrays with high-density hot spots for surface-enhanced raman scattering substrates,” Nanoscale 10, 14220–14229 (2018).
[Crossref]

Zhou, C.

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51, 415105 (2018).
[Crossref]

Zhou, J.

Zhou, Z.

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8, 175 (2018).
[Crossref]

Zhu, J.

Zhu, X.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

Zhu, Z.

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6, 38086 (2016).
[Crossref] [PubMed]

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Ultrabroadband, more than one order absorption enhancement in graphene with plasmonic light trapping,” Sci. Rep. 5, 16998 (2015).
[Crossref]

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7, 13530–13536 (2015).
[Crossref] [PubMed]

J. Zhang, C. Guo, K. Liu, Z. Zhu, W. Ye, X. Yuan, and S. Qin, “Coherent perfect absorption and transparency in a nanostructured graphene film,” Opt. Express 22, 12524–12532 (2014).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

Y. Dai, Y. Xia, T. Jiang, A. Chen, Y. Zhang, Y. Bai, G. Du, F. Guan, S. Wu, X. Liu, and et al., “Dynamical tuning of graphene plasmonic resonances by ultraviolet illuminations,” Adv. Opt. Mater. 6, 1701081 (2018).
[Crossref]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

H. Meng, X. Xue, Q. Lin, G. Liu, X. Zhai, and L. Wang, “Tunable and multi-channel perfect absorber based on graphene at mid-infrared region,” Appl. Phys. Express 11, 052002 (2018).
[Crossref]

Appl. Phys. Lett. (3)

J. Le Perchec, Y. Desieres, and R. Espiau de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett. 94, 181104 (2009).
[Crossref]

A. Y. Nikitin, F. Guinea, and L. Martín-Moreno, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett. 101, 151119 (2012).
[Crossref]

C. Zeng, J. Guo, and X. Liu, “High-contrast electro-optic modulation of spatial light induced by graphene-integrated fabry-pérot microcavity,” Appl. Phys. Lett. 105, 121103 (2014).
[Crossref]

Carbon (2)

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

X. He, “Tunable terahertz graphene metamaterials,” Carbon 82, 229–237 (2015).
[Crossref]

EPL (Europhysics Letters) (1)

Q. Lin, X. Zhai, L. Wang, B. Wang, G. Liu, and S. Xia, “Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings,” EPL (Europhysics Letters) 111, 34004 (2015).
[Crossref]

IEEE Sensors J. (2)

A. Keshavarz and Z. Vafapour, “Water-based terahertz metamaterial for skin cancer detection application,” IEEE Sensors J. 99, 1 (2018).
[Crossref]

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sensors J. 18, 7047–7054 (2018).
[Crossref]

J. Appl. Phys. (1)

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H.-T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys. 107, 093104 (2010).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

V. V. Khardikov, E. O. Iarko, and S. L. Prosvirnin, “Trapping of light by metal arrays,” J. Opt. 12, 045102 (2010).
[Crossref]

J. Phys. D: Appl. Phys. (3)

B.-X. Wang, G.-Z. Wang, and T. Sang, “Simple design of novel triple-band terahertz metamaterial absorber for sensing application,” J. Phys. D: Appl. Phys. 49, 165307 (2016).
[Crossref]

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50, 195101 (2017).
[Crossref]

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51, 415105 (2018).
[Crossref]

JOSA A (1)

Z. Vafapour, “Large group delay in a microwave metamaterial analog of electromagnetically induced reflectance,” JOSA A 35, 417–422 (2018).
[Crossref] [PubMed]

JOSA B (1)

Z. Vafapour and H. Ghahraloud, “Semiconductor-based far-infrared biosensor by optical control of light propagation using thz metamaterial,” JOSA B 35, 1192–1199 (2018).
[Crossref]

Mater. Res. Express (1)

J. Chen, Z. Yi, S. Xiao, and X. Xu, “Absorption enhancement in double-layer cross-shaped graphene arrays,” Mater. Res. Express 5, 015605 (2018).
[Crossref]

Nano Lett. (3)

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

S. Kim, M. S. Jang, V. W. Brar, K. W. Mauser, L. Kim, and H. A. Atwater, “Electronically tunable perfect absorption in graphene,” Nano Lett. 18, 971–979 (2018).
[Crossref]

Nanomaterials (1)

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8, 175 (2018).
[Crossref]

Nanoscale (3)

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7, 13530–13536 (2015).
[Crossref] [PubMed]

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8, 10388–10397 (2016).
[Crossref] [PubMed]

W. Zhao, S. Xiao, Y. Zhang, D. Pan, J. Wen, X. Qian, D. Wang, H. Cao, W. He, M. Quan, and et al.,“Binary "island" shaped arrays with high-density hot spots for surface-enhanced raman scattering substrates,” Nanoscale 10, 14220–14229 (2018).
[Crossref]

Nat. Mater. (1)

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in si wire arrays for photovoltaic applications,” Nat. Mater. 9, 239 (2010).
[Crossref]

Nat. Nanotechnol. (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and et al., “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Nat. Photonics (2)

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[Crossref]

Opt. Commun. (1)

M. Huang, Y. Cheng, Z. Cheng, H. Chen, X. Mao, and R. Gong, “Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle,” Opt. Commun. 415, 194–201 (2018).
[Crossref]

Opt. Express (7)

