Abstract

The structures of retired components and potassium dihydrogen phosphate (KDP) crystal irradiated by high fluence are investigated using the combined methods of synchrotron radiation micro-X-ray fluorescence with micro-X ray diffraction. The distributions of potassium, phosphorus, iron, and copper exhibited an apparent centralization on the crater. The changes between phosphorus and potassium were the same in KDP crystal irradiated by high fluence but were different for retired components. The irradiation of KDP crystal by high fluence produced K2H2P2O7 and KPO3 crystals during laser-induced damage, but K2H2P2O7 and K2H8(PO4)2P2O7 crystals were produced for retired components. KDP crystal irradiated by high fluence was dehydrated completely but the retired components were incompletely decomposed.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Synchrotron micro-XRF study of metal inclusions distribution in potassium dihydrogen phosphate (KDP) induced by ultraviolet laser pulses

Zhiqiang Cao, Xin Ju, Chunyan Yan, and Chang Liu
Opt. Mater. Express 5(10) 2201-2208 (2015)

Study of morphological feature and mechanism of potassium dihydrogen phosphate surface damage under a 351  nm nanosecond laser

Zhichao Liu, Feng Geng, Yaguo Li, Jian Cheng, Hao Yang, Yi Zheng, Jian Wang, and Qiao Xu
Appl. Opt. 57(35) 10334-10341 (2018)

Investigation of the laser-induced surface damage of KDP crystal by explosion simulation

Shengfei Wang, Jian Wang, Xiangyang Lei, Zhichao Liu, Jianfeng Zhang, and Qiao Xu
Opt. Express 27(11) 15142-15158 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
    [Crossref] [PubMed]
  2. K. Boopathi, P. Rajesh, P. Ramasamy, and P. Manyum, “Comparative studies of glycine added potassium dihydrogen phosphate single crystals grown by conventional and Sankaranaryanan–Ramasamy methods,” Opt. Mater. 35(5), 954–961 (2013).
    [Crossref]
  3. J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most power laser,” Int. Mater. Rev. 47(3), 113–152 (2002).
    [Crossref]
  4. F. DeMange, R. A. Negres, N. P. Zaitseva, H. B. Radousky, and S. G. Demos, “Correlation of laser-induced damage performance to crystal growth conditions in KDP and DKDP crystals,” in Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference, CLEO/QELS 2006 (2006).
    [Crossref]
  5. Z. Y.-A. H. U. Guo-Hang and S. U. N. Shao-Tao, “Growth characteristics and mechanism of surface and bulk damage in KDP and DKDP crystals,” Chin. Phys. Lett. 26(8), 087805 (2009).
    [Crossref]
  6. D. C. Guo, X. D. Jiang, J. Huang, F. R. Wang, H. J. Liu, X. Xiang, G. X. Yang, W. G. Zheng, and X. T. Zu, “Effects of γ-ray irradiation on optical absorption and laser damage performance of KDP crystals containing arsenic impurities,” Opt. Express 22(23), 29020–29030 (2014).
    [Crossref] [PubMed]
  7. K. T. S. N. Y. Garces and L. E. Halliburton, “Optical absorption and electron paramagnetic resonance of Feions in KDP crystals,” J. Cryst. Growth 225(2–4), 435–439 (2001).
    [Crossref]
  8. C. M. R. Remédios, W. Paraguassu, G. D. Saraiva, D. P. Pereira, P. C. de Oliveira, P. T. C. Freire, J. Mendes-Filho, F. E. A. Melo, and A. O. dos Santos, “Temperature-dependent Raman scattering of KDP:Mn (0.9% weight of Mn) crystal,” J. Raman Spectrosc. 41(5), 1318–1322 (2010).
    [Crossref]
  9. P. DeMange, C. W. Carr, R. A. Negres, H. B. Radousky, and S. G. Demos, “Laser annealing characteristics of multiple bulk defect populations within DKDP crystals,” J. Appl. Phys. 104(10), 103103 (2008).
    [Crossref]
  10. K. Wang, C. Fang, J. Zhang, X. Sun, S. Wang, Q. Gu, X. Zhao, and B. Wang, “Laser-induced damage mechanisms and improvement of optical qualities of bulk potassium dihydrogen phosphate crystals,” J. Cryst. Growth 287(2), 478–482 (2006).
    [Crossref]
  11. P. Demange, R. A. Negres, C. W. Carr, H. B. Radousky, and S. G. Demos, “Laser-induced defect reactions governing damage initiation in DKDP crystals,” Opt. Express 14(12), 5313–5328 (2006).
    [Crossref] [PubMed]
  12. M. F. Koldunov and A. A. Manenkov, “Theory of laser-induced inclusion-initiated damage in optical materials,” Opt. Eng. 51(12), 121811 (2012).
    [Crossref]
  13. J. Shao, A. A. Manenkov, T. Jitsuno, and W. Rudolph, “Fundamental mechanisms of laser-induced damage in optical materials: today's state of understanding and problems,” Proc. SPIE 8786, 878611 (2013).
  14. B. Ma, Y. Zhang, H. Ma, H. Jiao, X. Cheng, and Z. Wang, “Influence of incidence angle and polarization state on the damage site characteristics of fused silica,” Appl. Opt. 53(4), A96–A102 (2014).
    [Crossref] [PubMed]
  15. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
    [Crossref] [PubMed]
  16. M. Pommiès, D. Damiani, X. Le Borgne, C. Dujardin, A. Surmin, J. C. Birolleau, F. Pilon, B. Bertussi, and H. Piombini, “Impurities detection by optical techniques in KH2PO4 crystals,” Opt. Commun. 275(2), 372–378 (2007).
    [Crossref]
  17. R. Alberti, C. Fiorini, C. Guazzoni, T. Klatka, and A. Longoni, “Elemental mapping by means of an ultra-fast XRF spectrometer based on a novel high-performance monolithic array of silicon drift detectors,” Nucl. Instrum. Meth. A 580(2), 1004–1007 (2007).
    [Crossref]
  18. M. S. J. M. Chatterjee and S. Roy, “Determination of heavy metals in industrial wastes by SXRF method,” Radiat. Phys. Chem. 64(5-6), 369–372 (2002).
    [Crossref]
  19. M. F. Guerra, M. Radtke, I. Reiche, H. Riesemeier, and E. Strub, “Analysis of trace elements in gold alloys by SR-XRF at high energy at the BAMline,” Nucl. Instrum. Meth. B 266(10), 2334–2338 (2008).
    [Crossref]
  20. M. J. Farquharson, K. Geraki, G. Falkenberg, R. Leek, and A. Harris, “The localisation and micro-mapping of copper and other trace elements in breast tumours using a synchrotron micro-XRF system,” Appl. Radiat. Isot. 65(2), 183–188 (2007).
    [Crossref] [PubMed]
  21. K. Geraki, M. J. Farquharson, D. A. Bradley, and R. P. Hugtenburg, “A synchrotron XRF study on trace elements and potassium in breast tissue,” Nucl. Instrum. Meth. B 213, 564–568 (2004).
    [Crossref]
  22. L. Vincze, B. Vekemans, F. E. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76(22), 6786–6791 (2004).
    [Crossref] [PubMed]
  23. E. Nakazawa, T. Ikemoto, A. Hokura, Y. Terada, T. Kunito, S. Tanabe, and I. Nakai, “The presence of mercury selenide in various tissues of the striped dolphin: evidence from mu-XRF-XRD and XAFS analyses,” Metallomics: Integrated Biometal Science 3, 719–725 (2011).
  24. Y. M. Zhu, H. Zhang, S. S. Fan, S. J. Wang, Y. Xia, L. M. Shao, and P. J. He, “In-situ determination of metallic variation and multi-association in single particles by combining synchrotron microprobe, sequential chemical extraction and multivariate statistical analysis,” J. Hazard. Mater. 276, 241–252 (2014).
    [Crossref] [PubMed]
  25. X. Li, B. Liu, C. Yan, C. Liu, and X. Ju, “Investigating the surface electronic structures of retired components and irradiated KDP crystals with different fluences by XANES spectroscopy,” Opt. Mater. Express 8(4), 816–823 (2018).
    [Crossref]
  26. R. A. Negres, S. O. Kucheyev, P. DeMange, C. Bostedt, T. van Buuren, A. J. Nelson, and S. G. Demos, “Decomposition of KH2PO4 crystals during laser-induced breakdown,” Appl. Phys. Lett. 86(17), 171107 (2005).
    [Crossref]

