Abstract

We present an analysis of the optical and magnetorefractive properties of a series of Ni81Fe19/Au multilayers grown by magnetron sputtering as a function of the Au spacer thickness. The multilayers reach giant magneto resistance values of 4% with low magnetic fields for 2.3 nm Au spacers. The experimental results are well described taking only into account the contribution of the conduction electrons with spin dependent scattering times and different electron concentrations for the two spins. It is shown that the spectral response of the magnetorefractive effect depends strongly on the spin up vs. spin down ratio of both, scattering time and electron concentration. This dependence can be used to optimize mid infrared modulation of optical devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Magnetic modulation of mid-infrared plasmons using Giant Magnetoresistance

Gaspar Armelles, Alfonso Cebollada, Fernando García, and Carlos Pecharromán
Opt. Express 25(16) 18784-18796 (2017)

Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W.

M. A. Ordal, Robert J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry
Appl. Opt. 24(24) 4493-4499 (1985)

Spectral dependence of the magnetic modulation of surface plasmon polaritons in permalloy/noble metal films

V. G. Kravets, P. Yu. Kurioz, and L. V. Poperenko
J. Opt. Soc. Am. B 31(8) 1836-1844 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. C. Kinzel, J. C. Ginn, R. L. Olmon, D. J. Shelton, B. A. Lail, I. Brener, M. B. Sinclair, M. B. Raschke, and G. D. Boreman, “Phase resolved near-field mode imaging for the design of frequency-selective surfaces,” Opt. Express 20(11), 11986–11993 (2012).
    [Crossref] [PubMed]
  2. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
    [Crossref]
  3. S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
    [Crossref]
  4. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref] [PubMed]
  5. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
    [Crossref] [PubMed]
  6. G. Armelles, L. Bergamini, N. Zabala, F. García, M. L. Dotor, L. Torné, R. Alvaro, A. Griol, A. Martínez, J. Aizpurua, and A. Cebollada, “Metamaterial platforms for spintronic modulation of mid-Infrared response under very weak magnetic field,” ACS Photonics 5(10), 3956–3961 (2018).
    [Crossref]
  7. J. C. Jacquet and T. A. Valet, “A new magnetooptical effect discovered on magnetic multilayers: the magnetorefractive effect,” Proc. MRS 384, 477–490 (1995).
    [Crossref]
  8. M. Vopsaroiu, T. Stanton, O. Thomas, M. Cain, and S. M. Thompson, “Infrared metrology for spintronic materials and devices,” Meas. Sci. Technol. 20(4), 045109 (2009).
    [Crossref]
  9. R. J. Baxter, D. G. Pettifor, E. Y. Tsymbal, D. Bozec, J. A. D. Matthew, and S. M. Thompson, “Importance of the interband contribution to the magneto-refractive effect in Co/Cu multilayers,” J. Phys. Cond. Mat. 15(45), L695–L702 (2003).
    [Crossref]
  10. M. Vopsaroiu, D. Bozec, J. A. D. Matthew, S. M. Thompson, C. H. Marrows, and M. Perez, “Contactless magnetoresistance studies of Co/Cu multilayers using the infrared magnetorefractive effect,” Phys. Rev. B Condens. Matter Mater. Phys. 70(21), 214423 (2004).
    [Crossref]
  11. R. T. Mennicke, D. Bozec, V. G. Kravets, M. Vopsaroiu, J. A. D. Matthew, and S. M. Thompson, “Modelling the magnetorefractive effect in giant magnetoresistive granular and layered materials,” J. Magn. Magn. Mater. 303(1), 92–110 (2006).
    [Crossref]
  12. I. D. Lobov, M. M. Kirillova, A. A. Makhnev, L. N. Romashev, and V. V. Ustinov, “Parameters of Fe/Cr interfacial electron scattering from infrared magnetoreflection,” Phys. Rev. B Condens. Matter Mater. Phys. 81(13), 134436 (2010).
    [Crossref]
  13. T. Ogasawara, H. Kuwatsuka, T. Hasama, and H. Ishikawa, “Proposal of an optical nonvolatile switch utilizing surface plasmon antenna resonance controlled by giant magnetoresistance,” Appl. Phys. Lett. 100(25), 251112 (2012).
    [Crossref]
  14. Z. Jim, A. Tkach, F. Casper, V. Spetter, H. Grimm, A. Thomas, T. Kampfrath, M. Bonn, M. Kläui, and D. Turchinovich, “Accessing the fundamentals of magnetotransport in metals with terahertz probes,” Nat. Phys. 11(9), 761–766 (2015).
    [Crossref]
  15. V. G. Kravets, D. Bozec, J. A. D. Matthew, S. M. Thompson, H. Menard, A. B. Horn, and A. F. Kravets, “Correlation between the magnetorefractive effect, giant magnetoresistance, and optical properties of Co-Ag granular magnetic films,” Phys. Rev. B Condens. Matter Mater. Phys. 65(5), 054415 (2002).
    [Crossref]
  16. J. van Driel, F. R. de Boer, R. Coehoorn, G. H. Rietjens, and E. S. J. Heuvelmans-Wijdenes, “Magnetorefractive and magnetic-linear-dichroism effect in exchange-biased spin valves,” Phys. Rev. B Condens. Matter Mater. Phys. 61(22), 15321–15326 (2000).
    [Crossref]
  17. S. M. Strutner, A. Garcia, S. Ula, C. Adamo, W. L. Richards, K. Wang, D. Schlom, and G. P. Carman, “Index of refraction changes under magnetic field observed in La0.66Sr0.33MnO3 correlated to the magnetorefractive effect,” Opt. Mater. Expr. 7(2), 468–476 (2017).
  18. G. Armelles, A. Cebollada, F. García, and C. Pecharromán, “Magnetic modulation of mid-infrared plasmons using Giant Magnetoresistance,” Opt. Express 25(16), 18784–18796 (2017).
    [Crossref] [PubMed]
  19. S. S. P. Parkin, R. F. C. Farrow, R. F. Marks, A. Cebollada, G. R. Harp, and R. J. Savoy, “Oscillations of interlayer exchange coupling and giant magnetoresistance in (111) oriented permalloy/Au multilayers,” Phys. Rev. Lett. 72(23), 3718–3721 (1994).
    [Crossref] [PubMed]
  20. A. Fert, A. Barthelemy, and F. Petroff, “Nanomagnetism: Ultrathin films, multilayers and nanostructures,” Contemporary Concepts of Condensed Matter Science. Editors: D. L. Mills and J. A. C. Bland. Elsevier Amsterdam 2006.
  21. I. V. Bondarev and V. M. Shalaev, “Universal features of the optical properties of ultrathin plasmonic films,” Opt. Mater. Express 7(10), 3731 (2017).
    [Crossref]
  22. C. H. Marrows and B. J. Hickey, “Impurity scattering from δ-layers in giant magnetoresistance systems,” Phys. Rev. B Condens. Matter Mater. Phys. 63(22), 220405 (2001).
    [Crossref]

