Abstract

Random quasi-phase-matching is a nonlinear scheme for three-wave mixing in transparent ceramics of non-centrosymmetric cubic materials. This process is controlled by the grain-size distribution of the ceramic and the nonlinear conversion efficiency is maximized when the average grain-size matches the coherence length. In this work, solid-state grain-coarsening is used to fabricate ZnSe ceramics with a desired grain-size. The effect of heat-treatment atmospheres (excess selenium vapor, zinc vapor or vacuum) on the grain-size distribution is investigated at 850°C and 1000°C and as a function of the heat-treatment time. The effect of these grain-size distributions on the efficiency of second-harmonic generation process by random quasi-phase-matching is analyzed theoretically.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Post-sintering treatment of neodymium-doped yttrium aluminum garnet (Nd:YAG) transparent ceramics

Lucie Chrétien, Rémy Boulesteix, Alexandre Maître, Christian Sallé, and Yves Reignoux
Opt. Mater. Express 4(10) 2166-2173 (2014)

On the transparency of nanostructured alumina: Rayleigh-Gans model for anisotropic spheres.

Carlos Pecharromán, Gustavo Mata-Osoro, L. Antonio Díaz, R. Torrecillas, and J. S. Moya
Opt. Express 17(8) 6899-6912 (2009)

Recrystallization of CVD-ZnS during thermal treatment

Tilman Zscheckel, Wolfgang Wisniewski, Andreas Gebhardt, and Christian Rüssel
Opt. Mater. Express 4(9) 1885-1894 (2014)

References

  • View by:
  • |
  • |
  • |

  1. L. Gordon, G. Woods, R. Eckardt, R. Route, R. Feigelson, M. Fejer, and R. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29(22), 1942–1944 (1993).
    [Crossref]
  2. D. Zheng, L. Gordon, Y. Wu, R. Route, M. Fejer, R. Byer, and R. Feigelson, “Diffusion bonding of GaAs wafers for nonlinear optics applications,” J. Electrochem. Soc. 144(4), 1439–1441 (1997).
    [Crossref]
  3. L. E. Myers, R. Eckardt, M. Fejer, R. Byer, W. Bosenberg, and J. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO 3,” J. Opt. Soc. Am. B 12(11), 2102–2116 (1995).
    [Crossref]
  4. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO(3),” Opt. Lett. 21(8), 591–593 (1996).
    [Crossref] [PubMed]
  5. L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Quasi-phase-matched 1.064-microm-pumped optical parametric oscillator in bulk periodically poled LiNbO(3),” Opt. Lett. 20(1), 52–54 (1995).
    [Crossref] [PubMed]
  6. K. Vodopyanov, M. Fejer, X. Yu, J. Harris, Y.-S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
    [Crossref]
  7. K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29(16), 1912–1914 (2004).
    [Crossref] [PubMed]
  8. P. G. Schunemann, L. A. Pomeranz, and D. J. Magarrell, “Optical parametric oscillation in quasi-phase-matched GaP,” in Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XIV, (International Society for Optics and Photonics, 2015), 93470J.
  9. V. Tassev, M. Snure, R. Peterson, K. Schepler, R. Bedford, M. Mann, S. Vangala, W. Goodhue, A. Lin, and J. Harris, “Progress in orientation-patterned GaP for next-generation nonlinear optical devices,” in Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XII, (International Society for Optics and Photonics, 2013), 86040V.
  10. V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phase matched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
    [Crossref]
  11. C. Zhang, C. Wang, J. Yang, L. R. Dalton, G. Sun, H. Zhang, and W. H. Steier, “Electric poling and relaxation of thermoset polyurethane second-order nonlinear optical materials: Role of cross-linking and monomer rigidity,” Macromolecules 34(2), 235–243 (2001).
    [Crossref]
  12. J. Xu, X. Lu, H. Chen, L. Liu, W. Wang, C. Zhu, and F. Gan, “Second harmonic generation investigation on electric poling effects in fused silica,” Opt. Mater. 8(4), 243–247 (1997).
    [Crossref]
  13. L. L. Chang and K. Ploog, Molecular beam epitaxy and heterostructures (Springer Science & Business Media, 2012), Vol. 87.
  14. M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
    [Crossref] [PubMed]
  15. Q. Ru, T. Kawamori, N. Lee, X. Chen, K. Zhong, M. Mirov, S. Vasilyev, S. B. Mirov, and K. L. Vodopyanov, “Optical parametric oscillation in a random poly-crystalline medium: ZnSe ceramic,” in Nonlinear Frequency Generation and Conversion: Materials and Devices XVII, (International Society for Optics and Photonics, 2018), 1051615.
  16. Q. Ru, N. Lee, X. Chen, K. Zhong, G. Tsoy, M. Mirov, S. Vasilyev, S. B. Mirov, and K. L. Vodopyanov, “Optical parametric oscillation in a random polycrystalline medium,” Optica 4(6), 617–618 (2017).
    [Crossref]
  17. E. Y. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
    [Crossref]
  18. E. Y. Morozov and A. S. Chirkin, “Stochastic quasi-phase matching in nonlinear-optical crystals with an irregular domain structure,” Quantum Electron. 34(3), 227–232 (2004).
    [Crossref]
  19. E. Sorokin and I. T. Sorokina, “Femtosecond operation and random quasi-phase-matched self-doubling of ceramic Cr: ZnSe laser,” in Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS),2010Conference on, (IEEE, 2010), 1–2.
  20. S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
    [Crossref]
  21. X. Vidal and J. Martorell, “Generation of light in media with a random distribution of nonlinear domains,” Phys. Rev. Lett. 97(1), 013902 (2006).
    [Crossref] [PubMed]
  22. A. Dubietis, G. Tamošauskas, R. Šuminas, V. Jukna, and A. Couairon, “Ultrafast supercontinuum generation in bulk condensed media,” Lith. J. Phys. 57(3), 113–157 (2017).
    [Crossref]
  23. W. Stutius, “Growth and doping of ZnSe and ZnSxSe1-x by organometallic chemical vapor deposition,” J. Cryst. Growth 59(1-2), 1–9 (1982).
    [Crossref]
  24. A. Kamata, H. Mitsuhashi, and H. Fujita, “Origin of the low doping efficiency of nitrogen acceptors in ZnSe grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 63(24), 3353–3354 (1993).
    [Crossref]
  25. K. Terashima, M. Kawachi, and M. Takena, “Growth of ZnSe crystals by nonstoichiometric annealing,” J. Cryst. Growth 102(3), 387–392 (1990).
    [Crossref]
  26. K. Terashima, M. Kawachi, and M. Takena, “Characteristics of ZnSe crystals annealed under host atom atmospheres,” J. Cryst. Growth 104(2), 467–474 (1990).
    [Crossref]
  27. K. Terashima, E. Tokizaki, A. Uedono, and S. Tanigawa, “Study of point defects in bulk ZnSe grown by nonstoichiometric annealing,” Jpn. J. Appl. Phys. 32, 736–740 (1993).
    [Crossref]
  28. R. Triboulet, J. Ndap, A. El Mokri, A. T. Carli, and A. Zozime, “Solid state recrystallization of II-VI semiconductors: application to cadmium telluride, cadmium selenide and zinc selenide,” Le Journal de Physique IV 5, 141–149 (1995).
    [Crossref]
  29. R. Triboulet, J. Ndap, A. Tromson-Carli, P. Lemasson, C. Morhain, and G. Neu, “Growth by solid phase recrystallization and assessment of large ZnSe crystals of high purity and structural perfection,” J. Cryst. Growth 159(1-4), 156–160 (1996).
    [Crossref]
  30. S. Fusil, A. Zozime, R. Penelle, F. Grillon, C. Le Paven, A. Rivière, and R. Triboulet, “Grain growth of ZnSe recrystallized in the solid phase,” in Solid State Phenomena, (Trans Tech Publ, 1998), 311–316.
  31. E. Rzepka, J. Roger, P. Lemasson, and R. Triboulet, “Optical transmission of ZnSe crystals grown by solid phase recrystallization,” J. Cryst. Growth 197(3), 480–484 (1999).
    [Crossref]
  32. R. Triboulet, “Solid state recrystallization: a promising technique for the growth of semiconductor materials,” Cryst. Res. Technol. 38(35), 215–224 (2003).
    [Crossref]
  33. R. L. Holman, “Novel uses of gravimetry in the processing of crystalline ceramics,” in Processing of Crystalline Ceramics (Springer, 1978), pp. 343–358.
  34. P. Lemasson, J. Ndap, S. Fusil, A. Riviere, B. Qu’hen, A. Lusson, G. Neu, E. Tournie, G. Geoffroy, A. Zozime, and R. Triboulet, “New results and trends in the solid phase recrystallization of ZnSe,” Mater. Lett. 36(1-4), 162–166 (1998).
    [Crossref]
  35. K. Moriya and T. Ogawa, “Growth history of a synthetic quartz crystal,” J. Cryst. Growth 58(1), 115–121 (1982).
    [Crossref]
  36. P. Gall-Borrut, T. Rakotomavo, M. Boncoeur, M. Valin, and F. Guastavino, “Observation of defect structure in ceramic oxides by laser scattering tomography,” in Window and Dome Technologies and Materials II, (International Society for Optics and Photonics, 1990), 54–59.
  37. J. Donecker and M. Naumann, “Laser scattering tomography for crystal characterization: Quantitative approaches,” Crystal Research and Technology: Journal of Experimental and Industrial Crystallography 37, 147–157 (2002).
  38. J. Burke and D. Turnbull, “Recrystallization and grain growth,” Prog. Met. Phys. 3, 220–292 (1952).
    [Crossref]
  39. I. Avetissov, K. Chang, N. Zhavoronkov, A. Davydov, E. Mozhevitina, A. Khomyakov, S. Kobeleva, and S. Neustroev, “Nonstoichiometry and luminescent properties of ZnSe crystals grown from melt and vapor,” J. Cryst. Growth 401, 686–690 (2014).
    [Crossref]
  40. C. Pande, “On a stochastic theory of grain growth,” Acta Metall. 35(11), 2671–2678 (1987).
    [Crossref]
  41. W. H. Press, Numerical recipes 3rd edition: The art of scientific computing (Cambridge university press, 2007).

