Abstract

In this study, high pure and multi-shaped PbS synthesized via hydro- and solvothermal methods exhibited two growth mechanisms. According to the comparative experiments, the two growth mechanisms of PbS were illustrated. It was revealed that on one hand, in ethylenediamine (En), PbS exhibited epitaxial growth with increasing the temperature. On the other hand, in deionized water, PbS exhibited closed growth with increasing the temperature. In order to further verify the growth mechanism, the comparative experiment in mixed solvents was studied. In addition, the optical performances of the samples were also performed. These results demonstrated that our work offers an effective way to develop the tunable synthesis of multi-shaped PbS for various applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

4 April 2019: Typographical corrections were made to the author affiliations.


OSA Recommended Articles
Ion-redistribution induced efficient upconversion in β-NaYF4:20%Yb3+,2%Er3+ microcrystals with well controlled morphology and size

Shaohua Fan, Shikai Wang, Lu Yu, Hongtao Sun, Guojun Gao, and Lili Hu
Opt. Express 25(1) 180-190 (2017)

Dielectric function of very thin nano-granular ZnO layers with different states of growth

Mickaël Gilliot, Aomar Hadjadj, and Aotmane En Naciri
Appl. Opt. 54(10) 3043-3050 (2015)

Synthesis in NH4NO3 flux and abnormal upconversion of LiYF4:Er3+/Yb3+ microcrystals

Xinyang Huang
Opt. Mater. Express 4(11) 2381-2391 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Q. F. Han, F. Jin, W. J. Yang, D. P. Sun, and X. Wang, “Liquid-liquid interfacial synthesis of single-crystalline PbS nanoplates and nanocube-based microspheres,” Mater. Lett. 69, 10–12 (2012).
    [Crossref]
  2. J. R. Caram, S. N. Bertram, H. Utzat, W. R. Hess, J. A. Carr, T. S. Bischof, A. P. Beyler, M. W. B. Wilson, and M. G. Bawendi, “PbS Nanocrystal Emission Is Governed by Multiple Emissive States,” Nano Lett. 16(10), 6070–6077 (2016).
    [Crossref] [PubMed]
  3. E. Harel, S. M. Rupich, R. D. Schaller, D. V. Talapin, and G. S. Engel, “Measurement of electronic splitting in PbS quantum dots by two-dimensional nonlinear spectroscopy,” Phys. Rev. B 86(7), 43–49 (2016).
  4. Z. Zhang, S. H. Lee, J. J. Vittal, and W. S. Chin, “A simple way to prepare PbS nanocrystals with morphology tuning at room temperature,” J. Phys. Chem. B 110(13), 6649–6654 (2006).
    [Crossref] [PubMed]
  5. E. H. Sargent, “Infrared Quantum Dots,” Adv. Mater. 17(5), 515–522 (2005).
    [Crossref]
  6. J. P. Ge, J. Wang, H. X. Zhang, X. Wang, Q. Peng, and Y. D. Li, “Orthogonal PbS nanowire arrays and networks and their Raman scattering behavior,” Chemistry 11(6), 1889–1894 (2005).
    [Crossref] [PubMed]
  7. Y. Dai, A. Molazemhosseini, and C. C. Liu, “A Single-Use, In Vitro Biosensor for the Detection of T-Tau Protein, A Biomarker of Neuro-Degenerative Disorders, in PBS and Human Serum Using Differential Pulse Voltammetry (DPV),” Biosensors (Basel) 7(1), 10 (2017).
    [Crossref] [PubMed]
  8. S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
    [Crossref] [PubMed]
  9. L. Levina, V. Sukhovatkin, S. Musikhin, S. Cauchi, R. Nisman, D. P. Bazett-Jones, and E. H. Sargent, “Efficient Infrared-Emitting PbS Quantum Dots Grown on DNA and Stable in Aqueous Solution and Blood Plasma,” Adv. Mater. 17(15), 1854–1857 (2005).
    [Crossref]
  10. D. M. Kroupa, D. H. Arias, J. L. Blackburn, G. M. Carroll, D. B. Granger, J. E. Anthony, M. C. Beard, and J. C. Johnson, “Control of Energy Flow Dynamics between Tetracene Ligands and PbS Quantum Dots by Size Tuning and Ligand Coverage,” Nano Lett. 18(2), 865–873 (2018).
    [Crossref] [PubMed]
  11. A. N. Jumabekov, F. Deschler, D. Böhm, L. M. Peter, J. Feldmann, and T. Bein, “Quantum-Dot-Sensitized Solar Cells with Water-Soluble and Air-Stable PbS Quantum Dots,” J. Phys. Chem. C 118(10), 5142–5149 (2014).
    [Crossref]
  12. F. Zuo, S. Yan, B. Zhang, Y. Zhao, and Y. Xie, “L-Cysteine-Assisted Synthesis of PbS Nanocube-Based Pagoda-like Hierarchical Architectures,” J. Phys. Chem. C 112(8), 2831–2835 (2008).
    [Crossref]
  13. M. S. Bakshi, G. Kaur, F. Possmayer, and N. O. Petersen, “Shape-controlled synthesis of poly (styrene sulfonate) and poly (vinyl pyrolidone) capped lead sulfide nanocubes, bars, and threads,” J. Phys. Chem. C 112(13), 4948–4953 (2008).
    [Crossref]
  14. G. R. Patzke, F. Krumeich, and R. Nesper, “Oxidic nanotubes and nanorods--anisotropic modules for a future nanotechnology,” Angew. Chem. Int. Ed. Engl. 41(14), 2446–2461 (2002).
    [Crossref] [PubMed]
  15. M. S. Bakshi, P. Thakur, S. Sachar, G. Kaur, T. S. Banipal, F. Possmayer, and N. O. Petersen, “Aqueous phase surfactant selective shape controlled synthesis of lead sulfide nanocrystals,” J. Phys. Chem. C 111(49), 18087–18098 (2007).
    [Crossref]
  16. J. H. Warner, “Self-assembly of ligand-free PbS nanocrystals into nanorods and their nanosculpturing by electron-beam irradiation,” Adv. Mater. 20(4), 784–787 (2008).
    [Crossref]
  17. C. Henrist, J. P. Mathieu, C. Vogels, A. Rulmont, and R. Cloots, “Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution,” J. Cryst. Growth 249(1–2), 321–330 (2003).
    [Crossref]
  18. Z. P. Qiao, Y. Zhang, L. T. Zhou, and Q. Xire, “Shape control of PbS crystals under microwave irradiation,” Cryst. Growth Des. 7(12), 2394–2396 (2007).
    [Crossref]
  19. S. M. Lee, Y. W. Jun, S. N. Cho, and J. Cheon, “Single-crystalline star-shaped nanocrystals and their evolution: programming the geometry of nano-building blocks,” J. Am. Chem. Soc. 124(38), 11244–11245 (2002).
    [Crossref] [PubMed]
  20. Y. Ni, H. Liu, F. Wang, Y. Liang, J. Hong, X. Ma, and Z. Xu, “Shape controllable preparation of PbS crystals by a simple aqueous phase route,” Cryst. Growth Des. 4(4), 759–764 (2004).
    [Crossref]
  21. N. Wang, X. Cao, L. Guo, S. Yang, and Z. Wu, “Facile synthesis of PbS truncated octahedron crystals with high symmetry and their large-scale assembly into regular patterns by a simple solution route,” ACS Nano 2(2), 184–190 (2008).
    [Crossref] [PubMed]
  22. X. Y. Chen, X. F. Zhang, C. W. Shi, X. L. Li, and Y. T. Qian, “A simple biomolecule-assisted hydrothermal approach to antimony sulfide nanowires,” Solid State Commun. 134(9), 613–615 (2005).
    [Crossref]
  23. R. Rossetti, R. Hull, J. M. Gibson, and L. E. Brus, “Hybrid electronic properties between the molecular and solid state limits: lead sulfide and silver halide crystallites,” J. Chem. Phys. 83(3), 1406–1410 (1985).
    [Crossref]
  24. G. Zhou, M. Lü, Z. Xiu, S. Wang, H. Zhang, Y. Zhou, and S. Wang, “Controlled synthesis of high-quality PbS star-shaped dendrites, multipods, truncated nanocubes, and nanocubes and their shape evolution process,” J. Phys. Chem. B 110(13), 6543–6548 (2006).
    [Crossref] [PubMed]
  25. B. H. Zhang, F. Q. Guo, L. H. Yang, and J. J. Wang, “Tunable synthesis of multi-shaped PbS via L-cysteine assisted solvothermal method,” J. Cryst. Growth 405(4), 142–149 (2014).
    [Crossref]
  26. F. Y. Tian, D. F. Hou, F. Tang, M. Deng, X. Q. Qiao, Q. C. Zhang, T. Wu, and D. S. Li, “Novel Zn0.8Cd0.2S@g-C3N4 core–shell heterojunctions with a twin structure for enhanced visible-light-driven photocatalytic hydrogen generation,” J. Mater. Chem. A Mater. Energy Sustain. 6(35), 17086–17094 (2018).
    [Crossref]
  27. F. Q. Guo, B. H. Zhang, J. J. Wang, H. N. Bai, R. Q. Guo, Y. N. Huang, and P. Y. Ren, “Facile solvothermal method to synthesize hybrid perovskite CH3NH3PbX3 (X=I, Br, Cl) crystals,” Opt. Mater. Express 7(11), 4156–4162 (2017).
    [Crossref]
  28. H. N. Bai, F. Q. Guo, B. H. Zhang, L. T. Gai, and R. Q. Guo, “One-step synthesis of high pure CdS nanofilms via hydrothermal method,” J. Mater. Sci-Mater. EL. 29(11), 9193–9199 (2018).
    [Crossref]
  29. Y. R. Ma, L. M. Qi, J. M. Ma, and H. M. Cheng, “Hierarchical, Star-Shaped PbS Crystals Formed by a Simple Solution Route,” Cryst. Growth Des. 4(2), 351–354 (2004).
    [Crossref]
  30. S. W. Chou, C. L. Zhu, C. L. Chen, and Y. Y. Chen, “Controlled Growth and Magnetic Property of FePt Nanostructure: Cuboctahedron, Octapod, Truncated Cube, and Cube,” Chem. Mater. 21(20), 4955–4961 (2009).
    [Crossref]
  31. D. B. Yu, D. B. Wang, Z. Y. Meng, J. Lu, and Y. Qian, “Synthesis of closed PbS nanowires with regular geometric morphologies,” J. Mater. Chem. 12(3), 403–405 (2002).
    [Crossref]
  32. S. Wang and S. Yang, “Preparation and characterization of oriented PbS crystalline nanorods in polymer films,” Langmuir 16(2), 389–397 (2000).
    [Crossref]
  33. D. B. Kuang, A. W. Xu, Y. P. Fang, H. Q. Liu, C. Frommen, and D. Fenske, “Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process,” Adv. Mater. 15(20), 1747–1750 (2003).
    [Crossref]
  34. S. B. Pawar, J. S. Shaikh, R. S. Devan, Y. R. Ma, D. Haranath, P. N. Bhosale, and P. S. Patil, “Facile and low cost chemosynthesis of nanostructured PbS with tunable optical properties,” Appl. Surf. Sci. 258(5), 1869–1875 (2011).
    [Crossref]
  35. S. F. Wang, F. Gu, M. K. Lü, D. Z. Wang, Z. S. Yang, H. P. Zhang, Y. Y. Zhou, and A. Y. Zhang, “Synthesis of cross-shaped PbS nanostructures by a surfactant-assisted reflux process,” Mater. Lett. 60(21–22), 2759–2763 (2006).
    [Crossref]
  36. J. H. Xiang, H. Q. Cao, Q. Z. Wu, S. C. Zhang, and X. R. Zhang, “L-Cysteine-Assisted Self-Assembly of Complex PbS Structures,” Cryst. Growth Des. 8(11), 3935–3940 (2008).
    [Crossref]
  37. A. Querejeta-Fernández, J. C. Hernández-Garrido, H. Yang, Y. Zhou, A. Varela, M. Parras, J. J. Calvino-Gámez, J. M. González-Calbet, P. F. Green, and N. A. Kotov, “Unknown Aspects of Self-Assembly of PbS Microscale Superstructures,” ACS Nano 6(5), 3800–3812 (2012).
    [Crossref] [PubMed]
  38. Z. W. Gu, F. Chen, X. Q. Zhang, Y. J. Liu, C. C. Fan, G. Wu, H. Y. Li, and H. Z. Chen, “Novel planar heterostructure perovskite solar cells with CdS nanorods array as electron transport layer,” Sol. Energy Mater. Sol. Cells 140, 396–404 (2015).
    [Crossref]
  39. G. Pandey, S. Shrivastav, and H. K. Sharma, “Role of solution pH and SDS on shape evolution of PbS hexagonal disk and star/flower shaped nanocrystals in aqueous media,” Physica E 56(3), 386–392 (2014).
    [Crossref]
  40. G. D. Smith, S. Firth, R. J. H. Clark, and M. Cardona, “First- and second-order Raman spectra of galena (PbS),” J. Appl. Phys. 92(8), 4375–4380 (2002).
    [Crossref]
  41. H. Q. Cao, G. Z. Wang, S. C. Zhang, and X. R. Zhang, “Growth and photoluminescence properties of PbS nanocubes,” Nanotechnology 17(13), 3280–3287 (2006).
    [Crossref]
  42. T. D. Krauss and F. W. Wise, “Exciton-Phonon Coupling in PbS Nanocrystals,” Phys. Rev. B Condens. Matter 55(15), 9860–9865 (1997).
    [Crossref]
  43. A. J. Wang, Q. C. Liao, J. J. Feng, P. P. Zhang, Z. M. Zhang, and J. R. Chen, “D-Penicillamine-Assisted Self-Assembly of Hierarchical PbS Microstars with Octa-Symmetric-Dendritic Arms,” Cryst. Growth Des. 12(2), 832–841 (2012).
    [Crossref]

2018 (3)