2018 (1)

2014 (3)

2013 (1)

K. Boopathi, P. Rajesh, P. Ramasamy, and P. Manyum, “Comparative studies of glycine added potassium dihydrogen phosphate single crystals grown by conventional and Sankaranaryanan–Ramasamy methods,” Opt. Mater. 35(5), 954–961 (2013).
[Crossref]

2012 (1)

M. F. Koldunov and A. A. Manenkov, “Theory of laser-induced inclusion-initiated damage in optical materials,” Opt. Eng. 51(12), 121811 (2012).
[Crossref]

2011 (1)

E. Nakazawa, T. Ikemoto, A. Hokura, Y. Terada, T. Kunito, S. Tanabe, and I. Nakai, “The presence of mercury selenide in various tissues of the striped dolphin: evidence from mu-XRF-XRD and XAFS analyses,” Metallomics: Integrated Biometal Science 3, 719–725 (2011).

2010 (1)

C. M. R. Remédios, W. Paraguassu, G. D. Saraiva, D. P. Pereira, P. C. de Oliveira, P. T. C. Freire, J. Mendes-Filho, F. E. A. Melo, and A. O. dos Santos, “Temperature-dependent Raman scattering of KDP:Mn (0.9% weight of Mn) crystal,” J. Raman Spectrosc. 41(5), 1318–1322 (2010).
[Crossref]

2009 (1)

Z. Y.-A. H. U. Guo-Hang and S. U. N. Shao-Tao, “Growth characteristics and mechanism of surface and bulk damage in KDP and DKDP crystals,” Chin. Phys. Lett. 26(8), 087805 (2009).
[Crossref]

2008 (2)

P. DeMange, C. W. Carr, R. A. Negres, H. B. Radousky, and S. G. Demos, “Laser annealing characteristics of multiple bulk defect populations within DKDP crystals,” J. Appl. Phys. 104(10), 103103 (2008).
[Crossref]

M. F. Guerra, M. Radtke, I. Reiche, H. Riesemeier, and E. Strub, “Analysis of trace elements in gold alloys by SR-XRF at high energy at the BAMline,” Nucl. Instrum. Meth. B 266(10), 2334–2338 (2008).
[Crossref]

2007 (3)

M. J. Farquharson, K. Geraki, G. Falkenberg, R. Leek, and A. Harris, “The localisation and micro-mapping of copper and other trace elements in breast tumours using a synchrotron micro-XRF system,” Appl. Radiat. Isot. 65(2), 183–188 (2007).
[Crossref] [PubMed]

M. Pommiès, D. Damiani, X. Le Borgne, C. Dujardin, A. Surmin, J. C. Birolleau, F. Pilon, B. Bertussi, and H. Piombini, “Impurities detection by optical techniques in KH2PO4 crystals,” Opt. Commun. 275(2), 372–378 (2007).
[Crossref]

R. Alberti, C. Fiorini, C. Guazzoni, T. Klatka, and A. Longoni, “Elemental mapping by means of an ultra-fast XRF spectrometer based on a novel high-performance monolithic array of silicon drift detectors,” Nucl. Instrum. Meth. A 580(2), 1004–1007 (2007).
[Crossref]

2006 (2)

K. Wang, C. Fang, J. Zhang, X. Sun, S. Wang, Q. Gu, X. Zhao, and B. Wang, “Laser-induced damage mechanisms and improvement of optical qualities of bulk potassium dihydrogen phosphate crystals,” J. Cryst. Growth 287(2), 478–482 (2006).
[Crossref]

P. Demange, R. A. Negres, C. W. Carr, H. B. Radousky, and S. G. Demos, “Laser-induced defect reactions governing damage initiation in DKDP crystals,” Opt. Express 14(12), 5313–5328 (2006).
[Crossref] [PubMed]

2005 (1)

R. A. Negres, S. O. Kucheyev, P. DeMange, C. Bostedt, T. van Buuren, A. J. Nelson, and S. G. Demos, “Decomposition of KH2PO4 crystals during laser-induced breakdown,” Appl. Phys. Lett. 86(17), 171107 (2005).
[Crossref]

2004 (3)

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[Crossref] [PubMed]

K. Geraki, M. J. Farquharson, D. A. Bradley, and R. P. Hugtenburg, “A synchrotron XRF study on trace elements and potassium in breast tissue,” Nucl. Instrum. Meth. B 213, 564–568 (2004).
[Crossref]

L. Vincze, B. Vekemans, F. E. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76(22), 6786–6791 (2004).
[Crossref] [PubMed]

2003 (1)

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[Crossref] [PubMed]

2002 (2)

M. S. J. M. Chatterjee and S. Roy, “Determination of heavy metals in industrial wastes by SXRF method,” Radiat. Phys. Chem. 64(5-6), 369–372 (2002).
[Crossref]

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most power laser,” Int. Mater. Rev. 47(3), 113–152 (2002).
[Crossref]

2001 (1)

K. T. S. N. Y. Garces and L. E. Halliburton, “Optical absorption and electron paramagnetic resonance of Feions in KDP crystals,” J. Cryst. Growth 225(2–4), 435–439 (2001).
[Crossref]

Adams, F.

L. Vincze, B. Vekemans, F. E. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76(22), 6786–6791 (2004).
[Crossref] [PubMed]

Alberti, R.

R. Alberti, C. Fiorini, C. Guazzoni, T. Klatka, and A. Longoni, “Elemental mapping by means of an ultra-fast XRF spectrometer based on a novel high-performance monolithic array of silicon drift detectors,” Nucl. Instrum. Meth. A 580(2), 1004–1007 (2007).
[Crossref]

Bertussi, B.

M. Pommiès, D. Damiani, X. Le Borgne, C. Dujardin, A. Surmin, J. C. Birolleau, F. Pilon, B. Bertussi, and H. Piombini, “Impurities detection by optical techniques in KH2PO4 crystals,” Opt. Commun. 275(2), 372–378 (2007).
[Crossref]

Birolleau, J. C.

