Abstract

Experiments and thermal modeling of indium tin oxide transparent conductive thin film and polyimide alignment thin film coated on fused silica substrates damaged with a 1064 nm high-repetition-rate laser are described. High-repetition-rate laser irradiation results in damaged morphologies of the bulge at a low laser power density and formation of a pit in the center of the bulge at higher laser power density. The damage process that is consistent with the observations as a function of laser power density and irradiation time is related to thermal effect. Simulation of the temperature-rise by exposure to high-repetition-rate laser describes the thermal effect with different pulse oscillation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical and electrical properties of indium tin oxide films near their laser damage threshold

Jae-Hyuck Yoo, Andrew Lange, Jeff Bude, and Selim Elhadj
Opt. Mater. Express 7(3) 817-826 (2017)

Investigations on single and multiple pulse laser-induced damages in HfO2/SiO2 multilayer dielectric films at 1064 nm

Wenwen Liu, Chaoyang Wei, Jianbo Wu, Zhenkun Yu, Hui Cui, Kui Yi, and Jianda Shao
Opt. Express 21(19) 22476-22487 (2013)

Direct-write patterning of indium-tin-oxide film by high pulse repetition frequency femtosecond laser ablation

H. W. Choi, D. F. Farson, J. Bovatsek, A. Arai, and D. Ashkenasi
Appl. Opt. 46(23) 5792-5799 (2007)

References

  • View by:
  • |
  • |
  • |

  1. W. J. Miniscalco and S. A. Lane, “Optical Space-Time Division Multiple Access,” J. Lightwave Technol. 30(11), 1771–1785 (2012).
    [Crossref]
  2. L. Wu, X. Wang, C. Xiong, Z. Huang, R. Zhuo, J. Rao, and Q. Tan, “Polarization-independent two-dimensional beam steering using liquid crystal optical phased arrays,” Chin. Opt. Lett. 15(10), 101601 (2017).
    [Crossref]
  3. N. N. Arev, B. F. Gorbunov, G. V. Pugachev, and Y. A. Bazlov, “Application of a laser ranging system to the metrologic certification of satellite radar measurement systems,” Meas. Tech. 36(5), 524–525 (1993).
    [Crossref]
  4. M. Kleeman and U. O. Nseyo, “High-power (80-w) KTP laser vaporization of the prostate in the management of urinary retention: long-term follow up,” Proceedings of SPIE - The International Society for Optical Engineering 5, 1178–1180 (2004).
  5. X. Li, X. Yu, F. Chen, R. Yan, J. Gao, J. Yu, and D. Chen, “Comparison on performance of acousto-optically Q-switched Nd:GdVO4 and Nd:YVO4 lasers at high repetition rates under direct diode pumping of the emitting level,” Opt. Express 17(11), 9468–9476 (2009).
    [Crossref] [PubMed]
  6. X. Yan, Q. Liu, X. Fu, H. Chen, M. Gong, and D. Wang, “High repetition rate dual-rod acousto-optics Q-switched composite Nd:YVO4 laser,” Opt. Express 17(24), 21956–21968 (2009).
    [Crossref] [PubMed]
  7. B. Winker, M. Mahajan, and M. Hunwardsen, “Liquid crystal beam directors for airborne free-space optical communications,” in Aerospace Conference2004, 631–634.
    [Crossref]
  8. M. A. Maun and P. B. Cavers, “Voltage calibration of dual-frequency liquid crystal devices for infrared beam steering applications,” Proc. SPIE 5892, 202–204 (2005).
  9. Z. Jian, F. Yun, W. Liying, and X. Lin, “Liquid Crystal Beam Steering Technologies,” Chin. J. Lasers 37(2), 325–334 (2010).
    [Crossref]
  10. F. Xiao and L. Kong, “Angular magnification method of liquid crystal optical phased array based on telescope system,” in International Symposium on Photoelectronic Detection and Imaging 2013: Laser Communication Technologies and Systems (2013), pp. 165–189.
    [Crossref]
  11. X. He, X. Wang, L. Wu, Q. Tan, M. Li, J. Shang, S. Wu, and Z. Huang, “Theoretical modeling on the laser induced effect of liquid crystal optical phased beam steering,” Opt. Commun. 382, 437–443 (2017).
    [Crossref]
  12. J. H. Yoo, J. J. Adams, M. G. Menor, T. Y. Olson, J. R. I. Lee, A. Samanta, J. Bude, and S. Elhadj, “Nanosecond laser-induced damage of transparent conducting ITO film at 1064 nm,” Laser-Induced Damage in Optical Materials 2016, 10014 (2016).
  13. J. H. Yoo, M. G. Menor, J. J. Adams, R. N. Raman, J. R. Lee, T. Y. Olson, N. Shen, J. Suh, S. G. Demos, J. Bude, and S. Elhadj, “Laser damage mechanisms in conductive widegap semiconductor films,” Opt. Express 24(16), 17616–17634 (2016).
    [Crossref] [PubMed]
  14. C. W. Cheng, I. M. Lee, and J. S. Chen, “Femtosecond laser processing of indium-tin-oxide thin films,” Opt. Lasers Eng. 69, 1–6 (2015).
    [Crossref]
  15. J.-H. Yoo, A. Lange, J. Bude, and S. Elhadj, “Optical and electrical properties of indium tin oxide films near their laser damage threshold,” Opt. Mater. Express 7(3), 817–826 (2017).
    [Crossref]
  16. K. L. Marshall, J. Gan, G. Mitchell, S. Papernov, A. L. Rigatti, A. W. Schmid, and S. D. Jacobs, “Laser-damage-resistant photoalignment layers for high-peak-power liquid crystal device applications,” Proceedings of SPIE - The International Society for Optical Engineering 7050(2008).
    [Crossref]
  17. K. L. Marshall, C. Dorrer, and S. H. Chen, “Photo-aligned liquid crystal devices for high-peak-power laser applications,” Liq. Cryst. XVI, 84750U (2012).
  18. X. Liu, Y. Xiong, R. Wang, J. Yang, G. Wu, and N. Ren, “Laser etching of aluminum thin film on polyimide: Simulation and experimental studies,” Surf. Coat. Tech. 277, 107–116 (2015).
    [Crossref]
  19. W. T. Pawlewicz, I. B. Mann, W. H. Lowdermilk, and D. Milam, “Laser‐damage‐resistant transparent conductive indium tin oxide coatings,” Appl. Phys. Lett. 34(3), 196–198 (1979).
    [Crossref]
  20. M. Mansuripur, G. A. Connell, and J. W. Goodman, “Laser-induced local heating of multilayers,” Appl. Opt. 21(6), 1106–1114 (1982).
    [Crossref] [PubMed]
  21. M. F. Koldunov, A. A. Manenkov, and I. L. Pokotilo, “Multishot laser-induced damage in optical materials: an analysis of main regularities,” Proc. SPIE 3244, 641–649 (1998).
    [Crossref]
  22. F. Dai, S. Xiong, and Z. Gong, “The temperature rise in films at the repeat rate pulse laser irradiation determined based on finite element method,” Spacecraft Environment Engineering 7019, 701924 (2009).
  23. A. Manenkov, G. Matyushin, V. Nechitailo, A. Prokhorov, and A. Tsaprilov, “On the nature of the accumulation effect in laser-induced damage to optical materials,” Opt. Eng. 22(4), 224400 (1983).
    [Crossref]
  24. Z. Jia, T. Zhang, H. Zhu, Z. Li, Z. Shen, J. Lu, and X. Ni, “Stress damage process of silicon wafer under millisecond laser irradiation,” Chin. Opt. Lett. 16(1), 011404 (2018).
    [Crossref]
  25. M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro‐shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
    [Crossref]
  26. R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical modeling of laser‐induced structural relaxation and deformation of glass: volume changes in fused silica at high temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
    [Crossref]
  27. P. E. Dyer, M. Pervolaraki, and T. Lippert, “Experimental studies and thermal modelling of 1064- and 532-nm Nd:YVO 4 micro-laser ablation of polyimide,” Appl. Phys., A Mater. Sci. Process. 80(3), 529–536 (2005).
    [Crossref]
  28. O. Yavas and M. Takai, “Effect of substrate absorption on the efficiency of laser patterning of indium tin oxide thin films,” J. Appl. Phys. 85(8), 4207–4212 (1999).
    [Crossref]
  29. M. K. Khosa, M. A. Jamal, R. Iqbal, M. Muneer, M. J. Saif, K. M. Zia, and M. Hamid, “Thermal stability and mechanical properties of organo-soluble and processable polyimides for high-temperature materials,” Journal of Macromolecular Science: Part D - Reviews in Polymer Processing 56, 22–28 (2016).
  30. Z. Ball, T. Feurer, D. L. Callahan, and R. Sauerbrey, “Thermal and mechanical coupling between successive pulses in KrF-excimer-laser ablation of polyimide,” Appl. Phys., A Mater. Sci. Process. 62(3), 203–211 (1996).
    [Crossref]
  31. X. Kong, F. Teng, H. Tang, L. Dong, and Z. Feng, “Miscibility and crystallization behaviour of poly (ether ether ketone)/polyimide blends,” Polymer (Guildf.) 37(9), 1751–1755 (1996).
    [Crossref]
  32. P. C. Irwin, Y. Cao, A. Bansal, et al., “Thermal and mechanical properties of polyimide nanocomposites,” Electrical Insulation and Dielectric Phenomena, Annual Report. Conference on. IEEE, 120–123 (2003).
    [Crossref]