D. M. Kroupa, D. H. Arias, J. L. Blackburn, G. M. Carroll, D. B. Granger, J. E. Anthony, M. C. Beard, and J. C. Johnson, “Control of Energy Flow Dynamics between Tetracene Ligands and PbS Quantum Dots by Size Tuning and Ligand Coverage,” Nano Lett. 18(2), 865–873 (2018).
[Crossref] [PubMed]

F. Y. Tian, D. F. Hou, F. Tang, M. Deng, X. Q. Qiao, Q. C. Zhang, T. Wu, and D. S. Li, “Novel Zn0.8Cd0.2S@g-C3N4 core–shell heterojunctions with a twin structure for enhanced visible-light-driven photocatalytic hydrogen generation,” J. Mater. Chem. A Mater. Energy Sustain. 6(35), 17086–17094 (2018).
[Crossref]

H. N. Bai, F. Q. Guo, B. H. Zhang, L. T. Gai, and R. Q. Guo, “One-step synthesis of high pure CdS nanofilms via hydrothermal method,” J. Mater. Sci-Mater. EL. 29(11), 9193–9199 (2018).
[Crossref]

2017 (2)

F. Q. Guo, B. H. Zhang, J. J. Wang, H. N. Bai, R. Q. Guo, Y. N. Huang, and P. Y. Ren, “Facile solvothermal method to synthesize hybrid perovskite CH3NH3PbX3 (X=I, Br, Cl) crystals,” Opt. Mater. Express 7(11), 4156–4162 (2017).
[Crossref]

Y. Dai, A. Molazemhosseini, and C. C. Liu, “A Single-Use, In Vitro Biosensor for the Detection of T-Tau Protein, A Biomarker of Neuro-Degenerative Disorders, in PBS and Human Serum Using Differential Pulse Voltammetry (DPV),” Biosensors (Basel) 7(1), 10 (2017).
[Crossref] [PubMed]

2016 (2)

J. R. Caram, S. N. Bertram, H. Utzat, W. R. Hess, J. A. Carr, T. S. Bischof, A. P. Beyler, M. W. B. Wilson, and M. G. Bawendi, “PbS Nanocrystal Emission Is Governed by Multiple Emissive States,” Nano Lett. 16(10), 6070–6077 (2016).
[Crossref] [PubMed]

E. Harel, S. M. Rupich, R. D. Schaller, D. V. Talapin, and G. S. Engel, “Measurement of electronic splitting in PbS quantum dots by two-dimensional nonlinear spectroscopy,” Phys. Rev. B 86(7), 43–49 (2016).

2015 (1)

Z. W. Gu, F. Chen, X. Q. Zhang, Y. J. Liu, C. C. Fan, G. Wu, H. Y. Li, and H. Z. Chen, “Novel planar heterostructure perovskite solar cells with CdS nanorods array as electron transport layer,” Sol. Energy Mater. Sol. Cells 140, 396–404 (2015).
[Crossref]

2014 (3)

G. Pandey, S. Shrivastav, and H. K. Sharma, “Role of solution pH and SDS on shape evolution of PbS hexagonal disk and star/flower shaped nanocrystals in aqueous media,” Physica E 56(3), 386–392 (2014).
[Crossref]

A. N. Jumabekov, F. Deschler, D. Böhm, L. M. Peter, J. Feldmann, and T. Bein, “Quantum-Dot-Sensitized Solar Cells with Water-Soluble and Air-Stable PbS Quantum Dots,” J. Phys. Chem. C 118(10), 5142–5149 (2014).
[Crossref]

B. H. Zhang, F. Q. Guo, L. H. Yang, and J. J. Wang, “Tunable synthesis of multi-shaped PbS via L-cysteine assisted solvothermal method,” J. Cryst. Growth 405(4), 142–149 (2014).
[Crossref]

2012 (3)

A. Querejeta-Fernández, J. C. Hernández-Garrido, H. Yang, Y. Zhou, A. Varela, M. Parras, J. J. Calvino-Gámez, J. M. González-Calbet, P. F. Green, and N. A. Kotov, “Unknown Aspects of Self-Assembly of PbS Microscale Superstructures,” ACS Nano 6(5), 3800–3812 (2012).
[Crossref] [PubMed]

Q. F. Han, F. Jin, W. J. Yang, D. P. Sun, and X. Wang, “Liquid-liquid interfacial synthesis of single-crystalline PbS nanoplates and nanocube-based microspheres,” Mater. Lett. 69, 10–12 (2012).
[Crossref]

A. J. Wang, Q. C. Liao, J. J. Feng, P. P. Zhang, Z. M. Zhang, and J. R. Chen, “D-Penicillamine-Assisted Self-Assembly of Hierarchical PbS Microstars with Octa-Symmetric-Dendritic Arms,” Cryst. Growth Des. 12(2), 832–841 (2012).
[Crossref]

2011 (1)

S. B. Pawar, J. S. Shaikh, R. S. Devan, Y. R. Ma, D. Haranath, P. N. Bhosale, and P. S. Patil, “Facile and low cost chemosynthesis of nanostructured PbS with tunable optical properties,” Appl. Surf. Sci. 258(5), 1869–1875 (2011).
[Crossref]

2009 (1)

S. W. Chou, C. L. Zhu, C. L. Chen, and Y. Y. Chen, “Controlled Growth and Magnetic Property of FePt Nanostructure: Cuboctahedron, Octapod, Truncated Cube, and Cube,” Chem. Mater. 21(20), 4955–4961 (2009).
[Crossref]

2008 (5)

J. H. Xiang, H. Q. Cao, Q. Z. Wu, S. C. Zhang, and X. R. Zhang, “L-Cysteine-Assisted Self-Assembly of Complex PbS Structures,” Cryst. Growth Des. 8(11), 3935–3940 (2008).
[Crossref]

N. Wang, X. Cao, L. Guo, S. Yang, and Z. Wu, “Facile synthesis of PbS truncated octahedron crystals with high symmetry and their large-scale assembly into regular patterns by a simple solution route,” ACS Nano 2(2), 184–190 (2008).
[Crossref] [PubMed]

J. H. Warner, “Self-assembly of ligand-free PbS nanocrystals into nanorods and their nanosculpturing by electron-beam irradiation,” Adv. Mater. 20(4), 784–787 (2008).
[Crossref]

F. Zuo, S. Yan, B. Zhang, Y. Zhao, and Y. Xie, “L-Cysteine-Assisted Synthesis of PbS Nanocube-Based Pagoda-like Hierarchical Architectures,” J. Phys. Chem. C 112(8), 2831–2835 (2008).
[Crossref]

M. S. Bakshi, G. Kaur, F. Possmayer, and N. O. Petersen, “Shape-controlled synthesis of poly (styrene sulfonate) and poly (vinyl pyrolidone) capped lead sulfide nanocubes, bars, and threads,” J. Phys. Chem. C 112(13), 4948–4953 (2008).
[Crossref]

2007 (2)

Z. P. Qiao, Y. Zhang, L. T. Zhou, and Q. Xire, “Shape control of PbS crystals under microwave irradiation,” Cryst. Growth Des. 7(12), 2394–2396 (2007).
[Crossref]

M. S. Bakshi, P. Thakur, S. Sachar, G. Kaur, T. S. Banipal, F. Possmayer, and N. O. Petersen, “Aqueous phase surfactant selective shape controlled synthesis of lead sulfide nanocrystals,” J. Phys. Chem. C 111(49), 18087–18098 (2007).
[Crossref]

2006 (4)

Z. Zhang, S. H. Lee, J. J. Vittal, and W. S. Chin, “A simple way to prepare PbS nanocrystals with morphology tuning at room temperature,” J. Phys. Chem. B 110(13), 6649–6654 (2006).
[Crossref] [PubMed]

G. Zhou, M. Lü, Z. Xiu, S. Wang, H. Zhang, Y. Zhou, and S. Wang, “Controlled synthesis of high-quality PbS star-shaped dendrites, multipods, truncated nanocubes, and nanocubes and their shape evolution process,” J. Phys. Chem. B 110(13), 6543–6548 (2006).
[Crossref] [PubMed]

S. F. Wang, F. Gu, M. K. Lü, D. Z. Wang, Z. S. Yang, H. P. Zhang, Y. Y. Zhou, and A. Y. Zhang, “Synthesis of cross-shaped PbS nanostructures by a surfactant-assisted reflux process,” Mater. Lett. 60(21–22), 2759–2763 (2006).
[Crossref]

H. Q. Cao, G. Z. Wang, S. C. Zhang, and X. R. Zhang, “Growth and photoluminescence properties of PbS nanocubes,” Nanotechnology 17(13), 3280–3287 (2006).
[Crossref]

2005 (5)

X. Y. Chen, X. F. Zhang, C. W. Shi, X. L. Li, and Y. T. Qian, “A simple biomolecule-assisted hydrothermal approach to antimony sulfide nanowires,” Solid State Commun. 134(9), 613–615 (2005).
[Crossref]

E. H. Sargent, “Infrared Quantum Dots,” Adv. Mater. 17(5), 515–522 (2005).
[Crossref]

J. P. Ge, J. Wang, H. X. Zhang, X. Wang, Q. Peng, and Y. D. Li, “Orthogonal PbS nanowire arrays and networks and their Raman scattering behavior,” Chemistry 11(6), 1889–1894 (2005).
[Crossref] [PubMed]

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

L. Levina, V. Sukhovatkin, S. Musikhin, S. Cauchi, R. Nisman, D. P. Bazett-Jones, and E. H. Sargent, “Efficient Infrared-Emitting PbS Quantum Dots Grown on DNA and Stable in Aqueous Solution and Blood Plasma,” Adv. Mater. 17(15), 1854–1857 (2005).
[Crossref]

2004 (2)

Y. Ni, H. Liu, F. Wang, Y. Liang, J. Hong, X. Ma, and Z. Xu, “Shape controllable preparation of PbS crystals by a simple aqueous phase route,” Cryst. Growth Des. 4(4), 759–764 (2004).
[Crossref]

Y. R. Ma, L. M. Qi, J. M. Ma, and H. M. Cheng, “Hierarchical, Star-Shaped PbS Crystals Formed by a Simple Solution Route,” Cryst. Growth Des. 4(2), 351–354 (2004).
[Crossref]

2003 (2)

D. B. Kuang, A. W. Xu, Y. P. Fang, H. Q. Liu, C. Frommen, and D. Fenske, “Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process,” Adv. Mater. 15(20), 1747–1750 (2003).
[Crossref]

C. Henrist, J. P. Mathieu, C. Vogels, A. Rulmont, and R. Cloots, “Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution,” J. Cryst. Growth 249(1–2), 321–330 (2003).
[Crossref]

2002 (4)

S. M. Lee, Y. W. Jun, S. N. Cho, and J. Cheon, “Single-crystalline star-shaped nanocrystals and their evolution: programming the geometry of nano-building blocks,” J. Am. Chem. Soc. 124(38), 11244–11245 (2002).
[Crossref] [PubMed]

G. R. Patzke, F. Krumeich, and R. Nesper, “Oxidic nanotubes and nanorods--anisotropic modules for a future nanotechnology,” Angew. Chem. Int. Ed. Engl. 41(14), 2446–2461 (2002).
[Crossref] [PubMed]

D. B. Yu, D. B. Wang, Z. Y. Meng, J. Lu, and Y. Qian, “Synthesis of closed PbS nanowires with regular geometric morphologies,” J. Mater. Chem. 12(3), 403–405 (2002).
[Crossref]

G. D. Smith, S. Firth, R. J. H. Clark, and M. Cardona, “First- and second-order Raman spectra of galena (PbS),” J. Appl. Phys. 92(8), 4375–4380 (2002).
[Crossref]

2000 (1)

S. Wang and S. Yang, “Preparation and characterization of oriented PbS crystalline nanorods in polymer films,” Langmuir 16(2), 389–397 (2000).
[Crossref]

1997 (1)

T. D. Krauss and F. W. Wise, “Exciton-Phonon Coupling in PbS Nanocrystals,” Phys. Rev. B Condens. Matter 55(15), 9860–9865 (1997).
[Crossref]

1985 (1)

R. Rossetti, R. Hull, J. M. Gibson, and L. E. Brus, “Hybrid electronic properties between the molecular and solid state limits: lead sulfide and silver halide crystallites,” J. Chem. Phys. 83(3), 1406–1410 (1985).
[Crossref]

Anthony, J. E.

D. M. Kroupa, D. H. Arias, J. L. Blackburn, G. M. Carroll, D. B. Granger, J. E. Anthony, M. C. Beard, and J. C. Johnson, “Control of Energy Flow Dynamics between Tetracene Ligands and PbS Quantum Dots by Size Tuning and Ligand Coverage,” Nano Lett. 18(2), 865–873 (2018).
[Crossref] [PubMed]

Arias, D. H.

D. M. Kroupa, D. H. Arias, J. L. Blackburn, G. M. Carroll, D. B. Granger, J. E. Anthony, M. C. Beard, and J. C. Johnson, “Control of Energy Flow Dynamics between Tetracene Ligands and PbS Quantum Dots by Size Tuning and Ligand Coverage,” Nano Lett. 18(2), 865–873 (2018).
[Crossref] [PubMed]

Bai, H. N.

H. N. Bai, F. Q. Guo, B. H. Zhang, L. T. Gai, and R. Q. Guo, “One-step synthesis of high pure CdS nanofilms via hydrothermal method,” J. Mater. Sci-Mater. EL. 29(11), 9193–9199 (2018).
[Crossref]

F. Q. Guo, B. H. Zhang, J. J. Wang, H. N. Bai, R. Q. Guo, Y. N. Huang, and P. Y. Ren, “Facile solvothermal method to synthesize hybrid perovskite CH3NH3PbX3 (X=I, Br, Cl) crystals,” Opt. Mater. Express 7(11), 4156–4162 (2017).
[Crossref]

Bakshi, M. S.

