Abstract

We investigate the effects of the laser repetition rate on the creation of angle-independent colours on bulk silver samples, and characterize the coloured surfaces in terms of the associated morphology and oxidation products produced. The laser used produces pulses 10 ps in duration at λ = 1064 nm, and the repetition rate was varied over the range from 5 to 400 kHz. Decreasing the laser repetition rate creates a colour palette on silver with a significantly wider gamut, including green and cyan colours, which were previously difficult to obtain. Scanning electron microscope analyses of these surfaces show an increase in topographical features (roughening) with decreasing laser repetition rate. Chemical analyses of the coloured areas show that the amounts of oxide and carbonate species formed depend on the laser repetition rate.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond laser nanostructuring of metals

A.Y. Vorobyev and Chunlei Guo
Opt. Express 14(6) 2164-2169 (2006)

Generation of Al nanoparticles via ablation of bulk Al in liquids with short laser pulses

Emmanuel Stratakis, Marios Barberoglou, Costas Fotakis, Guillaume Viau, Cecile Garcia, and Georgy A. Shafeev
Opt. Express 17(15) 12650-12659 (2009)

Continuous multigram nanoparticle synthesis by high-power, high-repetition-rate ultrafast laser ablation in liquids

René Streubel, Stephan Barcikowski, and Bilal Gökce
Opt. Lett. 41(7) 1486-1489 (2016)

References

  • View by:
  • |
  • |
  • |

  1. W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19(22), 3771–3782 (2007).
    [Crossref]
  2. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
    [Crossref]
  3. W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B Condens. Matter 39(14), 9852–9858 (1989).
    [Crossref] [PubMed]
  4. J. Walia, J.-M. Guay, O. Krupin, F. Variola, P. Berini, and A. Weck, “Visible light driven plasmonic photochemistry on nano-textured silver,” Phys. Chem. Chem. Phys. 20(1), 238–246 (2017).
    [Crossref] [PubMed]
  5. C. Kim and H. Lee, “Light-assisted surface reactions on metal nanoparticles,” Catal. Sci. Technol. 8(15), 3718–3727 (2017).
    [Crossref]
  6. Y. Zhang, S. He, W. Guo, Y. Hu, J. Huang, J. R. Mulcahy, and W. D. Wei, “Surface-Plasmon-Driven Hot Electron Photochemistry,” Chem. Rev. 118(6), 2927–2954 (2017).
    [Crossref] [PubMed]
  7. L. Duempelmann, D. Casari, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Color Rendering Plasmonic Aluminum Substrates with Angular Symmetry Breaking,” ACS Nano 9(12), 12383–12391 (2015).
    [Crossref] [PubMed]
  8. A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength Plasmonic Color Printing Protected for Ambient use,” Nano Lett. 14(2), 783–787 (2014).
    [Crossref] [PubMed]
  9. F. Cheng, J. Gao, L. Stan, D. Rosenmann, D. Czaplewski, and X. Yang, “Aluminum plasmonic metamaterials for structural color printing,” Opt. Express 23(11), 14552–14560 (2015).
    [Crossref] [PubMed]
  10. S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
    [Crossref] [PubMed]
  11. J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic Metasurfaces for Coloration of Plastic Consumer Products,” Nano Lett. 14(8), 4499–4504 (2014).
    [Crossref] [PubMed]
  12. X. Wang, A. Kuchmizhak, D. Storozhenko, S. Makarov, and S. Juodkazis, “Single-Step Laser Plasmonic Coloration of Metal Films,” ACS Appl. Mater. Interfaces 10(1), 1422–1427 (2018).
    [Crossref] [PubMed]
  13. X. Huang and M. El-Sayed, “Plasmonic photo-thermal therapy (PPTT),” Alexandria Journal of Medicine 47(1), 1–9 (2011).
    [Crossref]
  14. M. Rai, A. P. Ingle, S. Birla, A. Yadav, and C. A. D. Santos, “Strategic role of selected noble metal nanoparticles in medicine,” Crit. Rev. Microbiol. 42(5), 696–719 (2016).
    [PubMed]
  15. X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
    [Crossref] [PubMed]
  16. J. Liu and Y. Lu, “Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles,” Angew. Chem. 118(1), 96–100 (2006).
    [Crossref]
  17. S. Murthy, H. Pranov, N. A. Feidenhans’l, J. S. Madsen, P. E. Hansen, H. C. Pedersen, and R. Taboryski, “Plasmonic color metasurfaces fabricated by a high speed roll-to-roll method,” Nanoscale 9(37), 14280–14287 (2017).
    [Crossref] [PubMed]
  18. Z. Li, A. W. Clark, and J. M. Cooper, “Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette,” ACS Nano 10(1), 492–498 (2016).
    [Crossref] [PubMed]
  19. A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
    [Crossref]
  20. P. Fan, M. Zhong, L. Li, P. Schmitz, C. Lin, J. Long, and H. Zhang, “Sequential color change on copper surfaces via micro/nano structure modification induced by a picosecond laser,” J. Appl. Phys. 114(8), 083518 (2013).
    [Crossref]
  21. P. Fan, M. Zhong, L. Li, P. Schmitz, C. Lin, J. Long, and H. Zhang, “Angle-independent colorization of copper surfaces by simultaneous generation of picosecond-laser-induced nanostructures and redeposited nanoparticles,” J. Appl. Phys. 115(12), 124302 (2014).
    [Crossref]
  22. J.-M. Guay, A. Calà Lesina, G. Côté, M. Charron, D. Poitras, L. Ramunno, P. Berini, and A. Weck, “Laser-induced plasmonic colours on metals,” Nat. Commun. 8, 16095 (2017).
    [Crossref] [PubMed]
  23. J.-M. Guay, A. Calà Lesina, J. Baxter, G. Killaire, L. Ramunno, P. Berini, and A. Weck, “Topography tuning for plasmonic colour enhancement via picosecond laser bursts,” Adv. Opt. Mater. 6(17), 1800189 (2018).
    [Crossref]
  24. T. Jwad, P. Penchev, V. Nasrollahi, and S. Dimov, “Laser induced ripples’ gratings with angular periodicity for fabrication of diffraction holograms,” Appl. Surf. Sci. 453, 449–456 (2018).
    [Crossref]
  25. R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, C. Freitag, and A. Feuer, “Heat accumulation during pulsed laser materials processing,” Opt. Express 22(9), 11312–11324 (2014).
    [Crossref] [PubMed]
  26. R. Weber, T. Graf, C. Freitag, A. Feuer, T. Kononenko, and V. I. Konov, “Processing constraints resulting from heat accumulation during pulsed and repetitive laser materials processing,” Opt. Express 25(4), 3966–3979 (2017).
    [Crossref] [PubMed]
  27. F. Bauer, A. Michalowski, T. Kiedrowski, and S. Nolte, “Heat accumulation in ultra-short pulsed scanning laser ablation of metals,” Opt. Express 23(2), 1035–1043 (2015).
    [Crossref] [PubMed]
  28. W. Luo, W. Hu, and S. Xiao, “Size Effect on the Thermodynamic Properties of Silver Nanoparticles,” J. Phys. Chem. C, 2359–2369 (2008).
  29. P. Buffat and J. Borel, “Size effect on the melting temperature of gold particles,” Physical Review A 13(6), 2287–2298 (1976).
    [Crossref]
  30. M. Kim, S. Osone, T. Kim, H. Higashi, and T. Seto, “Synthesis of Nanoparticles by Laser Ablation : A Review,” KANO Powder and Particle Journal 34(34), 80–90 (2017).
    [Crossref]
  31. S. V. Kirner, T. Wirth, H. Sturm, J. Kruger, and J. Bonse, “Nanometer-resolved chemical analyses of femtosecond laser-induced periodic surface structures on titanium,” J. Appl. Phys. 122(10), 104901 (2017).
    [Crossref]
  32. N. Yasumaru, E. Sentoku, and J. Kiuchi, “Formation of organic layer on femtosecond laser-induced periodic surface structures,” Appl. Surf. Sci. 405, 267–272 (2017).
    [Crossref]
  33. A. J. Antonczak, B. Stepak, P. E. Koziol, and K. M. Abramski, “The influence of process parameters on the laser-induced coloring of titanium,” Appl. Phys., A Mater. Sci. Process. 115(3), 1003–1013 (2014).
    [Crossref]
  34. N. Fredj and T. D. Burleigh, “Transpassive Dissolution of Copper and Rapid Formation of Brilliant Colored Copper Oxide Films,” J. Electrochem. Soc. 158(4), 104–110 (2011).
    [Crossref]
  35. D. L. Edwards, J. R. Williams, A. T. Fromhold, P. A. Barnes, J. P. Wey, W. C. Neely, and A. F. Whitaker, “The oxidation of polycrystalline silver films by thermal, ground-state atomic oxygen,” Nucl. Instrum. Methods Phys. Res. B 79(1-4), 676–679 (1993).
    [Crossref]
  36. F. Tam, C. Moran, and N. Halas, “Geometrical Parameters Controlling Sensitivity of Nanoshell Plasmon Resonances to Changes in Dielectric Environment,” J. Phys. Chem. B 108(45), 17290–17294 (2004).
    [Crossref]
  37. A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek, F. Uherek, and D. Donoval, “Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles,” J. Appl. Phys. 112(10), 103531 (2012).
    [Crossref]
  38. Y. Han, R. Lupitskyy, T.-M. Chou, C. M. Stafford, H. Du, and S. Sukhishvili, “Effect of Oxidation on Surface-Enhanced Raman Scattering Activity of Silver Nanoparticles: A Quantitative Correlation,” Anal. Chem. 83(15), 5873–5880 (2011).
    [Crossref] [PubMed]
  39. T. J. Goodwin, V. J. Leppert, S. H. Risbud, I. M. Kennedy, and H. W. H. Lee, “Synthesis of gallium nitride quantum dots through reactive laser ablation,” Appl. Phys. Lett. 70(23), 1–4 (1997).
    [Crossref]
  40. J. Yang, T. Ling, W. Wu, H. Liu, M. Gao, C. Ling, L. Li, and X. Du, “A top-down strategy towards monodispersed colloidal lead sulphide quantum dots,” Nature Communications, vol. 4, no. 1695, pp. 1–6, 2013.
  41. C. Doñate-Buendia, R. Torres-Mendieta, A. Pyatenko, E. Falomir, M. Fernández-Alonso, and G. Mínguez-Vega, “Fabrication by Laser Irradiation in a Continuous Flow Jet of Carbon Quantum Dots for Fluorescence Imaging,” ACS Omega 3(3), 2735–2742 (2018).
    [Crossref] [PubMed]
  42. J. Jandeleit, G. Urbasch, H. D. Hoffmann, H.-G. Treusch, and E. W. Kreutz, “Picosecond laser ablation of thin copper films,” Appl. Phys., A Mater. Sci. Process. 63(2), 117–121 (1996).
    [Crossref]
  43. F. Bunting, The COLORSHOP Color Primer An Introduction to the History of Color, Color Theory, and Color Measurement, Grandville, Michigan: Light Source Computer Images, Inc., An X-Rite Company, 1998.
  44. A. B. Horn, D. A. Russell, L. J. Shorthouse, and T. R. E. Simpson, “Ageing of alkanethiol self-assembled monolayers,” J. Chem. Soc., Faraday Trans. 92(23), 4759–4762 (1996).
    [Crossref]
  45. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716–2722 (1997).
    [Crossref]
  46. W. H. Qi and M. P. Wang, “Size and shape dependent melting temperature of metallic nanoparticles,” Mater. Chem. Phys. 88(2-3), 280–284 (2004).
    [Crossref]
  47. J. Perrière, C. Boulmer-Leborgne, R. Benzerga, and S. Tricot, “Nanoparticle formation by femtosecond laser ablation,” J. Phys. D Appl. Phys. 40(22), 7069–7076 (2007).
    [Crossref]
  48. N. G. Semaltianos, “Nanoparticles by Laser Ablation,” Crit. Rev. Solid State Mater. Sci. 35(2), 105–124 (2010).
    [Crossref]
  49. V. Sundaresan, J. W. Monaghan, and K. A. Willets, “Visualizing the Effect of Partial Oxide Formation on Single Silver Nanoparticle Electrodissolution,” J. Phys. Chem. C 122(5), 3138–3145 (2018).
    [Crossref]
  50. L. Hu, H. Wu, B. Zhang, L. Du, T. Xu, Y. Chen, and Y. Zhang, “Designable Luminescence with Quantum Dot-Silver Plasmon Coupler,” Small 10(15), 3099–3109 (2014).
    [Crossref] [PubMed]
  51. T. Jwad, S. Deng, H. Butt, and S. Dimov, “Applied Surface Science Laser induced single spot oxidation of titanium,” Appl. Surf. Sci. 387, 617–624 (2016).
    [Crossref]
  52. G. I. N. Waterhouse, G. A. Bowmaker, and J. B. Metson, “The thermal decomposition of silver (I, III) oxide : A combined XRD, FT-IR and Raman spectroscopic study,” Phys. Chem. Chem. Phys. 3(17), 3838–3845 (2001).
    [Crossref]
  53. T. L. Slager, B. J. Lindgren, A. J. Mallmann, and R. G. Greenler, “The Infrared Spectra of the Oxides and Carbonates of Silver,” J. Chem. Phys. 76(6), 940–943 (1972).
    [Crossref]
  54. I. Umezu, Y. Nakayama, and A. Sugimura, “Formation of core-shell structured silicon nanoparticles during pulsed laser ablation,” J. Appl. Phys. 107(9), 094318 (2010).
    [Crossref]
  55. A. Ghosh and R. N. P. Choudhary, “Optical emission and absorption spectra of Zn – ZnO core-shell nanostructures,” J. Exp. Nanosci. 5(2), 134–142 (2010).
    [Crossref]