2018 (1)

2017 (3)

2016 (3)

J. H. Yoo, J. J. Adams, M. G. Menor, T. Y. Olson, J. R. I. Lee, A. Samanta, J. Bude, and S. Elhadj, “Nanosecond laser-induced damage of transparent conducting ITO film at 1064 nm,” Laser-Induced Damage in Optical Materials 2016, 10014 (2016).

J. H. Yoo, M. G. Menor, J. J. Adams, R. N. Raman, J. R. Lee, T. Y. Olson, N. Shen, J. Suh, S. G. Demos, J. Bude, and S. Elhadj, “Laser damage mechanisms in conductive widegap semiconductor films,” Opt. Express 24(16), 17616–17634 (2016).
[Crossref] [PubMed]

M. K. Khosa, M. A. Jamal, R. Iqbal, M. Muneer, M. J. Saif, K. M. Zia, and M. Hamid, “Thermal stability and mechanical properties of organo-soluble and processable polyimides for high-temperature materials,” Journal of Macromolecular Science: Part D - Reviews in Polymer Processing 56, 22–28 (2016).

2015 (3)

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro‐shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

C. W. Cheng, I. M. Lee, and J. S. Chen, “Femtosecond laser processing of indium-tin-oxide thin films,” Opt. Lasers Eng. 69, 1–6 (2015).
[Crossref]

X. Liu, Y. Xiong, R. Wang, J. Yang, G. Wu, and N. Ren, “Laser etching of aluminum thin film on polyimide: Simulation and experimental studies,” Surf. Coat. Tech. 277, 107–116 (2015).
[Crossref]

2013 (1)

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical modeling of laser‐induced structural relaxation and deformation of glass: volume changes in fused silica at high temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[Crossref]

2012 (2)

K. L. Marshall, C. Dorrer, and S. H. Chen, “Photo-aligned liquid crystal devices for high-peak-power laser applications,” Liq. Cryst. XVI, 84750U (2012).

W. J. Miniscalco and S. A. Lane, “Optical Space-Time Division Multiple Access,” J. Lightwave Technol. 30(11), 1771–1785 (2012).
[Crossref]

2010 (1)

Z. Jian, F. Yun, W. Liying, and X. Lin, “Liquid Crystal Beam Steering Technologies,” Chin. J. Lasers 37(2), 325–334 (2010).
[Crossref]

2009 (3)

2005 (2)

P. E. Dyer, M. Pervolaraki, and T. Lippert, “Experimental studies and thermal modelling of 1064- and 532-nm Nd:YVO 4 micro-laser ablation of polyimide,” Appl. Phys., A Mater. Sci. Process. 80(3), 529–536 (2005).
[Crossref]

M. A. Maun and P. B. Cavers, “Voltage calibration of dual-frequency liquid crystal devices for infrared beam steering applications,” Proc. SPIE 5892, 202–204 (2005).