M. Pommiès, D. Damiani, X. Le Borgne, C. Dujardin, A. Surmin, J. C. Birolleau, F. Pilon, B. Bertussi, and H. Piombini, “Impurities detection by optical techniques in KH2PO4 crystals,” Opt. Commun. 275(2), 372–378 (2007).
[Crossref]

Boopathi, K.

K. Boopathi, P. Rajesh, P. Ramasamy, and P. Manyum, “Comparative studies of glycine added potassium dihydrogen phosphate single crystals grown by conventional and Sankaranaryanan–Ramasamy methods,” Opt. Mater. 35(5), 954–961 (2013).
[Crossref]

Bostedt, C.

R. A. Negres, S. O. Kucheyev, P. DeMange, C. Bostedt, T. van Buuren, A. J. Nelson, and S. G. Demos, “Decomposition of KH2PO4 crystals during laser-induced breakdown,” Appl. Phys. Lett. 86(17), 171107 (2005).
[Crossref]

Bradley, D. A.

K. Geraki, M. J. Farquharson, D. A. Bradley, and R. P. Hugtenburg, “A synchrotron XRF study on trace elements and potassium in breast tissue,” Nucl. Instrum. Meth. B 213, 564–568 (2004).
[Crossref]

Brenker, F. E.

L. Vincze, B. Vekemans, F. E. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76(22), 6786–6791 (2004).
[Crossref] [PubMed]

Burnham, A. K.

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most power laser,” Int. Mater. Rev. 47(3), 113–152 (2002).
[Crossref]

Carr, C. W.

P. DeMange, C. W. Carr, R. A. Negres, H. B. Radousky, and S. G. Demos, “Laser annealing characteristics of multiple bulk defect populations within DKDP crystals,” J. Appl. Phys. 104(10), 103103 (2008).
[Crossref]

P. Demange, R. A. Negres, C. W. Carr, H. B. Radousky, and S. G. Demos, “Laser-induced defect reactions governing damage initiation in DKDP crystals,” Opt. Express 14(12), 5313–5328 (2006).
[Crossref] [PubMed]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[Crossref] [PubMed]

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[Crossref] [PubMed]

Chatterjee, M. S. J. M.

M. S. J. M. Chatterjee and S. Roy, “Determination of heavy metals in industrial wastes by SXRF method,” Radiat. Phys. Chem. 64(5-6), 369–372 (2002).
[Crossref]

Cheng, X.

Damiani, D.

M. Pommiès, D. Damiani, X. Le Borgne, C. Dujardin, A. Surmin, J. C. Birolleau, F. Pilon, B. Bertussi, and H. Piombini, “Impurities detection by optical techniques in KH2PO4 crystals,” Opt. Commun. 275(2), 372–378 (2007).
[Crossref]

de Oliveira, P. C.

C. M. R. Remédios, W. Paraguassu, G. D. Saraiva, D. P. Pereira, P. C. de Oliveira, P. T. C. Freire, J. Mendes-Filho, F. E. A. Melo, and A. O. dos Santos, “Temperature-dependent Raman scattering of KDP:Mn (0.9% weight of Mn) crystal,” J. Raman Spectrosc. 41(5), 1318–1322 (2010).
[Crossref]

De Yoreo, J. J.

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most power laser,” Int. Mater. Rev. 47(3), 113–152 (2002).
[Crossref]

DeMange, P.

P. DeMange, C. W. Carr, R. A. Negres, H. B. Radousky, and S. G. Demos, “Laser annealing characteristics of multiple bulk defect populations within DKDP crystals,” J. Appl. Phys. 104(10), 103103 (2008).
[Crossref]

P. Demange, R. A. Negres, C. W. Carr, H. B. Radousky, and S. G. Demos, “Laser-induced defect reactions governing damage initiation in DKDP crystals,” Opt. Express 14(12), 5313–5328 (2006).
[Crossref] [PubMed]

R. A. Negres, S. O. Kucheyev, P. DeMange, C. Bostedt, T. van Buuren, A. J. Nelson, and S. G. Demos, “Decomposition of KH2PO4 crystals during laser-induced breakdown,” Appl. Phys. Lett. 86(17), 171107 (2005).
[Crossref]

Demos, S. G.

P. DeMange, C. W. Carr, R. A. Negres, H. B. Radousky, and S. G. Demos, “Laser annealing characteristics of multiple bulk defect populations within DKDP crystals,” J. Appl. Phys. 104(10), 103103 (2008).
[Crossref]

P. Demange, R. A. Negres, C. W. Carr, H. B. Radousky, and S. G. Demos, “Laser-induced defect reactions governing damage initiation in DKDP crystals,” Opt. Express 14(12), 5313–5328 (2006).
[Crossref] [PubMed]

R. A. Negres, S. O. Kucheyev, P. DeMange, C. Bostedt, T. van Buuren, A. J. Nelson, and S. G. Demos, “Decomposition of KH2PO4 crystals during laser-induced breakdown,” Appl. Phys. Lett. 86(17), 171107 (2005).
[Crossref]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[Crossref] [PubMed]

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[Crossref] [PubMed]

dos Santos, A. O.

C. M. R. Remédios, W. Paraguassu, G. D. Saraiva, D. P. Pereira, P. C. de Oliveira, P. T. C. Freire, J. Mendes-Filho, F. E. A. Melo, and A. O. dos Santos, “Temperature-dependent Raman scattering of KDP:Mn (0.9% weight of Mn) crystal,” J. Raman Spectrosc. 41(5), 1318–1322 (2010).
[Crossref]

Dujardin, C.

M. Pommiès, D. Damiani, X. Le Borgne, C. Dujardin, A. Surmin, J. C. Birolleau, F. Pilon, B. Bertussi, and H. Piombini, “Impurities detection by optical techniques in KH2PO4 crystals,” Opt. Commun. 275(2), 372–378 (2007).
[Crossref]

Falkenberg, G.

M. J. Farquharson, K. Geraki, G. Falkenberg, R. Leek, and A. Harris, “The localisation and micro-mapping of copper and other trace elements in breast tumours using a synchrotron micro-XRF system,” Appl. Radiat. Isot. 65(2), 183–188 (2007).
[Crossref] [PubMed]

L. Vincze, B. Vekemans, F. E. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76(22), 6786–6791 (2004).
[Crossref] [PubMed]

Fan, S. S.

Y. M. Zhu, H. Zhang, S. S. Fan, S. J. Wang, Y. Xia, L. M. Shao, and P. J. He, “In-situ determination of metallic variation and multi-association in single particles by combining synchrotron microprobe, sequential chemical extraction and multivariate statistical analysis,” J. Hazard. Mater. 276, 241–252 (2014).
[Crossref] [PubMed]

Fang, C.

K. Wang, C. Fang, J. Zhang, X. Sun, S. Wang, Q. Gu, X. Zhao, and B. Wang, “Laser-induced damage mechanisms and improvement of optical qualities of bulk potassium dihydrogen phosphate crystals,” J. Cryst. Growth 287(2), 478–482 (2006).
[Crossref]

Farquharson, M. J.