2018 (1)

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

2017 (2)

A. Dubietis, G. Tamošauskas, R. Šuminas, V. Jukna, and A. Couairon, “Ultrafast supercontinuum generation in bulk condensed media,” Lith. J. Phys. 57(3), 113–157 (2017).
[Crossref]

Q. Ru, N. Lee, X. Chen, K. Zhong, G. Tsoy, M. Mirov, S. Vasilyev, S. B. Mirov, and K. L. Vodopyanov, “Optical parametric oscillation in a random polycrystalline medium,” Optica 4(6), 617–618 (2017).
[Crossref]

2014 (1)

I. Avetissov, K. Chang, N. Zhavoronkov, A. Davydov, E. Mozhevitina, A. Khomyakov, S. Kobeleva, and S. Neustroev, “Nonstoichiometry and luminescent properties of ZnSe crystals grown from melt and vapor,” J. Cryst. Growth 401, 686–690 (2014).
[Crossref]

2012 (1)

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phase matched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

2006 (2)

K. Vodopyanov, M. Fejer, X. Yu, J. Harris, Y.-S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

X. Vidal and J. Martorell, “Generation of light in media with a random distribution of nonlinear domains,” Phys. Rev. Lett. 97(1), 013902 (2006).
[Crossref] [PubMed]

2004 (3)

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
[Crossref] [PubMed]

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29(16), 1912–1914 (2004).
[Crossref] [PubMed]

E. Y. Morozov and A. S. Chirkin, “Stochastic quasi-phase matching in nonlinear-optical crystals with an irregular domain structure,” Quantum Electron. 34(3), 227–232 (2004).
[Crossref]

2003 (1)

R. Triboulet, “Solid state recrystallization: a promising technique for the growth of semiconductor materials,” Cryst. Res. Technol. 38(35), 215–224 (2003).
[Crossref]

2002 (1)

J. Donecker and M. Naumann, “Laser scattering tomography for crystal characterization: Quantitative approaches,” Crystal Research and Technology: Journal of Experimental and Industrial Crystallography 37, 147–157 (2002).

2001 (2)

C. Zhang, C. Wang, J. Yang, L. R. Dalton, G. Sun, H. Zhang, and W. H. Steier, “Electric poling and relaxation of thermoset polyurethane second-order nonlinear optical materials: Role of cross-linking and monomer rigidity,” Macromolecules 34(2), 235–243 (2001).
[Crossref]

E. Y. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
[Crossref]

1999 (1)

E. Rzepka, J. Roger, P. Lemasson, and R. Triboulet, “Optical transmission of ZnSe crystals grown by solid phase recrystallization,” J. Cryst. Growth 197(3), 480–484 (1999).
[Crossref]

1998 (1)

P. Lemasson, J. Ndap, S. Fusil, A. Riviere, B. Qu’hen, A. Lusson, G. Neu, E. Tournie, G. Geoffroy, A. Zozime, and R. Triboulet, “New results and trends in the solid phase recrystallization of ZnSe,” Mater. Lett. 36(1-4), 162–166 (1998).
[Crossref]

1997 (2)

J. Xu, X. Lu, H. Chen, L. Liu, W. Wang, C. Zhu, and F. Gan, “Second harmonic generation investigation on electric poling effects in fused silica,” Opt. Mater. 8(4), 243–247 (1997).
[Crossref]

D. Zheng, L. Gordon, Y. Wu, R. Route, M. Fejer, R. Byer, and R. Feigelson, “Diffusion bonding of GaAs wafers for nonlinear optics applications,” J. Electrochem. Soc. 144(4), 1439–1441 (1997).
[Crossref]