1999 (1)

O. Yavas and M. Takai, “Effect of substrate absorption on the efficiency of laser patterning of indium tin oxide thin films,” J. Appl. Phys. 85(8), 4207–4212 (1999).
[Crossref]

1998 (1)

M. F. Koldunov, A. A. Manenkov, and I. L. Pokotilo, “Multishot laser-induced damage in optical materials: an analysis of main regularities,” Proc. SPIE 3244, 641–649 (1998).
[Crossref]

1996 (2)

Z. Ball, T. Feurer, D. L. Callahan, and R. Sauerbrey, “Thermal and mechanical coupling between successive pulses in KrF-excimer-laser ablation of polyimide,” Appl. Phys., A Mater. Sci. Process. 62(3), 203–211 (1996).
[Crossref]

X. Kong, F. Teng, H. Tang, L. Dong, and Z. Feng, “Miscibility and crystallization behaviour of poly (ether ether ketone)/polyimide blends,” Polymer (Guildf.) 37(9), 1751–1755 (1996).
[Crossref]

1993 (1)

N. N. Arev, B. F. Gorbunov, G. V. Pugachev, and Y. A. Bazlov, “Application of a laser ranging system to the metrologic certification of satellite radar measurement systems,” Meas. Tech. 36(5), 524–525 (1993).
[Crossref]

1983 (1)

A. Manenkov, G. Matyushin, V. Nechitailo, A. Prokhorov, and A. Tsaprilov, “On the nature of the accumulation effect in laser-induced damage to optical materials,” Opt. Eng. 22(4), 224400 (1983).
[Crossref]

1982 (1)

1979 (1)

W. T. Pawlewicz, I. B. Mann, W. H. Lowdermilk, and D. Milam, “Laser‐damage‐resistant transparent conductive indium tin oxide coatings,” Appl. Phys. Lett. 34(3), 196–198 (1979).
[Crossref]

Adams, J. J.

J. H. Yoo, J. J. Adams, M. G. Menor, T. Y. Olson, J. R. I. Lee, A. Samanta, J. Bude, and S. Elhadj, “Nanosecond laser-induced damage of transparent conducting ITO film at 1064 nm,” Laser-Induced Damage in Optical Materials 2016, 10014 (2016).

J. H. Yoo, M. G. Menor, J. J. Adams, R. N. Raman, J. R. Lee, T. Y. Olson, N. Shen, J. Suh, S. G. Demos, J. Bude, and S. Elhadj, “Laser damage mechanisms in conductive widegap semiconductor films,” Opt. Express 24(16), 17616–17634 (2016).
[Crossref] [PubMed]

Arev, N. N.

N. N. Arev, B. F. Gorbunov, G. V. Pugachev, and Y. A. Bazlov, “Application of a laser ranging system to the metrologic certification of satellite radar measurement systems,” Meas. Tech. 36(5), 524–525 (1993).
[Crossref]

Ball, Z.

Z. Ball, T. Feurer, D. L. Callahan, and R. Sauerbrey, “Thermal and mechanical coupling between successive pulses in KrF-excimer-laser ablation of polyimide,” Appl. Phys., A Mater. Sci. Process. 62(3), 203–211 (1996).
[Crossref]

Bass, I. L.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro‐shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Bazlov, Y. A.

N. N. Arev, B. F. Gorbunov, G. V. Pugachev, and Y. A. Bazlov, “Application of a laser ranging system to the metrologic certification of satellite radar measurement systems,” Meas. Tech. 36(5), 524–525 (1993).
[Crossref]

Bude, J.

Callahan, D. L.

Z. Ball, T. Feurer, D. L. Callahan, and R. Sauerbrey, “Thermal and mechanical coupling between successive pulses in KrF-excimer-laser ablation of polyimide,” Appl. Phys., A Mater. Sci. Process. 62(3), 203–211 (1996).
[Crossref]

Cavers, P. B.

M. A. Maun and P. B. Cavers, “Voltage calibration of dual-frequency liquid crystal devices for infrared beam steering applications,” Proc. SPIE 5892, 202–204 (2005).

Chen, D.

Chen, F.

Chen, H.

Chen, J. S.

C. W. Cheng, I. M. Lee, and J. S. Chen, “Femtosecond laser processing of indium-tin-oxide thin films,” Opt. Lasers Eng. 69, 1–6 (2015).
[Crossref]

Chen, S. H.

K. L. Marshall, C. Dorrer, and S. H. Chen, “Photo-aligned liquid crystal devices for high-peak-power laser applications,” Liq. Cryst. XVI, 84750U (2012).

Cheng, C. W.

C. W. Cheng, I. M. Lee, and J. S. Chen, “Femtosecond laser processing of indium-tin-oxide thin films,” Opt. Lasers Eng. 69, 1–6 (2015).
[Crossref]

Connell, G. A.

Dai, F.

F. Dai, S. Xiong, and Z. Gong, “The temperature rise in films at the repeat rate pulse laser irradiation determined based on finite element method,” Spacecraft Environment Engineering 7019, 701924 (2009).

Demos, S. G.

Dong, L.

X. Kong, F. Teng, H. Tang, L. Dong, and Z. Feng, “Miscibility and crystallization behaviour of poly (ether ether ketone)/polyimide blends,” Polymer (Guildf.) 37(9), 1751–1755 (1996).
[Crossref]

Dorrer, C.

K. L. Marshall, C. Dorrer, and S. H. Chen, “Photo-aligned liquid crystal devices for high-peak-power laser applications,” Liq. Cryst. XVI, 84750U (2012).

Dyer, P. E.

P. E. Dyer, M. Pervolaraki, and T. Lippert, “Experimental studies and thermal modelling of 1064- and 532-nm Nd:YVO 4 micro-laser ablation of polyimide,” Appl. Phys., A Mater. Sci. Process. 80(3), 529–536 (2005).
[Crossref]

Elhadj, S.

J.-H. Yoo, A. Lange, J. Bude, and S. Elhadj, “Optical and electrical properties of indium tin oxide films near their laser damage threshold,” Opt. Mater. Express 7(3), 817–826 (2017).
[Crossref]

J. H. Yoo, M. G. Menor, J. J. Adams, R. N. Raman, J. R. Lee, T. Y. Olson, N. Shen, J. Suh, S. G. Demos, J. Bude, and S. Elhadj, “Laser damage mechanisms in conductive widegap semiconductor films,” Opt. Express 24(16), 17616–17634 (2016).
[Crossref] [PubMed]

J. H. Yoo, J. J. Adams, M. G. Menor, T. Y. Olson, J. R. I. Lee, A. Samanta, J. Bude, and S. Elhadj, “Nanosecond laser-induced damage of transparent conducting ITO film at 1064 nm,” Laser-Induced Damage in Optical Materials 2016, 10014 (2016).