M. S. Bakshi, G. Kaur, F. Possmayer, and N. O. Petersen, “Shape-controlled synthesis of poly (styrene sulfonate) and poly (vinyl pyrolidone) capped lead sulfide nanocubes, bars, and threads,” J. Phys. Chem. C 112(13), 4948–4953 (2008).
[Crossref]

M. S. Bakshi, P. Thakur, S. Sachar, G. Kaur, T. S. Banipal, F. Possmayer, and N. O. Petersen, “Aqueous phase surfactant selective shape controlled synthesis of lead sulfide nanocrystals,” J. Phys. Chem. C 111(49), 18087–18098 (2007).
[Crossref]

Banipal, T. S.

M. S. Bakshi, P. Thakur, S. Sachar, G. Kaur, T. S. Banipal, F. Possmayer, and N. O. Petersen, “Aqueous phase surfactant selective shape controlled synthesis of lead sulfide nanocrystals,” J. Phys. Chem. C 111(49), 18087–18098 (2007).
[Crossref]

Bawendi, M. G.

J. R. Caram, S. N. Bertram, H. Utzat, W. R. Hess, J. A. Carr, T. S. Bischof, A. P. Beyler, M. W. B. Wilson, and M. G. Bawendi, “PbS Nanocrystal Emission Is Governed by Multiple Emissive States,” Nano Lett. 16(10), 6070–6077 (2016).
[Crossref] [PubMed]

Bazett-Jones, D. P.

L. Levina, V. Sukhovatkin, S. Musikhin, S. Cauchi, R. Nisman, D. P. Bazett-Jones, and E. H. Sargent, “Efficient Infrared-Emitting PbS Quantum Dots Grown on DNA and Stable in Aqueous Solution and Blood Plasma,” Adv. Mater. 17(15), 1854–1857 (2005).
[Crossref]

Beard, M. C.

D. M. Kroupa, D. H. Arias, J. L. Blackburn, G. M. Carroll, D. B. Granger, J. E. Anthony, M. C. Beard, and J. C. Johnson, “Control of Energy Flow Dynamics between Tetracene Ligands and PbS Quantum Dots by Size Tuning and Ligand Coverage,” Nano Lett. 18(2), 865–873 (2018).
[Crossref] [PubMed]

Bein, T.

A. N. Jumabekov, F. Deschler, D. Böhm, L. M. Peter, J. Feldmann, and T. Bein, “Quantum-Dot-Sensitized Solar Cells with Water-Soluble and Air-Stable PbS Quantum Dots,” J. Phys. Chem. C 118(10), 5142–5149 (2014).
[Crossref]

Bertram, S. N.

J. R. Caram, S. N. Bertram, H. Utzat, W. R. Hess, J. A. Carr, T. S. Bischof, A. P. Beyler, M. W. B. Wilson, and M. G. Bawendi, “PbS Nanocrystal Emission Is Governed by Multiple Emissive States,” Nano Lett. 16(10), 6070–6077 (2016).
[Crossref] [PubMed]

Beyler, A. P.

J. R. Caram, S. N. Bertram, H. Utzat, W. R. Hess, J. A. Carr, T. S. Bischof, A. P. Beyler, M. W. B. Wilson, and M. G. Bawendi, “PbS Nanocrystal Emission Is Governed by Multiple Emissive States,” Nano Lett. 16(10), 6070–6077 (2016).
[Crossref] [PubMed]

Bhosale, P. N.

S. B. Pawar, J. S. Shaikh, R. S. Devan, Y. R. Ma, D. Haranath, P. N. Bhosale, and P. S. Patil, “Facile and low cost chemosynthesis of nanostructured PbS with tunable optical properties,” Appl. Surf. Sci. 258(5), 1869–1875 (2011).
[Crossref]

Bischof, T. S.

J. R. Caram, S. N. Bertram, H. Utzat, W. R. Hess, J. A. Carr, T. S. Bischof, A. P. Beyler, M. W. B. Wilson, and M. G. Bawendi, “PbS Nanocrystal Emission Is Governed by Multiple Emissive States,” Nano Lett. 16(10), 6070–6077 (2016).
[Crossref] [PubMed]

Blackburn, J. L.

D. M. Kroupa, D. H. Arias, J. L. Blackburn, G. M. Carroll, D. B. Granger, J. E. Anthony, M. C. Beard, and J. C. Johnson, “Control of Energy Flow Dynamics between Tetracene Ligands and PbS Quantum Dots by Size Tuning and Ligand Coverage,” Nano Lett. 18(2), 865–873 (2018).
[Crossref] [PubMed]

Böhm, D.

A. N. Jumabekov, F. Deschler, D. Böhm, L. M. Peter, J. Feldmann, and T. Bein, “Quantum-Dot-Sensitized Solar Cells with Water-Soluble and Air-Stable PbS Quantum Dots,” J. Phys. Chem. C 118(10), 5142–5149 (2014).
[Crossref]

Brus, L. E.

R. Rossetti, R. Hull, J. M. Gibson, and L. E. Brus, “Hybrid electronic properties between the molecular and solid state limits: lead sulfide and silver halide crystallites,” J. Chem. Phys. 83(3), 1406–1410 (1985).
[Crossref]

Calvino-Gámez, J. J.

A. Querejeta-Fernández, J. C. Hernández-Garrido, H. Yang, Y. Zhou, A. Varela, M. Parras, J. J. Calvino-Gámez, J. M. González-Calbet, P. F. Green, and N. A. Kotov, “Unknown Aspects of Self-Assembly of PbS Microscale Superstructures,” ACS Nano 6(5), 3800–3812 (2012).
[Crossref] [PubMed]

Cao, H. Q.

J. H. Xiang, H. Q. Cao, Q. Z. Wu, S. C. Zhang, and X. R. Zhang, “L-Cysteine-Assisted Self-Assembly of Complex PbS Structures,” Cryst. Growth Des. 8(11), 3935–3940 (2008).
[Crossref]

H. Q. Cao, G. Z. Wang, S. C. Zhang, and X. R. Zhang, “Growth and photoluminescence properties of PbS nanocubes,” Nanotechnology 17(13), 3280–3287 (2006).
[Crossref]

Cao, X.

N. Wang, X. Cao, L. Guo, S. Yang, and Z. Wu, “Facile synthesis of PbS truncated octahedron crystals with high symmetry and their large-scale assembly into regular patterns by a simple solution route,” ACS Nano 2(2), 184–190 (2008).
[Crossref] [PubMed]

Caram, J. R.

J. R. Caram, S. N. Bertram, H. Utzat, W. R. Hess, J. A. Carr, T. S. Bischof, A. P. Beyler, M. W. B. Wilson, and M. G. Bawendi, “PbS Nanocrystal Emission Is Governed by Multiple Emissive States,” Nano Lett. 16(10), 6070–6077 (2016).
[Crossref] [PubMed]

Cardona, M.

G. D. Smith, S. Firth, R. J. H. Clark, and M. Cardona, “First- and second-order Raman spectra of galena (PbS),” J. Appl. Phys. 92(8), 4375–4380 (2002).
[Crossref]

Carr, J. A.

J. R. Caram, S. N. Bertram, H. Utzat, W. R. Hess, J. A. Carr, T. S. Bischof, A. P. Beyler, M. W. B. Wilson, and M. G. Bawendi, “PbS Nanocrystal Emission Is Governed by Multiple Emissive States,” Nano Lett. 16(10), 6070–6077 (2016).
[Crossref] [PubMed]

Carroll, G. M.

D. M. Kroupa, D. H. Arias, J. L. Blackburn, G. M. Carroll, D. B. Granger, J. E. Anthony, M. C. Beard, and J. C. Johnson, “Control of Energy Flow Dynamics between Tetracene Ligands and PbS Quantum Dots by Size Tuning and Ligand Coverage,” Nano Lett. 18(2), 865–873 (2018).
[Crossref] [PubMed]

Cauchi, S.

L. Levina, V. Sukhovatkin, S. Musikhin, S. Cauchi, R. Nisman, D. P. Bazett-Jones, and E. H. Sargent, “Efficient Infrared-Emitting PbS Quantum Dots Grown on DNA and Stable in Aqueous Solution and Blood Plasma,” Adv. Mater. 17(15), 1854–1857 (2005).
[Crossref]

Chen, C. L.

S. W. Chou, C. L. Zhu, C. L. Chen, and Y. Y. Chen, “Controlled Growth and Magnetic Property of FePt Nanostructure: Cuboctahedron, Octapod, Truncated Cube, and Cube,” Chem. Mater. 21(20), 4955–4961 (2009).
[Crossref]

Chen, F.

Z. W. Gu, F. Chen, X. Q. Zhang, Y. J. Liu, C. C. Fan, G. Wu, H. Y. Li, and H. Z. Chen, “Novel planar heterostructure perovskite solar cells with CdS nanorods array as electron transport layer,” Sol. Energy Mater. Sol. Cells 140, 396–404 (2015).
[Crossref]

Chen, H. Z.

Z. W. Gu, F. Chen, X. Q. Zhang, Y. J. Liu, C. C. Fan, G. Wu, H. Y. Li, and H. Z. Chen, “Novel planar heterostructure perovskite solar cells with CdS nanorods array as electron transport layer,” Sol. Energy Mater. Sol. Cells 140, 396–404 (2015).
[Crossref]

Chen, J. R.

A. J. Wang, Q. C. Liao, J. J. Feng, P. P. Zhang, Z. M. Zhang, and J. R. Chen, “D-Penicillamine-Assisted Self-Assembly of Hierarchical PbS Microstars with Octa-Symmetric-Dendritic Arms,” Cryst. Growth Des. 12(2), 832–841 (2012).
[Crossref]

Chen, X. Y.

X. Y. Chen, X. F. Zhang, C. W. Shi, X. L. Li, and Y. T. Qian, “A simple biomolecule-assisted hydrothermal approach to antimony sulfide nanowires,” Solid State Commun. 134(9), 613–615 (2005).
[Crossref]

Chen, Y. Y.

S. W. Chou, C. L. Zhu, C. L. Chen, and Y. Y. Chen, “Controlled Growth and Magnetic Property of FePt Nanostructure: Cuboctahedron, Octapod, Truncated Cube, and Cube,” Chem. Mater. 21(20), 4955–4961 (2009).
[Crossref]

Cheng, H. M.

Y. R. Ma, L. M. Qi, J. M. Ma, and H. M. Cheng, “Hierarchical, Star-Shaped PbS Crystals Formed by a Simple Solution Route,” Cryst. Growth Des. 4(2), 351–354 (2004).
[Crossref]

Cheon, J.

S. M. Lee, Y. W. Jun, S. N. Cho, and J. Cheon, “Single-crystalline star-shaped nanocrystals and their evolution: programming the geometry of nano-building blocks,” J. Am. Chem. Soc. 124(38), 11244–11245 (2002).
[Crossref] [PubMed]

Chin, W. S.

Z. Zhang, S. H. Lee, J. J. Vittal, and W. S. Chin, “A simple way to prepare PbS nanocrystals with morphology tuning at room temperature,” J. Phys. Chem. B 110(13), 6649–6654 (2006).
[Crossref] [PubMed]

Cho, S. N.

S. M. Lee, Y. W. Jun, S. N. Cho, and J. Cheon, “Single-crystalline star-shaped nanocrystals and their evolution: programming the geometry of nano-building blocks,” J. Am. Chem. Soc. 124(38), 11244–11245 (2002).
[Crossref] [PubMed]

Chou, S. W.

S. W. Chou, C. L. Zhu, C. L. Chen, and Y. Y. Chen, “Controlled Growth and Magnetic Property of FePt Nanostructure: Cuboctahedron, Octapod, Truncated Cube, and Cube,” Chem. Mater. 21(20), 4955–4961 (2009).
[Crossref]

Clark, R. J. H.

G. D. Smith, S. Firth, R. J. H. Clark, and M. Cardona, “First- and second-order Raman spectra of galena (PbS),” J. Appl. Phys. 92(8), 4375–4380 (2002).
[Crossref]

Cloots, R.

C. Henrist, J. P. Mathieu, C. Vogels, A. Rulmont, and R. Cloots, “Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution,” J. Cryst. Growth 249(1–2), 321–330 (2003).
[Crossref]

Cyr, P. W.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Dai, Y.

Y. Dai, A. Molazemhosseini, and C. C. Liu, “A Single-Use, In Vitro Biosensor for the Detection of T-Tau Protein, A Biomarker of Neuro-Degenerative Disorders, in PBS and Human Serum Using Differential Pulse Voltammetry (DPV),” Biosensors (Basel) 7(1), 10 (2017).
[Crossref] [PubMed]

Deng, M.

F. Y. Tian, D. F. Hou, F. Tang, M. Deng, X. Q. Qiao, Q. C. Zhang, T. Wu, and D. S. Li, “Novel Zn0.8Cd0.2S@g-C3N4 core–shell heterojunctions with a twin structure for enhanced visible-light-driven photocatalytic hydrogen generation,” J. Mater. Chem. A Mater. Energy Sustain. 6(35), 17086–17094 (2018).
[Crossref]

Deschler, F.

A. N. Jumabekov, F. Deschler, D. Böhm, L. M. Peter, J. Feldmann, and T. Bein, “Quantum-Dot-Sensitized Solar Cells with Water-Soluble and Air-Stable PbS Quantum Dots,” J. Phys. Chem. C 118(10), 5142–5149 (2014).
[Crossref]

Devan, R. S.

S. B. Pawar, J. S. Shaikh, R. S. Devan, Y. R. Ma, D. Haranath, P. N. Bhosale, and P. S. Patil, “Facile and low cost chemosynthesis of nanostructured PbS with tunable optical properties,” Appl. Surf. Sci. 258(5), 1869–1875 (2011).
[Crossref]

Engel, G. S.

E. Harel, S. M. Rupich, R. D. Schaller, D. V. Talapin, and G. S. Engel, “Measurement of electronic splitting in PbS quantum dots by two-dimensional nonlinear spectroscopy,” Phys. Rev. B 86(7), 43–49 (2016).

Fan, C. C.