M. J. Farquharson, K. Geraki, G. Falkenberg, R. Leek, and A. Harris, “The localisation and micro-mapping of copper and other trace elements in breast tumours using a synchrotron micro-XRF system,” Appl. Radiat. Isot. 65(2), 183–188 (2007).
[Crossref] [PubMed]

K. Geraki, M. J. Farquharson, D. A. Bradley, and R. P. Hugtenburg, “A synchrotron XRF study on trace elements and potassium in breast tissue,” Nucl. Instrum. Meth. B 213, 564–568 (2004).
[Crossref]

Feit, M. D.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[Crossref] [PubMed]

Fiorini, C.

R. Alberti, C. Fiorini, C. Guazzoni, T. Klatka, and A. Longoni, “Elemental mapping by means of an ultra-fast XRF spectrometer based on a novel high-performance monolithic array of silicon drift detectors,” Nucl. Instrum. Meth. A 580(2), 1004–1007 (2007).
[Crossref]

Freire, P. T. C.

C. M. R. Remédios, W. Paraguassu, G. D. Saraiva, D. P. Pereira, P. C. de Oliveira, P. T. C. Freire, J. Mendes-Filho, F. E. A. Melo, and A. O. dos Santos, “Temperature-dependent Raman scattering of KDP:Mn (0.9% weight of Mn) crystal,” J. Raman Spectrosc. 41(5), 1318–1322 (2010).
[Crossref]

Garces, K. T. S. N. Y.

K. T. S. N. Y. Garces and L. E. Halliburton, “Optical absorption and electron paramagnetic resonance of Feions in KDP crystals,” J. Cryst. Growth 225(2–4), 435–439 (2001).
[Crossref]

Geraki, K.

M. J. Farquharson, K. Geraki, G. Falkenberg, R. Leek, and A. Harris, “The localisation and micro-mapping of copper and other trace elements in breast tumours using a synchrotron micro-XRF system,” Appl. Radiat. Isot. 65(2), 183–188 (2007).
[Crossref] [PubMed]

K. Geraki, M. J. Farquharson, D. A. Bradley, and R. P. Hugtenburg, “A synchrotron XRF study on trace elements and potassium in breast tissue,” Nucl. Instrum. Meth. B 213, 564–568 (2004).
[Crossref]

Gu, Q.

K. Wang, C. Fang, J. Zhang, X. Sun, S. Wang, Q. Gu, X. Zhao, and B. Wang, “Laser-induced damage mechanisms and improvement of optical qualities of bulk potassium dihydrogen phosphate crystals,” J. Cryst. Growth 287(2), 478–482 (2006).
[Crossref]

Guazzoni, C.

R. Alberti, C. Fiorini, C. Guazzoni, T. Klatka, and A. Longoni, “Elemental mapping by means of an ultra-fast XRF spectrometer based on a novel high-performance monolithic array of silicon drift detectors,” Nucl. Instrum. Meth. A 580(2), 1004–1007 (2007).
[Crossref]

Guerra, M. F.

M. F. Guerra, M. Radtke, I. Reiche, H. Riesemeier, and E. Strub, “Analysis of trace elements in gold alloys by SR-XRF at high energy at the BAMline,” Nucl. Instrum. Meth. B 266(10), 2334–2338 (2008).
[Crossref]

Guo, D. C.

Guo-Hang, Z. Y.-A. H. U.

Z. Y.-A. H. U. Guo-Hang and S. U. N. Shao-Tao, “Growth characteristics and mechanism of surface and bulk damage in KDP and DKDP crystals,” Chin. Phys. Lett. 26(8), 087805 (2009).
[Crossref]

Halliburton, L. E.

K. T. S. N. Y. Garces and L. E. Halliburton, “Optical absorption and electron paramagnetic resonance of Feions in KDP crystals,” J. Cryst. Growth 225(2–4), 435–439 (2001).
[Crossref]

Harris, A.

M. J. Farquharson, K. Geraki, G. Falkenberg, R. Leek, and A. Harris, “The localisation and micro-mapping of copper and other trace elements in breast tumours using a synchrotron micro-XRF system,” Appl. Radiat. Isot. 65(2), 183–188 (2007).
[Crossref] [PubMed]

He, P. J.

Y. M. Zhu, H. Zhang, S. S. Fan, S. J. Wang, Y. Xia, L. M. Shao, and P. J. He, “In-situ determination of metallic variation and multi-association in single particles by combining synchrotron microprobe, sequential chemical extraction and multivariate statistical analysis,” J. Hazard. Mater. 276, 241–252 (2014).
[Crossref] [PubMed]

Hokura, A.

E. Nakazawa, T. Ikemoto, A. Hokura, Y. Terada, T. Kunito, S. Tanabe, and I. Nakai, “The presence of mercury selenide in various tissues of the striped dolphin: evidence from mu-XRF-XRD and XAFS analyses,” Metallomics: Integrated Biometal Science 3, 719–725 (2011).

Huang, J.

Hugtenburg, R. P.

K. Geraki, M. J. Farquharson, D. A. Bradley, and R. P. Hugtenburg, “A synchrotron XRF study on trace elements and potassium in breast tissue,” Nucl. Instrum. Meth. B 213, 564–568 (2004).
[Crossref]

Ikemoto, T.

E. Nakazawa, T. Ikemoto, A. Hokura, Y. Terada, T. Kunito, S. Tanabe, and I. Nakai, “The presence of mercury selenide in various tissues of the striped dolphin: evidence from mu-XRF-XRD and XAFS analyses,” Metallomics: Integrated Biometal Science 3, 719–725 (2011).

Jiang, X. D.

Jiao, H.

Ju, X.

Kersten, M.

L. Vincze, B. Vekemans, F. E. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76(22), 6786–6791 (2004).
[Crossref] [PubMed]

Klatka, T.

R. Alberti, C. Fiorini, C. Guazzoni, T. Klatka, and A. Longoni, “Elemental mapping by means of an ultra-fast XRF spectrometer based on a novel high-performance monolithic array of silicon drift detectors,” Nucl. Instrum. Meth. A 580(2), 1004–1007 (2007).
[Crossref]

Koldunov, M. F.

M. F. Koldunov and A. A. Manenkov, “Theory of laser-induced inclusion-initiated damage in optical materials,” Opt. Eng. 51(12), 121811 (2012).
[Crossref]

Kucheyev, S. O.

R. A. Negres, S. O. Kucheyev, P. DeMange, C. Bostedt, T. van Buuren, A. J. Nelson, and S. G. Demos, “Decomposition of KH2PO4 crystals during laser-induced breakdown,” Appl. Phys. Lett. 86(17), 171107 (2005).
[Crossref]

Kunito, T.

E. Nakazawa, T. Ikemoto, A. Hokura, Y. Terada, T. Kunito, S. Tanabe, and I. Nakai, “The presence of mercury selenide in various tissues of the striped dolphin: evidence from mu-XRF-XRD and XAFS analyses,” Metallomics: Integrated Biometal Science 3, 719–725 (2011).

Le Borgne, X.

M. Pommiès, D. Damiani, X. Le Borgne, C. Dujardin, A. Surmin, J. C. Birolleau, F. Pilon, B. Bertussi, and H. Piombini, “Impurities detection by optical techniques in KH2PO4 crystals,” Opt. Commun. 275(2), 372–378 (2007).
[Crossref]

Leek, R.