2018 (5)

X. Wang, A. Kuchmizhak, D. Storozhenko, S. Makarov, and S. Juodkazis, “Single-Step Laser Plasmonic Coloration of Metal Films,” ACS Appl. Mater. Interfaces 10(1), 1422–1427 (2018).
[Crossref] [PubMed]

J.-M. Guay, A. Calà Lesina, J. Baxter, G. Killaire, L. Ramunno, P. Berini, and A. Weck, “Topography tuning for plasmonic colour enhancement via picosecond laser bursts,” Adv. Opt. Mater. 6(17), 1800189 (2018).
[Crossref]

T. Jwad, P. Penchev, V. Nasrollahi, and S. Dimov, “Laser induced ripples’ gratings with angular periodicity for fabrication of diffraction holograms,” Appl. Surf. Sci. 453, 449–456 (2018).
[Crossref]

C. Doñate-Buendia, R. Torres-Mendieta, A. Pyatenko, E. Falomir, M. Fernández-Alonso, and G. Mínguez-Vega, “Fabrication by Laser Irradiation in a Continuous Flow Jet of Carbon Quantum Dots for Fluorescence Imaging,” ACS Omega 3(3), 2735–2742 (2018).
[Crossref] [PubMed]

V. Sundaresan, J. W. Monaghan, and K. A. Willets, “Visualizing the Effect of Partial Oxide Formation on Single Silver Nanoparticle Electrodissolution,” J. Phys. Chem. C 122(5), 3138–3145 (2018).
[Crossref]

2017 (9)

R. Weber, T. Graf, C. Freitag, A. Feuer, T. Kononenko, and V. I. Konov, “Processing constraints resulting from heat accumulation during pulsed and repetitive laser materials processing,” Opt. Express 25(4), 3966–3979 (2017).
[Crossref] [PubMed]

M. Kim, S. Osone, T. Kim, H. Higashi, and T. Seto, “Synthesis of Nanoparticles by Laser Ablation : A Review,” KANO Powder and Particle Journal 34(34), 80–90 (2017).
[Crossref]

S. V. Kirner, T. Wirth, H. Sturm, J. Kruger, and J. Bonse, “Nanometer-resolved chemical analyses of femtosecond laser-induced periodic surface structures on titanium,” J. Appl. Phys. 122(10), 104901 (2017).
[Crossref]

N. Yasumaru, E. Sentoku, and J. Kiuchi, “Formation of organic layer on femtosecond laser-induced periodic surface structures,” Appl. Surf. Sci. 405, 267–272 (2017).
[Crossref]

J.-M. Guay, A. Calà Lesina, G. Côté, M. Charron, D. Poitras, L. Ramunno, P. Berini, and A. Weck, “Laser-induced plasmonic colours on metals,” Nat. Commun. 8, 16095 (2017).
[Crossref] [PubMed]

S. Murthy, H. Pranov, N. A. Feidenhans’l, J. S. Madsen, P. E. Hansen, H. C. Pedersen, and R. Taboryski, “Plasmonic color metasurfaces fabricated by a high speed roll-to-roll method,” Nanoscale 9(37), 14280–14287 (2017).
[Crossref] [PubMed]

J. Walia, J.-M. Guay, O. Krupin, F. Variola, P. Berini, and A. Weck, “Visible light driven plasmonic photochemistry on nano-textured silver,” Phys. Chem. Chem. Phys. 20(1), 238–246 (2017).
[Crossref] [PubMed]

C. Kim and H. Lee, “Light-assisted surface reactions on metal nanoparticles,” Catal. Sci. Technol. 8(15), 3718–3727 (2017).
[Crossref]

Y. Zhang, S. He, W. Guo, Y. Hu, J. Huang, J. R. Mulcahy, and W. D. Wei, “Surface-Plasmon-Driven Hot Electron Photochemistry,” Chem. Rev. 118(6), 2927–2954 (2017).
[Crossref] [PubMed]

2016 (3)

Z. Li, A. W. Clark, and J. M. Cooper, “Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref] [PubMed]

M. Rai, A. P. Ingle, S. Birla, A. Yadav, and C. A. D. Santos, “Strategic role of selected noble metal nanoparticles in medicine,” Crit. Rev. Microbiol. 42(5), 696–719 (2016).
[PubMed]

T. Jwad, S. Deng, H. Butt, and S. Dimov, “Applied Surface Science Laser induced single spot oxidation of titanium,” Appl. Surf. Sci. 387, 617–624 (2016).
[Crossref]

2015 (3)

2014 (7)

R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, C. Freitag, and A. Feuer, “Heat accumulation during pulsed laser materials processing,” Opt. Express 22(9), 11312–11324 (2014).
[Crossref] [PubMed]

P. Fan, M. Zhong, L. Li, P. Schmitz, C. Lin, J. Long, and H. Zhang, “Angle-independent colorization of copper surfaces by simultaneous generation of picosecond-laser-induced nanostructures and redeposited nanoparticles,” J. Appl. Phys. 115(12), 124302 (2014).
[Crossref]

A. J. Antonczak, B. Stepak, P. E. Koziol, and K. M. Abramski, “The influence of process parameters on the laser-induced coloring of titanium,” Appl. Phys., A Mater. Sci. Process. 115(3), 1003–1013 (2014).
[Crossref]

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic Metasurfaces for Coloration of Plastic Consumer Products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength Plasmonic Color Printing Protected for Ambient use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

L. Hu, H. Wu, B. Zhang, L. Du, T. Xu, Y. Chen, and Y. Zhang, “Designable Luminescence with Quantum Dot-Silver Plasmon Coupler,” Small 10(15), 3099–3109 (2014).
[Crossref] [PubMed]

2013 (2)

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

P. Fan, M. Zhong, L. Li, P. Schmitz, C. Lin, J. Long, and H. Zhang, “Sequential color change on copper surfaces via micro/nano structure modification induced by a picosecond laser,” J. Appl. Phys. 114(8), 083518 (2013).
[Crossref]

2012 (1)

A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek, F. Uherek, and D. Donoval, “Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles,” J. Appl. Phys. 112(10), 103531 (2012).
[Crossref]

2011 (4)

Y. Han, R. Lupitskyy, T.-M. Chou, C. M. Stafford, H. Du, and S. Sukhishvili, “Effect of Oxidation on Surface-Enhanced Raman Scattering Activity of Silver Nanoparticles: A Quantitative Correlation,” Anal. Chem. 83(15), 5873–5880 (2011).
[Crossref] [PubMed]

N. Fredj and T. D. Burleigh, “Transpassive Dissolution of Copper and Rapid Formation of Brilliant Colored Copper Oxide Films,” J. Electrochem. Soc. 158(4), 104–110 (2011).
[Crossref]

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

X. Huang and M. El-Sayed, “Plasmonic photo-thermal therapy (PPTT),” Alexandria Journal of Medicine 47(1), 1–9 (2011).
[Crossref]

2010 (3)

N. G. Semaltianos, “Nanoparticles by Laser Ablation,” Crit. Rev. Solid State Mater. Sci. 35(2), 105–124 (2010).
[Crossref]

I. Umezu, Y. Nakayama, and A. Sugimura, “Formation of core-shell structured silicon nanoparticles during pulsed laser ablation,” J. Appl. Phys. 107(9), 094318 (2010).
[Crossref]

A. Ghosh and R. N. P. Choudhary, “Optical emission and absorption spectra of Zn – ZnO core-shell nanostructures,” J. Exp. Nanosci. 5(2), 134–142 (2010).
[Crossref]

2008 (1)

W. Luo, W. Hu, and S. Xiao, “Size Effect on the Thermodynamic Properties of Silver Nanoparticles,” J. Phys. Chem. C, 2359–2369 (2008).

2007 (2)

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19(22), 3771–3782 (2007).
[Crossref]

J. Perrière, C. Boulmer-Leborgne, R. Benzerga, and S. Tricot, “Nanoparticle formation by femtosecond laser ablation,” J. Phys. D Appl. Phys. 40(22), 7069–7076 (2007).
[Crossref]

2006 (1)

J. Liu and Y. Lu, “Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles,” Angew. Chem. 118(1), 96–100 (2006).
[Crossref]

2004 (2)

F. Tam, C. Moran, and N. Halas, “Geometrical Parameters Controlling Sensitivity of Nanoshell Plasmon Resonances to Changes in Dielectric Environment,” J. Phys. Chem. B 108(45), 17290–17294 (2004).
[Crossref]

W. H. Qi and M. P. Wang, “Size and shape dependent melting temperature of metallic nanoparticles,” Mater. Chem. Phys. 88(2-3), 280–284 (2004).
[Crossref]

2001 (1)

G. I. N. Waterhouse, G. A. Bowmaker, and J. B. Metson, “The thermal decomposition of silver (I, III) oxide : A combined XRD, FT-IR and Raman spectroscopic study,” Phys. Chem. Chem. Phys. 3(17), 3838–3845 (2001).
[Crossref]

1997 (2)

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716–2722 (1997).
[Crossref]

T. J. Goodwin, V. J. Leppert, S. H. Risbud, I. M. Kennedy, and H. W. H. Lee, “Synthesis of gallium nitride quantum dots through reactive laser ablation,” Appl. Phys. Lett. 70(23), 1–4 (1997).
[Crossref]

1996 (2)

J. Jandeleit, G. Urbasch, H. D. Hoffmann, H.-G. Treusch, and E. W. Kreutz, “Picosecond laser ablation of thin copper films,” Appl. Phys., A Mater. Sci. Process. 63(2), 117–121 (1996).
[Crossref]

A. B. Horn, D. A. Russell, L. J. Shorthouse, and T. R. E. Simpson, “Ageing of alkanethiol self-assembled monolayers,” J. Chem. Soc., Faraday Trans. 92(23), 4759–4762 (1996).
[Crossref]

1993 (1)

D. L. Edwards, J. R. Williams, A. T. Fromhold, P. A. Barnes, J. P. Wey, W. C. Neely, and A. F. Whitaker, “The oxidation of polycrystalline silver films by thermal, ground-state atomic oxygen,” Nucl. Instrum. Methods Phys. Res. B 79(1-4), 676–679 (1993).
[Crossref]

1989 (1)

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B Condens. Matter 39(14), 9852–9858 (1989).
[Crossref] [PubMed]

1976 (1)

P. Buffat and J. Borel, “Size effect on the melting temperature of gold particles,” Physical Review A 13(6), 2287–2298 (1976).
[Crossref]

1972 (1)

T. L. Slager, B. J. Lindgren, A. J. Mallmann, and R. G. Greenler, “The Infrared Spectra of the Oxides and Carbonates of Silver,” J. Chem. Phys. 76(6), 940–943 (1972).
[Crossref]

1908 (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
[Crossref]

Abramski, K. M.