2018 (1)

G. Armelles, L. Bergamini, N. Zabala, F. García, M. L. Dotor, L. Torné, R. Alvaro, A. Griol, A. Martínez, J. Aizpurua, and A. Cebollada, “Metamaterial platforms for spintronic modulation of mid-Infrared response under very weak magnetic field,” ACS Photonics 5(10), 3956–3961 (2018).
[Crossref]

2017 (2)

2015 (1)

Z. Jim, A. Tkach, F. Casper, V. Spetter, H. Grimm, A. Thomas, T. Kampfrath, M. Bonn, M. Kläui, and D. Turchinovich, “Accessing the fundamentals of magnetotransport in metals with terahertz probes,” Nat. Phys. 11(9), 761–766 (2015).
[Crossref]

2012 (3)

T. Ogasawara, H. Kuwatsuka, T. Hasama, and H. Ishikawa, “Proposal of an optical nonvolatile switch utilizing surface plasmon antenna resonance controlled by giant magnetoresistance,” Appl. Phys. Lett. 100(25), 251112 (2012).
[Crossref]

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

E. C. Kinzel, J. C. Ginn, R. L. Olmon, D. J. Shelton, B. A. Lail, I. Brener, M. B. Sinclair, M. B. Raschke, and G. D. Boreman, “Phase resolved near-field mode imaging for the design of frequency-selective surfaces,” Opt. Express 20(11), 11986–11993 (2012).
[Crossref] [PubMed]

2011 (1)

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

2010 (1)

I. D. Lobov, M. M. Kirillova, A. A. Makhnev, L. N. Romashev, and V. V. Ustinov, “Parameters of Fe/Cr interfacial electron scattering from infrared magnetoreflection,” Phys. Rev. B Condens. Matter Mater. Phys. 81(13), 134436 (2010).
[Crossref]

2009 (2)

M. Vopsaroiu, T. Stanton, O. Thomas, M. Cain, and S. M. Thompson, “Infrared metrology for spintronic materials and devices,” Meas. Sci. Technol. 20(4), 045109 (2009).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

2008 (1)

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

2006 (1)

R. T. Mennicke, D. Bozec, V. G. Kravets, M. Vopsaroiu, J. A. D. Matthew, and S. M. Thompson, “Modelling the magnetorefractive effect in giant magnetoresistive granular and layered materials,” J. Magn. Magn. Mater. 303(1), 92–110 (2006).
[Crossref]

2004 (1)

M. Vopsaroiu, D. Bozec, J. A. D. Matthew, S. M. Thompson, C. H. Marrows, and M. Perez, “Contactless magnetoresistance studies of Co/Cu multilayers using the infrared magnetorefractive effect,” Phys. Rev. B Condens. Matter Mater. Phys. 70(21), 214423 (2004).
[Crossref]

2003 (1)

R. J. Baxter, D. G. Pettifor, E. Y. Tsymbal, D. Bozec, J. A. D. Matthew, and S. M. Thompson, “Importance of the interband contribution to the magneto-refractive effect in Co/Cu multilayers,” J. Phys. Cond. Mat. 15(45), L695–L702 (2003).
[Crossref]

2002 (1)

V. G. Kravets, D. Bozec, J. A. D. Matthew, S. M. Thompson, H. Menard, A. B. Horn, and A. F. Kravets, “Correlation between the magnetorefractive effect, giant magnetoresistance, and optical properties of Co-Ag granular magnetic films,” Phys. Rev. B Condens. Matter Mater. Phys. 65(5), 054415 (2002).
[Crossref]

2001 (1)

C. H. Marrows and B. J. Hickey, “Impurity scattering from δ-layers in giant magnetoresistance systems,” Phys. Rev. B Condens. Matter Mater. Phys. 63(22), 220405 (2001).
[Crossref]

2000 (1)

J. van Driel, F. R. de Boer, R. Coehoorn, G. H. Rietjens, and E. S. J. Heuvelmans-Wijdenes, “Magnetorefractive and magnetic-linear-dichroism effect in exchange-biased spin valves,” Phys. Rev. B Condens. Matter Mater. Phys. 61(22), 15321–15326 (2000).
[Crossref]

1995 (1)

J. C. Jacquet and T. A. Valet, “A new magnetooptical effect discovered on magnetic multilayers: the magnetorefractive effect,” Proc. MRS 384, 477–490 (1995).
[Crossref]

1994 (1)

S. S. P. Parkin, R. F. C. Farrow, R. F. Marks, A. Cebollada, G. R. Harp, and R. J. Savoy, “Oscillations of interlayer exchange coupling and giant magnetoresistance in (111) oriented permalloy/Au multilayers,” Phys. Rev. Lett. 72(23), 3718–3721 (1994).
[Crossref] [PubMed]

Aizpurua, J.