1996 (2)

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO(3),” Opt. Lett. 21(8), 591–593 (1996).
[Crossref] [PubMed]

R. Triboulet, J. Ndap, A. Tromson-Carli, P. Lemasson, C. Morhain, and G. Neu, “Growth by solid phase recrystallization and assessment of large ZnSe crystals of high purity and structural perfection,” J. Cryst. Growth 159(1-4), 156–160 (1996).
[Crossref]

1995 (2)

1993 (3)

L. Gordon, G. Woods, R. Eckardt, R. Route, R. Feigelson, M. Fejer, and R. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29(22), 1942–1944 (1993).
[Crossref]

K. Terashima, E. Tokizaki, A. Uedono, and S. Tanigawa, “Study of point defects in bulk ZnSe grown by nonstoichiometric annealing,” Jpn. J. Appl. Phys. 32, 736–740 (1993).
[Crossref]

A. Kamata, H. Mitsuhashi, and H. Fujita, “Origin of the low doping efficiency of nitrogen acceptors in ZnSe grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 63(24), 3353–3354 (1993).
[Crossref]

1990 (2)

K. Terashima, M. Kawachi, and M. Takena, “Growth of ZnSe crystals by nonstoichiometric annealing,” J. Cryst. Growth 102(3), 387–392 (1990).
[Crossref]

K. Terashima, M. Kawachi, and M. Takena, “Characteristics of ZnSe crystals annealed under host atom atmospheres,” J. Cryst. Growth 104(2), 467–474 (1990).
[Crossref]

1987 (1)

C. Pande, “On a stochastic theory of grain growth,” Acta Metall. 35(11), 2671–2678 (1987).
[Crossref]

1982 (2)

K. Moriya and T. Ogawa, “Growth history of a synthetic quartz crystal,” J. Cryst. Growth 58(1), 115–121 (1982).
[Crossref]

W. Stutius, “Growth and doping of ZnSe and ZnSxSe1-x by organometallic chemical vapor deposition,” J. Cryst. Growth 59(1-2), 1–9 (1982).
[Crossref]

1952 (1)

J. Burke and D. Turnbull, “Recrystallization and grain growth,” Prog. Met. Phys. 3, 220–292 (1952).
[Crossref]

Avetissov, I.

I. Avetissov, K. Chang, N. Zhavoronkov, A. Davydov, E. Mozhevitina, A. Khomyakov, S. Kobeleva, and S. Neustroev, “Nonstoichiometry and luminescent properties of ZnSe crystals grown from melt and vapor,” J. Cryst. Growth 401, 686–690 (2014).
[Crossref]

Baudrier-Raybaut, M.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
[Crossref] [PubMed]

Becouarn, L.

Bedford, R.

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phase matched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

Bliss, D.

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phase matched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

K. Vodopyanov, M. Fejer, X. Yu, J. Harris, Y.-S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

Bosenberg, W.

Bosenberg, W. R.

Bryant, G.

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phase matched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

Burke, J.

J. Burke and D. Turnbull, “Recrystallization and grain growth,” Prog. Met. Phys. 3, 220–292 (1952).
[Crossref]

Byer, R.

D. Zheng, L. Gordon, Y. Wu, R. Route, M. Fejer, R. Byer, and R. Feigelson, “Diffusion bonding of GaAs wafers for nonlinear optics applications,” J. Electrochem. Soc. 144(4), 1439–1441 (1997).
[Crossref]

L. E. Myers, R. Eckardt, M. Fejer, R. Byer, W. Bosenberg, and J. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO 3,” J. Opt. Soc. Am. B 12(11), 2102–2116 (1995).
[Crossref]

L. Gordon, G. Woods, R. Eckardt, R. Route, R. Feigelson, M. Fejer, and R. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29(22), 1942–1944 (1993).
[Crossref]

Byer, R. L.

Chang, K.

I. Avetissov, K. Chang, N. Zhavoronkov, A. Davydov, E. Mozhevitina, A. Khomyakov, S. Kobeleva, and S. Neustroev, “Nonstoichiometry and luminescent properties of ZnSe crystals grown from melt and vapor,” J. Cryst. Growth 401, 686–690 (2014).
[Crossref]

Chen, H.

J. Xu, X. Lu, H. Chen, L. Liu, W. Wang, C. Zhu, and F. Gan, “Second harmonic generation investigation on electric poling effects in fused silica,” Opt. Mater. 8(4), 243–247 (1997).
[Crossref]

Chen, X.

Chirkin, A. S.

E. Y. Morozov and A. S. Chirkin, “Stochastic quasi-phase matching in nonlinear-optical crystals with an irregular domain structure,” Quantum Electron. 34(3), 227–232 (2004).
[Crossref]

E. Y. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
[Crossref]

Couairon, A.

A. Dubietis, G. Tamošauskas, R. Šuminas, V. Jukna, and A. Couairon, “Ultrafast supercontinuum generation in bulk condensed media,” Lith. J. Phys. 57(3), 113–157 (2017).
[Crossref]

Dalton, L. R.

C. Zhang, C. Wang, J. Yang, L. R. Dalton, G. Sun, H. Zhang, and W. H. Steier, “Electric poling and relaxation of thermoset polyurethane second-order nonlinear optical materials: Role of cross-linking and monomer rigidity,” Macromolecules 34(2), 235–243 (2001).
[Crossref]

Davydov, A.

I. Avetissov, K. Chang, N. Zhavoronkov, A. Davydov, E. Mozhevitina, A. Khomyakov, S. Kobeleva, and S. Neustroev, “Nonstoichiometry and luminescent properties of ZnSe crystals grown from melt and vapor,” J. Cryst. Growth 401, 686–690 (2014).
[Crossref]

Dergachev, A.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

Donecker, J.

J. Donecker and M. Naumann, “Laser scattering tomography for crystal characterization: Quantitative approaches,” Crystal Research and Technology: Journal of Experimental and Industrial Crystallography 37, 147–157 (2002).

Dubietis, A.

A. Dubietis, G. Tamošauskas, R. Šuminas, V. Jukna, and A. Couairon, “Ultrafast supercontinuum generation in bulk condensed media,” Lith. J. Phys. 57(3), 113–157 (2017).
[Crossref]

Eckardt, R.

L. E. Myers, R. Eckardt, M. Fejer, R. Byer, W. Bosenberg, and J. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO 3,” J. Opt. Soc. Am. B 12(11), 2102–2116 (1995).
[Crossref]

L. Gordon, G. Woods, R. Eckardt, R. Route, R. Feigelson, M. Fejer, and R. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29(22), 1942–1944 (1993).
[Crossref]

Eckardt, R. C.

Fedorov, V.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

Feigelson, R.