A. J. Antonczak, B. Stepak, P. E. Koziol, and K. M. Abramski, “The influence of process parameters on the laser-induced coloring of titanium,” Appl. Phys., A Mater. Sci. Process. 115(3), 1003–1013 (2014).
[Crossref]

Albrektsen, O.

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength Plasmonic Color Printing Protected for Ambient use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

Antonczak, A. J.

A. J. Antonczak, B. Stepak, P. E. Koziol, and K. M. Abramski, “The influence of process parameters on the laser-induced coloring of titanium,” Appl. Phys., A Mater. Sci. Process. 115(3), 1003–1013 (2014).
[Crossref]

Barnes, P. A.

D. L. Edwards, J. R. Williams, A. T. Fromhold, P. A. Barnes, J. P. Wey, W. C. Neely, and A. F. Whitaker, “The oxidation of polycrystalline silver films by thermal, ground-state atomic oxygen,” Nucl. Instrum. Methods Phys. Res. B 79(1-4), 676–679 (1993).
[Crossref]

Barnes, W. L.

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19(22), 3771–3782 (2007).
[Crossref]

Bauer, F.

Baxter, J.

J.-M. Guay, A. Calà Lesina, J. Baxter, G. Killaire, L. Ramunno, P. Berini, and A. Weck, “Topography tuning for plasmonic colour enhancement via picosecond laser bursts,” Adv. Opt. Mater. 6(17), 1800189 (2018).
[Crossref]

Benzerga, R.

J. Perrière, C. Boulmer-Leborgne, R. Benzerga, and S. Tricot, “Nanoparticle formation by femtosecond laser ablation,” J. Phys. D Appl. Phys. 40(22), 7069–7076 (2007).
[Crossref]

Berger, P.

Berini, P.

J.-M. Guay, A. Calà Lesina, J. Baxter, G. Killaire, L. Ramunno, P. Berini, and A. Weck, “Topography tuning for plasmonic colour enhancement via picosecond laser bursts,” Adv. Opt. Mater. 6(17), 1800189 (2018).
[Crossref]

J.-M. Guay, A. Calà Lesina, G. Côté, M. Charron, D. Poitras, L. Ramunno, P. Berini, and A. Weck, “Laser-induced plasmonic colours on metals,” Nat. Commun. 8, 16095 (2017).
[Crossref] [PubMed]

J. Walia, J.-M. Guay, O. Krupin, F. Variola, P. Berini, and A. Weck, “Visible light driven plasmonic photochemistry on nano-textured silver,” Phys. Chem. Chem. Phys. 20(1), 238–246 (2017).
[Crossref] [PubMed]

Birla, S.

M. Rai, A. P. Ingle, S. Birla, A. Yadav, and C. A. D. Santos, “Strategic role of selected noble metal nanoparticles in medicine,” Crit. Rev. Microbiol. 42(5), 696–719 (2016).
[PubMed]

Bonse, J.

S. V. Kirner, T. Wirth, H. Sturm, J. Kruger, and J. Bonse, “Nanometer-resolved chemical analyses of femtosecond laser-induced periodic surface structures on titanium,” J. Appl. Phys. 122(10), 104901 (2017).
[Crossref]

Borel, J.

P. Buffat and J. Borel, “Size effect on the melting temperature of gold particles,” Physical Review A 13(6), 2287–2298 (1976).
[Crossref]

Boulmer-Leborgne, C.

J. Perrière, C. Boulmer-Leborgne, R. Benzerga, and S. Tricot, “Nanoparticle formation by femtosecond laser ablation,” J. Phys. D Appl. Phys. 40(22), 7069–7076 (2007).
[Crossref]

Bowmaker, G. A.

G. I. N. Waterhouse, G. A. Bowmaker, and J. B. Metson, “The thermal decomposition of silver (I, III) oxide : A combined XRD, FT-IR and Raman spectroscopic study,” Phys. Chem. Chem. Phys. 3(17), 3838–3845 (2001).
[Crossref]

Bozhevolnyi, S. I.

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength Plasmonic Color Printing Protected for Ambient use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

Buffat, P.

P. Buffat and J. Borel, “Size effect on the melting temperature of gold particles,” Physical Review A 13(6), 2287–2298 (1976).
[Crossref]

Burleigh, T. D.

N. Fredj and T. D. Burleigh, “Transpassive Dissolution of Copper and Rapid Formation of Brilliant Colored Copper Oxide Films,” J. Electrochem. Soc. 158(4), 104–110 (2011).
[Crossref]

Butt, H.

T. Jwad, S. Deng, H. Butt, and S. Dimov, “Applied Surface Science Laser induced single spot oxidation of titanium,” Appl. Surf. Sci. 387, 617–624 (2016).
[Crossref]

Calà Lesina, A.

J.-M. Guay, A. Calà Lesina, J. Baxter, G. Killaire, L. Ramunno, P. Berini, and A. Weck, “Topography tuning for plasmonic colour enhancement via picosecond laser bursts,” Adv. Opt. Mater. 6(17), 1800189 (2018).
[Crossref]

J.-M. Guay, A. Calà Lesina, G. Côté, M. Charron, D. Poitras, L. Ramunno, P. Berini, and A. Weck, “Laser-induced plasmonic colours on metals,” Nat. Commun. 8, 16095 (2017).
[Crossref] [PubMed]

Casari, D.

L. Duempelmann, D. Casari, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Color Rendering Plasmonic Aluminum Substrates with Angular Symmetry Breaking,” ACS Nano 9(12), 12383–12391 (2015).
[Crossref] [PubMed]

Charron, M.

J.-M. Guay, A. Calà Lesina, G. Côté, M. Charron, D. Poitras, L. Ramunno, P. Berini, and A. Weck, “Laser-induced plasmonic colours on metals,” Nat. Commun. 8, 16095 (2017).
[Crossref] [PubMed]

Chen, Y.

L. Hu, H. Wu, B. Zhang, L. Du, T. Xu, Y. Chen, and Y. Zhang, “Designable Luminescence with Quantum Dot-Silver Plasmon Coupler,” Small 10(15), 3099–3109 (2014).
[Crossref] [PubMed]

Cheng, F.

Chichkov, B. N.

Chlpik, J.

A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek, F. Uherek, and D. Donoval, “Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles,” J. Appl. Phys. 112(10), 103531 (2012).
[Crossref]

Chou, T.-M.

Y. Han, R. Lupitskyy, T.-M. Chou, C. M. Stafford, H. Du, and S. Sukhishvili, “Effect of Oxidation on Surface-Enhanced Raman Scattering Activity of Silver Nanoparticles: A Quantitative Correlation,” Anal. Chem. 83(15), 5873–5880 (2011).
[Crossref] [PubMed]

Choudhary, R. N. P.

A. Ghosh and R. N. P. Choudhary, “Optical emission and absorption spectra of Zn – ZnO core-shell nanostructures,” J. Exp. Nanosci. 5(2), 134–142 (2010).
[Crossref]

Christiansen, A. B.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic Metasurfaces for Coloration of Plastic Consumer Products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Cirak, J.

A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek, F. Uherek, and D. Donoval, “Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles,” J. Appl. Phys. 112(10), 103531 (2012).
[Crossref]

Clark, A. W.

Z. Li, A. W. Clark, and J. M. Cooper, “Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref] [PubMed]

Clausen, J. S.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic Metasurfaces for Coloration of Plastic Consumer Products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Cooper, J. M.

Z. Li, A. W. Clark, and J. M. Cooper, “Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref] [PubMed]

Côté, G.

J.-M. Guay, A. Calà Lesina, G. Côté, M. Charron, D. Poitras, L. Ramunno, P. Berini, and A. Weck, “Laser-induced plasmonic colours on metals,” Nat. Commun. 8, 16095 (2017).
[Crossref] [PubMed]

Czaplewski, D.

Deng, S.

T. Jwad, S. Deng, H. Butt, and S. Dimov, “Applied Surface Science Laser induced single spot oxidation of titanium,” Appl. Surf. Sci. 387, 617–624 (2016).
[Crossref]

Dimov, S.

T. Jwad, P. Penchev, V. Nasrollahi, and S. Dimov, “Laser induced ripples’ gratings with angular periodicity for fabrication of diffraction holograms,” Appl. Surf. Sci. 453, 449–456 (2018).
[Crossref]

T. Jwad, S. Deng, H. Butt, and S. Dimov, “Applied Surface Science Laser induced single spot oxidation of titanium,” Appl. Surf. Sci. 387, 617–624 (2016).
[Crossref]

Dobrocka, E.

A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek, F. Uherek, and D. Donoval, “Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles,” J. Appl. Phys. 112(10), 103531 (2012).
[Crossref]

Doñate-Buendia, C.

C. Doñate-Buendia, R. Torres-Mendieta, A. Pyatenko, E. Falomir, M. Fernández-Alonso, and G. Mínguez-Vega, “Fabrication by Laser Irradiation in a Continuous Flow Jet of Carbon Quantum Dots for Fluorescence Imaging,” ACS Omega 3(3), 2735–2742 (2018).
[Crossref] [PubMed]

Donoval, D.

A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek, F. Uherek, and D. Donoval, “Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles,” J. Appl. Phys. 112(10), 103531 (2012).
[Crossref]

Donoval, M.

A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek, F. Uherek, and D. Donoval, “Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles,” J. Appl. Phys. 112(10), 103531 (2012).
[Crossref]

Doyle, W. T.

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B Condens. Matter 39(14), 9852–9858 (1989).
[Crossref] [PubMed]

Du, H.

Y. Han, R. Lupitskyy, T.-M. Chou, C. M. Stafford, H. Du, and S. Sukhishvili, “Effect of Oxidation on Surface-Enhanced Raman Scattering Activity of Silver Nanoparticles: A Quantitative Correlation,” Anal. Chem. 83(15), 5873–5880 (2011).
[Crossref] [PubMed]

Du, L.

L. Hu, H. Wu, B. Zhang, L. Du, T. Xu, Y. Chen, and Y. Zhang, “Designable Luminescence with Quantum Dot-Silver Plasmon Coupler,” Small 10(15), 3099–3109 (2014).
[Crossref] [PubMed]

Duempelmann, L.