G. Armelles, L. Bergamini, N. Zabala, F. García, M. L. Dotor, L. Torné, R. Alvaro, A. Griol, A. Martínez, J. Aizpurua, and A. Cebollada, “Metamaterial platforms for spintronic modulation of mid-Infrared response under very weak magnetic field,” ACS Photonics 5(10), 3956–3961 (2018).
[Crossref]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Alvaro, R.

G. Armelles, L. Bergamini, N. Zabala, F. García, M. L. Dotor, L. Torné, R. Alvaro, A. Griol, A. Martínez, J. Aizpurua, and A. Cebollada, “Metamaterial platforms for spintronic modulation of mid-Infrared response under very weak magnetic field,” ACS Photonics 5(10), 3956–3961 (2018).
[Crossref]

Armelles, G.

G. Armelles, L. Bergamini, N. Zabala, F. García, M. L. Dotor, L. Torné, R. Alvaro, A. Griol, A. Martínez, J. Aizpurua, and A. Cebollada, “Metamaterial platforms for spintronic modulation of mid-Infrared response under very weak magnetic field,” ACS Photonics 5(10), 3956–3961 (2018).
[Crossref]

G. Armelles, A. Cebollada, F. García, and C. Pecharromán, “Magnetic modulation of mid-infrared plasmons using Giant Magnetoresistance,” Opt. Express 25(16), 18784–18796 (2017).
[Crossref] [PubMed]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Baxter, R. J.

R. J. Baxter, D. G. Pettifor, E. Y. Tsymbal, D. Bozec, J. A. D. Matthew, and S. M. Thompson, “Importance of the interband contribution to the magneto-refractive effect in Co/Cu multilayers,” J. Phys. Cond. Mat. 15(45), L695–L702 (2003).
[Crossref]

Bergamini, L.

G. Armelles, L. Bergamini, N. Zabala, F. García, M. L. Dotor, L. Torné, R. Alvaro, A. Griol, A. Martínez, J. Aizpurua, and A. Cebollada, “Metamaterial platforms for spintronic modulation of mid-Infrared response under very weak magnetic field,” ACS Photonics 5(10), 3956–3961 (2018).
[Crossref]

Bondarev, I. V.

Bonn, M.

Z. Jim, A. Tkach, F. Casper, V. Spetter, H. Grimm, A. Thomas, T. Kampfrath, M. Bonn, M. Kläui, and D. Turchinovich, “Accessing the fundamentals of magnetotransport in metals with terahertz probes,” Nat. Phys. 11(9), 761–766 (2015).
[Crossref]

Boreman, G. D.

Bozec, D.

R. T. Mennicke, D. Bozec, V. G. Kravets, M. Vopsaroiu, J. A. D. Matthew, and S. M. Thompson, “Modelling the magnetorefractive effect in giant magnetoresistive granular and layered materials,” J. Magn. Magn. Mater. 303(1), 92–110 (2006).
[Crossref]

M. Vopsaroiu, D. Bozec, J. A. D. Matthew, S. M. Thompson, C. H. Marrows, and M. Perez, “Contactless magnetoresistance studies of Co/Cu multilayers using the infrared magnetorefractive effect,” Phys. Rev. B Condens. Matter Mater. Phys. 70(21), 214423 (2004).
[Crossref]

R. J. Baxter, D. G. Pettifor, E. Y. Tsymbal, D. Bozec, J. A. D. Matthew, and S. M. Thompson, “Importance of the interband contribution to the magneto-refractive effect in Co/Cu multilayers,” J. Phys. Cond. Mat. 15(45), L695–L702 (2003).
[Crossref]

V. G. Kravets, D. Bozec, J. A. D. Matthew, S. M. Thompson, H. Menard, A. B. Horn, and A. F. Kravets, “Correlation between the magnetorefractive effect, giant magnetoresistance, and optical properties of Co-Ag granular magnetic films,” Phys. Rev. B Condens. Matter Mater. Phys. 65(5), 054415 (2002).
[Crossref]

Brener, I.

Cain, M.

M. Vopsaroiu, T. Stanton, O. Thomas, M. Cain, and S. M. Thompson, “Infrared metrology for spintronic materials and devices,” Meas. Sci. Technol. 20(4), 045109 (2009).
[Crossref]

Casper, F.

Z. Jim, A. Tkach, F. Casper, V. Spetter, H. Grimm, A. Thomas, T. Kampfrath, M. Bonn, M. Kläui, and D. Turchinovich, “Accessing the fundamentals of magnetotransport in metals with terahertz probes,” Nat. Phys. 11(9), 761–766 (2015).
[Crossref]

Cebollada, A.

G. Armelles, L. Bergamini, N. Zabala, F. García, M. L. Dotor, L. Torné, R. Alvaro, A. Griol, A. Martínez, J. Aizpurua, and A. Cebollada, “Metamaterial platforms for spintronic modulation of mid-Infrared response under very weak magnetic field,” ACS Photonics 5(10), 3956–3961 (2018).
[Crossref]

G. Armelles, A. Cebollada, F. García, and C. Pecharromán, “Magnetic modulation of mid-infrared plasmons using Giant Magnetoresistance,” Opt. Express 25(16), 18784–18796 (2017).
[Crossref] [PubMed]

S. S. P. Parkin, R. F. C. Farrow, R. F. Marks, A. Cebollada, G. R. Harp, and R. J. Savoy, “Oscillations of interlayer exchange coupling and giant magnetoresistance in (111) oriented permalloy/Au multilayers,” Phys. Rev. Lett. 72(23), 3718–3721 (1994).
[Crossref] [PubMed]

Coehoorn, R.