Z. W. Gu, F. Chen, X. Q. Zhang, Y. J. Liu, C. C. Fan, G. Wu, H. Y. Li, and H. Z. Chen, “Novel planar heterostructure perovskite solar cells with CdS nanorods array as electron transport layer,” Sol. Energy Mater. Sol. Cells 140, 396–404 (2015).
[Crossref]

Fang, Y. P.

D. B. Kuang, A. W. Xu, Y. P. Fang, H. Q. Liu, C. Frommen, and D. Fenske, “Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process,” Adv. Mater. 15(20), 1747–1750 (2003).
[Crossref]

Feldmann, J.

A. N. Jumabekov, F. Deschler, D. Böhm, L. M. Peter, J. Feldmann, and T. Bein, “Quantum-Dot-Sensitized Solar Cells with Water-Soluble and Air-Stable PbS Quantum Dots,” J. Phys. Chem. C 118(10), 5142–5149 (2014).
[Crossref]

Feng, J. J.

A. J. Wang, Q. C. Liao, J. J. Feng, P. P. Zhang, Z. M. Zhang, and J. R. Chen, “D-Penicillamine-Assisted Self-Assembly of Hierarchical PbS Microstars with Octa-Symmetric-Dendritic Arms,” Cryst. Growth Des. 12(2), 832–841 (2012).
[Crossref]

Fenske, D.

D. B. Kuang, A. W. Xu, Y. P. Fang, H. Q. Liu, C. Frommen, and D. Fenske, “Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process,” Adv. Mater. 15(20), 1747–1750 (2003).
[Crossref]

Firth, S.

G. D. Smith, S. Firth, R. J. H. Clark, and M. Cardona, “First- and second-order Raman spectra of galena (PbS),” J. Appl. Phys. 92(8), 4375–4380 (2002).
[Crossref]

Frommen, C.

D. B. Kuang, A. W. Xu, Y. P. Fang, H. Q. Liu, C. Frommen, and D. Fenske, “Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process,” Adv. Mater. 15(20), 1747–1750 (2003).
[Crossref]

Gai, L. T.

H. N. Bai, F. Q. Guo, B. H. Zhang, L. T. Gai, and R. Q. Guo, “One-step synthesis of high pure CdS nanofilms via hydrothermal method,” J. Mater. Sci-Mater. EL. 29(11), 9193–9199 (2018).
[Crossref]

Ge, J. P.

J. P. Ge, J. Wang, H. X. Zhang, X. Wang, Q. Peng, and Y. D. Li, “Orthogonal PbS nanowire arrays and networks and their Raman scattering behavior,” Chemistry 11(6), 1889–1894 (2005).
[Crossref] [PubMed]

Gibson, J. M.

R. Rossetti, R. Hull, J. M. Gibson, and L. E. Brus, “Hybrid electronic properties between the molecular and solid state limits: lead sulfide and silver halide crystallites,” J. Chem. Phys. 83(3), 1406–1410 (1985).
[Crossref]

González-Calbet, J. M.

A. Querejeta-Fernández, J. C. Hernández-Garrido, H. Yang, Y. Zhou, A. Varela, M. Parras, J. J. Calvino-Gámez, J. M. González-Calbet, P. F. Green, and N. A. Kotov, “Unknown Aspects of Self-Assembly of PbS Microscale Superstructures,” ACS Nano 6(5), 3800–3812 (2012).
[Crossref] [PubMed]

Granger, D. B.

D. M. Kroupa, D. H. Arias, J. L. Blackburn, G. M. Carroll, D. B. Granger, J. E. Anthony, M. C. Beard, and J. C. Johnson, “Control of Energy Flow Dynamics between Tetracene Ligands and PbS Quantum Dots by Size Tuning and Ligand Coverage,” Nano Lett. 18(2), 865–873 (2018).
[Crossref] [PubMed]

Green, P. F.

A. Querejeta-Fernández, J. C. Hernández-Garrido, H. Yang, Y. Zhou, A. Varela, M. Parras, J. J. Calvino-Gámez, J. M. González-Calbet, P. F. Green, and N. A. Kotov, “Unknown Aspects of Self-Assembly of PbS Microscale Superstructures,” ACS Nano 6(5), 3800–3812 (2012).
[Crossref] [PubMed]

Gu, F.

S. F. Wang, F. Gu, M. K. Lü, D. Z. Wang, Z. S. Yang, H. P. Zhang, Y. Y. Zhou, and A. Y. Zhang, “Synthesis of cross-shaped PbS nanostructures by a surfactant-assisted reflux process,” Mater. Lett. 60(21–22), 2759–2763 (2006).
[Crossref]

Gu, Z. W.

Z. W. Gu, F. Chen, X. Q. Zhang, Y. J. Liu, C. C. Fan, G. Wu, H. Y. Li, and H. Z. Chen, “Novel planar heterostructure perovskite solar cells with CdS nanorods array as electron transport layer,” Sol. Energy Mater. Sol. Cells 140, 396–404 (2015).
[Crossref]

Guo, F. Q.

H. N. Bai, F. Q. Guo, B. H. Zhang, L. T. Gai, and R. Q. Guo, “One-step synthesis of high pure CdS nanofilms via hydrothermal method,” J. Mater. Sci-Mater. EL. 29(11), 9193–9199 (2018).
[Crossref]

F. Q. Guo, B. H. Zhang, J. J. Wang, H. N. Bai, R. Q. Guo, Y. N. Huang, and P. Y. Ren, “Facile solvothermal method to synthesize hybrid perovskite CH3NH3PbX3 (X=I, Br, Cl) crystals,” Opt. Mater. Express 7(11), 4156–4162 (2017).
[Crossref]

B. H. Zhang, F. Q. Guo, L. H. Yang, and J. J. Wang, “Tunable synthesis of multi-shaped PbS via L-cysteine assisted solvothermal method,” J. Cryst. Growth 405(4), 142–149 (2014).
[Crossref]

Guo, L.

N. Wang, X. Cao, L. Guo, S. Yang, and Z. Wu, “Facile synthesis of PbS truncated octahedron crystals with high symmetry and their large-scale assembly into regular patterns by a simple solution route,” ACS Nano 2(2), 184–190 (2008).
[Crossref] [PubMed]

Guo, R. Q.

H. N. Bai, F. Q. Guo, B. H. Zhang, L. T. Gai, and R. Q. Guo, “One-step synthesis of high pure CdS nanofilms via hydrothermal method,” J. Mater. Sci-Mater. EL. 29(11), 9193–9199 (2018).
[Crossref]

F. Q. Guo, B. H. Zhang, J. J. Wang, H. N. Bai, R. Q. Guo, Y. N. Huang, and P. Y. Ren, “Facile solvothermal method to synthesize hybrid perovskite CH3NH3PbX3 (X=I, Br, Cl) crystals,” Opt. Mater. Express 7(11), 4156–4162 (2017).
[Crossref]

Han, Q. F.

Q. F. Han, F. Jin, W. J. Yang, D. P. Sun, and X. Wang, “Liquid-liquid interfacial synthesis of single-crystalline PbS nanoplates and nanocube-based microspheres,” Mater. Lett. 69, 10–12 (2012).
[Crossref]

Haranath, D.

S. B. Pawar, J. S. Shaikh, R. S. Devan, Y. R. Ma, D. Haranath, P. N. Bhosale, and P. S. Patil, “Facile and low cost chemosynthesis of nanostructured PbS with tunable optical properties,” Appl. Surf. Sci. 258(5), 1869–1875 (2011).
[Crossref]

Harel, E.

E. Harel, S. M. Rupich, R. D. Schaller, D. V. Talapin, and G. S. Engel, “Measurement of electronic splitting in PbS quantum dots by two-dimensional nonlinear spectroscopy,” Phys. Rev. B 86(7), 43–49 (2016).

Henrist, C.

C. Henrist, J. P. Mathieu, C. Vogels, A. Rulmont, and R. Cloots, “Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution,” J. Cryst. Growth 249(1–2), 321–330 (2003).
[Crossref]

Hernández-Garrido, J. C.

A. Querejeta-Fernández, J. C. Hernández-Garrido, H. Yang, Y. Zhou, A. Varela, M. Parras, J. J. Calvino-Gámez, J. M. González-Calbet, P. F. Green, and N. A. Kotov, “Unknown Aspects of Self-Assembly of PbS Microscale Superstructures,” ACS Nano 6(5), 3800–3812 (2012).
[Crossref] [PubMed]

Hess, W. R.

J. R. Caram, S. N. Bertram, H. Utzat, W. R. Hess, J. A. Carr, T. S. Bischof, A. P. Beyler, M. W. B. Wilson, and M. G. Bawendi, “PbS Nanocrystal Emission Is Governed by Multiple Emissive States,” Nano Lett. 16(10), 6070–6077 (2016).
[Crossref] [PubMed]

Hong, J.

Y. Ni, H. Liu, F. Wang, Y. Liang, J. Hong, X. Ma, and Z. Xu, “Shape controllable preparation of PbS crystals by a simple aqueous phase route,” Cryst. Growth Des. 4(4), 759–764 (2004).
[Crossref]

Hou, D. F.

F. Y. Tian, D. F. Hou, F. Tang, M. Deng, X. Q. Qiao, Q. C. Zhang, T. Wu, and D. S. Li, “Novel Zn0.8Cd0.2S@g-C3N4 core–shell heterojunctions with a twin structure for enhanced visible-light-driven photocatalytic hydrogen generation,” J. Mater. Chem. A Mater. Energy Sustain. 6(35), 17086–17094 (2018).
[Crossref]

Huang, Y. N.

Hull, R.

R. Rossetti, R. Hull, J. M. Gibson, and L. E. Brus, “Hybrid electronic properties between the molecular and solid state limits: lead sulfide and silver halide crystallites,” J. Chem. Phys. 83(3), 1406–1410 (1985).
[Crossref]

Jin, F.

Q. F. Han, F. Jin, W. J. Yang, D. P. Sun, and X. Wang, “Liquid-liquid interfacial synthesis of single-crystalline PbS nanoplates and nanocube-based microspheres,” Mater. Lett. 69, 10–12 (2012).
[Crossref]

Johnson, J. C.

D. M. Kroupa, D. H. Arias, J. L. Blackburn, G. M. Carroll, D. B. Granger, J. E. Anthony, M. C. Beard, and J. C. Johnson, “Control of Energy Flow Dynamics between Tetracene Ligands and PbS Quantum Dots by Size Tuning and Ligand Coverage,” Nano Lett. 18(2), 865–873 (2018).
[Crossref] [PubMed]

Jumabekov, A. N.

A. N. Jumabekov, F. Deschler, D. Böhm, L. M. Peter, J. Feldmann, and T. Bein, “Quantum-Dot-Sensitized Solar Cells with Water-Soluble and Air-Stable PbS Quantum Dots,” J. Phys. Chem. C 118(10), 5142–5149 (2014).
[Crossref]

Jun, Y. W.

S. M. Lee, Y. W. Jun, S. N. Cho, and J. Cheon, “Single-crystalline star-shaped nanocrystals and their evolution: programming the geometry of nano-building blocks,” J. Am. Chem. Soc. 124(38), 11244–11245 (2002).
[Crossref] [PubMed]

Kaur, G.

M. S. Bakshi, G. Kaur, F. Possmayer, and N. O. Petersen, “Shape-controlled synthesis of poly (styrene sulfonate) and poly (vinyl pyrolidone) capped lead sulfide nanocubes, bars, and threads,” J. Phys. Chem. C 112(13), 4948–4953 (2008).
[Crossref]

M. S. Bakshi, P. Thakur, S. Sachar, G. Kaur, T. S. Banipal, F. Possmayer, and N. O. Petersen, “Aqueous phase surfactant selective shape controlled synthesis of lead sulfide nanocrystals,” J. Phys. Chem. C 111(49), 18087–18098 (2007).
[Crossref]

Klem, E. J. D.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Konstantatos, G.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Kotov, N. A.

A. Querejeta-Fernández, J. C. Hernández-Garrido, H. Yang, Y. Zhou, A. Varela, M. Parras, J. J. Calvino-Gámez, J. M. González-Calbet, P. F. Green, and N. A. Kotov, “Unknown Aspects of Self-Assembly of PbS Microscale Superstructures,” ACS Nano 6(5), 3800–3812 (2012).
[Crossref] [PubMed]

Krauss, T. D.

T. D. Krauss and F. W. Wise, “Exciton-Phonon Coupling in PbS Nanocrystals,” Phys. Rev. B Condens. Matter 55(15), 9860–9865 (1997).
[Crossref]

Kroupa, D. M.

D. M. Kroupa, D. H. Arias, J. L. Blackburn, G. M. Carroll, D. B. Granger, J. E. Anthony, M. C. Beard, and J. C. Johnson, “Control of Energy Flow Dynamics between Tetracene Ligands and PbS Quantum Dots by Size Tuning and Ligand Coverage,” Nano Lett. 18(2), 865–873 (2018).
[Crossref] [PubMed]

Krumeich, F.

G. R. Patzke, F. Krumeich, and R. Nesper, “Oxidic nanotubes and nanorods--anisotropic modules for a future nanotechnology,” Angew. Chem. Int. Ed. Engl. 41(14), 2446–2461 (2002).
[Crossref] [PubMed]

Kuang, D. B.

D. B. Kuang, A. W. Xu, Y. P. Fang, H. Q. Liu, C. Frommen, and D. Fenske, “Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process,” Adv. Mater. 15(20), 1747–1750 (2003).
[Crossref]

Lee, S. H.

Z. Zhang, S. H. Lee, J. J. Vittal, and W. S. Chin, “A simple way to prepare PbS nanocrystals with morphology tuning at room temperature,” J. Phys. Chem. B 110(13), 6649–6654 (2006).
[Crossref] [PubMed]

Lee, S. M.