D. Zheng, L. Gordon, Y. Wu, R. Route, M. Fejer, R. Byer, and R. Feigelson, “Diffusion bonding of GaAs wafers for nonlinear optics applications,” J. Electrochem. Soc. 144(4), 1439–1441 (1997).
[Crossref]

L. Gordon, G. Woods, R. Eckardt, R. Route, R. Feigelson, M. Fejer, and R. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29(22), 1942–1944 (1993).
[Crossref]

Fejer, M.

K. Vodopyanov, M. Fejer, X. Yu, J. Harris, Y.-S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

D. Zheng, L. Gordon, Y. Wu, R. Route, M. Fejer, R. Byer, and R. Feigelson, “Diffusion bonding of GaAs wafers for nonlinear optics applications,” J. Electrochem. Soc. 144(4), 1439–1441 (1997).
[Crossref]

L. E. Myers, R. Eckardt, M. Fejer, R. Byer, W. Bosenberg, and J. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO 3,” J. Opt. Soc. Am. B 12(11), 2102–2116 (1995).
[Crossref]

L. Gordon, G. Woods, R. Eckardt, R. Route, R. Feigelson, M. Fejer, and R. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29(22), 1942–1944 (1993).
[Crossref]

Fejer, M. M.

Fujita, H.

A. Kamata, H. Mitsuhashi, and H. Fujita, “Origin of the low doping efficiency of nitrogen acceptors in ZnSe grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 63(24), 3353–3354 (1993).
[Crossref]

Fusil, S.

P. Lemasson, J. Ndap, S. Fusil, A. Riviere, B. Qu’hen, A. Lusson, G. Neu, E. Tournie, G. Geoffroy, A. Zozime, and R. Triboulet, “New results and trends in the solid phase recrystallization of ZnSe,” Mater. Lett. 36(1-4), 162–166 (1998).
[Crossref]

Gan, F.

J. Xu, X. Lu, H. Chen, L. Liu, W. Wang, C. Zhu, and F. Gan, “Second harmonic generation investigation on electric poling effects in fused silica,” Opt. Mater. 8(4), 243–247 (1997).
[Crossref]

Gapontsev, V.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

Geoffroy, G.

P. Lemasson, J. Ndap, S. Fusil, A. Riviere, B. Qu’hen, A. Lusson, G. Neu, E. Tournie, G. Geoffroy, A. Zozime, and R. Triboulet, “New results and trends in the solid phase recrystallization of ZnSe,” Mater. Lett. 36(1-4), 162–166 (1998).
[Crossref]

Gerard, B.

Goodhue, W.

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phase matched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

Gordon, L.

D. Zheng, L. Gordon, Y. Wu, R. Route, M. Fejer, R. Byer, and R. Feigelson, “Diffusion bonding of GaAs wafers for nonlinear optics applications,” J. Electrochem. Soc. 144(4), 1439–1441 (1997).
[Crossref]

L. Gordon, G. Woods, R. Eckardt, R. Route, R. Feigelson, M. Fejer, and R. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29(22), 1942–1944 (1993).
[Crossref]

Haïdar, R.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
[Crossref] [PubMed]

Harris, J.

K. Vodopyanov, M. Fejer, X. Yu, J. Harris, Y.-S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

Harris, J. S.

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phase matched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29(16), 1912–1914 (2004).
[Crossref] [PubMed]

Hurlbut, W. C.

K. Vodopyanov, M. Fejer, X. Yu, J. Harris, Y.-S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

Jukna, V.

A. Dubietis, G. Tamošauskas, R. Šuminas, V. Jukna, and A. Couairon, “Ultrafast supercontinuum generation in bulk condensed media,” Lith. J. Phys. 57(3), 113–157 (2017).
[Crossref]

Kamata, A.

A. Kamata, H. Mitsuhashi, and H. Fujita, “Origin of the low doping efficiency of nitrogen acceptors in ZnSe grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 63(24), 3353–3354 (1993).
[Crossref]

Kaminskii, A. A.

E. Y. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
[Crossref]

Kawachi, M.

K. Terashima, M. Kawachi, and M. Takena, “Growth of ZnSe crystals by nonstoichiometric annealing,” J. Cryst. Growth 102(3), 387–392 (1990).
[Crossref]

K. Terashima, M. Kawachi, and M. Takena, “Characteristics of ZnSe crystals annealed under host atom atmospheres,” J. Cryst. Growth 104(2), 467–474 (1990).
[Crossref]

Khomyakov, A.

I. Avetissov, K. Chang, N. Zhavoronkov, A. Davydov, E. Mozhevitina, A. Khomyakov, S. Kobeleva, and S. Neustroev, “Nonstoichiometry and luminescent properties of ZnSe crystals grown from melt and vapor,” J. Cryst. Growth 401, 686–690 (2014).
[Crossref]

Kobeleva, S.

I. Avetissov, K. Chang, N. Zhavoronkov, A. Davydov, E. Mozhevitina, A. Khomyakov, S. Kobeleva, and S. Neustroev, “Nonstoichiometry and luminescent properties of ZnSe crystals grown from melt and vapor,” J. Cryst. Growth 401, 686–690 (2014).
[Crossref]

Kozlov, V.

K. Vodopyanov, M. Fejer, X. Yu, J. Harris, Y.-S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

Kuo, P. S.

Kupecek, P.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
[Crossref] [PubMed]

Lallier, E.

Lee, N.

Lee, Y.-S.

K. Vodopyanov, M. Fejer, X. Yu, J. Harris, Y.-S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

Lemasson, P.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
[Crossref] [PubMed]

E. Rzepka, J. Roger, P. Lemasson, and R. Triboulet, “Optical transmission of ZnSe crystals grown by solid phase recrystallization,” J. Cryst. Growth 197(3), 480–484 (1999).
[Crossref]

P. Lemasson, J. Ndap, S. Fusil, A. Riviere, B. Qu’hen, A. Lusson, G. Neu, E. Tournie, G. Geoffroy, A. Zozime, and R. Triboulet, “New results and trends in the solid phase recrystallization of ZnSe,” Mater. Lett. 36(1-4), 162–166 (1998).
[Crossref]

R. Triboulet, J. Ndap, A. Tromson-Carli, P. Lemasson, C. Morhain, and G. Neu, “Growth by solid phase recrystallization and assessment of large ZnSe crystals of high purity and structural perfection,” J. Cryst. Growth 159(1-4), 156–160 (1996).
[Crossref]

Levi, O.

Lin, A.

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phase matched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

Liu, L.

J. Xu, X. Lu, H. Chen, L. Liu, W. Wang, C. Zhu, and F. Gan, “Second harmonic generation investigation on electric poling effects in fused silica,” Opt. Mater. 8(4), 243–247 (1997).
[Crossref]

Lu, X.

J. Xu, X. Lu, H. Chen, L. Liu, W. Wang, C. Zhu, and F. Gan, “Second harmonic generation investigation on electric poling effects in fused silica,” Opt. Mater. 8(4), 243–247 (1997).
[Crossref]

Lusson, A.