J. van Driel, F. R. de Boer, R. Coehoorn, G. H. Rietjens, and E. S. J. Heuvelmans-Wijdenes, “Magnetorefractive and magnetic-linear-dichroism effect in exchange-biased spin valves,” Phys. Rev. B Condens. Matter Mater. Phys. 61(22), 15321–15326 (2000).
[Crossref]

Cornelius, T. W.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

de Boer, F. R.

J. van Driel, F. R. de Boer, R. Coehoorn, G. H. Rietjens, and E. S. J. Heuvelmans-Wijdenes, “Magnetorefractive and magnetic-linear-dichroism effect in exchange-biased spin valves,” Phys. Rev. B Condens. Matter Mater. Phys. 61(22), 15321–15326 (2000).
[Crossref]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Dotor, M. L.

G. Armelles, L. Bergamini, N. Zabala, F. García, M. L. Dotor, L. Torné, R. Alvaro, A. Griol, A. Martínez, J. Aizpurua, and A. Cebollada, “Metamaterial platforms for spintronic modulation of mid-Infrared response under very weak magnetic field,” ACS Photonics 5(10), 3956–3961 (2018).
[Crossref]

Farrow, R. F. C.

S. S. P. Parkin, R. F. C. Farrow, R. F. Marks, A. Cebollada, G. R. Harp, and R. J. Savoy, “Oscillations of interlayer exchange coupling and giant magnetoresistance in (111) oriented permalloy/Au multilayers,” Phys. Rev. Lett. 72(23), 3718–3721 (1994).
[Crossref] [PubMed]

Fukushima, N.

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

García, F.

G. Armelles, L. Bergamini, N. Zabala, F. García, M. L. Dotor, L. Torné, R. Alvaro, A. Griol, A. Martínez, J. Aizpurua, and A. Cebollada, “Metamaterial platforms for spintronic modulation of mid-Infrared response under very weak magnetic field,” ACS Photonics 5(10), 3956–3961 (2018).
[Crossref]

G. Armelles, A. Cebollada, F. García, and C. Pecharromán, “Magnetic modulation of mid-infrared plasmons using Giant Magnetoresistance,” Opt. Express 25(16), 18784–18796 (2017).
[Crossref] [PubMed]

García-Etxarri, A.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Ginn, J. C.

Grimm, H.

Z. Jim, A. Tkach, F. Casper, V. Spetter, H. Grimm, A. Thomas, T. Kampfrath, M. Bonn, M. Kläui, and D. Turchinovich, “Accessing the fundamentals of magnetotransport in metals with terahertz probes,” Nat. Phys. 11(9), 761–766 (2015).
[Crossref]

Griol, A.

G. Armelles, L. Bergamini, N. Zabala, F. García, M. L. Dotor, L. Torné, R. Alvaro, A. Griol, A. Martínez, J. Aizpurua, and A. Cebollada, “Metamaterial platforms for spintronic modulation of mid-Infrared response under very weak magnetic field,” ACS Photonics 5(10), 3956–3961 (2018).
[Crossref]

Harp, G. R.

S. S. P. Parkin, R. F. C. Farrow, R. F. Marks, A. Cebollada, G. R. Harp, and R. J. Savoy, “Oscillations of interlayer exchange coupling and giant magnetoresistance in (111) oriented permalloy/Au multilayers,” Phys. Rev. Lett. 72(23), 3718–3721 (1994).
[Crossref] [PubMed]

Hasama, T.

T. Ogasawara, H. Kuwatsuka, T. Hasama, and H. Ishikawa, “Proposal of an optical nonvolatile switch utilizing surface plasmon antenna resonance controlled by giant magnetoresistance,” Appl. Phys. Lett. 100(25), 251112 (2012).
[Crossref]

Heuvelmans-Wijdenes, E. S. J.

J. van Driel, F. R. de Boer, R. Coehoorn, G. H. Rietjens, and E. S. J. Heuvelmans-Wijdenes, “Magnetorefractive and magnetic-linear-dichroism effect in exchange-biased spin valves,” Phys. Rev. B Condens. Matter Mater. Phys. 61(22), 15321–15326 (2000).
[Crossref]

Hickey, B. J.

C. H. Marrows and B. J. Hickey, “Impurity scattering from δ-layers in giant magnetoresistance systems,” Phys. Rev. B Condens. Matter Mater. Phys. 63(22), 220405 (2001).
[Crossref]

Horn, A. B.

V. G. Kravets, D. Bozec, J. A. D. Matthew, S. M. Thompson, H. Menard, A. B. Horn, and A. F. Kravets, “Correlation between the magnetorefractive effect, giant magnetoresistance, and optical properties of Co-Ag granular magnetic films,” Phys. Rev. B Condens. Matter Mater. Phys. 65(5), 054415 (2002).
[Crossref]

Ishikawa, H.

T. Ogasawara, H. Kuwatsuka, T. Hasama, and H. Ishikawa, “Proposal of an optical nonvolatile switch utilizing surface plasmon antenna resonance controlled by giant magnetoresistance,” Appl. Phys. Lett. 100(25), 251112 (2012).
[Crossref]

Jacquet, J. C.

J. C. Jacquet and T. A. Valet, “A new magnetooptical effect discovered on magnetic multilayers: the magnetorefractive effect,” Proc. MRS 384, 477–490 (1995).
[Crossref]

Jim, Z.

Z. Jim, A. Tkach, F. Casper, V. Spetter, H. Grimm, A. Thomas, T. Kampfrath, M. Bonn, M. Kläui, and D. Turchinovich, “Accessing the fundamentals of magnetotransport in metals with terahertz probes,” Nat. Phys. 11(9), 761–766 (2015).
[Crossref]

Kampfrath, T.

Z. Jim, A. Tkach, F. Casper, V. Spetter, H. Grimm, A. Thomas, T. Kampfrath, M. Bonn, M. Kläui, and D. Turchinovich, “Accessing the fundamentals of magnetotransport in metals with terahertz probes,” Nat. Phys. 11(9), 761–766 (2015).
[Crossref]

Karim, S.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Kimata, M.