Opt. Lett. (3)

Opt. Mater. Express (2)

Photonics Res. (1)

S.-X. Xia, X. Zhai, L.-L. Wang, and S.-C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photonics Res. 6, 692–702 (2018).
[Crossref]

Phys. Chem. Chem. Phys. (1)

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18, 26661–26669 (2016).
[Crossref] [PubMed]

Phys. Rev. B (1)

A. Safaei, S. Chandra, A. Vázquez-Guardado, J. Calderon, D. Franklin, L. Tetard, L. Zhai, M. N. Leuenberger, and D. Chanda, “Dynamically tunable extraordinary light absorption in monolayer graphene,” Phys. Rev. B 96, 165431 (2017).
[Crossref]

Phys. Status solidi-R (1)

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status solidi-R 4, 295–297 (2010).
[Crossref]

Plasmonics (1)

S. Xiao, T. Wang, X. Jiang, B. Wang, and C. Xu, “A spectrally tunable plasmonic photosensor with an ultrathin semiconductor region,” Plasmonics 13, 897–902 (2018).
[Crossref]

Rep. Prog. Phys. (1)

A. Rogalski, “Hgcdte infrared detector material: history, status and outlook,” Rep. Prog. Phys. 68, 2267 (2005).
[Crossref]

Sci. Rep. (2)

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6, 38086 (2016).
[Crossref] [PubMed]

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Ultrabroadband, more than one order absorption enhancement in graphene with plasmonic light trapping,” Sci. Rep. 5, 16998 (2015).
[Crossref]

Science (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Superlattice Microst. (1)

B. Vaseghi, M. Mousavi, S. Khorshidian, and Z. Vafapour, “Spin-orbit interaction effects on the electronic structure of spherical quantum dot with different confinement potentials,” Superlattice Microst. 111, 671–677 (2017).
[Crossref]

Other (3)

E. D. Palik, Handbook of optical constants of solids, vol. 3 (Academic press, 1998).

S. Xiao, T. Wang, X. Jiang, B. Wang, and C. Xu, “Tunable light trapping and absorption engineering with graphene in the infrared regime,” in POEM Advanced Spectroscopy and Applications, (Optical Society of America, 2017), pp. 3–10.

A. Safaei, S. Chandra, M. N. Leuenberger, and D. Chanda, “Tunable enhanced mid-infrared light absorption in graphene,” in CLEO Applications and Technology, (Optical Society of America, 2017), pp. ATh3B–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The schematic geometry of our proposed graphene-based complementary metasurfaces. The unit cell consists of a monolayer graphene perforated with a circular nanohole on the top of a thin film semiconductor separated by an insulator layer.
Fig. 2
Fig. 2 (a) The simulated spectra of the transmission T, the reflection R, the total absorption A and the absorption in the semiconductor A   with the absorption coefficient α = 0.05   μ m−1 and the Fermi level of graphene E F = 0.6 eV. The enhancement factor of the absorption in the semiconductor is also shown compared to that in the impedance matched media. (b) The simulated electric field distribution in the x-y plane ( | E z | ) at the resonance.
Fig. 3
Fig. 3 The simulated spectra of the absorption in the semiconductor A   with different (a) radii of the circular nanohole R and (b) lattice constants of the unit cell P. The enhancement factor of the absorption in the semiconductor is also shown compared to that in the impedance matched media.
Fig. 4
Fig. 4 The simulated spectra of the absorption in the semiconductor A   with different Fermi levels of graphene EF. The enhancement factor of the absorption in the semiconductor is also shown compared to that in the impedance matched media.
Fig. 5
Fig. 5 The schematic geometry of our proposed anisotropic graphene-based complementary metasurfaces. In the unit cell, the monolayer graphene is perforated with a elliptical nanohole, and the rest keep the same as previous settings in Fig. 1.
Fig. 6
Fig. 6 The simulated spectra of the transmission T, the reflection R, the total absorption A and the absorption in the semiconductor A   with the absorption coefficient α = 0.05   μ m−1 and the Fermi level of graphene E F = 0.6 eV for (a) TM and (c) TE plane wave. The enhancement factor of the absorption in the semiconductor is also shown compared to that in the impedance matched media. The simulated electric field distribution in the x-y plane ( | E z | ) at the resonance for (b) TM and (d) TE plane wave.
Fig. 7
Fig. 7 The simulated spectra of the absorption in the semiconductor A   with different Fermi levels of graphene EF for (a) TM and (b) TE plane wave. The enhancement of the optical absorption in the semiconductor is also shown. The enhancement factor of the absorption in the semiconductor is also shown compared to that in the impedance matched media. (c) The dependence of the polarization absorption ratio on the variation of Fermi level of graphene at the specific wavelength of 10.2μm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ g = σ i n t r a + σ i n t e r = 2 e 2 k B T π 2 i ω + i τ 1 ln   [ 2 cosh   ( E F 2 k B T ) ] + e 2 4 [ 1 2 + 1 π arctan   ( ω 2 E F 2 k B T ) i 2 π ln   ( ω + 2 E F ) 2 ( ω 2 E F ) 2 + 4 ( k B T ) 2 ] ,
σ g = e 2 E F π 2 i ω + i τ 1 ,
ε x x = ε y y = 2.5 + i σ g ε 0 ω t g , ε z z = 2.5 ,

Metrics