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro‐shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical modeling of laser‐induced structural relaxation and deformation of glass: volume changes in fused silica at high temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[Crossref]

Feng, Z.

X. Kong, F. Teng, H. Tang, L. Dong, and Z. Feng, “Miscibility and crystallization behaviour of poly (ether ether ketone)/polyimide blends,” Polymer (Guildf.) 37(9), 1751–1755 (1996).
[Crossref]

Feurer, T.

Z. Ball, T. Feurer, D. L. Callahan, and R. Sauerbrey, “Thermal and mechanical coupling between successive pulses in KrF-excimer-laser ablation of polyimide,” Appl. Phys., A Mater. Sci. Process. 62(3), 203–211 (1996).
[Crossref]

Fu, X.

Gao, J.

Gong, M.

Gong, Z.

F. Dai, S. Xiong, and Z. Gong, “The temperature rise in films at the repeat rate pulse laser irradiation determined based on finite element method,” Spacecraft Environment Engineering 7019, 701924 (2009).

Goodman, J. W.

Gorbunov, B. F.

N. N. Arev, B. F. Gorbunov, G. V. Pugachev, and Y. A. Bazlov, “Application of a laser ranging system to the metrologic certification of satellite radar measurement systems,” Meas. Tech. 36(5), 524–525 (1993).
[Crossref]

Guss, G.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro‐shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Hamid, M.

M. K. Khosa, M. A. Jamal, R. Iqbal, M. Muneer, M. J. Saif, K. M. Zia, and M. Hamid, “Thermal stability and mechanical properties of organo-soluble and processable polyimides for high-temperature materials,” Journal of Macromolecular Science: Part D - Reviews in Polymer Processing 56, 22–28 (2016).

He, X.

X. He, X. Wang, L. Wu, Q. Tan, M. Li, J. Shang, S. Wu, and Z. Huang, “Theoretical modeling on the laser induced effect of liquid crystal optical phased beam steering,” Opt. Commun. 382, 437–443 (2017).
[Crossref]

Huang, Z.

X. He, X. Wang, L. Wu, Q. Tan, M. Li, J. Shang, S. Wu, and Z. Huang, “Theoretical modeling on the laser induced effect of liquid crystal optical phased beam steering,” Opt. Commun. 382, 437–443 (2017).
[Crossref]

L. Wu, X. Wang, C. Xiong, Z. Huang, R. Zhuo, J. Rao, and Q. Tan, “Polarization-independent two-dimensional beam steering using liquid crystal optical phased arrays,” Chin. Opt. Lett. 15(10), 101601 (2017).
[Crossref]

Hunwardsen, M.

B. Winker, M. Mahajan, and M. Hunwardsen, “Liquid crystal beam directors for airborne free-space optical communications,” in Aerospace Conference2004, 631–634.
[Crossref]

Iqbal, R.

M. K. Khosa, M. A. Jamal, R. Iqbal, M. Muneer, M. J. Saif, K. M. Zia, and M. Hamid, “Thermal stability and mechanical properties of organo-soluble and processable polyimides for high-temperature materials,” Journal of Macromolecular Science: Part D - Reviews in Polymer Processing 56, 22–28 (2016).

Jamal, M. A.

M. K. Khosa, M. A. Jamal, R. Iqbal, M. Muneer, M. J. Saif, K. M. Zia, and M. Hamid, “Thermal stability and mechanical properties of organo-soluble and processable polyimides for high-temperature materials,” Journal of Macromolecular Science: Part D - Reviews in Polymer Processing 56, 22–28 (2016).

Jia, Z.

Jian, Z.

Z. Jian, F. Yun, W. Liying, and X. Lin, “Liquid Crystal Beam Steering Technologies,” Chin. J. Lasers 37(2), 325–334 (2010).
[Crossref]

Khosa, M. K.

M. K. Khosa, M. A. Jamal, R. Iqbal, M. Muneer, M. J. Saif, K. M. Zia, and M. Hamid, “Thermal stability and mechanical properties of organo-soluble and processable polyimides for high-temperature materials,” Journal of Macromolecular Science: Part D - Reviews in Polymer Processing 56, 22–28 (2016).

Koldunov, M. F.

M. F. Koldunov, A. A. Manenkov, and I. L. Pokotilo, “Multishot laser-induced damage in optical materials: an analysis of main regularities,” Proc. SPIE 3244, 641–649 (1998).
[Crossref]

Kong, X.

X. Kong, F. Teng, H. Tang, L. Dong, and Z. Feng, “Miscibility and crystallization behaviour of poly (ether ether ketone)/polyimide blends,” Polymer (Guildf.) 37(9), 1751–1755 (1996).
[Crossref]

Lane, S. A.

Lange, A.

Lee, I. M.

C. W. Cheng, I. M. Lee, and J. S. Chen, “Femtosecond laser processing of indium-tin-oxide thin films,” Opt. Lasers Eng. 69, 1–6 (2015).
[Crossref]

Lee, J. R.

Lee, J. R. I.

J. H. Yoo, J. J. Adams, M. G. Menor, T. Y. Olson, J. R. I. Lee, A. Samanta, J. Bude, and S. Elhadj, “Nanosecond laser-induced damage of transparent conducting ITO film at 1064 nm,” Laser-Induced Damage in Optical Materials 2016, 10014 (2016).

Li, M.

X. He, X. Wang, L. Wu, Q. Tan, M. Li, J. Shang, S. Wu, and Z. Huang, “Theoretical modeling on the laser induced effect of liquid crystal optical phased beam steering,” Opt. Commun. 382, 437–443 (2017).
[Crossref]

Li, X.

Li, Z.

Lin, X.

Z. Jian, F. Yun, W. Liying, and X. Lin, “Liquid Crystal Beam Steering Technologies,” Chin. J. Lasers 37(2), 325–334 (2010).
[Crossref]

Lippert, T.

P. E. Dyer, M. Pervolaraki, and T. Lippert, “Experimental studies and thermal modelling of 1064- and 532-nm Nd:YVO 4 micro-laser ablation of polyimide,” Appl. Phys., A Mater. Sci. Process. 80(3), 529–536 (2005).
[Crossref]

Liu, Q.

Liu, X.