S. M. Lee, Y. W. Jun, S. N. Cho, and J. Cheon, “Single-crystalline star-shaped nanocrystals and their evolution: programming the geometry of nano-building blocks,” J. Am. Chem. Soc. 124(38), 11244–11245 (2002).
[Crossref] [PubMed]

Levina, L.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

L. Levina, V. Sukhovatkin, S. Musikhin, S. Cauchi, R. Nisman, D. P. Bazett-Jones, and E. H. Sargent, “Efficient Infrared-Emitting PbS Quantum Dots Grown on DNA and Stable in Aqueous Solution and Blood Plasma,” Adv. Mater. 17(15), 1854–1857 (2005).
[Crossref]

Li, D. S.

F. Y. Tian, D. F. Hou, F. Tang, M. Deng, X. Q. Qiao, Q. C. Zhang, T. Wu, and D. S. Li, “Novel Zn0.8Cd0.2S@g-C3N4 core–shell heterojunctions with a twin structure for enhanced visible-light-driven photocatalytic hydrogen generation,” J. Mater. Chem. A Mater. Energy Sustain. 6(35), 17086–17094 (2018).
[Crossref]

Li, H. Y.

Z. W. Gu, F. Chen, X. Q. Zhang, Y. J. Liu, C. C. Fan, G. Wu, H. Y. Li, and H. Z. Chen, “Novel planar heterostructure perovskite solar cells with CdS nanorods array as electron transport layer,” Sol. Energy Mater. Sol. Cells 140, 396–404 (2015).
[Crossref]

Li, X. L.

X. Y. Chen, X. F. Zhang, C. W. Shi, X. L. Li, and Y. T. Qian, “A simple biomolecule-assisted hydrothermal approach to antimony sulfide nanowires,” Solid State Commun. 134(9), 613–615 (2005).
[Crossref]

Li, Y. D.

J. P. Ge, J. Wang, H. X. Zhang, X. Wang, Q. Peng, and Y. D. Li, “Orthogonal PbS nanowire arrays and networks and their Raman scattering behavior,” Chemistry 11(6), 1889–1894 (2005).
[Crossref] [PubMed]

Liang, Y.

Y. Ni, H. Liu, F. Wang, Y. Liang, J. Hong, X. Ma, and Z. Xu, “Shape controllable preparation of PbS crystals by a simple aqueous phase route,” Cryst. Growth Des. 4(4), 759–764 (2004).
[Crossref]

Liao, Q. C.

A. J. Wang, Q. C. Liao, J. J. Feng, P. P. Zhang, Z. M. Zhang, and J. R. Chen, “D-Penicillamine-Assisted Self-Assembly of Hierarchical PbS Microstars with Octa-Symmetric-Dendritic Arms,” Cryst. Growth Des. 12(2), 832–841 (2012).
[Crossref]

Liu, C. C.

Y. Dai, A. Molazemhosseini, and C. C. Liu, “A Single-Use, In Vitro Biosensor for the Detection of T-Tau Protein, A Biomarker of Neuro-Degenerative Disorders, in PBS and Human Serum Using Differential Pulse Voltammetry (DPV),” Biosensors (Basel) 7(1), 10 (2017).
[Crossref] [PubMed]

Liu, H.

Y. Ni, H. Liu, F. Wang, Y. Liang, J. Hong, X. Ma, and Z. Xu, “Shape controllable preparation of PbS crystals by a simple aqueous phase route,” Cryst. Growth Des. 4(4), 759–764 (2004).
[Crossref]

Liu, H. Q.

D. B. Kuang, A. W. Xu, Y. P. Fang, H. Q. Liu, C. Frommen, and D. Fenske, “Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process,” Adv. Mater. 15(20), 1747–1750 (2003).
[Crossref]

Liu, Y. J.

Z. W. Gu, F. Chen, X. Q. Zhang, Y. J. Liu, C. C. Fan, G. Wu, H. Y. Li, and H. Z. Chen, “Novel planar heterostructure perovskite solar cells with CdS nanorods array as electron transport layer,” Sol. Energy Mater. Sol. Cells 140, 396–404 (2015).
[Crossref]

Lu, J.

D. B. Yu, D. B. Wang, Z. Y. Meng, J. Lu, and Y. Qian, “Synthesis of closed PbS nanowires with regular geometric morphologies,” J. Mater. Chem. 12(3), 403–405 (2002).
[Crossref]

Lü, M.

G. Zhou, M. Lü, Z. Xiu, S. Wang, H. Zhang, Y. Zhou, and S. Wang, “Controlled synthesis of high-quality PbS star-shaped dendrites, multipods, truncated nanocubes, and nanocubes and their shape evolution process,” J. Phys. Chem. B 110(13), 6543–6548 (2006).
[Crossref] [PubMed]

Lü, M. K.

S. F. Wang, F. Gu, M. K. Lü, D. Z. Wang, Z. S. Yang, H. P. Zhang, Y. Y. Zhou, and A. Y. Zhang, “Synthesis of cross-shaped PbS nanostructures by a surfactant-assisted reflux process,” Mater. Lett. 60(21–22), 2759–2763 (2006).
[Crossref]

Ma, J. M.

Y. R. Ma, L. M. Qi, J. M. Ma, and H. M. Cheng, “Hierarchical, Star-Shaped PbS Crystals Formed by a Simple Solution Route,” Cryst. Growth Des. 4(2), 351–354 (2004).
[Crossref]

Ma, X.

Y. Ni, H. Liu, F. Wang, Y. Liang, J. Hong, X. Ma, and Z. Xu, “Shape controllable preparation of PbS crystals by a simple aqueous phase route,” Cryst. Growth Des. 4(4), 759–764 (2004).
[Crossref]

Ma, Y. R.

S. B. Pawar, J. S. Shaikh, R. S. Devan, Y. R. Ma, D. Haranath, P. N. Bhosale, and P. S. Patil, “Facile and low cost chemosynthesis of nanostructured PbS with tunable optical properties,” Appl. Surf. Sci. 258(5), 1869–1875 (2011).
[Crossref]

Y. R. Ma, L. M. Qi, J. M. Ma, and H. M. Cheng, “Hierarchical, Star-Shaped PbS Crystals Formed by a Simple Solution Route,” Cryst. Growth Des. 4(2), 351–354 (2004).
[Crossref]

Mathieu, J. P.

C. Henrist, J. P. Mathieu, C. Vogels, A. Rulmont, and R. Cloots, “Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution,” J. Cryst. Growth 249(1–2), 321–330 (2003).
[Crossref]

McDonald, S. A.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Meng, Z. Y.

D. B. Yu, D. B. Wang, Z. Y. Meng, J. Lu, and Y. Qian, “Synthesis of closed PbS nanowires with regular geometric morphologies,” J. Mater. Chem. 12(3), 403–405 (2002).
[Crossref]

Molazemhosseini, A.

Y. Dai, A. Molazemhosseini, and C. C. Liu, “A Single-Use, In Vitro Biosensor for the Detection of T-Tau Protein, A Biomarker of Neuro-Degenerative Disorders, in PBS and Human Serum Using Differential Pulse Voltammetry (DPV),” Biosensors (Basel) 7(1), 10 (2017).
[Crossref] [PubMed]

Musikhin, S.

L. Levina, V. Sukhovatkin, S. Musikhin, S. Cauchi, R. Nisman, D. P. Bazett-Jones, and E. H. Sargent, “Efficient Infrared-Emitting PbS Quantum Dots Grown on DNA and Stable in Aqueous Solution and Blood Plasma,” Adv. Mater. 17(15), 1854–1857 (2005).
[Crossref]

Nesper, R.

G. R. Patzke, F. Krumeich, and R. Nesper, “Oxidic nanotubes and nanorods--anisotropic modules for a future nanotechnology,” Angew. Chem. Int. Ed. Engl. 41(14), 2446–2461 (2002).
[Crossref] [PubMed]

Ni, Y.

Y. Ni, H. Liu, F. Wang, Y. Liang, J. Hong, X. Ma, and Z. Xu, “Shape controllable preparation of PbS crystals by a simple aqueous phase route,” Cryst. Growth Des. 4(4), 759–764 (2004).
[Crossref]

Nisman, R.

L. Levina, V. Sukhovatkin, S. Musikhin, S. Cauchi, R. Nisman, D. P. Bazett-Jones, and E. H. Sargent, “Efficient Infrared-Emitting PbS Quantum Dots Grown on DNA and Stable in Aqueous Solution and Blood Plasma,” Adv. Mater. 17(15), 1854–1857 (2005).
[Crossref]

Pandey, G.

G. Pandey, S. Shrivastav, and H. K. Sharma, “Role of solution pH and SDS on shape evolution of PbS hexagonal disk and star/flower shaped nanocrystals in aqueous media,” Physica E 56(3), 386–392 (2014).
[Crossref]

Parras, M.

A. Querejeta-Fernández, J. C. Hernández-Garrido, H. Yang, Y. Zhou, A. Varela, M. Parras, J. J. Calvino-Gámez, J. M. González-Calbet, P. F. Green, and N. A. Kotov, “Unknown Aspects of Self-Assembly of PbS Microscale Superstructures,” ACS Nano 6(5), 3800–3812 (2012).
[Crossref] [PubMed]

Patil, P. S.

S. B. Pawar, J. S. Shaikh, R. S. Devan, Y. R. Ma, D. Haranath, P. N. Bhosale, and P. S. Patil, “Facile and low cost chemosynthesis of nanostructured PbS with tunable optical properties,” Appl. Surf. Sci. 258(5), 1869–1875 (2011).
[Crossref]

Patzke, G. R.

G. R. Patzke, F. Krumeich, and R. Nesper, “Oxidic nanotubes and nanorods--anisotropic modules for a future nanotechnology,” Angew. Chem. Int. Ed. Engl. 41(14), 2446–2461 (2002).
[Crossref] [PubMed]

Pawar, S. B.

S. B. Pawar, J. S. Shaikh, R. S. Devan, Y. R. Ma, D. Haranath, P. N. Bhosale, and P. S. Patil, “Facile and low cost chemosynthesis of nanostructured PbS with tunable optical properties,” Appl. Surf. Sci. 258(5), 1869–1875 (2011).
[Crossref]

Peng, Q.

J. P. Ge, J. Wang, H. X. Zhang, X. Wang, Q. Peng, and Y. D. Li, “Orthogonal PbS nanowire arrays and networks and their Raman scattering behavior,” Chemistry 11(6), 1889–1894 (2005).
[Crossref] [PubMed]

Peter, L. M.

A. N. Jumabekov, F. Deschler, D. Böhm, L. M. Peter, J. Feldmann, and T. Bein, “Quantum-Dot-Sensitized Solar Cells with Water-Soluble and Air-Stable PbS Quantum Dots,” J. Phys. Chem. C 118(10), 5142–5149 (2014).
[Crossref]

Petersen, N. O.

M. S. Bakshi, G. Kaur, F. Possmayer, and N. O. Petersen, “Shape-controlled synthesis of poly (styrene sulfonate) and poly (vinyl pyrolidone) capped lead sulfide nanocubes, bars, and threads,” J. Phys. Chem. C 112(13), 4948–4953 (2008).
[Crossref]

M. S. Bakshi, P. Thakur, S. Sachar, G. Kaur, T. S. Banipal, F. Possmayer, and N. O. Petersen, “Aqueous phase surfactant selective shape controlled synthesis of lead sulfide nanocrystals,” J. Phys. Chem. C 111(49), 18087–18098 (2007).
[Crossref]

Possmayer, F.

M. S. Bakshi, G. Kaur, F. Possmayer, and N. O. Petersen, “Shape-controlled synthesis of poly (styrene sulfonate) and poly (vinyl pyrolidone) capped lead sulfide nanocubes, bars, and threads,” J. Phys. Chem. C 112(13), 4948–4953 (2008).
[Crossref]

M. S. Bakshi, P. Thakur, S. Sachar, G. Kaur, T. S. Banipal, F. Possmayer, and N. O. Petersen, “Aqueous phase surfactant selective shape controlled synthesis of lead sulfide nanocrystals,” J. Phys. Chem. C 111(49), 18087–18098 (2007).
[Crossref]

Qi, L. M.

Y. R. Ma, L. M. Qi, J. M. Ma, and H. M. Cheng, “Hierarchical, Star-Shaped PbS Crystals Formed by a Simple Solution Route,” Cryst. Growth Des. 4(2), 351–354 (2004).
[Crossref]

Qian, Y.

D. B. Yu, D. B. Wang, Z. Y. Meng, J. Lu, and Y. Qian, “Synthesis of closed PbS nanowires with regular geometric morphologies,” J. Mater. Chem. 12(3), 403–405 (2002).
[Crossref]

Qian, Y. T.

X. Y. Chen, X. F. Zhang, C. W. Shi, X. L. Li, and Y. T. Qian, “A simple biomolecule-assisted hydrothermal approach to antimony sulfide nanowires,” Solid State Commun. 134(9), 613–615 (2005).
[Crossref]

Qiao, X. Q.

F. Y. Tian, D. F. Hou, F. Tang, M. Deng, X. Q. Qiao, Q. C. Zhang, T. Wu, and D. S. Li, “Novel Zn0.8Cd0.2S@g-C3N4 core–shell heterojunctions with a twin structure for enhanced visible-light-driven photocatalytic hydrogen generation,” J. Mater. Chem. A Mater. Energy Sustain. 6(35), 17086–17094 (2018).
[Crossref]

Qiao, Z. P.

Z. P. Qiao, Y. Zhang, L. T. Zhou, and Q. Xire, “Shape control of PbS crystals under microwave irradiation,” Cryst. Growth Des. 7(12), 2394–2396 (2007).
[Crossref]

Querejeta-Fernández, A.

A. Querejeta-Fernández, J. C. Hernández-Garrido, H. Yang, Y. Zhou, A. Varela, M. Parras, J. J. Calvino-Gámez, J. M. González-Calbet, P. F. Green, and N. A. Kotov, “Unknown Aspects of Self-Assembly of PbS Microscale Superstructures,” ACS Nano 6(5), 3800–3812 (2012).
[Crossref] [PubMed]

Ren, P. Y.

Rossetti, R.

R. Rossetti, R. Hull, J. M. Gibson, and L. E. Brus, “Hybrid electronic properties between the molecular and solid state limits: lead sulfide and silver halide crystallites,” J. Chem. Phys. 83(3), 1406–1410 (1985).
[Crossref]

Rulmont, A.