P. Lemasson, J. Ndap, S. Fusil, A. Riviere, B. Qu’hen, A. Lusson, G. Neu, E. Tournie, G. Geoffroy, A. Zozime, and R. Triboulet, “New results and trends in the solid phase recrystallization of ZnSe,” Mater. Lett. 36(1-4), 162–166 (1998).
[Crossref]

Lynch, C.

K. Vodopyanov, M. Fejer, X. Yu, J. Harris, Y.-S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

Mann, M.

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phase matched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

Martorell, J.

X. Vidal and J. Martorell, “Generation of light in media with a random distribution of nonlinear domains,” Phys. Rev. Lett. 97(1), 013902 (2006).
[Crossref] [PubMed]

Martyshkin, D.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

Miller, G. D.

Mirov, M.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

Q. Ru, N. Lee, X. Chen, K. Zhong, G. Tsoy, M. Mirov, S. Vasilyev, S. B. Mirov, and K. L. Vodopyanov, “Optical parametric oscillation in a random polycrystalline medium,” Optica 4(6), 617–618 (2017).
[Crossref]

Mirov, S.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

Mirov, S. B.

Mitsuhashi, H.

A. Kamata, H. Mitsuhashi, and H. Fujita, “Origin of the low doping efficiency of nitrogen acceptors in ZnSe grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 63(24), 3353–3354 (1993).
[Crossref]

Morhain, C.

R. Triboulet, J. Ndap, A. Tromson-Carli, P. Lemasson, C. Morhain, and G. Neu, “Growth by solid phase recrystallization and assessment of large ZnSe crystals of high purity and structural perfection,” J. Cryst. Growth 159(1-4), 156–160 (1996).
[Crossref]

Moriya, K.

K. Moriya and T. Ogawa, “Growth history of a synthetic quartz crystal,” J. Cryst. Growth 58(1), 115–121 (1982).
[Crossref]

Morozov, E. Y.

E. Y. Morozov and A. S. Chirkin, “Stochastic quasi-phase matching in nonlinear-optical crystals with an irregular domain structure,” Quantum Electron. 34(3), 227–232 (2004).
[Crossref]

E. Y. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
[Crossref]

Moskalev, I.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

Mozhevitina, E.

I. Avetissov, K. Chang, N. Zhavoronkov, A. Davydov, E. Mozhevitina, A. Khomyakov, S. Kobeleva, and S. Neustroev, “Nonstoichiometry and luminescent properties of ZnSe crystals grown from melt and vapor,” J. Cryst. Growth 401, 686–690 (2014).
[Crossref]

Myers, L. E.

Naumann, M.

J. Donecker and M. Naumann, “Laser scattering tomography for crystal characterization: Quantitative approaches,” Crystal Research and Technology: Journal of Experimental and Industrial Crystallography 37, 147–157 (2002).

Ndap, J.

P. Lemasson, J. Ndap, S. Fusil, A. Riviere, B. Qu’hen, A. Lusson, G. Neu, E. Tournie, G. Geoffroy, A. Zozime, and R. Triboulet, “New results and trends in the solid phase recrystallization of ZnSe,” Mater. Lett. 36(1-4), 162–166 (1998).
[Crossref]

R. Triboulet, J. Ndap, A. Tromson-Carli, P. Lemasson, C. Morhain, and G. Neu, “Growth by solid phase recrystallization and assessment of large ZnSe crystals of high purity and structural perfection,” J. Cryst. Growth 159(1-4), 156–160 (1996).
[Crossref]

Neu, G.

P. Lemasson, J. Ndap, S. Fusil, A. Riviere, B. Qu’hen, A. Lusson, G. Neu, E. Tournie, G. Geoffroy, A. Zozime, and R. Triboulet, “New results and trends in the solid phase recrystallization of ZnSe,” Mater. Lett. 36(1-4), 162–166 (1998).
[Crossref]

R. Triboulet, J. Ndap, A. Tromson-Carli, P. Lemasson, C. Morhain, and G. Neu, “Growth by solid phase recrystallization and assessment of large ZnSe crystals of high purity and structural perfection,” J. Cryst. Growth 159(1-4), 156–160 (1996).
[Crossref]

Neustroev, S.

I. Avetissov, K. Chang, N. Zhavoronkov, A. Davydov, E. Mozhevitina, A. Khomyakov, S. Kobeleva, and S. Neustroev, “Nonstoichiometry and luminescent properties of ZnSe crystals grown from melt and vapor,” J. Cryst. Growth 401, 686–690 (2014).
[Crossref]

Ogawa, T.

K. Moriya and T. Ogawa, “Growth history of a synthetic quartz crystal,” J. Cryst. Growth 58(1), 115–121 (1982).
[Crossref]

Pande, C.

C. Pande, “On a stochastic theory of grain growth,” Acta Metall. 35(11), 2671–2678 (1987).
[Crossref]

Peppers, J.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

Peterson, R.

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phase matched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

Pierce, J.

Pinguet, T. J.

Qu’hen, B.

P. Lemasson, J. Ndap, S. Fusil, A. Riviere, B. Qu’hen, A. Lusson, G. Neu, E. Tournie, G. Geoffroy, A. Zozime, and R. Triboulet, “New results and trends in the solid phase recrystallization of ZnSe,” Mater. Lett. 36(1-4), 162–166 (1998).
[Crossref]

Riviere, A.

P. Lemasson, J. Ndap, S. Fusil, A. Riviere, B. Qu’hen, A. Lusson, G. Neu, E. Tournie, G. Geoffroy, A. Zozime, and R. Triboulet, “New results and trends in the solid phase recrystallization of ZnSe,” Mater. Lett. 36(1-4), 162–166 (1998).
[Crossref]

Roger, J.

E. Rzepka, J. Roger, P. Lemasson, and R. Triboulet, “Optical transmission of ZnSe crystals grown by solid phase recrystallization,” J. Cryst. Growth 197(3), 480–484 (1999).
[Crossref]

Rosencher, E.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
[Crossref] [PubMed]

Route, R.

D. Zheng, L. Gordon, Y. Wu, R. Route, M. Fejer, R. Byer, and R. Feigelson, “Diffusion bonding of GaAs wafers for nonlinear optics applications,” J. Electrochem. Soc. 144(4), 1439–1441 (1997).
[Crossref]

L. Gordon, G. Woods, R. Eckardt, R. Route, R. Feigelson, M. Fejer, and R. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29(22), 1942–1944 (1993).
[Crossref]

Ru, Q.

Rzepka, E.

E. Rzepka, J. Roger, P. Lemasson, and R. Triboulet, “Optical transmission of ZnSe crystals grown by solid phase recrystallization,” J. Cryst. Growth 197(3), 480–484 (1999).
[Crossref]

Smolski, V.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

Snure, M.

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phase matched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

Steier, W. H.

C. Zhang, C. Wang, J. Yang, L. R. Dalton, G. Sun, H. Zhang, and W. H. Steier, “Electric poling and relaxation of thermoset polyurethane second-order nonlinear optical materials: Role of cross-linking and monomer rigidity,” Macromolecules 34(2), 235–243 (2001).
[Crossref]

Stutius, W.