X. Liu, Y. Xiong, R. Wang, J. Yang, G. Wu, and N. Ren, “Laser etching of aluminum thin film on polyimide: Simulation and experimental studies,” Surf. Coat. Tech. 277, 107–116 (2015).
[Crossref]

Liying, W.

Z. Jian, F. Yun, W. Liying, and X. Lin, “Liquid Crystal Beam Steering Technologies,” Chin. J. Lasers 37(2), 325–334 (2010).
[Crossref]

Lowdermilk, W. H.

W. T. Pawlewicz, I. B. Mann, W. H. Lowdermilk, and D. Milam, “Laser‐damage‐resistant transparent conductive indium tin oxide coatings,” Appl. Phys. Lett. 34(3), 196–198 (1979).
[Crossref]

Lu, J.

Mahajan, M.

B. Winker, M. Mahajan, and M. Hunwardsen, “Liquid crystal beam directors for airborne free-space optical communications,” in Aerospace Conference2004, 631–634.
[Crossref]

Manenkov, A.

A. Manenkov, G. Matyushin, V. Nechitailo, A. Prokhorov, and A. Tsaprilov, “On the nature of the accumulation effect in laser-induced damage to optical materials,” Opt. Eng. 22(4), 224400 (1983).
[Crossref]

Manenkov, A. A.

M. F. Koldunov, A. A. Manenkov, and I. L. Pokotilo, “Multishot laser-induced damage in optical materials: an analysis of main regularities,” Proc. SPIE 3244, 641–649 (1998).
[Crossref]

Mann, I. B.

W. T. Pawlewicz, I. B. Mann, W. H. Lowdermilk, and D. Milam, “Laser‐damage‐resistant transparent conductive indium tin oxide coatings,” Appl. Phys. Lett. 34(3), 196–198 (1979).
[Crossref]

Mansuripur, M.

Marshall, K. L.

K. L. Marshall, C. Dorrer, and S. H. Chen, “Photo-aligned liquid crystal devices for high-peak-power laser applications,” Liq. Cryst. XVI, 84750U (2012).

Matthews, M. J.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro‐shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical modeling of laser‐induced structural relaxation and deformation of glass: volume changes in fused silica at high temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[Crossref]

Matyushin, G.

A. Manenkov, G. Matyushin, V. Nechitailo, A. Prokhorov, and A. Tsaprilov, “On the nature of the accumulation effect in laser-induced damage to optical materials,” Opt. Eng. 22(4), 224400 (1983).
[Crossref]

Maun, M. A.

M. A. Maun and P. B. Cavers, “Voltage calibration of dual-frequency liquid crystal devices for infrared beam steering applications,” Proc. SPIE 5892, 202–204 (2005).

Menor, M. G.

J. H. Yoo, J. J. Adams, M. G. Menor, T. Y. Olson, J. R. I. Lee, A. Samanta, J. Bude, and S. Elhadj, “Nanosecond laser-induced damage of transparent conducting ITO film at 1064 nm,” Laser-Induced Damage in Optical Materials 2016, 10014 (2016).

J. H. Yoo, M. G. Menor, J. J. Adams, R. N. Raman, J. R. Lee, T. Y. Olson, N. Shen, J. Suh, S. G. Demos, J. Bude, and S. Elhadj, “Laser damage mechanisms in conductive widegap semiconductor films,” Opt. Express 24(16), 17616–17634 (2016).
[Crossref] [PubMed]

Milam, D.

W. T. Pawlewicz, I. B. Mann, W. H. Lowdermilk, and D. Milam, “Laser‐damage‐resistant transparent conductive indium tin oxide coatings,” Appl. Phys. Lett. 34(3), 196–198 (1979).
[Crossref]

Miniscalco, W. J.

Muneer, M.

M. K. Khosa, M. A. Jamal, R. Iqbal, M. Muneer, M. J. Saif, K. M. Zia, and M. Hamid, “Thermal stability and mechanical properties of organo-soluble and processable polyimides for high-temperature materials,” Journal of Macromolecular Science: Part D - Reviews in Polymer Processing 56, 22–28 (2016).

Nechitailo, V.

A. Manenkov, G. Matyushin, V. Nechitailo, A. Prokhorov, and A. Tsaprilov, “On the nature of the accumulation effect in laser-induced damage to optical materials,” Opt. Eng. 22(4), 224400 (1983).
[Crossref]

Ni, X.

Nostrand, M. C.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro‐shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Olson, T. Y.

J. H. Yoo, J. J. Adams, M. G. Menor, T. Y. Olson, J. R. I. Lee, A. Samanta, J. Bude, and S. Elhadj, “Nanosecond laser-induced damage of transparent conducting ITO film at 1064 nm,” Laser-Induced Damage in Optical Materials 2016, 10014 (2016).

J. H. Yoo, M. G. Menor, J. J. Adams, R. N. Raman, J. R. Lee, T. Y. Olson, N. Shen, J. Suh, S. G. Demos, J. Bude, and S. Elhadj, “Laser damage mechanisms in conductive widegap semiconductor films,” Opt. Express 24(16), 17616–17634 (2016).
[Crossref] [PubMed]

Pawlewicz, W. T.

W. T. Pawlewicz, I. B. Mann, W. H. Lowdermilk, and D. Milam, “Laser‐damage‐resistant transparent conductive indium tin oxide coatings,” Appl. Phys. Lett. 34(3), 196–198 (1979).
[Crossref]

Pervolaraki, M.

P. E. Dyer, M. Pervolaraki, and T. Lippert, “Experimental studies and thermal modelling of 1064- and 532-nm Nd:YVO 4 micro-laser ablation of polyimide,” Appl. Phys., A Mater. Sci. Process. 80(3), 529–536 (2005).
[Crossref]

Pokotilo, I. L.

M. F. Koldunov, A. A. Manenkov, and I. L. Pokotilo, “Multishot laser-induced damage in optical materials: an analysis of main regularities,” Proc. SPIE 3244, 641–649 (1998).
[Crossref]

Prokhorov, A.

A. Manenkov, G. Matyushin, V. Nechitailo, A. Prokhorov, and A. Tsaprilov, “On the nature of the accumulation effect in laser-induced damage to optical materials,” Opt. Eng. 22(4), 224400 (1983).
[Crossref]

Pugachev, G. V.