C. Henrist, J. P. Mathieu, C. Vogels, A. Rulmont, and R. Cloots, “Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution,” J. Cryst. Growth 249(1–2), 321–330 (2003).
[Crossref]

Rupich, S. M.

E. Harel, S. M. Rupich, R. D. Schaller, D. V. Talapin, and G. S. Engel, “Measurement of electronic splitting in PbS quantum dots by two-dimensional nonlinear spectroscopy,” Phys. Rev. B 86(7), 43–49 (2016).

Sachar, S.

M. S. Bakshi, P. Thakur, S. Sachar, G. Kaur, T. S. Banipal, F. Possmayer, and N. O. Petersen, “Aqueous phase surfactant selective shape controlled synthesis of lead sulfide nanocrystals,” J. Phys. Chem. C 111(49), 18087–18098 (2007).
[Crossref]

Sargent, E. H.

E. H. Sargent, “Infrared Quantum Dots,” Adv. Mater. 17(5), 515–522 (2005).
[Crossref]

L. Levina, V. Sukhovatkin, S. Musikhin, S. Cauchi, R. Nisman, D. P. Bazett-Jones, and E. H. Sargent, “Efficient Infrared-Emitting PbS Quantum Dots Grown on DNA and Stable in Aqueous Solution and Blood Plasma,” Adv. Mater. 17(15), 1854–1857 (2005).
[Crossref]

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Schaller, R. D.

E. Harel, S. M. Rupich, R. D. Schaller, D. V. Talapin, and G. S. Engel, “Measurement of electronic splitting in PbS quantum dots by two-dimensional nonlinear spectroscopy,” Phys. Rev. B 86(7), 43–49 (2016).

Shaikh, J. S.

S. B. Pawar, J. S. Shaikh, R. S. Devan, Y. R. Ma, D. Haranath, P. N. Bhosale, and P. S. Patil, “Facile and low cost chemosynthesis of nanostructured PbS with tunable optical properties,” Appl. Surf. Sci. 258(5), 1869–1875 (2011).
[Crossref]

Sharma, H. K.

G. Pandey, S. Shrivastav, and H. K. Sharma, “Role of solution pH and SDS on shape evolution of PbS hexagonal disk and star/flower shaped nanocrystals in aqueous media,” Physica E 56(3), 386–392 (2014).
[Crossref]

Shi, C. W.

X. Y. Chen, X. F. Zhang, C. W. Shi, X. L. Li, and Y. T. Qian, “A simple biomolecule-assisted hydrothermal approach to antimony sulfide nanowires,” Solid State Commun. 134(9), 613–615 (2005).
[Crossref]

Shrivastav, S.

G. Pandey, S. Shrivastav, and H. K. Sharma, “Role of solution pH and SDS on shape evolution of PbS hexagonal disk and star/flower shaped nanocrystals in aqueous media,” Physica E 56(3), 386–392 (2014).
[Crossref]

Smith, G. D.

G. D. Smith, S. Firth, R. J. H. Clark, and M. Cardona, “First- and second-order Raman spectra of galena (PbS),” J. Appl. Phys. 92(8), 4375–4380 (2002).
[Crossref]

Sukhovatkin, V.

L. Levina, V. Sukhovatkin, S. Musikhin, S. Cauchi, R. Nisman, D. P. Bazett-Jones, and E. H. Sargent, “Efficient Infrared-Emitting PbS Quantum Dots Grown on DNA and Stable in Aqueous Solution and Blood Plasma,” Adv. Mater. 17(15), 1854–1857 (2005).
[Crossref]

Sun, D. P.

Q. F. Han, F. Jin, W. J. Yang, D. P. Sun, and X. Wang, “Liquid-liquid interfacial synthesis of single-crystalline PbS nanoplates and nanocube-based microspheres,” Mater. Lett. 69, 10–12 (2012).
[Crossref]

Talapin, D. V.

E. Harel, S. M. Rupich, R. D. Schaller, D. V. Talapin, and G. S. Engel, “Measurement of electronic splitting in PbS quantum dots by two-dimensional nonlinear spectroscopy,” Phys. Rev. B 86(7), 43–49 (2016).

Tang, F.

F. Y. Tian, D. F. Hou, F. Tang, M. Deng, X. Q. Qiao, Q. C. Zhang, T. Wu, and D. S. Li, “Novel Zn0.8Cd0.2S@g-C3N4 core–shell heterojunctions with a twin structure for enhanced visible-light-driven photocatalytic hydrogen generation,” J. Mater. Chem. A Mater. Energy Sustain. 6(35), 17086–17094 (2018).
[Crossref]

Thakur, P.

M. S. Bakshi, P. Thakur, S. Sachar, G. Kaur, T. S. Banipal, F. Possmayer, and N. O. Petersen, “Aqueous phase surfactant selective shape controlled synthesis of lead sulfide nanocrystals,” J. Phys. Chem. C 111(49), 18087–18098 (2007).
[Crossref]

Tian, F. Y.

F. Y. Tian, D. F. Hou, F. Tang, M. Deng, X. Q. Qiao, Q. C. Zhang, T. Wu, and D. S. Li, “Novel Zn0.8Cd0.2S@g-C3N4 core–shell heterojunctions with a twin structure for enhanced visible-light-driven photocatalytic hydrogen generation,” J. Mater. Chem. A Mater. Energy Sustain. 6(35), 17086–17094 (2018).
[Crossref]

Utzat, H.

J. R. Caram, S. N. Bertram, H. Utzat, W. R. Hess, J. A. Carr, T. S. Bischof, A. P. Beyler, M. W. B. Wilson, and M. G. Bawendi, “PbS Nanocrystal Emission Is Governed by Multiple Emissive States,” Nano Lett. 16(10), 6070–6077 (2016).
[Crossref] [PubMed]

Varela, A.

A. Querejeta-Fernández, J. C. Hernández-Garrido, H. Yang, Y. Zhou, A. Varela, M. Parras, J. J. Calvino-Gámez, J. M. González-Calbet, P. F. Green, and N. A. Kotov, “Unknown Aspects of Self-Assembly of PbS Microscale Superstructures,” ACS Nano 6(5), 3800–3812 (2012).
[Crossref] [PubMed]

Vittal, J. J.

Z. Zhang, S. H. Lee, J. J. Vittal, and W. S. Chin, “A simple way to prepare PbS nanocrystals with morphology tuning at room temperature,” J. Phys. Chem. B 110(13), 6649–6654 (2006).
[Crossref] [PubMed]

Vogels, C.

C. Henrist, J. P. Mathieu, C. Vogels, A. Rulmont, and R. Cloots, “Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution,” J. Cryst. Growth 249(1–2), 321–330 (2003).
[Crossref]

Wang, A. J.

A. J. Wang, Q. C. Liao, J. J. Feng, P. P. Zhang, Z. M. Zhang, and J. R. Chen, “D-Penicillamine-Assisted Self-Assembly of Hierarchical PbS Microstars with Octa-Symmetric-Dendritic Arms,” Cryst. Growth Des. 12(2), 832–841 (2012).
[Crossref]

Wang, D. B.

D. B. Yu, D. B. Wang, Z. Y. Meng, J. Lu, and Y. Qian, “Synthesis of closed PbS nanowires with regular geometric morphologies,” J. Mater. Chem. 12(3), 403–405 (2002).
[Crossref]

Wang, D. Z.

S. F. Wang, F. Gu, M. K. Lü, D. Z. Wang, Z. S. Yang, H. P. Zhang, Y. Y. Zhou, and A. Y. Zhang, “Synthesis of cross-shaped PbS nanostructures by a surfactant-assisted reflux process,” Mater. Lett. 60(21–22), 2759–2763 (2006).
[Crossref]

Wang, F.

Y. Ni, H. Liu, F. Wang, Y. Liang, J. Hong, X. Ma, and Z. Xu, “Shape controllable preparation of PbS crystals by a simple aqueous phase route,” Cryst. Growth Des. 4(4), 759–764 (2004).
[Crossref]

Wang, G. Z.

H. Q. Cao, G. Z. Wang, S. C. Zhang, and X. R. Zhang, “Growth and photoluminescence properties of PbS nanocubes,” Nanotechnology 17(13), 3280–3287 (2006).
[Crossref]

Wang, J.

J. P. Ge, J. Wang, H. X. Zhang, X. Wang, Q. Peng, and Y. D. Li, “Orthogonal PbS nanowire arrays and networks and their Raman scattering behavior,” Chemistry 11(6), 1889–1894 (2005).
[Crossref] [PubMed]

Wang, J. J.

F. Q. Guo, B. H. Zhang, J. J. Wang, H. N. Bai, R. Q. Guo, Y. N. Huang, and P. Y. Ren, “Facile solvothermal method to synthesize hybrid perovskite CH3NH3PbX3 (X=I, Br, Cl) crystals,” Opt. Mater. Express 7(11), 4156–4162 (2017).
[Crossref]

B. H. Zhang, F. Q. Guo, L. H. Yang, and J. J. Wang, “Tunable synthesis of multi-shaped PbS via L-cysteine assisted solvothermal method,” J. Cryst. Growth 405(4), 142–149 (2014).
[Crossref]

Wang, N.

N. Wang, X. Cao, L. Guo, S. Yang, and Z. Wu, “Facile synthesis of PbS truncated octahedron crystals with high symmetry and their large-scale assembly into regular patterns by a simple solution route,” ACS Nano 2(2), 184–190 (2008).
[Crossref] [PubMed]

Wang, S.

G. Zhou, M. Lü, Z. Xiu, S. Wang, H. Zhang, Y. Zhou, and S. Wang, “Controlled synthesis of high-quality PbS star-shaped dendrites, multipods, truncated nanocubes, and nanocubes and their shape evolution process,” J. Phys. Chem. B 110(13), 6543–6548 (2006).
[Crossref] [PubMed]

G. Zhou, M. Lü, Z. Xiu, S. Wang, H. Zhang, Y. Zhou, and S. Wang, “Controlled synthesis of high-quality PbS star-shaped dendrites, multipods, truncated nanocubes, and nanocubes and their shape evolution process,” J. Phys. Chem. B 110(13), 6543–6548 (2006).
[Crossref] [PubMed]

S. Wang and S. Yang, “Preparation and characterization of oriented PbS crystalline nanorods in polymer films,” Langmuir 16(2), 389–397 (2000).
[Crossref]

Wang, S. F.

S. F. Wang, F. Gu, M. K. Lü, D. Z. Wang, Z. S. Yang, H. P. Zhang, Y. Y. Zhou, and A. Y. Zhang, “Synthesis of cross-shaped PbS nanostructures by a surfactant-assisted reflux process,” Mater. Lett. 60(21–22), 2759–2763 (2006).
[Crossref]

Wang, X.

Q. F. Han, F. Jin, W. J. Yang, D. P. Sun, and X. Wang, “Liquid-liquid interfacial synthesis of single-crystalline PbS nanoplates and nanocube-based microspheres,” Mater. Lett. 69, 10–12 (2012).
[Crossref]

J. P. Ge, J. Wang, H. X. Zhang, X. Wang, Q. Peng, and Y. D. Li, “Orthogonal PbS nanowire arrays and networks and their Raman scattering behavior,” Chemistry 11(6), 1889–1894 (2005).
[Crossref] [PubMed]

Warner, J. H.

J. H. Warner, “Self-assembly of ligand-free PbS nanocrystals into nanorods and their nanosculpturing by electron-beam irradiation,” Adv. Mater. 20(4), 784–787 (2008).
[Crossref]

Wilson, M. W. B.

J. R. Caram, S. N. Bertram, H. Utzat, W. R. Hess, J. A. Carr, T. S. Bischof, A. P. Beyler, M. W. B. Wilson, and M. G. Bawendi, “PbS Nanocrystal Emission Is Governed by Multiple Emissive States,” Nano Lett. 16(10), 6070–6077 (2016).
[Crossref] [PubMed]

Wise, F. W.

T. D. Krauss and F. W. Wise, “Exciton-Phonon Coupling in PbS Nanocrystals,” Phys. Rev. B Condens. Matter 55(15), 9860–9865 (1997).
[Crossref]

Wu, G.

Z. W. Gu, F. Chen, X. Q. Zhang, Y. J. Liu, C. C. Fan, G. Wu, H. Y. Li, and H. Z. Chen, “Novel planar heterostructure perovskite solar cells with CdS nanorods array as electron transport layer,” Sol. Energy Mater. Sol. Cells 140, 396–404 (2015).
[Crossref]

Wu, Q. Z.

J. H. Xiang, H. Q. Cao, Q. Z. Wu, S. C. Zhang, and X. R. Zhang, “L-Cysteine-Assisted Self-Assembly of Complex PbS Structures,” Cryst. Growth Des. 8(11), 3935–3940 (2008).
[Crossref]

Wu, T.

F. Y. Tian, D. F. Hou, F. Tang, M. Deng, X. Q. Qiao, Q. C. Zhang, T. Wu, and D. S. Li, “Novel Zn0.8Cd0.2S@g-C3N4 core–shell heterojunctions with a twin structure for enhanced visible-light-driven photocatalytic hydrogen generation,” J. Mater. Chem. A Mater. Energy Sustain. 6(35), 17086–17094 (2018).
[Crossref]

Wu, Z.

N. Wang, X. Cao, L. Guo, S. Yang, and Z. Wu, “Facile synthesis of PbS truncated octahedron crystals with high symmetry and their large-scale assembly into regular patterns by a simple solution route,” ACS Nano 2(2), 184–190 (2008).
[Crossref] [PubMed]

Xiang, J. H.

J. H. Xiang, H. Q. Cao, Q. Z. Wu, S. C. Zhang, and X. R. Zhang, “L-Cysteine-Assisted Self-Assembly of Complex PbS Structures,” Cryst. Growth Des. 8(11), 3935–3940 (2008).
[Crossref]

Xie, Y.