L. Duempelmann, D. Casari, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Color Rendering Plasmonic Aluminum Substrates with Angular Symmetry Breaking,” ACS Nano 9(12), 12383–12391 (2015).
[Crossref] [PubMed]

Edwards, D. L.

D. L. Edwards, J. R. Williams, A. T. Fromhold, P. A. Barnes, J. P. Wey, W. C. Neely, and A. F. Whitaker, “The oxidation of polycrystalline silver films by thermal, ground-state atomic oxygen,” Nucl. Instrum. Methods Phys. Res. B 79(1-4), 676–679 (1993).
[Crossref]

El-Sayed, M.

X. Huang and M. El-Sayed, “Plasmonic photo-thermal therapy (PPTT),” Alexandria Journal of Medicine 47(1), 1–9 (2011).
[Crossref]

Falomir, E.

C. Doñate-Buendia, R. Torres-Mendieta, A. Pyatenko, E. Falomir, M. Fernández-Alonso, and G. Mínguez-Vega, “Fabrication by Laser Irradiation in a Continuous Flow Jet of Carbon Quantum Dots for Fluorescence Imaging,” ACS Omega 3(3), 2735–2742 (2018).
[Crossref] [PubMed]

Fan, P.

P. Fan, M. Zhong, L. Li, P. Schmitz, C. Lin, J. Long, and H. Zhang, “Angle-independent colorization of copper surfaces by simultaneous generation of picosecond-laser-induced nanostructures and redeposited nanoparticles,” J. Appl. Phys. 115(12), 124302 (2014).
[Crossref]

P. Fan, M. Zhong, L. Li, P. Schmitz, C. Lin, J. Long, and H. Zhang, “Sequential color change on copper surfaces via micro/nano structure modification induced by a picosecond laser,” J. Appl. Phys. 114(8), 083518 (2013).
[Crossref]

Feidenhans’l, N. A.

S. Murthy, H. Pranov, N. A. Feidenhans’l, J. S. Madsen, P. E. Hansen, H. C. Pedersen, and R. Taboryski, “Plasmonic color metasurfaces fabricated by a high speed roll-to-roll method,” Nanoscale 9(37), 14280–14287 (2017).
[Crossref] [PubMed]

Fernández-Alonso, M.

C. Doñate-Buendia, R. Torres-Mendieta, A. Pyatenko, E. Falomir, M. Fernández-Alonso, and G. Mínguez-Vega, “Fabrication by Laser Irradiation in a Continuous Flow Jet of Carbon Quantum Dots for Fluorescence Imaging,” ACS Omega 3(3), 2735–2742 (2018).
[Crossref] [PubMed]

Feuer, A.

Flickyngerova, S.

A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek, F. Uherek, and D. Donoval, “Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles,” J. Appl. Phys. 112(10), 103531 (2012).
[Crossref]

Fredj, N.

N. Fredj and T. D. Burleigh, “Transpassive Dissolution of Copper and Rapid Formation of Brilliant Colored Copper Oxide Films,” J. Electrochem. Soc. 158(4), 104–110 (2011).
[Crossref]

Freitag, C.

Fromhold, A. T.

D. L. Edwards, J. R. Williams, A. T. Fromhold, P. A. Barnes, J. P. Wey, W. C. Neely, and A. F. Whitaker, “The oxidation of polycrystalline silver films by thermal, ground-state atomic oxygen,” Nucl. Instrum. Methods Phys. Res. B 79(1-4), 676–679 (1993).
[Crossref]

Gallinet, B.

L. Duempelmann, D. Casari, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Color Rendering Plasmonic Aluminum Substrates with Angular Symmetry Breaking,” ACS Nano 9(12), 12383–12391 (2015).
[Crossref] [PubMed]

Gao, J.

Ghosh, A.

A. Ghosh and R. N. P. Choudhary, “Optical emission and absorption spectra of Zn – ZnO core-shell nanostructures,” J. Exp. Nanosci. 5(2), 134–142 (2010).
[Crossref]

Goh, X. M.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Goodwin, T. J.

T. J. Goodwin, V. J. Leppert, S. H. Risbud, I. M. Kennedy, and H. W. H. Lee, “Synthesis of gallium nitride quantum dots through reactive laser ablation,” Appl. Phys. Lett. 70(23), 1–4 (1997).
[Crossref]

Graf, T.

Grajower, M.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic Metasurfaces for Coloration of Plastic Consumer Products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Greenler, R. G.

T. L. Slager, B. J. Lindgren, A. J. Mallmann, and R. G. Greenler, “The Infrared Spectra of the Oxides and Carbonates of Silver,” J. Chem. Phys. 76(6), 940–943 (1972).
[Crossref]

Guay, J.-M.

J.-M. Guay, A. Calà Lesina, J. Baxter, G. Killaire, L. Ramunno, P. Berini, and A. Weck, “Topography tuning for plasmonic colour enhancement via picosecond laser bursts,” Adv. Opt. Mater. 6(17), 1800189 (2018).
[Crossref]

J.-M. Guay, A. Calà Lesina, G. Côté, M. Charron, D. Poitras, L. Ramunno, P. Berini, and A. Weck, “Laser-induced plasmonic colours on metals,” Nat. Commun. 8, 16095 (2017).
[Crossref] [PubMed]

J. Walia, J.-M. Guay, O. Krupin, F. Variola, P. Berini, and A. Weck, “Visible light driven plasmonic photochemistry on nano-textured silver,” Phys. Chem. Chem. Phys. 20(1), 238–246 (2017).
[Crossref] [PubMed]

Guo, C.

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

Guo, W.

Y. Zhang, S. He, W. Guo, Y. Hu, J. Huang, J. R. Mulcahy, and W. D. Wei, “Surface-Plasmon-Driven Hot Electron Photochemistry,” Chem. Rev. 118(6), 2927–2954 (2017).
[Crossref] [PubMed]

Halas, N.

F. Tam, C. Moran, and N. Halas, “Geometrical Parameters Controlling Sensitivity of Nanoshell Plasmon Resonances to Changes in Dielectric Environment,” J. Phys. Chem. B 108(45), 17290–17294 (2004).
[Crossref]

Han, Y.

Y. Han, R. Lupitskyy, T.-M. Chou, C. M. Stafford, H. Du, and S. Sukhishvili, “Effect of Oxidation on Surface-Enhanced Raman Scattering Activity of Silver Nanoparticles: A Quantitative Correlation,” Anal. Chem. 83(15), 5873–5880 (2011).
[Crossref] [PubMed]

Hansen, P. E.

S. Murthy, H. Pranov, N. A. Feidenhans’l, J. S. Madsen, P. E. Hansen, H. C. Pedersen, and R. Taboryski, “Plasmonic color metasurfaces fabricated by a high speed roll-to-roll method,” Nanoscale 9(37), 14280–14287 (2017).
[Crossref] [PubMed]

He, S.

Y. Zhang, S. He, W. Guo, Y. Hu, J. Huang, J. R. Mulcahy, and W. D. Wei, “Surface-Plasmon-Driven Hot Electron Photochemistry,” Chem. Rev. 118(6), 2927–2954 (2017).
[Crossref] [PubMed]

Higashi, H.

M. Kim, S. Osone, T. Kim, H. Higashi, and T. Seto, “Synthesis of Nanoparticles by Laser Ablation : A Review,” KANO Powder and Particle Journal 34(34), 80–90 (2017).
[Crossref]

Hoffmann, H. D.

J. Jandeleit, G. Urbasch, H. D. Hoffmann, H.-G. Treusch, and E. W. Kreutz, “Picosecond laser ablation of thin copper films,” Appl. Phys., A Mater. Sci. Process. 63(2), 117–121 (1996).
[Crossref]

Højlund-Nielsen, E.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic Metasurfaces for Coloration of Plastic Consumer Products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Horn, A. B.

A. B. Horn, D. A. Russell, L. J. Shorthouse, and T. R. E. Simpson, “Ageing of alkanethiol self-assembled monolayers,” J. Chem. Soc., Faraday Trans. 92(23), 4759–4762 (1996).
[Crossref]

Hu, L.

L. Hu, H. Wu, B. Zhang, L. Du, T. Xu, Y. Chen, and Y. Zhang, “Designable Luminescence with Quantum Dot-Silver Plasmon Coupler,” Small 10(15), 3099–3109 (2014).
[Crossref] [PubMed]

Hu, W.

W. Luo, W. Hu, and S. Xiao, “Size Effect on the Thermodynamic Properties of Silver Nanoparticles,” J. Phys. Chem. C, 2359–2369 (2008).

Hu, Y.

Y. Zhang, S. He, W. Guo, Y. Hu, J. Huang, J. R. Mulcahy, and W. D. Wei, “Surface-Plasmon-Driven Hot Electron Photochemistry,” Chem. Rev. 118(6), 2927–2954 (2017).
[Crossref] [PubMed]

Huang, J.

Y. Zhang, S. He, W. Guo, Y. Hu, J. Huang, J. R. Mulcahy, and W. D. Wei, “Surface-Plasmon-Driven Hot Electron Photochemistry,” Chem. Rev. 118(6), 2927–2954 (2017).
[Crossref] [PubMed]

Huang, X.

X. Huang and M. El-Sayed, “Plasmonic photo-thermal therapy (PPTT),” Alexandria Journal of Medicine 47(1), 1–9 (2011).
[Crossref]

Ingle, A. P.

M. Rai, A. P. Ingle, S. Birla, A. Yadav, and C. A. D. Santos, “Strategic role of selected noble metal nanoparticles in medicine,” Crit. Rev. Microbiol. 42(5), 696–719 (2016).
[PubMed]

Jacobs, H.

Jakabovic, J.

A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek, F. Uherek, and D. Donoval, “Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles,” J. Appl. Phys. 112(10), 103531 (2012).
[Crossref]

Jandeleit, J.

J. Jandeleit, G. Urbasch, H. D. Hoffmann, H.-G. Treusch, and E. W. Kreutz, “Picosecond laser ablation of thin copper films,” Appl. Phys., A Mater. Sci. Process. 63(2), 117–121 (1996).
[Crossref]

Juodkazis, S.

X. Wang, A. Kuchmizhak, D. Storozhenko, S. Makarov, and S. Juodkazis, “Single-Step Laser Plasmonic Coloration of Metal Films,” ACS Appl. Mater. Interfaces 10(1), 1422–1427 (2018).
[Crossref] [PubMed]

Jwad, T.

T. Jwad, P. Penchev, V. Nasrollahi, and S. Dimov, “Laser induced ripples’ gratings with angular periodicity for fabrication of diffraction holograms,” Appl. Surf. Sci. 453, 449–456 (2018).
[Crossref]

T. Jwad, S. Deng, H. Butt, and S. Dimov, “Applied Surface Science Laser induced single spot oxidation of titanium,” Appl. Surf. Sci. 387, 617–624 (2016).
[Crossref]

Kennedy, I. M.

T. J. Goodwin, V. J. Leppert, S. H. Risbud, I. M. Kennedy, and H. W. H. Lee, “Synthesis of gallium nitride quantum dots through reactive laser ablation,” Appl. Phys. Lett. 70(23), 1–4 (1997).
[Crossref]

Kiedrowski, T.

Killaire, G.

J.-M. Guay, A. Calà Lesina, J. Baxter, G. Killaire, L. Ramunno, P. Berini, and A. Weck, “Topography tuning for plasmonic colour enhancement via picosecond laser bursts,” Adv. Opt. Mater. 6(17), 1800189 (2018).
[Crossref]

Kim, C.