N. N. Arev, B. F. Gorbunov, G. V. Pugachev, and Y. A. Bazlov, “Application of a laser ranging system to the metrologic certification of satellite radar measurement systems,” Meas. Tech. 36(5), 524–525 (1993).
[Crossref]

Raman, R. N.

J. H. Yoo, M. G. Menor, J. J. Adams, R. N. Raman, J. R. Lee, T. Y. Olson, N. Shen, J. Suh, S. G. Demos, J. Bude, and S. Elhadj, “Laser damage mechanisms in conductive widegap semiconductor films,” Opt. Express 24(16), 17616–17634 (2016).
[Crossref] [PubMed]

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro‐shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Rao, J.

Ren, N.

X. Liu, Y. Xiong, R. Wang, J. Yang, G. Wu, and N. Ren, “Laser etching of aluminum thin film on polyimide: Simulation and experimental studies,” Surf. Coat. Tech. 277, 107–116 (2015).
[Crossref]

Saif, M. J.

M. K. Khosa, M. A. Jamal, R. Iqbal, M. Muneer, M. J. Saif, K. M. Zia, and M. Hamid, “Thermal stability and mechanical properties of organo-soluble and processable polyimides for high-temperature materials,” Journal of Macromolecular Science: Part D - Reviews in Polymer Processing 56, 22–28 (2016).

Samanta, A.

J. H. Yoo, J. J. Adams, M. G. Menor, T. Y. Olson, J. R. I. Lee, A. Samanta, J. Bude, and S. Elhadj, “Nanosecond laser-induced damage of transparent conducting ITO film at 1064 nm,” Laser-Induced Damage in Optical Materials 2016, 10014 (2016).

Sauerbrey, R.

Z. Ball, T. Feurer, D. L. Callahan, and R. Sauerbrey, “Thermal and mechanical coupling between successive pulses in KrF-excimer-laser ablation of polyimide,” Appl. Phys., A Mater. Sci. Process. 62(3), 203–211 (1996).
[Crossref]

Settgast, R. R.

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical modeling of laser‐induced structural relaxation and deformation of glass: volume changes in fused silica at high temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[Crossref]

Shang, J.

X. He, X. Wang, L. Wu, Q. Tan, M. Li, J. Shang, S. Wu, and Z. Huang, “Theoretical modeling on the laser induced effect of liquid crystal optical phased beam steering,” Opt. Commun. 382, 437–443 (2017).
[Crossref]

Shen, N.

J. H. Yoo, M. G. Menor, J. J. Adams, R. N. Raman, J. R. Lee, T. Y. Olson, N. Shen, J. Suh, S. G. Demos, J. Bude, and S. Elhadj, “Laser damage mechanisms in conductive widegap semiconductor films,” Opt. Express 24(16), 17616–17634 (2016).
[Crossref] [PubMed]

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro‐shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Shen, Z.

Soules, T. F.

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical modeling of laser‐induced structural relaxation and deformation of glass: volume changes in fused silica at high temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[Crossref]

Stolken, J. S.

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical modeling of laser‐induced structural relaxation and deformation of glass: volume changes in fused silica at high temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[Crossref]

Suh, J.

Takai, M.

O. Yavas and M. Takai, “Effect of substrate absorption on the efficiency of laser patterning of indium tin oxide thin films,” J. Appl. Phys. 85(8), 4207–4212 (1999).
[Crossref]

Tan, Q.

X. He, X. Wang, L. Wu, Q. Tan, M. Li, J. Shang, S. Wu, and Z. Huang, “Theoretical modeling on the laser induced effect of liquid crystal optical phased beam steering,” Opt. Commun. 382, 437–443 (2017).
[Crossref]

L. Wu, X. Wang, C. Xiong, Z. Huang, R. Zhuo, J. Rao, and Q. Tan, “Polarization-independent two-dimensional beam steering using liquid crystal optical phased arrays,” Chin. Opt. Lett. 15(10), 101601 (2017).
[Crossref]

Tang, H.

X. Kong, F. Teng, H. Tang, L. Dong, and Z. Feng, “Miscibility and crystallization behaviour of poly (ether ether ketone)/polyimide blends,” Polymer (Guildf.) 37(9), 1751–1755 (1996).
[Crossref]

Teng, F.

X. Kong, F. Teng, H. Tang, L. Dong, and Z. Feng, “Miscibility and crystallization behaviour of poly (ether ether ketone)/polyimide blends,” Polymer (Guildf.) 37(9), 1751–1755 (1996).
[Crossref]

Tsaprilov, A.

A. Manenkov, G. Matyushin, V. Nechitailo, A. Prokhorov, and A. Tsaprilov, “On the nature of the accumulation effect in laser-induced damage to optical materials,” Opt. Eng. 22(4), 224400 (1983).
[Crossref]

Vignes, R. M.

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical modeling of laser‐induced structural relaxation and deformation of glass: volume changes in fused silica at high temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[Crossref]

Wang, D.

Wang, R.

X. Liu, Y. Xiong, R. Wang, J. Yang, G. Wu, and N. Ren, “Laser etching of aluminum thin film on polyimide: Simulation and experimental studies,” Surf. Coat. Tech. 277, 107–116 (2015).
[Crossref]

Wang, X.

X. He, X. Wang, L. Wu, Q. Tan, M. Li, J. Shang, S. Wu, and Z. Huang, “Theoretical modeling on the laser induced effect of liquid crystal optical phased beam steering,” Opt. Commun. 382, 437–443 (2017).
[Crossref]

L. Wu, X. Wang, C. Xiong, Z. Huang, R. Zhuo, J. Rao, and Q. Tan, “Polarization-independent two-dimensional beam steering using liquid crystal optical phased arrays,” Chin. Opt. Lett. 15(10), 101601 (2017).
[Crossref]

Wegner, P. J.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro‐shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Winker, B.

B. Winker, M. Mahajan, and M. Hunwardsen, “Liquid crystal beam directors for airborne free-space optical communications,” in Aerospace Conference2004, 631–634.
[Crossref]

Wu, G.

X. Liu, Y. Xiong, R. Wang, J. Yang, G. Wu, and N. Ren, “Laser etching of aluminum thin film on polyimide: Simulation and experimental studies,” Surf. Coat. Tech. 277, 107–116 (2015).
[Crossref]

Wu, L.