F. Zuo, S. Yan, B. Zhang, Y. Zhao, and Y. Xie, “L-Cysteine-Assisted Synthesis of PbS Nanocube-Based Pagoda-like Hierarchical Architectures,” J. Phys. Chem. C 112(8), 2831–2835 (2008).
[Crossref]

Xire, Q.

Z. P. Qiao, Y. Zhang, L. T. Zhou, and Q. Xire, “Shape control of PbS crystals under microwave irradiation,” Cryst. Growth Des. 7(12), 2394–2396 (2007).
[Crossref]

Xiu, Z.

G. Zhou, M. Lü, Z. Xiu, S. Wang, H. Zhang, Y. Zhou, and S. Wang, “Controlled synthesis of high-quality PbS star-shaped dendrites, multipods, truncated nanocubes, and nanocubes and their shape evolution process,” J. Phys. Chem. B 110(13), 6543–6548 (2006).
[Crossref] [PubMed]

Xu, A. W.

D. B. Kuang, A. W. Xu, Y. P. Fang, H. Q. Liu, C. Frommen, and D. Fenske, “Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process,” Adv. Mater. 15(20), 1747–1750 (2003).
[Crossref]

Xu, Z.

Y. Ni, H. Liu, F. Wang, Y. Liang, J. Hong, X. Ma, and Z. Xu, “Shape controllable preparation of PbS crystals by a simple aqueous phase route,” Cryst. Growth Des. 4(4), 759–764 (2004).
[Crossref]

Yan, S.

F. Zuo, S. Yan, B. Zhang, Y. Zhao, and Y. Xie, “L-Cysteine-Assisted Synthesis of PbS Nanocube-Based Pagoda-like Hierarchical Architectures,” J. Phys. Chem. C 112(8), 2831–2835 (2008).
[Crossref]

Yang, H.

A. Querejeta-Fernández, J. C. Hernández-Garrido, H. Yang, Y. Zhou, A. Varela, M. Parras, J. J. Calvino-Gámez, J. M. González-Calbet, P. F. Green, and N. A. Kotov, “Unknown Aspects of Self-Assembly of PbS Microscale Superstructures,” ACS Nano 6(5), 3800–3812 (2012).
[Crossref] [PubMed]

Yang, L. H.

B. H. Zhang, F. Q. Guo, L. H. Yang, and J. J. Wang, “Tunable synthesis of multi-shaped PbS via L-cysteine assisted solvothermal method,” J. Cryst. Growth 405(4), 142–149 (2014).
[Crossref]

Yang, S.

N. Wang, X. Cao, L. Guo, S. Yang, and Z. Wu, “Facile synthesis of PbS truncated octahedron crystals with high symmetry and their large-scale assembly into regular patterns by a simple solution route,” ACS Nano 2(2), 184–190 (2008).
[Crossref] [PubMed]

S. Wang and S. Yang, “Preparation and characterization of oriented PbS crystalline nanorods in polymer films,” Langmuir 16(2), 389–397 (2000).
[Crossref]

Yang, W. J.

Q. F. Han, F. Jin, W. J. Yang, D. P. Sun, and X. Wang, “Liquid-liquid interfacial synthesis of single-crystalline PbS nanoplates and nanocube-based microspheres,” Mater. Lett. 69, 10–12 (2012).
[Crossref]

Yang, Z. S.

S. F. Wang, F. Gu, M. K. Lü, D. Z. Wang, Z. S. Yang, H. P. Zhang, Y. Y. Zhou, and A. Y. Zhang, “Synthesis of cross-shaped PbS nanostructures by a surfactant-assisted reflux process,” Mater. Lett. 60(21–22), 2759–2763 (2006).
[Crossref]

Yu, D. B.

D. B. Yu, D. B. Wang, Z. Y. Meng, J. Lu, and Y. Qian, “Synthesis of closed PbS nanowires with regular geometric morphologies,” J. Mater. Chem. 12(3), 403–405 (2002).
[Crossref]

Zhang, A. Y.

S. F. Wang, F. Gu, M. K. Lü, D. Z. Wang, Z. S. Yang, H. P. Zhang, Y. Y. Zhou, and A. Y. Zhang, “Synthesis of cross-shaped PbS nanostructures by a surfactant-assisted reflux process,” Mater. Lett. 60(21–22), 2759–2763 (2006).
[Crossref]

Zhang, B.

F. Zuo, S. Yan, B. Zhang, Y. Zhao, and Y. Xie, “L-Cysteine-Assisted Synthesis of PbS Nanocube-Based Pagoda-like Hierarchical Architectures,” J. Phys. Chem. C 112(8), 2831–2835 (2008).
[Crossref]

Zhang, B. H.

H. N. Bai, F. Q. Guo, B. H. Zhang, L. T. Gai, and R. Q. Guo, “One-step synthesis of high pure CdS nanofilms via hydrothermal method,” J. Mater. Sci-Mater. EL. 29(11), 9193–9199 (2018).
[Crossref]

F. Q. Guo, B. H. Zhang, J. J. Wang, H. N. Bai, R. Q. Guo, Y. N. Huang, and P. Y. Ren, “Facile solvothermal method to synthesize hybrid perovskite CH3NH3PbX3 (X=I, Br, Cl) crystals,” Opt. Mater. Express 7(11), 4156–4162 (2017).
[Crossref]

B. H. Zhang, F. Q. Guo, L. H. Yang, and J. J. Wang, “Tunable synthesis of multi-shaped PbS via L-cysteine assisted solvothermal method,” J. Cryst. Growth 405(4), 142–149 (2014).
[Crossref]

Zhang, H.

G. Zhou, M. Lü, Z. Xiu, S. Wang, H. Zhang, Y. Zhou, and S. Wang, “Controlled synthesis of high-quality PbS star-shaped dendrites, multipods, truncated nanocubes, and nanocubes and their shape evolution process,” J. Phys. Chem. B 110(13), 6543–6548 (2006).
[Crossref] [PubMed]

Zhang, H. P.

S. F. Wang, F. Gu, M. K. Lü, D. Z. Wang, Z. S. Yang, H. P. Zhang, Y. Y. Zhou, and A. Y. Zhang, “Synthesis of cross-shaped PbS nanostructures by a surfactant-assisted reflux process,” Mater. Lett. 60(21–22), 2759–2763 (2006).
[Crossref]

Zhang, H. X.

J. P. Ge, J. Wang, H. X. Zhang, X. Wang, Q. Peng, and Y. D. Li, “Orthogonal PbS nanowire arrays and networks and their Raman scattering behavior,” Chemistry 11(6), 1889–1894 (2005).
[Crossref] [PubMed]

Zhang, P. P.

A. J. Wang, Q. C. Liao, J. J. Feng, P. P. Zhang, Z. M. Zhang, and J. R. Chen, “D-Penicillamine-Assisted Self-Assembly of Hierarchical PbS Microstars with Octa-Symmetric-Dendritic Arms,” Cryst. Growth Des. 12(2), 832–841 (2012).
[Crossref]

Zhang, Q. C.

F. Y. Tian, D. F. Hou, F. Tang, M. Deng, X. Q. Qiao, Q. C. Zhang, T. Wu, and D. S. Li, “Novel Zn0.8Cd0.2S@g-C3N4 core–shell heterojunctions with a twin structure for enhanced visible-light-driven photocatalytic hydrogen generation,” J. Mater. Chem. A Mater. Energy Sustain. 6(35), 17086–17094 (2018).
[Crossref]

Zhang, S.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Zhang, S. C.

J. H. Xiang, H. Q. Cao, Q. Z. Wu, S. C. Zhang, and X. R. Zhang, “L-Cysteine-Assisted Self-Assembly of Complex PbS Structures,” Cryst. Growth Des. 8(11), 3935–3940 (2008).
[Crossref]

H. Q. Cao, G. Z. Wang, S. C. Zhang, and X. R. Zhang, “Growth and photoluminescence properties of PbS nanocubes,” Nanotechnology 17(13), 3280–3287 (2006).
[Crossref]

Zhang, X. F.

X. Y. Chen, X. F. Zhang, C. W. Shi, X. L. Li, and Y. T. Qian, “A simple biomolecule-assisted hydrothermal approach to antimony sulfide nanowires,” Solid State Commun. 134(9), 613–615 (2005).
[Crossref]

Zhang, X. Q.

Z. W. Gu, F. Chen, X. Q. Zhang, Y. J. Liu, C. C. Fan, G. Wu, H. Y. Li, and H. Z. Chen, “Novel planar heterostructure perovskite solar cells with CdS nanorods array as electron transport layer,” Sol. Energy Mater. Sol. Cells 140, 396–404 (2015).
[Crossref]

Zhang, X. R.

J. H. Xiang, H. Q. Cao, Q. Z. Wu, S. C. Zhang, and X. R. Zhang, “L-Cysteine-Assisted Self-Assembly of Complex PbS Structures,” Cryst. Growth Des. 8(11), 3935–3940 (2008).
[Crossref]

H. Q. Cao, G. Z. Wang, S. C. Zhang, and X. R. Zhang, “Growth and photoluminescence properties of PbS nanocubes,” Nanotechnology 17(13), 3280–3287 (2006).
[Crossref]

Zhang, Y.

Z. P. Qiao, Y. Zhang, L. T. Zhou, and Q. Xire, “Shape control of PbS crystals under microwave irradiation,” Cryst. Growth Des. 7(12), 2394–2396 (2007).
[Crossref]

Zhang, Z.

Z. Zhang, S. H. Lee, J. J. Vittal, and W. S. Chin, “A simple way to prepare PbS nanocrystals with morphology tuning at room temperature,” J. Phys. Chem. B 110(13), 6649–6654 (2006).
[Crossref] [PubMed]

Zhang, Z. M.

A. J. Wang, Q. C. Liao, J. J. Feng, P. P. Zhang, Z. M. Zhang, and J. R. Chen, “D-Penicillamine-Assisted Self-Assembly of Hierarchical PbS Microstars with Octa-Symmetric-Dendritic Arms,” Cryst. Growth Des. 12(2), 832–841 (2012).
[Crossref]

Zhao, Y.

F. Zuo, S. Yan, B. Zhang, Y. Zhao, and Y. Xie, “L-Cysteine-Assisted Synthesis of PbS Nanocube-Based Pagoda-like Hierarchical Architectures,” J. Phys. Chem. C 112(8), 2831–2835 (2008).
[Crossref]

Zhou, G.

G. Zhou, M. Lü, Z. Xiu, S. Wang, H. Zhang, Y. Zhou, and S. Wang, “Controlled synthesis of high-quality PbS star-shaped dendrites, multipods, truncated nanocubes, and nanocubes and their shape evolution process,” J. Phys. Chem. B 110(13), 6543–6548 (2006).
[Crossref] [PubMed]

Zhou, L. T.

Z. P. Qiao, Y. Zhang, L. T. Zhou, and Q. Xire, “Shape control of PbS crystals under microwave irradiation,” Cryst. Growth Des. 7(12), 2394–2396 (2007).
[Crossref]

Zhou, Y.

A. Querejeta-Fernández, J. C. Hernández-Garrido, H. Yang, Y. Zhou, A. Varela, M. Parras, J. J. Calvino-Gámez, J. M. González-Calbet, P. F. Green, and N. A. Kotov, “Unknown Aspects of Self-Assembly of PbS Microscale Superstructures,” ACS Nano 6(5), 3800–3812 (2012).
[Crossref] [PubMed]

G. Zhou, M. Lü, Z. Xiu, S. Wang, H. Zhang, Y. Zhou, and S. Wang, “Controlled synthesis of high-quality PbS star-shaped dendrites, multipods, truncated nanocubes, and nanocubes and their shape evolution process,” J. Phys. Chem. B 110(13), 6543–6548 (2006).
[Crossref] [PubMed]

Zhou, Y. Y.

S. F. Wang, F. Gu, M. K. Lü, D. Z. Wang, Z. S. Yang, H. P. Zhang, Y. Y. Zhou, and A. Y. Zhang, “Synthesis of cross-shaped PbS nanostructures by a surfactant-assisted reflux process,” Mater. Lett. 60(21–22), 2759–2763 (2006).
[Crossref]

Zhu, C. L.

S. W. Chou, C. L. Zhu, C. L. Chen, and Y. Y. Chen, “Controlled Growth and Magnetic Property of FePt Nanostructure: Cuboctahedron, Octapod, Truncated Cube, and Cube,” Chem. Mater. 21(20), 4955–4961 (2009).
[Crossref]

Zuo, F.