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

Kinzel, E. C.

Kirillova, M. M.

I. D. Lobov, M. M. Kirillova, A. A. Makhnev, L. N. Romashev, and V. V. Ustinov, “Parameters of Fe/Cr interfacial electron scattering from infrared magnetoreflection,” Phys. Rev. B Condens. Matter Mater. Phys. 81(13), 134436 (2010).
[Crossref]

Kläui, M.

Z. Jim, A. Tkach, F. Casper, V. Spetter, H. Grimm, A. Thomas, T. Kampfrath, M. Bonn, M. Kläui, and D. Turchinovich, “Accessing the fundamentals of magnetotransport in metals with terahertz probes,” Nat. Phys. 11(9), 761–766 (2015).
[Crossref]

Kravets, A. F.

V. G. Kravets, D. Bozec, J. A. D. Matthew, S. M. Thompson, H. Menard, A. B. Horn, and A. F. Kravets, “Correlation between the magnetorefractive effect, giant magnetoresistance, and optical properties of Co-Ag granular magnetic films,” Phys. Rev. B Condens. Matter Mater. Phys. 65(5), 054415 (2002).
[Crossref]

Kravets, V. G.

R. T. Mennicke, D. Bozec, V. G. Kravets, M. Vopsaroiu, J. A. D. Matthew, and S. M. Thompson, “Modelling the magnetorefractive effect in giant magnetoresistive granular and layered materials,” J. Magn. Magn. Mater. 303(1), 92–110 (2006).
[Crossref]

V. G. Kravets, D. Bozec, J. A. D. Matthew, S. M. Thompson, H. Menard, A. B. Horn, and A. F. Kravets, “Correlation between the magnetorefractive effect, giant magnetoresistance, and optical properties of Co-Ag granular magnetic films,” Phys. Rev. B Condens. Matter Mater. Phys. 65(5), 054415 (2002).
[Crossref]

Kuwatsuka, H.

T. Ogasawara, H. Kuwatsuka, T. Hasama, and H. Ishikawa, “Proposal of an optical nonvolatile switch utilizing surface plasmon antenna resonance controlled by giant magnetoresistance,” Appl. Phys. Lett. 100(25), 251112 (2012).
[Crossref]

Lail, B. A.

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Lobov, I. D.

I. D. Lobov, M. M. Kirillova, A. A. Makhnev, L. N. Romashev, and V. V. Ustinov, “Parameters of Fe/Cr interfacial electron scattering from infrared magnetoreflection,” Phys. Rev. B Condens. Matter Mater. Phys. 81(13), 134436 (2010).
[Crossref]

Makhnev, A. A.

I. D. Lobov, M. M. Kirillova, A. A. Makhnev, L. N. Romashev, and V. V. Ustinov, “Parameters of Fe/Cr interfacial electron scattering from infrared magnetoreflection,” Phys. Rev. B Condens. Matter Mater. Phys. 81(13), 134436 (2010).
[Crossref]

Marks, R. F.

S. S. P. Parkin, R. F. C. Farrow, R. F. Marks, A. Cebollada, G. R. Harp, and R. J. Savoy, “Oscillations of interlayer exchange coupling and giant magnetoresistance in (111) oriented permalloy/Au multilayers,” Phys. Rev. Lett. 72(23), 3718–3721 (1994).
[Crossref] [PubMed]

Marrows, C. H.

M. Vopsaroiu, D. Bozec, J. A. D. Matthew, S. M. Thompson, C. H. Marrows, and M. Perez, “Contactless magnetoresistance studies of Co/Cu multilayers using the infrared magnetorefractive effect,” Phys. Rev. B Condens. Matter Mater. Phys. 70(21), 214423 (2004).
[Crossref]

C. H. Marrows and B. J. Hickey, “Impurity scattering from δ-layers in giant magnetoresistance systems,” Phys. Rev. B Condens. Matter Mater. Phys. 63(22), 220405 (2001).
[Crossref]

Martínez, A.

G. Armelles, L. Bergamini, N. Zabala, F. García, M. L. Dotor, L. Torné, R. Alvaro, A. Griol, A. Martínez, J. Aizpurua, and A. Cebollada, “Metamaterial platforms for spintronic modulation of mid-Infrared response under very weak magnetic field,” ACS Photonics 5(10), 3956–3961 (2018).
[Crossref]

Mason, J. A.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Matthew, J. A. D.

R. T. Mennicke, D. Bozec, V. G. Kravets, M. Vopsaroiu, J. A. D. Matthew, and S. M. Thompson, “Modelling the magnetorefractive effect in giant magnetoresistive granular and layered materials,” J. Magn. Magn. Mater. 303(1), 92–110 (2006).
[Crossref]

M. Vopsaroiu, D. Bozec, J. A. D. Matthew, S. M. Thompson, C. H. Marrows, and M. Perez, “Contactless magnetoresistance studies of Co/Cu multilayers using the infrared magnetorefractive effect,” Phys. Rev. B Condens. Matter Mater. Phys. 70(21), 214423 (2004).
[Crossref]

R. J. Baxter, D. G. Pettifor, E. Y. Tsymbal, D. Bozec, J. A. D. Matthew, and S. M. Thompson, “Importance of the interband contribution to the magneto-refractive effect in Co/Cu multilayers,” J. Phys. Cond. Mat. 15(45), L695–L702 (2003).
[Crossref]

V. G. Kravets, D. Bozec, J. A. D. Matthew, S. M. Thompson, H. Menard, A. B. Horn, and A. F. Kravets, “Correlation between the magnetorefractive effect, giant magnetoresistance, and optical properties of Co-Ag granular magnetic films,” Phys. Rev. B Condens. Matter Mater. Phys. 65(5), 054415 (2002).
[Crossref]

Menard, H.