X. He, X. Wang, L. Wu, Q. Tan, M. Li, J. Shang, S. Wu, and Z. Huang, “Theoretical modeling on the laser induced effect of liquid crystal optical phased beam steering,” Opt. Commun. 382, 437–443 (2017).
[Crossref]

L. Wu, X. Wang, C. Xiong, Z. Huang, R. Zhuo, J. Rao, and Q. Tan, “Polarization-independent two-dimensional beam steering using liquid crystal optical phased arrays,” Chin. Opt. Lett. 15(10), 101601 (2017).
[Crossref]

Wu, S.

X. He, X. Wang, L. Wu, Q. Tan, M. Li, J. Shang, S. Wu, and Z. Huang, “Theoretical modeling on the laser induced effect of liquid crystal optical phased beam steering,” Opt. Commun. 382, 437–443 (2017).
[Crossref]

Xiong, C.

Xiong, S.

F. Dai, S. Xiong, and Z. Gong, “The temperature rise in films at the repeat rate pulse laser irradiation determined based on finite element method,” Spacecraft Environment Engineering 7019, 701924 (2009).

Xiong, Y.

X. Liu, Y. Xiong, R. Wang, J. Yang, G. Wu, and N. Ren, “Laser etching of aluminum thin film on polyimide: Simulation and experimental studies,” Surf. Coat. Tech. 277, 107–116 (2015).
[Crossref]

Yan, R.

Yan, X.

Yang, J.

X. Liu, Y. Xiong, R. Wang, J. Yang, G. Wu, and N. Ren, “Laser etching of aluminum thin film on polyimide: Simulation and experimental studies,” Surf. Coat. Tech. 277, 107–116 (2015).
[Crossref]

Yang, S. T.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro‐shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Yavas, O.

O. Yavas and M. Takai, “Effect of substrate absorption on the efficiency of laser patterning of indium tin oxide thin films,” J. Appl. Phys. 85(8), 4207–4212 (1999).
[Crossref]

Yoo, J. H.

J. H. Yoo, J. J. Adams, M. G. Menor, T. Y. Olson, J. R. I. Lee, A. Samanta, J. Bude, and S. Elhadj, “Nanosecond laser-induced damage of transparent conducting ITO film at 1064 nm,” Laser-Induced Damage in Optical Materials 2016, 10014 (2016).

J. H. Yoo, M. G. Menor, J. J. Adams, R. N. Raman, J. R. Lee, T. Y. Olson, N. Shen, J. Suh, S. G. Demos, J. Bude, and S. Elhadj, “Laser damage mechanisms in conductive widegap semiconductor films,” Opt. Express 24(16), 17616–17634 (2016).
[Crossref] [PubMed]

Yoo, J.-H.

Yu, J.

Yu, X.

Yun, F.

Z. Jian, F. Yun, W. Liying, and X. Lin, “Liquid Crystal Beam Steering Technologies,” Chin. J. Lasers 37(2), 325–334 (2010).
[Crossref]

Zhang, T.

Zhu, H.

Zhuo, R.

Zia, K. M.

M. K. Khosa, M. A. Jamal, R. Iqbal, M. Muneer, M. J. Saif, K. M. Zia, and M. Hamid, “Thermal stability and mechanical properties of organo-soluble and processable polyimides for high-temperature materials,” Journal of Macromolecular Science: Part D - Reviews in Polymer Processing 56, 22–28 (2016).

Adv. Eng. Mater. (1)

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro‐shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. T. Pawlewicz, I. B. Mann, W. H. Lowdermilk, and D. Milam, “Laser‐damage‐resistant transparent conductive indium tin oxide coatings,” Appl. Phys. Lett. 34(3), 196–198 (1979).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

P. E. Dyer, M. Pervolaraki, and T. Lippert, “Experimental studies and thermal modelling of 1064- and 532-nm Nd:YVO 4 micro-laser ablation of polyimide,” Appl. Phys., A Mater. Sci. Process. 80(3), 529–536 (2005).
[Crossref]

Z. Ball, T. Feurer, D. L. Callahan, and R. Sauerbrey, “Thermal and mechanical coupling between successive pulses in KrF-excimer-laser ablation of polyimide,” Appl. Phys., A Mater. Sci. Process. 62(3), 203–211 (1996).
[Crossref]

Chin. J. Lasers (1)

Z. Jian, F. Yun, W. Liying, and X. Lin, “Liquid Crystal Beam Steering Technologies,” Chin. J. Lasers 37(2), 325–334 (2010).
[Crossref]

Chin. Opt. Lett. (2)

J. Am. Ceram. Soc. (1)

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical modeling of laser‐induced structural relaxation and deformation of glass: volume changes in fused silica at high temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[Crossref]

J. Appl. Phys. (1)

O. Yavas and M. Takai, “Effect of substrate absorption on the efficiency of laser patterning of indium tin oxide thin films,” J. Appl. Phys. 85(8), 4207–4212 (1999).
[Crossref]

J. Lightwave Technol. (1)

Journal of Macromolecular Science: Part D - Reviews in Polymer Processing (1)

M. K. Khosa, M. A. Jamal, R. Iqbal, M. Muneer, M. J. Saif, K. M. Zia, and M. Hamid, “Thermal stability and mechanical properties of organo-soluble and processable polyimides for high-temperature materials,” Journal of Macromolecular Science: Part D - Reviews in Polymer Processing 56, 22–28 (2016).

Laser-Induced Damage in Optical Materials (1)

J. H. Yoo, J. J. Adams, M. G. Menor, T. Y. Olson, J. R. I. Lee, A. Samanta, J. Bude, and S. Elhadj, “Nanosecond laser-induced damage of transparent conducting ITO film at 1064 nm,” Laser-Induced Damage in Optical Materials 2016, 10014 (2016).

Liq. Cryst. (1)

K. L. Marshall, C. Dorrer, and S. H. Chen, “Photo-aligned liquid crystal devices for high-peak-power laser applications,” Liq. Cryst. XVI, 84750U (2012).