C. Kim and H. Lee, “Light-assisted surface reactions on metal nanoparticles,” Catal. Sci. Technol. 8(15), 3718–3727 (2017).
[Crossref]

Kim, M.

M. Kim, S. Osone, T. Kim, H. Higashi, and T. Seto, “Synthesis of Nanoparticles by Laser Ablation : A Review,” KANO Powder and Particle Journal 34(34), 80–90 (2017).
[Crossref]

Kim, T.

M. Kim, S. Osone, T. Kim, H. Higashi, and T. Seto, “Synthesis of Nanoparticles by Laser Ablation : A Review,” KANO Powder and Particle Journal 34(34), 80–90 (2017).
[Crossref]

Kirner, S. V.

S. V. Kirner, T. Wirth, H. Sturm, J. Kruger, and J. Bonse, “Nanometer-resolved chemical analyses of femtosecond laser-induced periodic surface structures on titanium,” J. Appl. Phys. 122(10), 104901 (2017).
[Crossref]

Kiuchi, J.

N. Yasumaru, E. Sentoku, and J. Kiuchi, “Formation of organic layer on femtosecond laser-induced periodic surface structures,” Appl. Surf. Sci. 405, 267–272 (2017).
[Crossref]

Kononenko, T.

Konov, V. I.

Koziol, P. E.

A. J. Antonczak, B. Stepak, P. E. Koziol, and K. M. Abramski, “The influence of process parameters on the laser-induced coloring of titanium,” Appl. Phys., A Mater. Sci. Process. 115(3), 1003–1013 (2014).
[Crossref]

Kreutz, E. W.

J. Jandeleit, G. Urbasch, H. D. Hoffmann, H.-G. Treusch, and E. W. Kreutz, “Picosecond laser ablation of thin copper films,” Appl. Phys., A Mater. Sci. Process. 63(2), 117–121 (1996).
[Crossref]

Kristensen, A.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic Metasurfaces for Coloration of Plastic Consumer Products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Kruger, J.

S. V. Kirner, T. Wirth, H. Sturm, J. Kruger, and J. Bonse, “Nanometer-resolved chemical analyses of femtosecond laser-induced periodic surface structures on titanium,” J. Appl. Phys. 122(10), 104901 (2017).
[Crossref]

Krupin, O.

J. Walia, J.-M. Guay, O. Krupin, F. Variola, P. Berini, and A. Weck, “Visible light driven plasmonic photochemistry on nano-textured silver,” Phys. Chem. Chem. Phys. 20(1), 238–246 (2017).
[Crossref] [PubMed]

Kuchmizhak, A.

X. Wang, A. Kuchmizhak, D. Storozhenko, S. Makarov, and S. Juodkazis, “Single-Step Laser Plasmonic Coloration of Metal Films,” ACS Appl. Mater. Interfaces 10(1), 1422–1427 (2018).
[Crossref] [PubMed]

Kumar, K.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Kuzma, A.

A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek, F. Uherek, and D. Donoval, “Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles,” J. Appl. Phys. 112(10), 103531 (2012).
[Crossref]

Lee, H.

C. Kim and H. Lee, “Light-assisted surface reactions on metal nanoparticles,” Catal. Sci. Technol. 8(15), 3718–3727 (2017).
[Crossref]

Lee, H. W. H.

T. J. Goodwin, V. J. Leppert, S. H. Risbud, I. M. Kennedy, and H. W. H. Lee, “Synthesis of gallium nitride quantum dots through reactive laser ablation,” Appl. Phys. Lett. 70(23), 1–4 (1997).
[Crossref]

Leppert, V. J.

T. J. Goodwin, V. J. Leppert, S. H. Risbud, I. M. Kennedy, and H. W. H. Lee, “Synthesis of gallium nitride quantum dots through reactive laser ablation,” Appl. Phys. Lett. 70(23), 1–4 (1997).
[Crossref]

Levy, U.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic Metasurfaces for Coloration of Plastic Consumer Products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Li, D.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Li, L.

P. Fan, M. Zhong, L. Li, P. Schmitz, C. Lin, J. Long, and H. Zhang, “Angle-independent colorization of copper surfaces by simultaneous generation of picosecond-laser-induced nanostructures and redeposited nanoparticles,” J. Appl. Phys. 115(12), 124302 (2014).
[Crossref]

P. Fan, M. Zhong, L. Li, P. Schmitz, C. Lin, J. Long, and H. Zhang, “Sequential color change on copper surfaces via micro/nano structure modification induced by a picosecond laser,” J. Appl. Phys. 114(8), 083518 (2013).
[Crossref]

Li, Z.

Z. Li, A. W. Clark, and J. M. Cooper, “Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref] [PubMed]

Lin, C.

P. Fan, M. Zhong, L. Li, P. Schmitz, C. Lin, J. Long, and H. Zhang, “Angle-independent colorization of copper surfaces by simultaneous generation of picosecond-laser-induced nanostructures and redeposited nanoparticles,” J. Appl. Phys. 115(12), 124302 (2014).
[Crossref]

P. Fan, M. Zhong, L. Li, P. Schmitz, C. Lin, J. Long, and H. Zhang, “Sequential color change on copper surfaces via micro/nano structure modification induced by a picosecond laser,” J. Appl. Phys. 114(8), 083518 (2013).
[Crossref]

Lindgren, B. J.

T. L. Slager, B. J. Lindgren, A. J. Mallmann, and R. G. Greenler, “The Infrared Spectra of the Oxides and Carbonates of Silver,” J. Chem. Phys. 76(6), 940–943 (1972).
[Crossref]

Liu, J.

J. Liu and Y. Lu, “Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles,” Angew. Chem. 118(1), 96–100 (2006).
[Crossref]

Long, J.

P. Fan, M. Zhong, L. Li, P. Schmitz, C. Lin, J. Long, and H. Zhang, “Angle-independent colorization of copper surfaces by simultaneous generation of picosecond-laser-induced nanostructures and redeposited nanoparticles,” J. Appl. Phys. 115(12), 124302 (2014).
[Crossref]

P. Fan, M. Zhong, L. Li, P. Schmitz, C. Lin, J. Long, and H. Zhang, “Sequential color change on copper surfaces via micro/nano structure modification induced by a picosecond laser,” J. Appl. Phys. 114(8), 083518 (2013).
[Crossref]

Lu, Y.

J. Liu and Y. Lu, “Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles,” Angew. Chem. 118(1), 96–100 (2006).
[Crossref]

Luo, W.

W. Luo, W. Hu, and S. Xiao, “Size Effect on the Thermodynamic Properties of Silver Nanoparticles,” J. Phys. Chem. C, 2359–2369 (2008).

Lupitskyy, R.

Y. Han, R. Lupitskyy, T.-M. Chou, C. M. Stafford, H. Du, and S. Sukhishvili, “Effect of Oxidation on Surface-Enhanced Raman Scattering Activity of Silver Nanoparticles: A Quantitative Correlation,” Anal. Chem. 83(15), 5873–5880 (2011).
[Crossref] [PubMed]

Luu-Dinh, A.

L. Duempelmann, D. Casari, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Color Rendering Plasmonic Aluminum Substrates with Angular Symmetry Breaking,” ACS Nano 9(12), 12383–12391 (2015).
[Crossref] [PubMed]

Madsen, J. S.

S. Murthy, H. Pranov, N. A. Feidenhans’l, J. S. Madsen, P. E. Hansen, H. C. Pedersen, and R. Taboryski, “Plasmonic color metasurfaces fabricated by a high speed roll-to-roll method,” Nanoscale 9(37), 14280–14287 (2017).
[Crossref] [PubMed]

Makarov, S.

X. Wang, A. Kuchmizhak, D. Storozhenko, S. Makarov, and S. Juodkazis, “Single-Step Laser Plasmonic Coloration of Metal Films,” ACS Appl. Mater. Interfaces 10(1), 1422–1427 (2018).
[Crossref] [PubMed]

Mallmann, A. J.

T. L. Slager, B. J. Lindgren, A. J. Mallmann, and R. G. Greenler, “The Infrared Spectra of the Oxides and Carbonates of Silver,” J. Chem. Phys. 76(6), 940–943 (1972).
[Crossref]

Metson, J. B.

G. I. N. Waterhouse, G. A. Bowmaker, and J. B. Metson, “The thermal decomposition of silver (I, III) oxide : A combined XRD, FT-IR and Raman spectroscopic study,” Phys. Chem. Chem. Phys. 3(17), 3838–3845 (2001).
[Crossref]

Michalowski, A.

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
[Crossref]

Mínguez-Vega, G.

C. Doñate-Buendia, R. Torres-Mendieta, A. Pyatenko, E. Falomir, M. Fernández-Alonso, and G. Mínguez-Vega, “Fabrication by Laser Irradiation in a Continuous Flow Jet of Carbon Quantum Dots for Fluorescence Imaging,” ACS Omega 3(3), 2735–2742 (2018).
[Crossref] [PubMed]

Momma, C.

Monaghan, J. W.

V. Sundaresan, J. W. Monaghan, and K. A. Willets, “Visualizing the Effect of Partial Oxide Formation on Single Silver Nanoparticle Electrodissolution,” J. Phys. Chem. C 122(5), 3138–3145 (2018).
[Crossref]

Moran, C.

F. Tam, C. Moran, and N. Halas, “Geometrical Parameters Controlling Sensitivity of Nanoshell Plasmon Resonances to Changes in Dielectric Environment,” J. Phys. Chem. B 108(45), 17290–17294 (2004).
[Crossref]

Mortensen, N. A.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic Metasurfaces for Coloration of Plastic Consumer Products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Mulcahy, J. R.

Y. Zhang, S. He, W. Guo, Y. Hu, J. Huang, J. R. Mulcahy, and W. D. Wei, “Surface-Plasmon-Driven Hot Electron Photochemistry,” Chem. Rev. 118(6), 2927–2954 (2017).
[Crossref] [PubMed]

Murray, W. A.

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19(22), 3771–3782 (2007).
[Crossref]

Murthy, S.

S. Murthy, H. Pranov, N. A. Feidenhans’l, J. S. Madsen, P. E. Hansen, H. C. Pedersen, and R. Taboryski, “Plasmonic color metasurfaces fabricated by a high speed roll-to-roll method,” Nanoscale 9(37), 14280–14287 (2017).
[Crossref] [PubMed]

Nakayama, Y.

I. Umezu, Y. Nakayama, and A. Sugimura, “Formation of core-shell structured silicon nanoparticles during pulsed laser ablation,” J. Appl. Phys. 107(9), 094318 (2010).
[Crossref]

Nasrollahi, V.

T. Jwad, P. Penchev, V. Nasrollahi, and S. Dimov, “Laser induced ripples’ gratings with angular periodicity for fabrication of diffraction holograms,” Appl. Surf. Sci. 453, 449–456 (2018).
[Crossref]

Neely, W. C.

D. L. Edwards, J. R. Williams, A. T. Fromhold, P. A. Barnes, J. P. Wey, W. C. Neely, and A. F. Whitaker, “The oxidation of polycrystalline silver films by thermal, ground-state atomic oxygen,” Nucl. Instrum. Methods Phys. Res. B 79(1-4), 676–679 (1993).
[Crossref]

Nolte, S.

Novotny, L.

L. Duempelmann, D. Casari, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Color Rendering Plasmonic Aluminum Substrates with Angular Symmetry Breaking,” ACS Nano 9(12), 12383–12391 (2015).
[Crossref] [PubMed]

Onuseit, V.