V. G. Kravets, D. Bozec, J. A. D. Matthew, S. M. Thompson, H. Menard, A. B. Horn, and A. F. Kravets, “Correlation between the magnetorefractive effect, giant magnetoresistance, and optical properties of Co-Ag granular magnetic films,” Phys. Rev. B Condens. Matter Mater. Phys. 65(5), 054415 (2002).
[Crossref]

Mennicke, R. T.

R. T. Mennicke, D. Bozec, V. G. Kravets, M. Vopsaroiu, J. A. D. Matthew, and S. M. Thompson, “Modelling the magnetorefractive effect in giant magnetoresistive granular and layered materials,” J. Magn. Magn. Mater. 303(1), 92–110 (2006).
[Crossref]

Neubrech, F.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Ogasawara, T.

T. Ogasawara, H. Kuwatsuka, T. Hasama, and H. Ishikawa, “Proposal of an optical nonvolatile switch utilizing surface plasmon antenna resonance controlled by giant magnetoresistance,” Appl. Phys. Lett. 100(25), 251112 (2012).
[Crossref]

Ogawa, S.

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

Okada, K.

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

Olmon, R. L.

Parkin, S. S. P.

S. S. P. Parkin, R. F. C. Farrow, R. F. Marks, A. Cebollada, G. R. Harp, and R. J. Savoy, “Oscillations of interlayer exchange coupling and giant magnetoresistance in (111) oriented permalloy/Au multilayers,” Phys. Rev. Lett. 72(23), 3718–3721 (1994).
[Crossref] [PubMed]

Pecharromán, C.

Perez, M.

M. Vopsaroiu, D. Bozec, J. A. D. Matthew, S. M. Thompson, C. H. Marrows, and M. Perez, “Contactless magnetoresistance studies of Co/Cu multilayers using the infrared magnetorefractive effect,” Phys. Rev. B Condens. Matter Mater. Phys. 70(21), 214423 (2004).
[Crossref]

Pettifor, D. G.

R. J. Baxter, D. G. Pettifor, E. Y. Tsymbal, D. Bozec, J. A. D. Matthew, and S. M. Thompson, “Importance of the interband contribution to the magneto-refractive effect in Co/Cu multilayers,” J. Phys. Cond. Mat. 15(45), L695–L702 (2003).
[Crossref]

Pucci, A.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Raschke, M. B.

Rietjens, G. H.

J. van Driel, F. R. de Boer, R. Coehoorn, G. H. Rietjens, and E. S. J. Heuvelmans-Wijdenes, “Magnetorefractive and magnetic-linear-dichroism effect in exchange-biased spin valves,” Phys. Rev. B Condens. Matter Mater. Phys. 61(22), 15321–15326 (2000).
[Crossref]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Romashev, L. N.

I. D. Lobov, M. M. Kirillova, A. A. Makhnev, L. N. Romashev, and V. V. Ustinov, “Parameters of Fe/Cr interfacial electron scattering from infrared magnetoreflection,” Phys. Rev. B Condens. Matter Mater. Phys. 81(13), 134436 (2010).
[Crossref]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Savoy, R. J.

S. S. P. Parkin, R. F. C. Farrow, R. F. Marks, A. Cebollada, G. R. Harp, and R. J. Savoy, “Oscillations of interlayer exchange coupling and giant magnetoresistance in (111) oriented permalloy/Au multilayers,” Phys. Rev. Lett. 72(23), 3718–3721 (1994).
[Crossref] [PubMed]

Shalaev, V. M.

Shelton, D. J.

Sinclair, M. B.

Smith, S.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Spetter, V.

Z. Jim, A. Tkach, F. Casper, V. Spetter, H. Grimm, A. Thomas, T. Kampfrath, M. Bonn, M. Kläui, and D. Turchinovich, “Accessing the fundamentals of magnetotransport in metals with terahertz probes,” Nat. Phys. 11(9), 761–766 (2015).
[Crossref]

Stanton, T.

M. Vopsaroiu, T. Stanton, O. Thomas, M. Cain, and S. M. Thompson, “Infrared metrology for spintronic materials and devices,” Meas. Sci. Technol. 20(4), 045109 (2009).
[Crossref]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Thomas, A.

Z. Jim, A. Tkach, F. Casper, V. Spetter, H. Grimm, A. Thomas, T. Kampfrath, M. Bonn, M. Kläui, and D. Turchinovich, “Accessing the fundamentals of magnetotransport in metals with terahertz probes,” Nat. Phys. 11(9), 761–766 (2015).
[Crossref]

Thomas, O.

M. Vopsaroiu, T. Stanton, O. Thomas, M. Cain, and S. M. Thompson, “Infrared metrology for spintronic materials and devices,” Meas. Sci. Technol. 20(4), 045109 (2009).
[Crossref]

Thompson, S. M.

M. Vopsaroiu, T. Stanton, O. Thomas, M. Cain, and S. M. Thompson, “Infrared metrology for spintronic materials and devices,” Meas. Sci. Technol. 20(4), 045109 (2009).
[Crossref]

R. T. Mennicke, D. Bozec, V. G. Kravets, M. Vopsaroiu, J. A. D. Matthew, and S. M. Thompson, “Modelling the magnetorefractive effect in giant magnetoresistive granular and layered materials,” J. Magn. Magn. Mater. 303(1), 92–110 (2006).
[Crossref]

M. Vopsaroiu, D. Bozec, J. A. D. Matthew, S. M. Thompson, C. H. Marrows, and M. Perez, “Contactless magnetoresistance studies of Co/Cu multilayers using the infrared magnetorefractive effect,” Phys. Rev. B Condens. Matter Mater. Phys. 70(21), 214423 (2004).
[Crossref]

R. J. Baxter, D. G. Pettifor, E. Y. Tsymbal, D. Bozec, J. A. D. Matthew, and S. M. Thompson, “Importance of the interband contribution to the magneto-refractive effect in Co/Cu multilayers,” J. Phys. Cond. Mat. 15(45), L695–L702 (2003).
[Crossref]

V. G. Kravets, D. Bozec, J. A. D. Matthew, S. M. Thompson, H. Menard, A. B. Horn, and A. F. Kravets, “Correlation between the magnetorefractive effect, giant magnetoresistance, and optical properties of Co-Ag granular magnetic films,” Phys. Rev. B Condens. Matter Mater. Phys. 65(5), 054415 (2002).
[Crossref]

Tkach, A.