M. J. Farquharson, K. Geraki, G. Falkenberg, R. Leek, and A. Harris, “The localisation and micro-mapping of copper and other trace elements in breast tumours using a synchrotron micro-XRF system,” Appl. Radiat. Isot. 65(2), 183–188 (2007).
[Crossref] [PubMed]

Li, X.

Liu, B.

Liu, C.

Liu, H. J.

Longoni, A.

R. Alberti, C. Fiorini, C. Guazzoni, T. Klatka, and A. Longoni, “Elemental mapping by means of an ultra-fast XRF spectrometer based on a novel high-performance monolithic array of silicon drift detectors,” Nucl. Instrum. Meth. A 580(2), 1004–1007 (2007).
[Crossref]

Ma, B.

Ma, H.

Manenkov, A. A.

M. F. Koldunov and A. A. Manenkov, “Theory of laser-induced inclusion-initiated damage in optical materials,” Opt. Eng. 51(12), 121811 (2012).
[Crossref]

Manyum, P.

K. Boopathi, P. Rajesh, P. Ramasamy, and P. Manyum, “Comparative studies of glycine added potassium dihydrogen phosphate single crystals grown by conventional and Sankaranaryanan–Ramasamy methods,” Opt. Mater. 35(5), 954–961 (2013).
[Crossref]

Melo, F. E. A.

C. M. R. Remédios, W. Paraguassu, G. D. Saraiva, D. P. Pereira, P. C. de Oliveira, P. T. C. Freire, J. Mendes-Filho, F. E. A. Melo, and A. O. dos Santos, “Temperature-dependent Raman scattering of KDP:Mn (0.9% weight of Mn) crystal,” J. Raman Spectrosc. 41(5), 1318–1322 (2010).
[Crossref]

Mendes-Filho, J.

C. M. R. Remédios, W. Paraguassu, G. D. Saraiva, D. P. Pereira, P. C. de Oliveira, P. T. C. Freire, J. Mendes-Filho, F. E. A. Melo, and A. O. dos Santos, “Temperature-dependent Raman scattering of KDP:Mn (0.9% weight of Mn) crystal,” J. Raman Spectrosc. 41(5), 1318–1322 (2010).
[Crossref]

Nakai, I.

E. Nakazawa, T. Ikemoto, A. Hokura, Y. Terada, T. Kunito, S. Tanabe, and I. Nakai, “The presence of mercury selenide in various tissues of the striped dolphin: evidence from mu-XRF-XRD and XAFS analyses,” Metallomics: Integrated Biometal Science 3, 719–725 (2011).

Nakazawa, E.

E. Nakazawa, T. Ikemoto, A. Hokura, Y. Terada, T. Kunito, S. Tanabe, and I. Nakai, “The presence of mercury selenide in various tissues of the striped dolphin: evidence from mu-XRF-XRD and XAFS analyses,” Metallomics: Integrated Biometal Science 3, 719–725 (2011).

Negres, R. A.

P. DeMange, C. W. Carr, R. A. Negres, H. B. Radousky, and S. G. Demos, “Laser annealing characteristics of multiple bulk defect populations within DKDP crystals,” J. Appl. Phys. 104(10), 103103 (2008).
[Crossref]

P. Demange, R. A. Negres, C. W. Carr, H. B. Radousky, and S. G. Demos, “Laser-induced defect reactions governing damage initiation in DKDP crystals,” Opt. Express 14(12), 5313–5328 (2006).
[Crossref] [PubMed]

R. A. Negres, S. O. Kucheyev, P. DeMange, C. Bostedt, T. van Buuren, A. J. Nelson, and S. G. Demos, “Decomposition of KH2PO4 crystals during laser-induced breakdown,” Appl. Phys. Lett. 86(17), 171107 (2005).
[Crossref]

Nelson, A. J.

R. A. Negres, S. O. Kucheyev, P. DeMange, C. Bostedt, T. van Buuren, A. J. Nelson, and S. G. Demos, “Decomposition of KH2PO4 crystals during laser-induced breakdown,” Appl. Phys. Lett. 86(17), 171107 (2005).
[Crossref]

Paraguassu, W.

C. M. R. Remédios, W. Paraguassu, G. D. Saraiva, D. P. Pereira, P. C. de Oliveira, P. T. C. Freire, J. Mendes-Filho, F. E. A. Melo, and A. O. dos Santos, “Temperature-dependent Raman scattering of KDP:Mn (0.9% weight of Mn) crystal,” J. Raman Spectrosc. 41(5), 1318–1322 (2010).
[Crossref]

Pereira, D. P.

C. M. R. Remédios, W. Paraguassu, G. D. Saraiva, D. P. Pereira, P. C. de Oliveira, P. T. C. Freire, J. Mendes-Filho, F. E. A. Melo, and A. O. dos Santos, “Temperature-dependent Raman scattering of KDP:Mn (0.9% weight of Mn) crystal,” J. Raman Spectrosc. 41(5), 1318–1322 (2010).
[Crossref]

Pilon, F.

M. Pommiès, D. Damiani, X. Le Borgne, C. Dujardin, A. Surmin, J. C. Birolleau, F. Pilon, B. Bertussi, and H. Piombini, “Impurities detection by optical techniques in KH2PO4 crystals,” Opt. Commun. 275(2), 372–378 (2007).
[Crossref]

Piombini, H.

M. Pommiès, D. Damiani, X. Le Borgne, C. Dujardin, A. Surmin, J. C. Birolleau, F. Pilon, B. Bertussi, and H. Piombini, “Impurities detection by optical techniques in KH2PO4 crystals,” Opt. Commun. 275(2), 372–378 (2007).
[Crossref]

Pommiès, M.

M. Pommiès, D. Damiani, X. Le Borgne, C. Dujardin, A. Surmin, J. C. Birolleau, F. Pilon, B. Bertussi, and H. Piombini, “Impurities detection by optical techniques in KH2PO4 crystals,” Opt. Commun. 275(2), 372–378 (2007).
[Crossref]

Radousky, H. B.

P. DeMange, C. W. Carr, R. A. Negres, H. B. Radousky, and S. G. Demos, “Laser annealing characteristics of multiple bulk defect populations within DKDP crystals,” J. Appl. Phys. 104(10), 103103 (2008).
[Crossref]

P. Demange, R. A. Negres, C. W. Carr, H. B. Radousky, and S. G. Demos, “Laser-induced defect reactions governing damage initiation in DKDP crystals,” Opt. Express 14(12), 5313–5328 (2006).
[Crossref] [PubMed]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[Crossref] [PubMed]

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[Crossref] [PubMed]

Radtke, M.

M. F. Guerra, M. Radtke, I. Reiche, H. Riesemeier, and E. Strub, “Analysis of trace elements in gold alloys by SR-XRF at high energy at the BAMline,” Nucl. Instrum. Meth. B 266(10), 2334–2338 (2008).
[Crossref]

Rajesh, P.

K. Boopathi, P. Rajesh, P. Ramasamy, and P. Manyum, “Comparative studies of glycine added potassium dihydrogen phosphate single crystals grown by conventional and Sankaranaryanan–Ramasamy methods,” Opt. Mater. 35(5), 954–961 (2013).
[Crossref]

Ramasamy, P.