W. Stutius, “Growth and doping of ZnSe and ZnSxSe1-x by organometallic chemical vapor deposition,” J. Cryst. Growth 59(1-2), 1–9 (1982).
[Crossref]

Šuminas, R.

A. Dubietis, G. Tamošauskas, R. Šuminas, V. Jukna, and A. Couairon, “Ultrafast supercontinuum generation in bulk condensed media,” Lith. J. Phys. 57(3), 113–157 (2017).
[Crossref]

Sun, G.

C. Zhang, C. Wang, J. Yang, L. R. Dalton, G. Sun, H. Zhang, and W. H. Steier, “Electric poling and relaxation of thermoset polyurethane second-order nonlinear optical materials: Role of cross-linking and monomer rigidity,” Macromolecules 34(2), 235–243 (2001).
[Crossref]

Takena, M.

K. Terashima, M. Kawachi, and M. Takena, “Growth of ZnSe crystals by nonstoichiometric annealing,” J. Cryst. Growth 102(3), 387–392 (1990).
[Crossref]

K. Terashima, M. Kawachi, and M. Takena, “Characteristics of ZnSe crystals annealed under host atom atmospheres,” J. Cryst. Growth 104(2), 467–474 (1990).
[Crossref]

Tamošauskas, G.

A. Dubietis, G. Tamošauskas, R. Šuminas, V. Jukna, and A. Couairon, “Ultrafast supercontinuum generation in bulk condensed media,” Lith. J. Phys. 57(3), 113–157 (2017).
[Crossref]

Tanigawa, S.

K. Terashima, E. Tokizaki, A. Uedono, and S. Tanigawa, “Study of point defects in bulk ZnSe grown by nonstoichiometric annealing,” Jpn. J. Appl. Phys. 32, 736–740 (1993).
[Crossref]

Tassev, V.

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phase matched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

Terashima, K.

K. Terashima, E. Tokizaki, A. Uedono, and S. Tanigawa, “Study of point defects in bulk ZnSe grown by nonstoichiometric annealing,” Jpn. J. Appl. Phys. 32, 736–740 (1993).
[Crossref]

K. Terashima, M. Kawachi, and M. Takena, “Characteristics of ZnSe crystals annealed under host atom atmospheres,” J. Cryst. Growth 104(2), 467–474 (1990).
[Crossref]

K. Terashima, M. Kawachi, and M. Takena, “Growth of ZnSe crystals by nonstoichiometric annealing,” J. Cryst. Growth 102(3), 387–392 (1990).
[Crossref]

Termkoa, K.

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phase matched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

Tetlak, S.

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phase matched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

Tokizaki, E.

K. Terashima, E. Tokizaki, A. Uedono, and S. Tanigawa, “Study of point defects in bulk ZnSe grown by nonstoichiometric annealing,” Jpn. J. Appl. Phys. 32, 736–740 (1993).
[Crossref]

Tournie, E.

P. Lemasson, J. Ndap, S. Fusil, A. Riviere, B. Qu’hen, A. Lusson, G. Neu, E. Tournie, G. Geoffroy, A. Zozime, and R. Triboulet, “New results and trends in the solid phase recrystallization of ZnSe,” Mater. Lett. 36(1-4), 162–166 (1998).
[Crossref]

Triboulet, R.

R. Triboulet, “Solid state recrystallization: a promising technique for the growth of semiconductor materials,” Cryst. Res. Technol. 38(35), 215–224 (2003).
[Crossref]

E. Rzepka, J. Roger, P. Lemasson, and R. Triboulet, “Optical transmission of ZnSe crystals grown by solid phase recrystallization,” J. Cryst. Growth 197(3), 480–484 (1999).
[Crossref]

P. Lemasson, J. Ndap, S. Fusil, A. Riviere, B. Qu’hen, A. Lusson, G. Neu, E. Tournie, G. Geoffroy, A. Zozime, and R. Triboulet, “New results and trends in the solid phase recrystallization of ZnSe,” Mater. Lett. 36(1-4), 162–166 (1998).
[Crossref]

R. Triboulet, J. Ndap, A. Tromson-Carli, P. Lemasson, C. Morhain, and G. Neu, “Growth by solid phase recrystallization and assessment of large ZnSe crystals of high purity and structural perfection,” J. Cryst. Growth 159(1-4), 156–160 (1996).
[Crossref]

Tromson-Carli, A.

R. Triboulet, J. Ndap, A. Tromson-Carli, P. Lemasson, C. Morhain, and G. Neu, “Growth by solid phase recrystallization and assessment of large ZnSe crystals of high purity and structural perfection,” J. Cryst. Growth 159(1-4), 156–160 (1996).
[Crossref]

Tsoy, G.

Turnbull, D.

J. Burke and D. Turnbull, “Recrystallization and grain growth,” Prog. Met. Phys. 3, 220–292 (1952).
[Crossref]

Uedono, A.

K. Terashima, E. Tokizaki, A. Uedono, and S. Tanigawa, “Study of point defects in bulk ZnSe grown by nonstoichiometric annealing,” Jpn. J. Appl. Phys. 32, 736–740 (1993).
[Crossref]

Vangala, S.

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phase matched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

Vasilyev, S.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

Q. Ru, N. Lee, X. Chen, K. Zhong, G. Tsoy, M. Mirov, S. Vasilyev, S. B. Mirov, and K. L. Vodopyanov, “Optical parametric oscillation in a random polycrystalline medium,” Optica 4(6), 617–618 (2017).
[Crossref]

Vidal, X.

X. Vidal and J. Martorell, “Generation of light in media with a random distribution of nonlinear domains,” Phys. Rev. Lett. 97(1), 013902 (2006).
[Crossref] [PubMed]

Vodopyanov, K.

K. Vodopyanov, M. Fejer, X. Yu, J. Harris, Y.-S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

Vodopyanov, K. L.

Wang, C.

C. Zhang, C. Wang, J. Yang, L. R. Dalton, G. Sun, H. Zhang, and W. H. Steier, “Electric poling and relaxation of thermoset polyurethane second-order nonlinear optical materials: Role of cross-linking and monomer rigidity,” Macromolecules 34(2), 235–243 (2001).
[Crossref]

Wang, W.

J. Xu, X. Lu, H. Chen, L. Liu, W. Wang, C. Zhu, and F. Gan, “Second harmonic generation investigation on electric poling effects in fused silica,” Opt. Mater. 8(4), 243–247 (1997).
[Crossref]

Woods, G.

L. Gordon, G. Woods, R. Eckardt, R. Route, R. Feigelson, M. Fejer, and R. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29(22), 1942–1944 (1993).
[Crossref]

Wu, Y.

D. Zheng, L. Gordon, Y. Wu, R. Route, M. Fejer, R. Byer, and R. Feigelson, “Diffusion bonding of GaAs wafers for nonlinear optics applications,” J. Electrochem. Soc. 144(4), 1439–1441 (1997).
[Crossref]

Xu, J.