Osone, S.

M. Kim, S. Osone, T. Kim, H. Higashi, and T. Seto, “Synthesis of Nanoparticles by Laser Ablation : A Review,” KANO Powder and Particle Journal 34(34), 80–90 (2017).
[Crossref]

Pedersen, H. C.

S. Murthy, H. Pranov, N. A. Feidenhans’l, J. S. Madsen, P. E. Hansen, H. C. Pedersen, and R. Taboryski, “Plasmonic color metasurfaces fabricated by a high speed roll-to-roll method,” Nanoscale 9(37), 14280–14287 (2017).
[Crossref] [PubMed]

Penchev, P.

T. Jwad, P. Penchev, V. Nasrollahi, and S. Dimov, “Laser induced ripples’ gratings with angular periodicity for fabrication of diffraction holograms,” Appl. Surf. Sci. 453, 449–456 (2018).
[Crossref]

Peng, B.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Perrière, J.

J. Perrière, C. Boulmer-Leborgne, R. Benzerga, and S. Tricot, “Nanoparticle formation by femtosecond laser ablation,” J. Phys. D Appl. Phys. 40(22), 7069–7076 (2007).
[Crossref]

Poitras, D.

J.-M. Guay, A. Calà Lesina, G. Côté, M. Charron, D. Poitras, L. Ramunno, P. Berini, and A. Weck, “Laser-induced plasmonic colours on metals,” Nat. Commun. 8, 16095 (2017).
[Crossref] [PubMed]

Pors, A.

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength Plasmonic Color Printing Protected for Ambient use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

Pranov, H.

S. Murthy, H. Pranov, N. A. Feidenhans’l, J. S. Madsen, P. E. Hansen, H. C. Pedersen, and R. Taboryski, “Plasmonic color metasurfaces fabricated by a high speed roll-to-roll method,” Nanoscale 9(37), 14280–14287 (2017).
[Crossref] [PubMed]

Pyatenko, A.

C. Doñate-Buendia, R. Torres-Mendieta, A. Pyatenko, E. Falomir, M. Fernández-Alonso, and G. Mínguez-Vega, “Fabrication by Laser Irradiation in a Continuous Flow Jet of Carbon Quantum Dots for Fluorescence Imaging,” ACS Omega 3(3), 2735–2742 (2018).
[Crossref] [PubMed]

Qi, W. H.

W. H. Qi and M. P. Wang, “Size and shape dependent melting temperature of metallic nanoparticles,” Mater. Chem. Phys. 88(2-3), 280–284 (2004).
[Crossref]

Qiu, C. W.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Rai, M.

M. Rai, A. P. Ingle, S. Birla, A. Yadav, and C. A. D. Santos, “Strategic role of selected noble metal nanoparticles in medicine,” Crit. Rev. Microbiol. 42(5), 696–719 (2016).
[PubMed]

Ramunno, L.

J.-M. Guay, A. Calà Lesina, J. Baxter, G. Killaire, L. Ramunno, P. Berini, and A. Weck, “Topography tuning for plasmonic colour enhancement via picosecond laser bursts,” Adv. Opt. Mater. 6(17), 1800189 (2018).
[Crossref]

J.-M. Guay, A. Calà Lesina, G. Côté, M. Charron, D. Poitras, L. Ramunno, P. Berini, and A. Weck, “Laser-induced plasmonic colours on metals,” Nat. Commun. 8, 16095 (2017).
[Crossref] [PubMed]

Risbud, S. H.

T. J. Goodwin, V. J. Leppert, S. H. Risbud, I. M. Kennedy, and H. W. H. Lee, “Synthesis of gallium nitride quantum dots through reactive laser ablation,” Appl. Phys. Lett. 70(23), 1–4 (1997).
[Crossref]

Roberts, A. S.

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength Plasmonic Color Printing Protected for Ambient use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

Rosenmann, D.

Russell, D. A.

A. B. Horn, D. A. Russell, L. J. Shorthouse, and T. R. E. Simpson, “Ageing of alkanethiol self-assembled monolayers,” J. Chem. Soc., Faraday Trans. 92(23), 4759–4762 (1996).
[Crossref]

Santos, C. A. D.

M. Rai, A. P. Ingle, S. Birla, A. Yadav, and C. A. D. Santos, “Strategic role of selected noble metal nanoparticles in medicine,” Crit. Rev. Microbiol. 42(5), 696–719 (2016).
[PubMed]

Satka, A.

A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek, F. Uherek, and D. Donoval, “Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles,” J. Appl. Phys. 112(10), 103531 (2012).
[Crossref]

Schmitz, P.

P. Fan, M. Zhong, L. Li, P. Schmitz, C. Lin, J. Long, and H. Zhang, “Angle-independent colorization of copper surfaces by simultaneous generation of picosecond-laser-induced nanostructures and redeposited nanoparticles,” J. Appl. Phys. 115(12), 124302 (2014).
[Crossref]

P. Fan, M. Zhong, L. Li, P. Schmitz, C. Lin, J. Long, and H. Zhang, “Sequential color change on copper surfaces via micro/nano structure modification induced by a picosecond laser,” J. Appl. Phys. 114(8), 083518 (2013).
[Crossref]

Semaltianos, N. G.

N. G. Semaltianos, “Nanoparticles by Laser Ablation,” Crit. Rev. Solid State Mater. Sci. 35(2), 105–124 (2010).
[Crossref]

Sentoku, E.

N. Yasumaru, E. Sentoku, and J. Kiuchi, “Formation of organic layer on femtosecond laser-induced periodic surface structures,” Appl. Surf. Sci. 405, 267–272 (2017).
[Crossref]

Seto, T.

M. Kim, S. Osone, T. Kim, H. Higashi, and T. Seto, “Synthesis of Nanoparticles by Laser Ablation : A Review,” KANO Powder and Particle Journal 34(34), 80–90 (2017).
[Crossref]

Shorthouse, L. J.

A. B. Horn, D. A. Russell, L. J. Shorthouse, and T. R. E. Simpson, “Ageing of alkanethiol self-assembled monolayers,” J. Chem. Soc., Faraday Trans. 92(23), 4759–4762 (1996).
[Crossref]

Simpson, T. R. E.

A. B. Horn, D. A. Russell, L. J. Shorthouse, and T. R. E. Simpson, “Ageing of alkanethiol self-assembled monolayers,” J. Chem. Soc., Faraday Trans. 92(23), 4759–4762 (1996).
[Crossref]

Slager, T. L.

T. L. Slager, B. J. Lindgren, A. J. Mallmann, and R. G. Greenler, “The Infrared Spectra of the Oxides and Carbonates of Silver,” J. Chem. Phys. 76(6), 940–943 (1972).
[Crossref]

Stafford, C. M.

Y. Han, R. Lupitskyy, T.-M. Chou, C. M. Stafford, H. Du, and S. Sukhishvili, “Effect of Oxidation on Surface-Enhanced Raman Scattering Activity of Silver Nanoparticles: A Quantitative Correlation,” Anal. Chem. 83(15), 5873–5880 (2011).
[Crossref] [PubMed]

Stan, L.

Stepak, B.

A. J. Antonczak, B. Stepak, P. E. Koziol, and K. M. Abramski, “The influence of process parameters on the laser-induced coloring of titanium,” Appl. Phys., A Mater. Sci. Process. 115(3), 1003–1013 (2014).
[Crossref]

Storozhenko, D.

X. Wang, A. Kuchmizhak, D. Storozhenko, S. Makarov, and S. Juodkazis, “Single-Step Laser Plasmonic Coloration of Metal Films,” ACS Appl. Mater. Interfaces 10(1), 1422–1427 (2018).
[Crossref] [PubMed]

Sturm, H.

S. V. Kirner, T. Wirth, H. Sturm, J. Kruger, and J. Bonse, “Nanometer-resolved chemical analyses of femtosecond laser-induced periodic surface structures on titanium,” J. Appl. Phys. 122(10), 104901 (2017).
[Crossref]

Sugimura, A.

I. Umezu, Y. Nakayama, and A. Sugimura, “Formation of core-shell structured silicon nanoparticles during pulsed laser ablation,” J. Appl. Phys. 107(9), 094318 (2010).
[Crossref]

Sukhishvili, S.

Y. Han, R. Lupitskyy, T.-M. Chou, C. M. Stafford, H. Du, and S. Sukhishvili, “Effect of Oxidation on Surface-Enhanced Raman Scattering Activity of Silver Nanoparticles: A Quantitative Correlation,” Anal. Chem. 83(15), 5873–5880 (2011).
[Crossref] [PubMed]

Sundaresan, V.

V. Sundaresan, J. W. Monaghan, and K. A. Willets, “Visualizing the Effect of Partial Oxide Formation on Single Silver Nanoparticle Electrodissolution,” J. Phys. Chem. C 122(5), 3138–3145 (2018).
[Crossref]

Taboryski, R.

S. Murthy, H. Pranov, N. A. Feidenhans’l, J. S. Madsen, P. E. Hansen, H. C. Pedersen, and R. Taboryski, “Plasmonic color metasurfaces fabricated by a high speed roll-to-roll method,” Nanoscale 9(37), 14280–14287 (2017).
[Crossref] [PubMed]

Taha, H.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic Metasurfaces for Coloration of Plastic Consumer Products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Tam, F.

F. Tam, C. Moran, and N. Halas, “Geometrical Parameters Controlling Sensitivity of Nanoshell Plasmon Resonances to Changes in Dielectric Environment,” J. Phys. Chem. B 108(45), 17290–17294 (2004).
[Crossref]

Tan, S. J.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Telek, P.

A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek, F. Uherek, and D. Donoval, “Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles,” J. Appl. Phys. 112(10), 103531 (2012).
[Crossref]

Torres-Mendieta, R.

C. Doñate-Buendia, R. Torres-Mendieta, A. Pyatenko, E. Falomir, M. Fernández-Alonso, and G. Mínguez-Vega, “Fabrication by Laser Irradiation in a Continuous Flow Jet of Carbon Quantum Dots for Fluorescence Imaging,” ACS Omega 3(3), 2735–2742 (2018).
[Crossref] [PubMed]

Treusch, H.-G.

J. Jandeleit, G. Urbasch, H. D. Hoffmann, H.-G. Treusch, and E. W. Kreutz, “Picosecond laser ablation of thin copper films,” Appl. Phys., A Mater. Sci. Process. 63(2), 117–121 (1996).
[Crossref]

Tricot, S.

J. Perrière, C. Boulmer-Leborgne, R. Benzerga, and S. Tricot, “Nanoparticle formation by femtosecond laser ablation,” J. Phys. D Appl. Phys. 40(22), 7069–7076 (2007).
[Crossref]

Tünnermann, A.

Uherek, F.

A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek, F. Uherek, and D. Donoval, “Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles,” J. Appl. Phys. 112(10), 103531 (2012).
[Crossref]

Umezu, I.

I. Umezu, Y. Nakayama, and A. Sugimura, “Formation of core-shell structured silicon nanoparticles during pulsed laser ablation,” J. Appl. Phys. 107(9), 094318 (2010).
[Crossref]

Urbasch, G.

J. Jandeleit, G. Urbasch, H. D. Hoffmann, H.-G. Treusch, and E. W. Kreutz, “Picosecond laser ablation of thin copper films,” Appl. Phys., A Mater. Sci. Process. 63(2), 117–121 (1996).
[Crossref]

Variola, F.