K. Boopathi, P. Rajesh, P. Ramasamy, and P. Manyum, “Comparative studies of glycine added potassium dihydrogen phosphate single crystals grown by conventional and Sankaranaryanan–Ramasamy methods,” Opt. Mater. 35(5), 954–961 (2013).
[Crossref]

Reiche, I.

M. F. Guerra, M. Radtke, I. Reiche, H. Riesemeier, and E. Strub, “Analysis of trace elements in gold alloys by SR-XRF at high energy at the BAMline,” Nucl. Instrum. Meth. B 266(10), 2334–2338 (2008).
[Crossref]

Remédios, C. M. R.

C. M. R. Remédios, W. Paraguassu, G. D. Saraiva, D. P. Pereira, P. C. de Oliveira, P. T. C. Freire, J. Mendes-Filho, F. E. A. Melo, and A. O. dos Santos, “Temperature-dependent Raman scattering of KDP:Mn (0.9% weight of Mn) crystal,” J. Raman Spectrosc. 41(5), 1318–1322 (2010).
[Crossref]

Rickers, K.

L. Vincze, B. Vekemans, F. E. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76(22), 6786–6791 (2004).
[Crossref] [PubMed]

Riesemeier, H.

M. F. Guerra, M. Radtke, I. Reiche, H. Riesemeier, and E. Strub, “Analysis of trace elements in gold alloys by SR-XRF at high energy at the BAMline,” Nucl. Instrum. Meth. B 266(10), 2334–2338 (2008).
[Crossref]

Roy, S.

M. S. J. M. Chatterjee and S. Roy, “Determination of heavy metals in industrial wastes by SXRF method,” Radiat. Phys. Chem. 64(5-6), 369–372 (2002).
[Crossref]

Rubenchik, A. M.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[Crossref] [PubMed]

Saraiva, G. D.

C. M. R. Remédios, W. Paraguassu, G. D. Saraiva, D. P. Pereira, P. C. de Oliveira, P. T. C. Freire, J. Mendes-Filho, F. E. A. Melo, and A. O. dos Santos, “Temperature-dependent Raman scattering of KDP:Mn (0.9% weight of Mn) crystal,” J. Raman Spectrosc. 41(5), 1318–1322 (2010).
[Crossref]

Shao, L. M.

Y. M. Zhu, H. Zhang, S. S. Fan, S. J. Wang, Y. Xia, L. M. Shao, and P. J. He, “In-situ determination of metallic variation and multi-association in single particles by combining synchrotron microprobe, sequential chemical extraction and multivariate statistical analysis,” J. Hazard. Mater. 276, 241–252 (2014).
[Crossref] [PubMed]

Shao-Tao, S. U. N.

Z. Y.-A. H. U. Guo-Hang and S. U. N. Shao-Tao, “Growth characteristics and mechanism of surface and bulk damage in KDP and DKDP crystals,” Chin. Phys. Lett. 26(8), 087805 (2009).
[Crossref]

Somogyi, A.

L. Vincze, B. Vekemans, F. E. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76(22), 6786–6791 (2004).
[Crossref] [PubMed]

Strub, E.

M. F. Guerra, M. Radtke, I. Reiche, H. Riesemeier, and E. Strub, “Analysis of trace elements in gold alloys by SR-XRF at high energy at the BAMline,” Nucl. Instrum. Meth. B 266(10), 2334–2338 (2008).
[Crossref]

Sun, X.

K. Wang, C. Fang, J. Zhang, X. Sun, S. Wang, Q. Gu, X. Zhao, and B. Wang, “Laser-induced damage mechanisms and improvement of optical qualities of bulk potassium dihydrogen phosphate crystals,” J. Cryst. Growth 287(2), 478–482 (2006).
[Crossref]

Surmin, A.

M. Pommiès, D. Damiani, X. Le Borgne, C. Dujardin, A. Surmin, J. C. Birolleau, F. Pilon, B. Bertussi, and H. Piombini, “Impurities detection by optical techniques in KH2PO4 crystals,” Opt. Commun. 275(2), 372–378 (2007).
[Crossref]

Tanabe, S.

E. Nakazawa, T. Ikemoto, A. Hokura, Y. Terada, T. Kunito, S. Tanabe, and I. Nakai, “The presence of mercury selenide in various tissues of the striped dolphin: evidence from mu-XRF-XRD and XAFS analyses,” Metallomics: Integrated Biometal Science 3, 719–725 (2011).

Terada, Y.

E. Nakazawa, T. Ikemoto, A. Hokura, Y. Terada, T. Kunito, S. Tanabe, and I. Nakai, “The presence of mercury selenide in various tissues of the striped dolphin: evidence from mu-XRF-XRD and XAFS analyses,” Metallomics: Integrated Biometal Science 3, 719–725 (2011).

van Buuren, T.

R. A. Negres, S. O. Kucheyev, P. DeMange, C. Bostedt, T. van Buuren, A. J. Nelson, and S. G. Demos, “Decomposition of KH2PO4 crystals during laser-induced breakdown,” Appl. Phys. Lett. 86(17), 171107 (2005).
[Crossref]

Vekemans, B.

L. Vincze, B. Vekemans, F. E. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76(22), 6786–6791 (2004).
[Crossref] [PubMed]

Vincze, L.

L. Vincze, B. Vekemans, F. E. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76(22), 6786–6791 (2004).
[Crossref] [PubMed]

Wang, B.

K. Wang, C. Fang, J. Zhang, X. Sun, S. Wang, Q. Gu, X. Zhao, and B. Wang, “Laser-induced damage mechanisms and improvement of optical qualities of bulk potassium dihydrogen phosphate crystals,” J. Cryst. Growth 287(2), 478–482 (2006).
[Crossref]

Wang, F. R.

Wang, K.

K. Wang, C. Fang, J. Zhang, X. Sun, S. Wang, Q. Gu, X. Zhao, and B. Wang, “Laser-induced damage mechanisms and improvement of optical qualities of bulk potassium dihydrogen phosphate crystals,” J. Cryst. Growth 287(2), 478–482 (2006).
[Crossref]

Wang, S.

K. Wang, C. Fang, J. Zhang, X. Sun, S. Wang, Q. Gu, X. Zhao, and B. Wang, “Laser-induced damage mechanisms and improvement of optical qualities of bulk potassium dihydrogen phosphate crystals,” J. Cryst. Growth 287(2), 478–482 (2006).
[Crossref]

Wang, S. J.

Y. M. Zhu, H. Zhang, S. S. Fan, S. J. Wang, Y. Xia, L. M. Shao, and P. J. He, “In-situ determination of metallic variation and multi-association in single particles by combining synchrotron microprobe, sequential chemical extraction and multivariate statistical analysis,” J. Hazard. Mater. 276, 241–252 (2014).
[Crossref] [PubMed]

Wang, Z.

Whitman, P. K.

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most power laser,” Int. Mater. Rev. 47(3), 113–152 (2002).
[Crossref]

Xia, Y.

Y. M. Zhu, H. Zhang, S. S. Fan, S. J. Wang, Y. Xia, L. M. Shao, and P. J. He, “In-situ determination of metallic variation and multi-association in single particles by combining synchrotron microprobe, sequential chemical extraction and multivariate statistical analysis,” J. Hazard. Mater. 276, 241–252 (2014).
[Crossref] [PubMed]

Xiang, X.