Z. Jim, A. Tkach, F. Casper, V. Spetter, H. Grimm, A. Thomas, T. Kampfrath, M. Bonn, M. Kläui, and D. Turchinovich, “Accessing the fundamentals of magnetotransport in metals with terahertz probes,” Nat. Phys. 11(9), 761–766 (2015).
[Crossref]

Torné, L.

G. Armelles, L. Bergamini, N. Zabala, F. García, M. L. Dotor, L. Torné, R. Alvaro, A. Griol, A. Martínez, J. Aizpurua, and A. Cebollada, “Metamaterial platforms for spintronic modulation of mid-Infrared response under very weak magnetic field,” ACS Photonics 5(10), 3956–3961 (2018).
[Crossref]

Tsymbal, E. Y.

R. J. Baxter, D. G. Pettifor, E. Y. Tsymbal, D. Bozec, J. A. D. Matthew, and S. M. Thompson, “Importance of the interband contribution to the magneto-refractive effect in Co/Cu multilayers,” J. Phys. Cond. Mat. 15(45), L695–L702 (2003).
[Crossref]

Turchinovich, D.

Z. Jim, A. Tkach, F. Casper, V. Spetter, H. Grimm, A. Thomas, T. Kampfrath, M. Bonn, M. Kläui, and D. Turchinovich, “Accessing the fundamentals of magnetotransport in metals with terahertz probes,” Nat. Phys. 11(9), 761–766 (2015).
[Crossref]

Ustinov, V. V.

I. D. Lobov, M. M. Kirillova, A. A. Makhnev, L. N. Romashev, and V. V. Ustinov, “Parameters of Fe/Cr interfacial electron scattering from infrared magnetoreflection,” Phys. Rev. B Condens. Matter Mater. Phys. 81(13), 134436 (2010).
[Crossref]

Valet, T. A.

J. C. Jacquet and T. A. Valet, “A new magnetooptical effect discovered on magnetic multilayers: the magnetorefractive effect,” Proc. MRS 384, 477–490 (1995).
[Crossref]

van Driel, J.

J. van Driel, F. R. de Boer, R. Coehoorn, G. H. Rietjens, and E. S. J. Heuvelmans-Wijdenes, “Magnetorefractive and magnetic-linear-dichroism effect in exchange-biased spin valves,” Phys. Rev. B Condens. Matter Mater. Phys. 61(22), 15321–15326 (2000).
[Crossref]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Vopsaroiu, M.

M. Vopsaroiu, T. Stanton, O. Thomas, M. Cain, and S. M. Thompson, “Infrared metrology for spintronic materials and devices,” Meas. Sci. Technol. 20(4), 045109 (2009).
[Crossref]

R. T. Mennicke, D. Bozec, V. G. Kravets, M. Vopsaroiu, J. A. D. Matthew, and S. M. Thompson, “Modelling the magnetorefractive effect in giant magnetoresistive granular and layered materials,” J. Magn. Magn. Mater. 303(1), 92–110 (2006).
[Crossref]

M. Vopsaroiu, D. Bozec, J. A. D. Matthew, S. M. Thompson, C. H. Marrows, and M. Perez, “Contactless magnetoresistance studies of Co/Cu multilayers using the infrared magnetorefractive effect,” Phys. Rev. B Condens. Matter Mater. Phys. 70(21), 214423 (2004).
[Crossref]

Wasserman, D.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Zabala, N.

G. Armelles, L. Bergamini, N. Zabala, F. García, M. L. Dotor, L. Torné, R. Alvaro, A. Griol, A. Martínez, J. Aizpurua, and A. Cebollada, “Metamaterial platforms for spintronic modulation of mid-Infrared response under very weak magnetic field,” ACS Photonics 5(10), 3956–3961 (2018).
[Crossref]

ACS Photonics (1)

G. Armelles, L. Bergamini, N. Zabala, F. García, M. L. Dotor, L. Torné, R. Alvaro, A. Griol, A. Martínez, J. Aizpurua, and A. Cebollada, “Metamaterial platforms for spintronic modulation of mid-Infrared response under very weak magnetic field,” ACS Photonics 5(10), 3956–3961 (2018).
[Crossref]

Appl. Phys. Lett. (3)

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

T. Ogasawara, H. Kuwatsuka, T. Hasama, and H. Ishikawa, “Proposal of an optical nonvolatile switch utilizing surface plasmon antenna resonance controlled by giant magnetoresistance,” Appl. Phys. Lett. 100(25), 251112 (2012).
[Crossref]

J. Magn. Magn. Mater. (1)

R. T. Mennicke, D. Bozec, V. G. Kravets, M. Vopsaroiu, J. A. D. Matthew, and S. M. Thompson, “Modelling the magnetorefractive effect in giant magnetoresistive granular and layered materials,” J. Magn. Magn. Mater. 303(1), 92–110 (2006).
[Crossref]

J. Phys. Cond. Mat. (1)

R. J. Baxter, D. G. Pettifor, E. Y. Tsymbal, D. Bozec, J. A. D. Matthew, and S. M. Thompson, “Importance of the interband contribution to the magneto-refractive effect in Co/Cu multilayers,” J. Phys. Cond. Mat. 15(45), L695–L702 (2003).
[Crossref]