Meas. Tech. (1)

N. N. Arev, B. F. Gorbunov, G. V. Pugachev, and Y. A. Bazlov, “Application of a laser ranging system to the metrologic certification of satellite radar measurement systems,” Meas. Tech. 36(5), 524–525 (1993).
[Crossref]

Opt. Commun. (1)

X. He, X. Wang, L. Wu, Q. Tan, M. Li, J. Shang, S. Wu, and Z. Huang, “Theoretical modeling on the laser induced effect of liquid crystal optical phased beam steering,” Opt. Commun. 382, 437–443 (2017).
[Crossref]

Opt. Eng. (1)

A. Manenkov, G. Matyushin, V. Nechitailo, A. Prokhorov, and A. Tsaprilov, “On the nature of the accumulation effect in laser-induced damage to optical materials,” Opt. Eng. 22(4), 224400 (1983).
[Crossref]

Opt. Express (3)

Opt. Lasers Eng. (1)

C. W. Cheng, I. M. Lee, and J. S. Chen, “Femtosecond laser processing of indium-tin-oxide thin films,” Opt. Lasers Eng. 69, 1–6 (2015).
[Crossref]

Opt. Mater. Express (1)

Polymer (Guildf.) (1)

X. Kong, F. Teng, H. Tang, L. Dong, and Z. Feng, “Miscibility and crystallization behaviour of poly (ether ether ketone)/polyimide blends,” Polymer (Guildf.) 37(9), 1751–1755 (1996).
[Crossref]

Proc. SPIE (2)

M. F. Koldunov, A. A. Manenkov, and I. L. Pokotilo, “Multishot laser-induced damage in optical materials: an analysis of main regularities,” Proc. SPIE 3244, 641–649 (1998).
[Crossref]

M. A. Maun and P. B. Cavers, “Voltage calibration of dual-frequency liquid crystal devices for infrared beam steering applications,” Proc. SPIE 5892, 202–204 (2005).

Spacecraft Environment Engineering (1)

F. Dai, S. Xiong, and Z. Gong, “The temperature rise in films at the repeat rate pulse laser irradiation determined based on finite element method,” Spacecraft Environment Engineering 7019, 701924 (2009).

Surf. Coat. Tech. (1)

X. Liu, Y. Xiong, R. Wang, J. Yang, G. Wu, and N. Ren, “Laser etching of aluminum thin film on polyimide: Simulation and experimental studies,” Surf. Coat. Tech. 277, 107–116 (2015).
[Crossref]

Other (5)

K. L. Marshall, J. Gan, G. Mitchell, S. Papernov, A. L. Rigatti, A. W. Schmid, and S. D. Jacobs, “Laser-damage-resistant photoalignment layers for high-peak-power liquid crystal device applications,” Proceedings of SPIE - The International Society for Optical Engineering 7050(2008).
[Crossref]

F. Xiao and L. Kong, “Angular magnification method of liquid crystal optical phased array based on telescope system,” in International Symposium on Photoelectronic Detection and Imaging 2013: Laser Communication Technologies and Systems (2013), pp. 165–189.
[Crossref]

B. Winker, M. Mahajan, and M. Hunwardsen, “Liquid crystal beam directors for airborne free-space optical communications,” in Aerospace Conference2004, 631–634.
[Crossref]

M. Kleeman and U. O. Nseyo, “High-power (80-w) KTP laser vaporization of the prostate in the management of urinary retention: long-term follow up,” Proceedings of SPIE - The International Society for Optical Engineering 5, 1178–1180 (2004).

P. C. Irwin, Y. Cao, A. Bansal, et al., “Thermal and mechanical properties of polyimide nanocomposites,” Electrical Insulation and Dielectric Phenomena, Annual Report. Conference on. IEEE, 120–123 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Diagram showing PI/ITO/SUB sample.
Fig. 2
Fig. 2 Schematics of laser irradiation damage threshold measurement using high-repetition-rate laser.
Fig. 3
Fig. 3 Temperature-rise diagram of PI/ITO/SUB sample used for the simulation process.
Fig. 4
Fig. 4 The damage morphology-change with laser power density at 10 kHz repetition rate.
Fig. 5
Fig. 5 The (a) damage diameter and (b) damage height of PI/ITO/SUB with respect to laser power density at a repetition rate of 10 kHz.
Fig. 6
Fig. 6 Surface morphology of the film and the corresponding substrate region after removal of the film layer. (a) and (b) represent the morphology of surface of the film and backside of the substrate, respectively under irradiation with 3744 W/cm2, (c) and (d) represent the morphology of surface of the film and backside of the substrate respectively under irradiation with 8237 W/cm2.
Fig. 7
Fig. 7 Radial temperature distribution in 30 s under 3000 W/cm2 laser irradiation in one spot area, (a) is the curve of temperature changing over time at several points in the radial direction, (b) is the distribution of several points in the radial direction and the black curve is the Gaussian distribution of the laser beam along the x direction.
Fig. 8
Fig. 8 (a) Temperature distribution along radial direction under a series of laser power density irradiations within 30 s. (b) Diameter of the damaged zones in PI/ITO/SUB sample as a function of irradiation power density exposure at 10 kHz.
Fig. 9
Fig. 9 Vertical temperature distribution in first 30 s under 3000 W/cm2 laser irradiation, (a) is the curve of temperature changing over time at several points in the vertical direction, (b) is the distribution of several points in the vertical direction.
Fig. 10
Fig. 10 The process of change in damage morphology of PI/ITO/SUB sample under 10 kHz repetition rate and 5926 W/cm2 irradiated power density laser. (a)–(f) represent the damage morphology in the time range of 0–120 s; the morphologies were obtained using an optical profiler.
Fig. 11
Fig. 11 (a) The relationship between the damage probability and irradiation power density in a range of irradiation times with a 10 kHz repetition rate laser. (b) The LIDT versus irradiation time.
Fig. 12
Fig. 12 The temperature-rise in case of (a) 10 pulses and (b) 20 pulses with a 10 kHz repetition rate laser irradiation.

Tables (1)

Tables Icon

Table 1 The thermo-physical parameters of relevant materials in the sample

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I(r,t)=[2P(t)/(π r 0 2 )]exp[2 (r/ r 0 ) 2 ]
P(t)={ P 0 N f tτ+ N f 0 τ+ N f t(N+1) 1 f
ρ i C i (/t)T(r,z,t)= k i r ( 2 / r 2 )T(r,z,t)+ k i ( 2 / z 2 )T(r,z,t)+Q
Q=αI(r,t)(1R)
k 1 T(r,z=0,t) z = 1 α Qγ(T(r,z=0,t) T 0 );
k 3 T(r,z=h,t) z =γ(T(r,z=h,t) T 0 );
k 1or3 T(r=,z,t) z =γ(T(r=,z,t) T 0 );
T(r,z,t=0)= T 0

Metrics