Yan, C.

Yang, G. X.

Zhang, H.

Y. M. Zhu, H. Zhang, S. S. Fan, S. J. Wang, Y. Xia, L. M. Shao, and P. J. He, “In-situ determination of metallic variation and multi-association in single particles by combining synchrotron microprobe, sequential chemical extraction and multivariate statistical analysis,” J. Hazard. Mater. 276, 241–252 (2014).
[Crossref] [PubMed]

Zhang, J.

K. Wang, C. Fang, J. Zhang, X. Sun, S. Wang, Q. Gu, X. Zhao, and B. Wang, “Laser-induced damage mechanisms and improvement of optical qualities of bulk potassium dihydrogen phosphate crystals,” J. Cryst. Growth 287(2), 478–482 (2006).
[Crossref]

Zhang, Y.

Zhao, X.

K. Wang, C. Fang, J. Zhang, X. Sun, S. Wang, Q. Gu, X. Zhao, and B. Wang, “Laser-induced damage mechanisms and improvement of optical qualities of bulk potassium dihydrogen phosphate crystals,” J. Cryst. Growth 287(2), 478–482 (2006).
[Crossref]

Zheng, W. G.

Zhu, Y. M.

Y. M. Zhu, H. Zhang, S. S. Fan, S. J. Wang, Y. Xia, L. M. Shao, and P. J. He, “In-situ determination of metallic variation and multi-association in single particles by combining synchrotron microprobe, sequential chemical extraction and multivariate statistical analysis,” J. Hazard. Mater. 276, 241–252 (2014).
[Crossref] [PubMed]

Zu, X. T.

Anal. Chem. (1)

L. Vincze, B. Vekemans, F. E. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76(22), 6786–6791 (2004).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. A. Negres, S. O. Kucheyev, P. DeMange, C. Bostedt, T. van Buuren, A. J. Nelson, and S. G. Demos, “Decomposition of KH2PO4 crystals during laser-induced breakdown,” Appl. Phys. Lett. 86(17), 171107 (2005).
[Crossref]

Appl. Radiat. Isot. (1)

M. J. Farquharson, K. Geraki, G. Falkenberg, R. Leek, and A. Harris, “The localisation and micro-mapping of copper and other trace elements in breast tumours using a synchrotron micro-XRF system,” Appl. Radiat. Isot. 65(2), 183–188 (2007).
[Crossref] [PubMed]

Chin. Phys. Lett. (1)

Z. Y.-A. H. U. Guo-Hang and S. U. N. Shao-Tao, “Growth characteristics and mechanism of surface and bulk damage in KDP and DKDP crystals,” Chin. Phys. Lett. 26(8), 087805 (2009).
[Crossref]

Int. Mater. Rev. (1)

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most power laser,” Int. Mater. Rev. 47(3), 113–152 (2002).
[Crossref]

J. Appl. Phys. (1)

P. DeMange, C. W. Carr, R. A. Negres, H. B. Radousky, and S. G. Demos, “Laser annealing characteristics of multiple bulk defect populations within DKDP crystals,” J. Appl. Phys. 104(10), 103103 (2008).
[Crossref]

J. Cryst. Growth (2)

K. Wang, C. Fang, J. Zhang, X. Sun, S. Wang, Q. Gu, X. Zhao, and B. Wang, “Laser-induced damage mechanisms and improvement of optical qualities of bulk potassium dihydrogen phosphate crystals,” J. Cryst. Growth 287(2), 478–482 (2006).
[Crossref]

K. T. S. N. Y. Garces and L. E. Halliburton, “Optical absorption and electron paramagnetic resonance of Feions in KDP crystals,” J. Cryst. Growth 225(2–4), 435–439 (2001).
[Crossref]

J. Hazard. Mater. (1)

Y. M. Zhu, H. Zhang, S. S. Fan, S. J. Wang, Y. Xia, L. M. Shao, and P. J. He, “In-situ determination of metallic variation and multi-association in single particles by combining synchrotron microprobe, sequential chemical extraction and multivariate statistical analysis,” J. Hazard. Mater. 276, 241–252 (2014).
[Crossref] [PubMed]

J. Raman Spectrosc. (1)

C. M. R. Remédios, W. Paraguassu, G. D. Saraiva, D. P. Pereira, P. C. de Oliveira, P. T. C. Freire, J. Mendes-Filho, F. E. A. Melo, and A. O. dos Santos, “Temperature-dependent Raman scattering of KDP:Mn (0.9% weight of Mn) crystal,” J. Raman Spectrosc. 41(5), 1318–1322 (2010).
[Crossref]

Metallomics: Integrated Biometal Science (1)

E. Nakazawa, T. Ikemoto, A. Hokura, Y. Terada, T. Kunito, S. Tanabe, and I. Nakai, “The presence of mercury selenide in various tissues of the striped dolphin: evidence from mu-XRF-XRD and XAFS analyses,” Metallomics: Integrated Biometal Science 3, 719–725 (2011).

Nucl. Instrum. Meth. A (1)

R. Alberti, C. Fiorini, C. Guazzoni, T. Klatka, and A. Longoni, “Elemental mapping by means of an ultra-fast XRF spectrometer based on a novel high-performance monolithic array of silicon drift detectors,” Nucl. Instrum. Meth. A 580(2), 1004–1007 (2007).
[Crossref]

Nucl. Instrum. Meth. B (2)

K. Geraki, M. J. Farquharson, D. A. Bradley, and R. P. Hugtenburg, “A synchrotron XRF study on trace elements and potassium in breast tissue,” Nucl. Instrum. Meth. B 213, 564–568 (2004).
[Crossref]

M. F. Guerra, M. Radtke, I. Reiche, H. Riesemeier, and E. Strub, “Analysis of trace elements in gold alloys by SR-XRF at high energy at the BAMline,” Nucl. Instrum. Meth. B 266(10), 2334–2338 (2008).
[Crossref]

Opt. Commun. (1)

M. Pommiès, D. Damiani, X. Le Borgne, C. Dujardin, A. Surmin, J. C. Birolleau, F. Pilon, B. Bertussi, and H. Piombini, “Impurities detection by optical techniques in KH2PO4 crystals,” Opt. Commun. 275(2), 372–378 (2007).
[Crossref]

Opt. Eng. (1)

M. F. Koldunov and A. A. Manenkov, “Theory of laser-induced inclusion-initiated damage in optical materials,” Opt. Eng. 51(12), 121811 (2012).
[Crossref]

Opt. Express (2)

Opt. Mater. (1)

K. Boopathi, P. Rajesh, P. Ramasamy, and P. Manyum, “Comparative studies of glycine added potassium dihydrogen phosphate single crystals grown by conventional and Sankaranaryanan–Ramasamy methods,” Opt. Mater. 35(5), 954–961 (2013).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. Lett. (2)

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[Crossref] [PubMed]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[Crossref] [PubMed]

Radiat. Phys. Chem. (1)

M. S. J. M. Chatterjee and S. Roy, “Determination of heavy metals in industrial wastes by SXRF method,” Radiat. Phys. Chem. 64(5-6), 369–372 (2002).
[Crossref]

Other (2)

J. Shao, A. A. Manenkov, T. Jitsuno, and W. Rudolph, “Fundamental mechanisms of laser-induced damage in optical materials: today's state of understanding and problems,” Proc. SPIE 8786, 878611 (2013).