F. Zuo, S. Yan, B. Zhang, Y. Zhao, and Y. Xie, “L-Cysteine-Assisted Synthesis of PbS Nanocube-Based Pagoda-like Hierarchical Architectures,” J. Phys. Chem. C 112(8), 2831–2835 (2008).
[Crossref]

ACS Nano (2)

N. Wang, X. Cao, L. Guo, S. Yang, and Z. Wu, “Facile synthesis of PbS truncated octahedron crystals with high symmetry and their large-scale assembly into regular patterns by a simple solution route,” ACS Nano 2(2), 184–190 (2008).
[Crossref] [PubMed]

A. Querejeta-Fernández, J. C. Hernández-Garrido, H. Yang, Y. Zhou, A. Varela, M. Parras, J. J. Calvino-Gámez, J. M. González-Calbet, P. F. Green, and N. A. Kotov, “Unknown Aspects of Self-Assembly of PbS Microscale Superstructures,” ACS Nano 6(5), 3800–3812 (2012).
[Crossref] [PubMed]

Adv. Mater. (4)

D. B. Kuang, A. W. Xu, Y. P. Fang, H. Q. Liu, C. Frommen, and D. Fenske, “Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process,” Adv. Mater. 15(20), 1747–1750 (2003).
[Crossref]

E. H. Sargent, “Infrared Quantum Dots,” Adv. Mater. 17(5), 515–522 (2005).
[Crossref]

L. Levina, V. Sukhovatkin, S. Musikhin, S. Cauchi, R. Nisman, D. P. Bazett-Jones, and E. H. Sargent, “Efficient Infrared-Emitting PbS Quantum Dots Grown on DNA and Stable in Aqueous Solution and Blood Plasma,” Adv. Mater. 17(15), 1854–1857 (2005).
[Crossref]

J. H. Warner, “Self-assembly of ligand-free PbS nanocrystals into nanorods and their nanosculpturing by electron-beam irradiation,” Adv. Mater. 20(4), 784–787 (2008).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

G. R. Patzke, F. Krumeich, and R. Nesper, “Oxidic nanotubes and nanorods--anisotropic modules for a future nanotechnology,” Angew. Chem. Int. Ed. Engl. 41(14), 2446–2461 (2002).
[Crossref] [PubMed]

Appl. Surf. Sci. (1)

S. B. Pawar, J. S. Shaikh, R. S. Devan, Y. R. Ma, D. Haranath, P. N. Bhosale, and P. S. Patil, “Facile and low cost chemosynthesis of nanostructured PbS with tunable optical properties,” Appl. Surf. Sci. 258(5), 1869–1875 (2011).
[Crossref]

Biosensors (Basel) (1)

Y. Dai, A. Molazemhosseini, and C. C. Liu, “A Single-Use, In Vitro Biosensor for the Detection of T-Tau Protein, A Biomarker of Neuro-Degenerative Disorders, in PBS and Human Serum Using Differential Pulse Voltammetry (DPV),” Biosensors (Basel) 7(1), 10 (2017).
[Crossref] [PubMed]

Chem. Mater. (1)

S. W. Chou, C. L. Zhu, C. L. Chen, and Y. Y. Chen, “Controlled Growth and Magnetic Property of FePt Nanostructure: Cuboctahedron, Octapod, Truncated Cube, and Cube,” Chem. Mater. 21(20), 4955–4961 (2009).
[Crossref]

Chemistry (1)

J. P. Ge, J. Wang, H. X. Zhang, X. Wang, Q. Peng, and Y. D. Li, “Orthogonal PbS nanowire arrays and networks and their Raman scattering behavior,” Chemistry 11(6), 1889–1894 (2005).
[Crossref] [PubMed]

Cryst. Growth Des. (5)

Z. P. Qiao, Y. Zhang, L. T. Zhou, and Q. Xire, “Shape control of PbS crystals under microwave irradiation,” Cryst. Growth Des. 7(12), 2394–2396 (2007).
[Crossref]

Y. R. Ma, L. M. Qi, J. M. Ma, and H. M. Cheng, “Hierarchical, Star-Shaped PbS Crystals Formed by a Simple Solution Route,” Cryst. Growth Des. 4(2), 351–354 (2004).
[Crossref]

Y. Ni, H. Liu, F. Wang, Y. Liang, J. Hong, X. Ma, and Z. Xu, “Shape controllable preparation of PbS crystals by a simple aqueous phase route,” Cryst. Growth Des. 4(4), 759–764 (2004).
[Crossref]

J. H. Xiang, H. Q. Cao, Q. Z. Wu, S. C. Zhang, and X. R. Zhang, “L-Cysteine-Assisted Self-Assembly of Complex PbS Structures,” Cryst. Growth Des. 8(11), 3935–3940 (2008).
[Crossref]

A. J. Wang, Q. C. Liao, J. J. Feng, P. P. Zhang, Z. M. Zhang, and J. R. Chen, “D-Penicillamine-Assisted Self-Assembly of Hierarchical PbS Microstars with Octa-Symmetric-Dendritic Arms,” Cryst. Growth Des. 12(2), 832–841 (2012).
[Crossref]

J. Am. Chem. Soc. (1)

S. M. Lee, Y. W. Jun, S. N. Cho, and J. Cheon, “Single-crystalline star-shaped nanocrystals and their evolution: programming the geometry of nano-building blocks,” J. Am. Chem. Soc. 124(38), 11244–11245 (2002).
[Crossref] [PubMed]

J. Appl. Phys. (1)

G. D. Smith, S. Firth, R. J. H. Clark, and M. Cardona, “First- and second-order Raman spectra of galena (PbS),” J. Appl. Phys. 92(8), 4375–4380 (2002).
[Crossref]

J. Chem. Phys. (1)

R. Rossetti, R. Hull, J. M. Gibson, and L. E. Brus, “Hybrid electronic properties between the molecular and solid state limits: lead sulfide and silver halide crystallites,” J. Chem. Phys. 83(3), 1406–1410 (1985).
[Crossref]

J. Cryst. Growth (2)

B. H. Zhang, F. Q. Guo, L. H. Yang, and J. J. Wang, “Tunable synthesis of multi-shaped PbS via L-cysteine assisted solvothermal method,” J. Cryst. Growth 405(4), 142–149 (2014).
[Crossref]

C. Henrist, J. P. Mathieu, C. Vogels, A. Rulmont, and R. Cloots, “Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution,” J. Cryst. Growth 249(1–2), 321–330 (2003).
[Crossref]

J. Mater. Chem. (1)

D. B. Yu, D. B. Wang, Z. Y. Meng, J. Lu, and Y. Qian, “Synthesis of closed PbS nanowires with regular geometric morphologies,” J. Mater. Chem. 12(3), 403–405 (2002).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

F. Y. Tian, D. F. Hou, F. Tang, M. Deng, X. Q. Qiao, Q. C. Zhang, T. Wu, and D. S. Li, “Novel Zn0.8Cd0.2S@g-C3N4 core–shell heterojunctions with a twin structure for enhanced visible-light-driven photocatalytic hydrogen generation,” J. Mater. Chem. A Mater. Energy Sustain. 6(35), 17086–17094 (2018).
[Crossref]

J. Mater. Sci-Mater. EL. (1)

H. N. Bai, F. Q. Guo, B. H. Zhang, L. T. Gai, and R. Q. Guo, “One-step synthesis of high pure CdS nanofilms via hydrothermal method,” J. Mater. Sci-Mater. EL. 29(11), 9193–9199 (2018).
[Crossref]

J. Phys. Chem. B (2)

G. Zhou, M. Lü, Z. Xiu, S. Wang, H. Zhang, Y. Zhou, and S. Wang, “Controlled synthesis of high-quality PbS star-shaped dendrites, multipods, truncated nanocubes, and nanocubes and their shape evolution process,” J. Phys. Chem. B 110(13), 6543–6548 (2006).
[Crossref] [PubMed]

Z. Zhang, S. H. Lee, J. J. Vittal, and W. S. Chin, “A simple way to prepare PbS nanocrystals with morphology tuning at room temperature,” J. Phys. Chem. B 110(13), 6649–6654 (2006).
[Crossref] [PubMed]

J. Phys. Chem. C (4)

M. S. Bakshi, P. Thakur, S. Sachar, G. Kaur, T. S. Banipal, F. Possmayer, and N. O. Petersen, “Aqueous phase surfactant selective shape controlled synthesis of lead sulfide nanocrystals,” J. Phys. Chem. C 111(49), 18087–18098 (2007).
[Crossref]

A. N. Jumabekov, F. Deschler, D. Böhm, L. M. Peter, J. Feldmann, and T. Bein, “Quantum-Dot-Sensitized Solar Cells with Water-Soluble and Air-Stable PbS Quantum Dots,” J. Phys. Chem. C 118(10), 5142–5149 (2014).
[Crossref]

F. Zuo, S. Yan, B. Zhang, Y. Zhao, and Y. Xie, “L-Cysteine-Assisted Synthesis of PbS Nanocube-Based Pagoda-like Hierarchical Architectures,” J. Phys. Chem. C 112(8), 2831–2835 (2008).
[Crossref]

M. S. Bakshi, G. Kaur, F. Possmayer, and N. O. Petersen, “Shape-controlled synthesis of poly (styrene sulfonate) and poly (vinyl pyrolidone) capped lead sulfide nanocubes, bars, and threads,” J. Phys. Chem. C 112(13), 4948–4953 (2008).
[Crossref]

Langmuir (1)

S. Wang and S. Yang, “Preparation and characterization of oriented PbS crystalline nanorods in polymer films,” Langmuir 16(2), 389–397 (2000).
[Crossref]

Mater. Lett. (2)

S. F. Wang, F. Gu, M. K. Lü, D. Z. Wang, Z. S. Yang, H. P. Zhang, Y. Y. Zhou, and A. Y. Zhang, “Synthesis of cross-shaped PbS nanostructures by a surfactant-assisted reflux process,” Mater. Lett. 60(21–22), 2759–2763 (2006).
[Crossref]

Q. F. Han, F. Jin, W. J. Yang, D. P. Sun, and X. Wang, “Liquid-liquid interfacial synthesis of single-crystalline PbS nanoplates and nanocube-based microspheres,” Mater. Lett. 69, 10–12 (2012).
[Crossref]

Nano Lett. (2)

J. R. Caram, S. N. Bertram, H. Utzat, W. R. Hess, J. A. Carr, T. S. Bischof, A. P. Beyler, M. W. B. Wilson, and M. G. Bawendi, “PbS Nanocrystal Emission Is Governed by Multiple Emissive States,” Nano Lett. 16(10), 6070–6077 (2016).
[Crossref] [PubMed]

D. M. Kroupa, D. H. Arias, J. L. Blackburn, G. M. Carroll, D. B. Granger, J. E. Anthony, M. C. Beard, and J. C. Johnson, “Control of Energy Flow Dynamics between Tetracene Ligands and PbS Quantum Dots by Size Tuning and Ligand Coverage,” Nano Lett. 18(2), 865–873 (2018).
[Crossref] [PubMed]

Nanotechnology (1)

H. Q. Cao, G. Z. Wang, S. C. Zhang, and X. R. Zhang, “Growth and photoluminescence properties of PbS nanocubes,” Nanotechnology 17(13), 3280–3287 (2006).
[Crossref]

Nat. Mater. (1)

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Phys. Rev. B (1)

E. Harel, S. M. Rupich, R. D. Schaller, D. V. Talapin, and G. S. Engel, “Measurement of electronic splitting in PbS quantum dots by two-dimensional nonlinear spectroscopy,” Phys. Rev. B 86(7), 43–49 (2016).

Phys. Rev. B Condens. Matter (1)

T. D. Krauss and F. W. Wise, “Exciton-Phonon Coupling in PbS Nanocrystals,” Phys. Rev. B Condens. Matter 55(15), 9860–9865 (1997).
[Crossref]

Physica E (1)

G. Pandey, S. Shrivastav, and H. K. Sharma, “Role of solution pH and SDS on shape evolution of PbS hexagonal disk and star/flower shaped nanocrystals in aqueous media,” Physica E 56(3), 386–392 (2014).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

Z. W. Gu, F. Chen, X. Q. Zhang, Y. J. Liu, C. C. Fan, G. Wu, H. Y. Li, and H. Z. Chen, “Novel planar heterostructure perovskite solar cells with CdS nanorods array as electron transport layer,” Sol. Energy Mater. Sol. Cells 140, 396–404 (2015).
[Crossref]

Solid State Commun. (1)

X. Y. Chen, X. F. Zhang, C. W. Shi, X. L. Li, and Y. T. Qian, “A simple biomolecule-assisted hydrothermal approach to antimony sulfide nanowires,” Solid State Commun. 134(9), 613–615 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 XRD pattern of the samples synthesized in deionized water for 6 h at different temperatures: (a) 80°C; (b) 100°C; (c) 120°C; (d) 140°C; (e) 160°C; (f) 180°C.
Fig. 2
Fig. 2 SEM images of the samples synthesized in deionized water for 6 h at different temperatures: (a) 80°C; (b) 100°C; (c) 120°C; (d) 140°C; (e) 160°C; (f) 180°C.
Fig. 3
Fig. 3 XRD pattern of the samples synthesized in En for 6 h at different temperatures: (a) 80°C; (b) 100°C; (c) 120°C; (d) 140°C; (e) 160°C; (f) 180°C.
Fig. 4
Fig. 4 SEM images of the samples synthesized in En for 6 h at different temperatures: (a) 80°C; (b) 100°C; (c) 120°C; (d) 140°C; (e) 160°C; (f) 180°C.
Fig. 5
Fig. 5 (a) TEM; (b) HRTEM images of the samples synthesized in En for 6 h at 120°C and high esolution XPS peaks: (c) Pb 4f7/2 and Pb 4f5/2; (d) S 2p3/2 and S 2p1/2.
Fig. 6
Fig. 6 Growth mechanism analysis of temperature-dependent PbS synthesized in deionized water and En.
Fig. 7
Fig. 7 Chelation of Pb2+ and En.
Fig. 8
Fig. 8 XRD pattern of the samples synthesized at 180°C for 6 h in mixed solvents: (a) deionized water; (b) Vwater:VEn = 2:1; (c) Vwater:VEn = 1:1; (d) En.
Fig. 9
Fig. 9 SEM images of the samples synthesized at 180°C for 6 h in mixed solvents: (a) deionized water; (b) Vwater:VEn = 2:1; (c) Vwater:VEn = 1:1; (d) En.
Fig. 10
Fig. 10 Raman spectra of the samples synthesized at 180°C for 6 h in mixed solvents: (a) deionized water; (b) Vwater:VEn = 1:1; (c) En.
Fig. 11
Fig. 11 PL spectra of the samples synthesized at 180°C for 6 h in mixed solvents: (a) deionized water; (b) Vwater:VEn = 1:1; (c) En.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

N H 2 C S N H 2 + 2 H 2 O 2 N H 3 + H 2 S + C O 2
P b 2 + + H 2 S P b S + e c t
n P b S ( P b S ) n P b S p o d s P b S c u b e s
N H 2 C S N H 2 + 2 H 2 O 2 N H 3 + H 2 S + C O 2
P b 2 + + 2 e n [ P b ( e n ) 2 ] 2 +
[ P b ( e n ) 2 ] 2 + + H 2 S P b S c u b e s + e c t
[ P b ( e n ) 2 ] 2 + P b 2 + + e c t
n P b 2 + + n H 2 S n P b S + e c t ( P b S ) n P b S H i e r a r c h i c a l

Metrics