J. Xu, X. Lu, H. Chen, L. Liu, W. Wang, C. Zhu, and F. Gan, “Second harmonic generation investigation on electric poling effects in fused silica,” Opt. Mater. 8(4), 243–247 (1997).
[Crossref]

Yang, J.

C. Zhang, C. Wang, J. Yang, L. R. Dalton, G. Sun, H. Zhang, and W. H. Steier, “Electric poling and relaxation of thermoset polyurethane second-order nonlinear optical materials: Role of cross-linking and monomer rigidity,” Macromolecules 34(2), 235–243 (2001).
[Crossref]

Yapp, C.

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phase matched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

Yu, X.

K. Vodopyanov, M. Fejer, X. Yu, J. Harris, Y.-S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

Yusupov, D. B.

E. Y. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
[Crossref]

Zhang, C.

C. Zhang, C. Wang, J. Yang, L. R. Dalton, G. Sun, H. Zhang, and W. H. Steier, “Electric poling and relaxation of thermoset polyurethane second-order nonlinear optical materials: Role of cross-linking and monomer rigidity,” Macromolecules 34(2), 235–243 (2001).
[Crossref]

Zhang, H.

C. Zhang, C. Wang, J. Yang, L. R. Dalton, G. Sun, H. Zhang, and W. H. Steier, “Electric poling and relaxation of thermoset polyurethane second-order nonlinear optical materials: Role of cross-linking and monomer rigidity,” Macromolecules 34(2), 235–243 (2001).
[Crossref]

Zhavoronkov, N.

I. Avetissov, K. Chang, N. Zhavoronkov, A. Davydov, E. Mozhevitina, A. Khomyakov, S. Kobeleva, and S. Neustroev, “Nonstoichiometry and luminescent properties of ZnSe crystals grown from melt and vapor,” J. Cryst. Growth 401, 686–690 (2014).
[Crossref]

Zheng, D.

D. Zheng, L. Gordon, Y. Wu, R. Route, M. Fejer, R. Byer, and R. Feigelson, “Diffusion bonding of GaAs wafers for nonlinear optics applications,” J. Electrochem. Soc. 144(4), 1439–1441 (1997).
[Crossref]

Zhong, K.

Zhu, C.

J. Xu, X. Lu, H. Chen, L. Liu, W. Wang, C. Zhu, and F. Gan, “Second harmonic generation investigation on electric poling effects in fused silica,” Opt. Mater. 8(4), 243–247 (1997).
[Crossref]

Zozime, A.

P. Lemasson, J. Ndap, S. Fusil, A. Riviere, B. Qu’hen, A. Lusson, G. Neu, E. Tournie, G. Geoffroy, A. Zozime, and R. Triboulet, “New results and trends in the solid phase recrystallization of ZnSe,” Mater. Lett. 36(1-4), 162–166 (1998).
[Crossref]

Acta Metall. (1)

C. Pande, “On a stochastic theory of grain growth,” Acta Metall. 35(11), 2671–2678 (1987).
[Crossref]

Appl. Phys. Lett. (2)

K. Vodopyanov, M. Fejer, X. Yu, J. Harris, Y.-S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

A. Kamata, H. Mitsuhashi, and H. Fujita, “Origin of the low doping efficiency of nitrogen acceptors in ZnSe grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 63(24), 3353–3354 (1993).
[Crossref]

Cryst. Res. Technol. (1)

R. Triboulet, “Solid state recrystallization: a promising technique for the growth of semiconductor materials,” Cryst. Res. Technol. 38(35), 215–224 (2003).
[Crossref]

Crystal Research and Technology: Journal of Experimental and Industrial Crystallography (1)

J. Donecker and M. Naumann, “Laser scattering tomography for crystal characterization: Quantitative approaches,” Crystal Research and Technology: Journal of Experimental and Industrial Crystallography 37, 147–157 (2002).

Electron. Lett. (1)

L. Gordon, G. Woods, R. Eckardt, R. Route, R. Feigelson, M. Fejer, and R. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29(22), 1942–1944 (1993).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

J. Cryst. Growth (8)

K. Terashima, M. Kawachi, and M. Takena, “Growth of ZnSe crystals by nonstoichiometric annealing,” J. Cryst. Growth 102(3), 387–392 (1990).
[Crossref]

K. Terashima, M. Kawachi, and M. Takena, “Characteristics of ZnSe crystals annealed under host atom atmospheres,” J. Cryst. Growth 104(2), 467–474 (1990).
[Crossref]

K. Moriya and T. Ogawa, “Growth history of a synthetic quartz crystal,” J. Cryst. Growth 58(1), 115–121 (1982).
[Crossref]

R. Triboulet, J. Ndap, A. Tromson-Carli, P. Lemasson, C. Morhain, and G. Neu, “Growth by solid phase recrystallization and assessment of large ZnSe crystals of high purity and structural perfection,” J. Cryst. Growth 159(1-4), 156–160 (1996).
[Crossref]

W. Stutius, “Growth and doping of ZnSe and ZnSxSe1-x by organometallic chemical vapor deposition,” J. Cryst. Growth 59(1-2), 1–9 (1982).
[Crossref]

E. Rzepka, J. Roger, P. Lemasson, and R. Triboulet, “Optical transmission of ZnSe crystals grown by solid phase recrystallization,” J. Cryst. Growth 197(3), 480–484 (1999).
[Crossref]

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phase matched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

I. Avetissov, K. Chang, N. Zhavoronkov, A. Davydov, E. Mozhevitina, A. Khomyakov, S. Kobeleva, and S. Neustroev, “Nonstoichiometry and luminescent properties of ZnSe crystals grown from melt and vapor,” J. Cryst. Growth 401, 686–690 (2014).
[Crossref]

J. Electrochem. Soc. (1)

D. Zheng, L. Gordon, Y. Wu, R. Route, M. Fejer, R. Byer, and R. Feigelson, “Diffusion bonding of GaAs wafers for nonlinear optics applications,” J. Electrochem. Soc. 144(4), 1439–1441 (1997).
[Crossref]

J. Opt. Soc. Am. B (1)

JETP Lett. (1)

E. Y. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Terashima, E. Tokizaki, A. Uedono, and S. Tanigawa, “Study of point defects in bulk ZnSe grown by nonstoichiometric annealing,” Jpn. J. Appl. Phys. 32, 736–740 (1993).
[Crossref]

Lith. J. Phys. (1)

A. Dubietis, G. Tamošauskas, R. Šuminas, V. Jukna, and A. Couairon, “Ultrafast supercontinuum generation in bulk condensed media,” Lith. J. Phys. 57(3), 113–157 (2017).
[Crossref]

Macromolecules (1)