F. DeMange, R. A. Negres, N. P. Zaitseva, H. B. Radousky, and S. G. Demos, “Correlation of laser-induced damage performance to crystal growth conditions in KDP and DKDP crystals,” in Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference, CLEO/QELS 2006 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 Position of scanning line for horizontal direction (a) and distribution of different elements (b) along the horizontal direction on the surface of sample irradiated by 11.54 J/cm2.
Fig. 2
Fig. 2 Integrated μ-XRD pattern matching the point of μ-XRF and the attribution of diffraction peaks. The star, square, and triangle represent KDP, K2H2P2O7, and KPO3 crystals, respectively. The black, magenta, and red Miller indices represent diffractive planes of KDP, K2H2P2O7, and KPO3 crystals, respectively.
Fig. 3
Fig. 3 Position of scanning line for vertical direction (a) and the distribution of different elements (b) along the vertical direction on the surface of sample. Figure 3(a) shows the distribution of different elements for the crater along the vertical direction.
Fig. 4
Fig. 4 Integrated μ-XRD pattern matching the point of μ-XRF and the attribution of diffraction peaks. The star, square, and triangle represent KDP, K2H2P2O7 and KPO3 crystals, respectively. The black, magenta, and red Miller indices represent diffractive planes of KDP, K2H2P2O7, and KPO3 crystals, respectively.
Fig. 5
Fig. 5 Position of scanning line for horizontal direction (a) and the distribution of different elements (b) along the horizontal direction on the surface of retired component. Figure 5(b) shows the distributions of different elements for the crater along the horizontal direction. The distributions of potassium and phosphorus show different trends, so the atomic proportions of potassium and phosphorus in retired components are different. The element distributions of retired component show a distinct change from KDP crystals irradiated by high fluence.
Fig. 6
Fig. 6 Integrated μ-XRD pattern matching the point of the μ-XRF and the attribution of diffraction peaks. The star, square, and triangle represent polycrystalline KDP, K2H2P2O7 and K2H8(PO4)2P2O7 crystals, respectively. The black, magenta, and blue Miller indices represent diffractive planes of KDP, K2H2P2O7, and K2H8(PO4)2P2O7 crystals, respectively.
Fig. 7
Fig. 7 Position of scanning line for vertical direction (a) and the distribution of different elements (b) along the vertical direction on the surface of retired components. Figure 7(b) shows the distribution of different elements for the crater along the vertical direction. In contrast with KDP crystals irradiated by a fluence of 11.54 J/cm2, the distributions of elements in the retired sample slightly changes. The distribution of potassium is uniform, and metal inclusions are dispersed randomly in the undamaged KDP crystal. Phase transitions or degradations occur in the KDP crystal when the distribution of potassium changes. When the crystal is irradiated, the metal inclusions act as precursors to absorb laser energy. The temperature of the metal inclusions can be high and produce high pressure under high fluence. The crystal will immediately decompose, and materials with metal inclusions are subsequently ejected. Thus, the distributions of elements exhibit significant changes for KDP crystal irradiated by fluence of 11.54 J/cm2. The fluence for retired samples is low, and thus changes slightly.
Fig. 8
Fig. 8 Integrated μ-XRD pattern matching the point of μ-XRF and the attribution of diffraction peaks. The star, square, and triangle represent polycrystalline KDP, K2H2P2O7, and K2H8(PO4)2P2O7 crystals, respectively. The black, magenta, and blue Miller indices represent diffractive planes of KDP, K2H2P2O7, and K2H8(PO4)2P2O7 crystals, respectively.
Fig. 9
Fig. 9 Integrated μ-XRD pattern matching the point of μ-XRF and the attribution of diffraction peaks. The star, square, and triangle represent KDP, K2H2P2O7 and KPO3 crystals, respectively. The black, magenta, and red Miller indices represent diffractive planes of KDP, K2H2P2O7 and KPO3 crystals, respectively. They show the diffraction patterns measured at the position of μ-XRF along the horizontal direction. The range from a1 to d10 corresponds to the position of a1…d10 in Fig. 1(b) in the main text.
Fig. 10
Fig. 10 This is the peak heights of relevant reflections as a function of position across the crater, and consistent with the elemental analysis shown in Fig. 1(b), Fig. 3, main text, respectively.
Fig. 11
Fig. 11 Integrated μ-XRD pattern matching the point of μ-XRF and the attribution of diffraction peaks. The star, square, and triangle represent KDP, K2H2P2O7 and KPO3 crystals, respectively. The black, magenta, and red Miller indices represent diffractive planes of KDP, K2H2P2O7 and KPO3 crystals, respectively. They show the diffraction patterns measured at the position of μ-XRF along the vertical direction. The range from A1 to E10 corresponds to the position of A… E10 in Fig. 3(b) in the main text
Fig. 12
Fig. 12 Integrated μ-XRD pattern matching the point of μ-XRF and the attribution of diffraction peaks. The star, square, and triangle represent polycrystalline KDP, K2H2P2O7, and K2H8(PO4)2P2O7 crystal, respectively. The black, magenta, and blue Miller indices represent diffractive planes of KDP, K2H2P2O7, and K2H8(PO4)2P2O7 crystals, respectively.
Fig. 13
Fig. 13 Integrated μ-XRD pattern matching the point of μ-XRF and the attribution of diffraction peaks. The star, square, and triangle represent polycrystalline KDP, K2H2P2O7 and K2H8(PO4)2P2O7 crystals, respectively. The black, magenta, and blue Miller indices represent diffractive planes of KDP, K2H2P2O7 and K2H8(PO4)2P2O7 crystals, respectively.
Fig. 14
Fig. 14 Position of scanning line for horizontal direction (a) and the distribution of different elements (b) along the horizontal direction on the surface of sample.
Fig. 15
Fig. 15 Integrated μ-XRD pattern matching the point of μ-XRF and the attribution of diffraction peaks. The star, square, and triangle represent KDP, K2H2P2O7 and KPO3 crystals, respectively. The black, magenta, and red Miller indices represent diffractive planes of KDP, K2H2P2O7 and KPO3 crystals, respectively. They show some diffraction patterns measured at the position of μ-XRF along the horizontal direction.
Fig. 16
Fig. 16 Position of scanning line for vertical direction (a) and the distribution of different elements (b) along the vertical direction on the surface of sample.
Fig. 17
Fig. 17 Integrated μ-XRD pattern matching the point of μ-XRF and the attribution of diffraction peaks. The star, square, and triangle represent KDP, K2H2P2O7 and KPO3 crystals, respectively. The black, magenta, and red Miller indices represent diffractive planes of KDP, K2H2P2O7 and KPO3 crystals, respectively. They show some diffraction patterns measured at the position of μ-XRF along the vertical direction.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

2KH 2 PO 4 K 2 H 2 P 2 O 7 + H 2 O ,
K 2 H 2 P 2 O 7 2KPO 3 + H 2 O ,
KH 2 PO 4 KPO 3 + H 2 O
2KH 2 PO 4 K 2 H 2 P 2 O 7 + H 2 O ,

Metrics