J. Walia, J.-M. Guay, O. Krupin, F. Variola, P. Berini, and A. Weck, “Visible light driven plasmonic photochemistry on nano-textured silver,” Phys. Chem. Chem. Phys. 20(1), 238–246 (2017).
[Crossref] [PubMed]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

Walia, J.

J. Walia, J.-M. Guay, O. Krupin, F. Variola, P. Berini, and A. Weck, “Visible light driven plasmonic photochemistry on nano-textured silver,” Phys. Chem. Chem. Phys. 20(1), 238–246 (2017).
[Crossref] [PubMed]

Wang, M. P.

W. H. Qi and M. P. Wang, “Size and shape dependent melting temperature of metallic nanoparticles,” Mater. Chem. Phys. 88(2-3), 280–284 (2004).
[Crossref]

Wang, S.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Wang, X.

X. Wang, A. Kuchmizhak, D. Storozhenko, S. Makarov, and S. Juodkazis, “Single-Step Laser Plasmonic Coloration of Metal Films,” ACS Appl. Mater. Interfaces 10(1), 1422–1427 (2018).
[Crossref] [PubMed]

Wang, Y. M.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Waterhouse, G. I. N.

G. I. N. Waterhouse, G. A. Bowmaker, and J. B. Metson, “The thermal decomposition of silver (I, III) oxide : A combined XRD, FT-IR and Raman spectroscopic study,” Phys. Chem. Chem. Phys. 3(17), 3838–3845 (2001).
[Crossref]

Weber, R.

Weck, A.

J.-M. Guay, A. Calà Lesina, J. Baxter, G. Killaire, L. Ramunno, P. Berini, and A. Weck, “Topography tuning for plasmonic colour enhancement via picosecond laser bursts,” Adv. Opt. Mater. 6(17), 1800189 (2018).
[Crossref]

J.-M. Guay, A. Calà Lesina, G. Côté, M. Charron, D. Poitras, L. Ramunno, P. Berini, and A. Weck, “Laser-induced plasmonic colours on metals,” Nat. Commun. 8, 16095 (2017).
[Crossref] [PubMed]

J. Walia, J.-M. Guay, O. Krupin, F. Variola, P. Berini, and A. Weck, “Visible light driven plasmonic photochemistry on nano-textured silver,” Phys. Chem. Chem. Phys. 20(1), 238–246 (2017).
[Crossref] [PubMed]

Wei, W. D.

Y. Zhang, S. He, W. Guo, Y. Hu, J. Huang, J. R. Mulcahy, and W. D. Wei, “Surface-Plasmon-Driven Hot Electron Photochemistry,” Chem. Rev. 118(6), 2927–2954 (2017).
[Crossref] [PubMed]

Weis, M.

A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek, F. Uherek, and D. Donoval, “Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles,” J. Appl. Phys. 112(10), 103531 (2012).
[Crossref]

Wellegehausen, B.

Welling, H.

Wey, J. P.

D. L. Edwards, J. R. Williams, A. T. Fromhold, P. A. Barnes, J. P. Wey, W. C. Neely, and A. F. Whitaker, “The oxidation of polycrystalline silver films by thermal, ground-state atomic oxygen,” Nucl. Instrum. Methods Phys. Res. B 79(1-4), 676–679 (1993).
[Crossref]

Whitaker, A. F.

D. L. Edwards, J. R. Williams, A. T. Fromhold, P. A. Barnes, J. P. Wey, W. C. Neely, and A. F. Whitaker, “The oxidation of polycrystalline silver films by thermal, ground-state atomic oxygen,” Nucl. Instrum. Methods Phys. Res. B 79(1-4), 676–679 (1993).
[Crossref]

Wiedenmann, M.

Willets, K. A.

V. Sundaresan, J. W. Monaghan, and K. A. Willets, “Visualizing the Effect of Partial Oxide Formation on Single Silver Nanoparticle Electrodissolution,” J. Phys. Chem. C 122(5), 3138–3145 (2018).
[Crossref]

Williams, J. R.

D. L. Edwards, J. R. Williams, A. T. Fromhold, P. A. Barnes, J. P. Wey, W. C. Neely, and A. F. Whitaker, “The oxidation of polycrystalline silver films by thermal, ground-state atomic oxygen,” Nucl. Instrum. Methods Phys. Res. B 79(1-4), 676–679 (1993).
[Crossref]

Wirth, T.

S. V. Kirner, T. Wirth, H. Sturm, J. Kruger, and J. Bonse, “Nanometer-resolved chemical analyses of femtosecond laser-induced periodic surface structures on titanium,” J. Appl. Phys. 122(10), 104901 (2017).
[Crossref]

Wong, L. M.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Wu, H.

L. Hu, H. Wu, B. Zhang, L. Du, T. Xu, Y. Chen, and Y. Zhang, “Designable Luminescence with Quantum Dot-Silver Plasmon Coupler,” Small 10(15), 3099–3109 (2014).
[Crossref] [PubMed]

Xiao, S.

W. Luo, W. Hu, and S. Xiao, “Size Effect on the Thermodynamic Properties of Silver Nanoparticles,” J. Phys. Chem. C, 2359–2369 (2008).

Xiong, Q.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Xu, T.

L. Hu, H. Wu, B. Zhang, L. Du, T. Xu, Y. Chen, and Y. Zhang, “Designable Luminescence with Quantum Dot-Silver Plasmon Coupler,” Small 10(15), 3099–3109 (2014).
[Crossref] [PubMed]

Xu, X.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Yadav, A.

M. Rai, A. P. Ingle, S. Birla, A. Yadav, and C. A. D. Santos, “Strategic role of selected noble metal nanoparticles in medicine,” Crit. Rev. Microbiol. 42(5), 696–719 (2016).
[PubMed]

Yang, J. K. W.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Yang, X.

Yasumaru, N.

N. Yasumaru, E. Sentoku, and J. Kiuchi, “Formation of organic layer on femtosecond laser-induced periodic surface structures,” Appl. Surf. Sci. 405, 267–272 (2017).
[Crossref]

Yazdi, S.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic Metasurfaces for Coloration of Plastic Consumer Products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Zhang, B.

L. Hu, H. Wu, B. Zhang, L. Du, T. Xu, Y. Chen, and Y. Zhang, “Designable Luminescence with Quantum Dot-Silver Plasmon Coupler,” Small 10(15), 3099–3109 (2014).
[Crossref] [PubMed]

Zhang, H.

P. Fan, M. Zhong, L. Li, P. Schmitz, C. Lin, J. Long, and H. Zhang, “Angle-independent colorization of copper surfaces by simultaneous generation of picosecond-laser-induced nanostructures and redeposited nanoparticles,” J. Appl. Phys. 115(12), 124302 (2014).
[Crossref]

P. Fan, M. Zhong, L. Li, P. Schmitz, C. Lin, J. Long, and H. Zhang, “Sequential color change on copper surfaces via micro/nano structure modification induced by a picosecond laser,” J. Appl. Phys. 114(8), 083518 (2013).
[Crossref]

Zhang, J.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Zhang, L.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Zhang, Q.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, S. He, W. Guo, Y. Hu, J. Huang, J. R. Mulcahy, and W. D. Wei, “Surface-Plasmon-Driven Hot Electron Photochemistry,” Chem. Rev. 118(6), 2927–2954 (2017).
[Crossref] [PubMed]

L. Hu, H. Wu, B. Zhang, L. Du, T. Xu, Y. Chen, and Y. Zhang, “Designable Luminescence with Quantum Dot-Silver Plasmon Coupler,” Small 10(15), 3099–3109 (2014).
[Crossref] [PubMed]

Zhong, M.

P. Fan, M. Zhong, L. Li, P. Schmitz, C. Lin, J. Long, and H. Zhang, “Angle-independent colorization of copper surfaces by simultaneous generation of picosecond-laser-induced nanostructures and redeposited nanoparticles,” J. Appl. Phys. 115(12), 124302 (2014).
[Crossref]

P. Fan, M. Zhong, L. Li, P. Schmitz, C. Lin, J. Long, and H. Zhang, “Sequential color change on copper surfaces via micro/nano structure modification induced by a picosecond laser,” J. Appl. Phys. 114(8), 083518 (2013).
[Crossref]

Zhu, D.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

X. Wang, A. Kuchmizhak, D. Storozhenko, S. Makarov, and S. Juodkazis, “Single-Step Laser Plasmonic Coloration of Metal Films,” ACS Appl. Mater. Interfaces 10(1), 1422–1427 (2018).
[Crossref] [PubMed]

ACS Nano (2)

Z. Li, A. W. Clark, and J. M. Cooper, “Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref] [PubMed]

L. Duempelmann, D. Casari, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Color Rendering Plasmonic Aluminum Substrates with Angular Symmetry Breaking,” ACS Nano 9(12), 12383–12391 (2015).
[Crossref] [PubMed]

ACS Omega (1)

C. Doñate-Buendia, R. Torres-Mendieta, A. Pyatenko, E. Falomir, M. Fernández-Alonso, and G. Mínguez-Vega, “Fabrication by Laser Irradiation in a Continuous Flow Jet of Carbon Quantum Dots for Fluorescence Imaging,” ACS Omega 3(3), 2735–2742 (2018).
[Crossref] [PubMed]

Adv. Mater. (1)

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19(22), 3771–3782 (2007).
[Crossref]

Adv. Opt. Mater. (1)

J.-M. Guay, A. Calà Lesina, J. Baxter, G. Killaire, L. Ramunno, P. Berini, and A. Weck, “Topography tuning for plasmonic colour enhancement via picosecond laser bursts,” Adv. Opt. Mater. 6(17), 1800189 (2018).
[Crossref]

Alexandria Journal of Medicine (1)

X. Huang and M. El-Sayed, “Plasmonic photo-thermal therapy (PPTT),” Alexandria Journal of Medicine 47(1), 1–9 (2011).
[Crossref]

Anal. Chem. (1)

Y. Han, R. Lupitskyy, T.-M. Chou, C. M. Stafford, H. Du, and S. Sukhishvili, “Effect of Oxidation on Surface-Enhanced Raman Scattering Activity of Silver Nanoparticles: A Quantitative Correlation,” Anal. Chem. 83(15), 5873–5880 (2011).
[Crossref] [PubMed]

Angew. Chem. (1)

J. Liu and Y. Lu, “Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles,” Angew. Chem. 118(1), 96–100 (2006).
[Crossref]

Ann. Phys. (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
[Crossref]

Appl. Phys. Lett. (1)

T. J. Goodwin, V. J. Leppert, S. H. Risbud, I. M. Kennedy, and H. W. H. Lee, “Synthesis of gallium nitride quantum dots through reactive laser ablation,” Appl. Phys. Lett. 70(23), 1–4 (1997).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

J. Jandeleit, G. Urbasch, H. D. Hoffmann, H.-G. Treusch, and E. W. Kreutz, “Picosecond laser ablation of thin copper films,” Appl. Phys., A Mater. Sci. Process. 63(2), 117–121 (1996).
[Crossref]

A. J. Antonczak, B. Stepak, P. E. Koziol, and K. M. Abramski, “The influence of process parameters on the laser-induced coloring of titanium,” Appl. Phys., A Mater. Sci. Process. 115(3), 1003–1013 (2014).
[Crossref]

Appl. Surf. Sci. (3)

N. Yasumaru, E. Sentoku, and J. Kiuchi, “Formation of organic layer on femtosecond laser-induced periodic surface structures,” Appl. Surf. Sci. 405, 267–272 (2017).
[Crossref]

T. Jwad, P. Penchev, V. Nasrollahi, and S. Dimov, “Laser induced ripples’ gratings with angular periodicity for fabrication of diffraction holograms,” Appl. Surf. Sci. 453, 449–456 (2018).
[Crossref]