C. Zhang, C. Wang, J. Yang, L. R. Dalton, G. Sun, H. Zhang, and W. H. Steier, “Electric poling and relaxation of thermoset polyurethane second-order nonlinear optical materials: Role of cross-linking and monomer rigidity,” Macromolecules 34(2), 235–243 (2001).
[Crossref]

Mater. Lett. (1)

P. Lemasson, J. Ndap, S. Fusil, A. Riviere, B. Qu’hen, A. Lusson, G. Neu, E. Tournie, G. Geoffroy, A. Zozime, and R. Triboulet, “New results and trends in the solid phase recrystallization of ZnSe,” Mater. Lett. 36(1-4), 162–166 (1998).
[Crossref]

Nature (1)

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
[Crossref] [PubMed]

Opt. Lett. (3)

Opt. Mater. (1)

J. Xu, X. Lu, H. Chen, L. Liu, W. Wang, C. Zhu, and F. Gan, “Second harmonic generation investigation on electric poling effects in fused silica,” Opt. Mater. 8(4), 243–247 (1997).
[Crossref]

Optica (1)

Phys. Rev. Lett. (1)

X. Vidal and J. Martorell, “Generation of light in media with a random distribution of nonlinear domains,” Phys. Rev. Lett. 97(1), 013902 (2006).
[Crossref] [PubMed]

Prog. Met. Phys. (1)

J. Burke and D. Turnbull, “Recrystallization and grain growth,” Prog. Met. Phys. 3, 220–292 (1952).
[Crossref]

Quantum Electron. (1)

E. Y. Morozov and A. S. Chirkin, “Stochastic quasi-phase matching in nonlinear-optical crystals with an irregular domain structure,” Quantum Electron. 34(3), 227–232 (2004).
[Crossref]

Other (10)

E. Sorokin and I. T. Sorokina, “Femtosecond operation and random quasi-phase-matched self-doubling of ceramic Cr: ZnSe laser,” in Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS),2010Conference on, (IEEE, 2010), 1–2.

Q. Ru, T. Kawamori, N. Lee, X. Chen, K. Zhong, M. Mirov, S. Vasilyev, S. B. Mirov, and K. L. Vodopyanov, “Optical parametric oscillation in a random poly-crystalline medium: ZnSe ceramic,” in Nonlinear Frequency Generation and Conversion: Materials and Devices XVII, (International Society for Optics and Photonics, 2018), 1051615.

L. L. Chang and K. Ploog, Molecular beam epitaxy and heterostructures (Springer Science & Business Media, 2012), Vol. 87.

P. G. Schunemann, L. A. Pomeranz, and D. J. Magarrell, “Optical parametric oscillation in quasi-phase-matched GaP,” in Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XIV, (International Society for Optics and Photonics, 2015), 93470J.

V. Tassev, M. Snure, R. Peterson, K. Schepler, R. Bedford, M. Mann, S. Vangala, W. Goodhue, A. Lin, and J. Harris, “Progress in orientation-patterned GaP for next-generation nonlinear optical devices,” in Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XII, (International Society for Optics and Photonics, 2013), 86040V.

R. Triboulet, J. Ndap, A. El Mokri, A. T. Carli, and A. Zozime, “Solid state recrystallization of II-VI semiconductors: application to cadmium telluride, cadmium selenide and zinc selenide,” Le Journal de Physique IV 5, 141–149 (1995).
[Crossref]

S. Fusil, A. Zozime, R. Penelle, F. Grillon, C. Le Paven, A. Rivière, and R. Triboulet, “Grain growth of ZnSe recrystallized in the solid phase,” in Solid State Phenomena, (Trans Tech Publ, 1998), 311–316.

P. Gall-Borrut, T. Rakotomavo, M. Boncoeur, M. Valin, and F. Guastavino, “Observation of defect structure in ceramic oxides by laser scattering tomography,” in Window and Dome Technologies and Materials II, (International Society for Optics and Photonics, 1990), 54–59.

R. L. Holman, “Novel uses of gravimetry in the processing of crystalline ceramics,” in Processing of Crystalline Ceramics (Springer, 1978), pp. 343–358.

W. H. Press, Numerical recipes 3rd edition: The art of scientific computing (Cambridge university press, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Sample microstructures: (a) before annealing, (b) after annealing in Se vapor at 850°C for 168 h, (c) after annealing in Zn vapor at 850°C for 168 h, (d) after annealing in vacuum at 850°C for 168 h. Note the change of scale for figure (b).
Fig. 2
Fig. 2 Grain-size as a function of annealing time (a) at 850°C in different atmospheres, and (b) at 850°C and 1000°C in a Se vapor. d0 = 75 µm.
Fig. 3
Fig. 3 Laser scattering tomography images of (a) original CVD-grown ZnSe ceramic and ZnSe ceramic samples annealed at 850°C for 168 h (b) in selenium; (c) in vacuum and (d) in zinc vapor.
Fig. 4
Fig. 4 (a) Arrhenius plot for ZnSe grain-growth kinetics and (b) ln(k0) as a function of annealing time in Se vapor.
Fig. 5
Fig. 5 Grain-size distributions of a) original CVD-grown ZnSe ceramics; and of annealed ceramics with comparable average grain-sizes (100 µm) after treatment at 850°C under b) Se vapor for 12 h, c) Zn vapor for 168 h and d) vacuum for 168 h. The mean grain-size value and its standard deviation are indicated for each fit.
Fig. 6
Fig. 6 Transmittance spectra of the starting CVD polycrystalline ZnSe, of a 12h-annealed sample in selenium vapor and of a 12h-annealed sample in selenium vapor consequently treated at 700°C for 2 h in a vacuum.
Fig. 7
Fig. 7 Random quasi-phase-matching in a polycrystalline medium. Each block represents a crystallite with random thickness and crystallographic orientation. Light propagates through the thickness of this one-dimensional layered structure.
Fig. 8
Fig. 8 Monte Carlo simulations of the normalized SH intensity as a function of number of grains for varied ZnSe ceramics (see text for details).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

x ¯ ±t(α,N1) s x N
d m (t) d m (0)=kt
k= k 0 exp( E a RT )
bin size=2 IRQ N 3
f(d)= 1 βd 2π exp( (lndα) 2 2 β 2 )
μ=exp(α+ β 2 2 )
σ 2 =exp(2α+ β 2 )[exp( β 2 )1]
E 2ω,r = ω χ r (2) n 2ω cΔk E ω 2 Z r1 Z r e iΔkz dz= ω χ r (2) n 2ω cΔk E ω 2 ( e iΔk X r 1) e iΔk j=1 r1 X j
E 2ω = ω χ (2) n 2ω cΔk E 2 (ω)( p=1 R cos(π y p ) ( e iΔk X p 1) e iΔk j=1 p1 X j )
I 2ω I ω = n 2ω | E 2ω | 2 n ω | E ω | 2 = ω 2 ( χ (2) E ω ) 2 n ω n 2ω c 2 Δ k 2 ( p=1 R cos(π y p ) ( e iΔk X p 1) e iΔk j=1 p1 X j ) 2

Metrics