Meas. Sci. Technol. (1)

M. Vopsaroiu, T. Stanton, O. Thomas, M. Cain, and S. M. Thompson, “Infrared metrology for spintronic materials and devices,” Meas. Sci. Technol. 20(4), 045109 (2009).
[Crossref]

Nat. Phys. (1)

Z. Jim, A. Tkach, F. Casper, V. Spetter, H. Grimm, A. Thomas, T. Kampfrath, M. Bonn, M. Kläui, and D. Turchinovich, “Accessing the fundamentals of magnetotransport in metals with terahertz probes,” Nat. Phys. 11(9), 761–766 (2015).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (1)

Phys. Rev. B Condens. Matter Mater. Phys. (5)

C. H. Marrows and B. J. Hickey, “Impurity scattering from δ-layers in giant magnetoresistance systems,” Phys. Rev. B Condens. Matter Mater. Phys. 63(22), 220405 (2001).
[Crossref]

M. Vopsaroiu, D. Bozec, J. A. D. Matthew, S. M. Thompson, C. H. Marrows, and M. Perez, “Contactless magnetoresistance studies of Co/Cu multilayers using the infrared magnetorefractive effect,” Phys. Rev. B Condens. Matter Mater. Phys. 70(21), 214423 (2004).
[Crossref]

I. D. Lobov, M. M. Kirillova, A. A. Makhnev, L. N. Romashev, and V. V. Ustinov, “Parameters of Fe/Cr interfacial electron scattering from infrared magnetoreflection,” Phys. Rev. B Condens. Matter Mater. Phys. 81(13), 134436 (2010).
[Crossref]

V. G. Kravets, D. Bozec, J. A. D. Matthew, S. M. Thompson, H. Menard, A. B. Horn, and A. F. Kravets, “Correlation between the magnetorefractive effect, giant magnetoresistance, and optical properties of Co-Ag granular magnetic films,” Phys. Rev. B Condens. Matter Mater. Phys. 65(5), 054415 (2002).
[Crossref]

J. van Driel, F. R. de Boer, R. Coehoorn, G. H. Rietjens, and E. S. J. Heuvelmans-Wijdenes, “Magnetorefractive and magnetic-linear-dichroism effect in exchange-biased spin valves,” Phys. Rev. B Condens. Matter Mater. Phys. 61(22), 15321–15326 (2000).
[Crossref]

Phys. Rev. Lett. (2)

S. S. P. Parkin, R. F. C. Farrow, R. F. Marks, A. Cebollada, G. R. Harp, and R. J. Savoy, “Oscillations of interlayer exchange coupling and giant magnetoresistance in (111) oriented permalloy/Au multilayers,” Phys. Rev. Lett. 72(23), 3718–3721 (1994).
[Crossref] [PubMed]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Proc. MRS (1)

J. C. Jacquet and T. A. Valet, “A new magnetooptical effect discovered on magnetic multilayers: the magnetorefractive effect,” Proc. MRS 384, 477–490 (1995).
[Crossref]

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Other (2)

A. Fert, A. Barthelemy, and F. Petroff, “Nanomagnetism: Ultrathin films, multilayers and nanostructures,” Contemporary Concepts of Condensed Matter Science. Editors: D. L. Mills and J. A. C. Bland. Elsevier Amsterdam 2006.

S. M. Strutner, A. Garcia, S. Ula, C. Adamo, W. L. Richards, K. Wang, D. Schlom, and G. P. Carman, “Index of refraction changes under magnetic field observed in La0.66Sr0.33MnO3 correlated to the magnetorefractive effect,” Opt. Mater. Expr. 7(2), 468–476 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 XRR measurements and best fits for all the fabricated multilayers. The Au spacer thickness extracted from fits appears close of the corresponding curve and with the same colour. Inset: high angle XRD measurements for the fabricated multilayers. (Colour code for each multilayer is maintained here and in subsequent figures). Right: sketch of the multilayer.
Fig. 2
Fig. 2 Experimental magnetic field dependence of the in-line 4-point resistivity for the fabricated multilayers. The inset shows a close-up of the magnetic field dependence of the resistivity for the multilayer with 3.3 nm Au spacer.
Fig. 3
Fig. 3 Real (circles: experimental results, lines theoretical simulations) and imaginary (squares: experimental results, lines: theoretical simulations) part of the dielectric constants for representative multilayers obtained from corresponding reflectivity and transmission measurements (insets).
Fig. 4
Fig. 4 Magnetic modulation of the dielectric constants for two multilayers with 4% GMR (real part: black circles, imaginary part: black squares) and 0.8% GMR (real part: red circles, imaginary part: red squares), corresponding to 2.3 and 3.3 nm Au spacer thickness. Continuous, dashed and dotted lines correspond to theoretical simulations for different values of (β,α): doted black line (0.197,0), dashed black line (0.221,-.025), continuous black line (0.245,-.05). Upper inset: magnetic field dependence of the integrated modulation in transmission, mimicking the GMR curve of the multilayer. Lower inset: magnetic modulation of transmission and reflection spectra (back 4% sample, red 0.8% sample).
Fig. 5
Fig. 5 Simulated spectra of the transmission (a) and magnetic modulation of the transmission (b) at normal incidence for light polarized parallel to the long axis of the antenna prism of an array of GMR antennas for different values of (β,α): doted black line (0.197,0), dashed black line (0.221,-.025), continuous black line (0.245,-.05). The inset represents a schema of the antenna layer.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε P (ω)=1+i ω p 2 2ω [ ( 1 1+α )( 1 Γ 0 (1+β)iω )+[ ( 1 1α )( 1 Γ 0 (1β)iω ) ] ]
ε AP (ω)=1+i ω p 2 ω ( 1 Γ 0 (1+αβ)iω )

Metrics