T. Jwad, S. Deng, H. Butt, and S. Dimov, “Applied Surface Science Laser induced single spot oxidation of titanium,” Appl. Surf. Sci. 387, 617–624 (2016).
[Crossref]

Catal. Sci. Technol. (1)

C. Kim and H. Lee, “Light-assisted surface reactions on metal nanoparticles,” Catal. Sci. Technol. 8(15), 3718–3727 (2017).
[Crossref]

Chem. Rev. (1)

Y. Zhang, S. He, W. Guo, Y. Hu, J. Huang, J. R. Mulcahy, and W. D. Wei, “Surface-Plasmon-Driven Hot Electron Photochemistry,” Chem. Rev. 118(6), 2927–2954 (2017).
[Crossref] [PubMed]

Crit. Rev. Microbiol. (1)

M. Rai, A. P. Ingle, S. Birla, A. Yadav, and C. A. D. Santos, “Strategic role of selected noble metal nanoparticles in medicine,” Crit. Rev. Microbiol. 42(5), 696–719 (2016).
[PubMed]

Crit. Rev. Solid State Mater. Sci. (1)

N. G. Semaltianos, “Nanoparticles by Laser Ablation,” Crit. Rev. Solid State Mater. Sci. 35(2), 105–124 (2010).
[Crossref]

J. Appl. Phys. (5)

I. Umezu, Y. Nakayama, and A. Sugimura, “Formation of core-shell structured silicon nanoparticles during pulsed laser ablation,” J. Appl. Phys. 107(9), 094318 (2010).
[Crossref]

P. Fan, M. Zhong, L. Li, P. Schmitz, C. Lin, J. Long, and H. Zhang, “Sequential color change on copper surfaces via micro/nano structure modification induced by a picosecond laser,” J. Appl. Phys. 114(8), 083518 (2013).
[Crossref]

P. Fan, M. Zhong, L. Li, P. Schmitz, C. Lin, J. Long, and H. Zhang, “Angle-independent colorization of copper surfaces by simultaneous generation of picosecond-laser-induced nanostructures and redeposited nanoparticles,” J. Appl. Phys. 115(12), 124302 (2014).
[Crossref]

S. V. Kirner, T. Wirth, H. Sturm, J. Kruger, and J. Bonse, “Nanometer-resolved chemical analyses of femtosecond laser-induced periodic surface structures on titanium,” J. Appl. Phys. 122(10), 104901 (2017).
[Crossref]

A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek, F. Uherek, and D. Donoval, “Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles,” J. Appl. Phys. 112(10), 103531 (2012).
[Crossref]

J. Chem. Phys. (1)

T. L. Slager, B. J. Lindgren, A. J. Mallmann, and R. G. Greenler, “The Infrared Spectra of the Oxides and Carbonates of Silver,” J. Chem. Phys. 76(6), 940–943 (1972).
[Crossref]

J. Chem. Soc., Faraday Trans. (1)

A. B. Horn, D. A. Russell, L. J. Shorthouse, and T. R. E. Simpson, “Ageing of alkanethiol self-assembled monolayers,” J. Chem. Soc., Faraday Trans. 92(23), 4759–4762 (1996).
[Crossref]

J. Electrochem. Soc. (1)

N. Fredj and T. D. Burleigh, “Transpassive Dissolution of Copper and Rapid Formation of Brilliant Colored Copper Oxide Films,” J. Electrochem. Soc. 158(4), 104–110 (2011).
[Crossref]

J. Exp. Nanosci. (1)

A. Ghosh and R. N. P. Choudhary, “Optical emission and absorption spectra of Zn – ZnO core-shell nanostructures,” J. Exp. Nanosci. 5(2), 134–142 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

W. Luo, W. Hu, and S. Xiao, “Size Effect on the Thermodynamic Properties of Silver Nanoparticles,” J. Phys. Chem. C, 2359–2369 (2008).

J. Phys. Chem. B (1)

F. Tam, C. Moran, and N. Halas, “Geometrical Parameters Controlling Sensitivity of Nanoshell Plasmon Resonances to Changes in Dielectric Environment,” J. Phys. Chem. B 108(45), 17290–17294 (2004).
[Crossref]

J. Phys. Chem. C (1)

V. Sundaresan, J. W. Monaghan, and K. A. Willets, “Visualizing the Effect of Partial Oxide Formation on Single Silver Nanoparticle Electrodissolution,” J. Phys. Chem. C 122(5), 3138–3145 (2018).
[Crossref]

J. Phys. D Appl. Phys. (1)

J. Perrière, C. Boulmer-Leborgne, R. Benzerga, and S. Tricot, “Nanoparticle formation by femtosecond laser ablation,” J. Phys. D Appl. Phys. 40(22), 7069–7076 (2007).
[Crossref]

KANO Powder and Particle Journal (1)

M. Kim, S. Osone, T. Kim, H. Higashi, and T. Seto, “Synthesis of Nanoparticles by Laser Ablation : A Review,” KANO Powder and Particle Journal 34(34), 80–90 (2017).
[Crossref]

Laser Photonics Rev. (1)

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

Mater. Chem. Phys. (1)

W. H. Qi and M. P. Wang, “Size and shape dependent melting temperature of metallic nanoparticles,” Mater. Chem. Phys. 88(2-3), 280–284 (2004).
[Crossref]

Nano Lett. (4)

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength Plasmonic Color Printing Protected for Ambient use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic Metasurfaces for Coloration of Plastic Consumer Products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Nanoscale (1)

S. Murthy, H. Pranov, N. A. Feidenhans’l, J. S. Madsen, P. E. Hansen, H. C. Pedersen, and R. Taboryski, “Plasmonic color metasurfaces fabricated by a high speed roll-to-roll method,” Nanoscale 9(37), 14280–14287 (2017).
[Crossref] [PubMed]

Nat. Commun. (1)

J.-M. Guay, A. Calà Lesina, G. Côté, M. Charron, D. Poitras, L. Ramunno, P. Berini, and A. Weck, “Laser-induced plasmonic colours on metals,” Nat. Commun. 8, 16095 (2017).
[Crossref] [PubMed]

Nucl. Instrum. Methods Phys. Res. B (1)

D. L. Edwards, J. R. Williams, A. T. Fromhold, P. A. Barnes, J. P. Wey, W. C. Neely, and A. F. Whitaker, “The oxidation of polycrystalline silver films by thermal, ground-state atomic oxygen,” Nucl. Instrum. Methods Phys. Res. B 79(1-4), 676–679 (1993).
[Crossref]

Opt. Express (4)

Phys. Chem. Chem. Phys. (2)

J. Walia, J.-M. Guay, O. Krupin, F. Variola, P. Berini, and A. Weck, “Visible light driven plasmonic photochemistry on nano-textured silver,” Phys. Chem. Chem. Phys. 20(1), 238–246 (2017).
[Crossref] [PubMed]

G. I. N. Waterhouse, G. A. Bowmaker, and J. B. Metson, “The thermal decomposition of silver (I, III) oxide : A combined XRD, FT-IR and Raman spectroscopic study,” Phys. Chem. Chem. Phys. 3(17), 3838–3845 (2001).
[Crossref]

Phys. Rev. B Condens. Matter (1)

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B Condens. Matter 39(14), 9852–9858 (1989).
[Crossref] [PubMed]

Physical Review A (1)

P. Buffat and J. Borel, “Size effect on the melting temperature of gold particles,” Physical Review A 13(6), 2287–2298 (1976).
[Crossref]

Small (1)

L. Hu, H. Wu, B. Zhang, L. Du, T. Xu, Y. Chen, and Y. Zhang, “Designable Luminescence with Quantum Dot-Silver Plasmon Coupler,” Small 10(15), 3099–3109 (2014).
[Crossref] [PubMed]

Other (2)

F. Bunting, The COLORSHOP Color Primer An Introduction to the History of Color, Color Theory, and Color Measurement, Grandville, Michigan: Light Source Computer Images, Inc., An X-Rite Company, 1998.

J. Yang, T. Ling, W. Wu, H. Liu, M. Gao, C. Ling, L. Li, and X. Du, “A top-down strategy towards monodispersed colloidal lead sulphide quantum dots,” Nature Communications, vol. 4, no. 1695, pp. 1–6, 2013.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Colour evolution for different laser repetition rates, f (red text), for selected raster line spacing (white text). To deliver the same total accumulated fluence to the surface, the laser marking speed was adjusted proportionally to the laser repetition rate. The colours were created with a fixed fluence of 5.16 J/cm2 and a laser pulse energy of 15 µJ. The coloured surfaces created were 3 × 3 mm2. Similar colour palettes were obtained by changing the line spacing, and fixing the laser repetition rate, or by fixing the line spacing and changing the laser repetition rate (horizontal and vertical white dashed line, respectively). Reflectance spectra are shown for selected line spacing values of (b) Ls = 5 µm, (c) Ls = 8 µm and (d) Ls = 13 µm, written using different laser repetition rates but with the same total accumulated fluence. The main features in the reflectance spectra can be followed distinctively and are observed to red-shift with decreasing frequency with more sensitivity to laser repetition rates of 50 kHz and lower. The scale bar of (b), (c) and (d) is located in the upper-left corner of each panel.
Fig. 2
Fig. 2 (a) Polar plot of Hue (θ) versus the logarithm of total accumulated fluence (r) using different laser repetition rates as indicated above the plots [and the legend in part (b)]. The different points in the plots represent the colours in each respective colour palette obtained using different frequencies. The different colours were obtained by changing the raster line spacing of each coloured square by 0.5 µm. The colour gamut is observed to widen with decreasing laser repetition rate. (b) Plot of Hue versus total accumulated fluence using different laser repetition rates. At lower frequencies, a full rotation in Hue can be observed (red arrow). The cutoff in the colours obtained is determined by the laser repetition rate. At higher frequencies, the colour palette is effectively reduced to the yellow Hue region.
Fig. 3
Fig. 3 (a) CIE xy Chromaticity diagram showing the area covered by the colours produced using the different laser repetition rates. The area covered increases with decreasing repetition rate starting from a small area in the yellow region. For lower frequencies, the area is increased to cover more of the green region. (b) Graph of Hue versus laser repetition rate for different raster line spacing. The colour palette is observed to reduce to the yellow Hue region for laser repetition rates over ~200 kHz.
Fig. 4
Fig. 4 (a-c) Top-down SEM images of the coloured surfaces produced using laser repetition rates of (left-column) 5 kHz, (middle-column) 50 kHz and (right-column) 400 kHz, respectively. The surfaces were machined using a raster line spacing of Ls = 5 µm and a laser fluence of 5.16 J/cm2. (d-f) Low-magnification and (g-i) high-magnification SEM of the same surfaces with a tilt angle of 70°. The roughness of the surfaces is observed to decrease with increasing laser repetition rate. The colour of each surface can be seen in the insets.
Fig. 5
Fig. 5 (a) RAIRS measurements of the coloured surfaces produced using different laser repetition rate for the same line spacing of 5 µm and the same total accumulated fluence. With decreasing laser repetition rate, two distinctive chemical species can be observed: Ag2O and AgOHAg2CO3. (b) RAIRS measurements of coloured surfaces obtained by changing line spacing by intervals of 1 µm and machined with a fixed laser repetition rate of 50 kHz. The coloured square corresponding to each spectrum is placed as an inset below their respective trace. The scale bar of is located in the bottom-left corner of each panel.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϕ= a 2 Ef v L s
a 2 E f v L s = a 2 Ef v L s