Abstract

The thermal sensing capabilities of different morphologies (microsphere, fiber, and bulk glass) of an Er3+ doped oxyfluoride glass were characterized in order to determine the most suitable material to be developed as a temperature sensor. For the microsphere and fiber, the displacements of the whispering gallery mode peaks were correlated with the temperature change. The thermal expansion and thermo-optic coefficient of the bulk glass were measured for the numerical simulations of the WGM shift with temperature. On the other hand, a fluorescence intensity ratio technique was used to estimate the temperature of the bulk glass. In order to compare the sensor performance of each sample, the relative sensitivity and temperature uncertainty were determined.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Whispering gallery modes in a glass microsphere as a function of temperature

L. L. Martín, C. Pérez-Rodríguez, P. Haro-González, and I. R. Martín
Opt. Express 19(25) 25792-25798 (2011)

Study on optical properties and upconversion luminescence of Er3+/Yb3+ co-doped tellurite glass for highly sensitive temperature measuring

Jianfeng Tang, Maojun Sun, Yawen Huang, Jie Gou, Yu Zhang, Guannan Li, Yuan Li, Yuhong Man, and Jun Yang
Opt. Mater. Express 7(9) 3238-3250 (2017)

Ultrasensitive thermal sensors based on whispering gallery modes in a polymer core optical ring resonator

Nai Lin, Lan Jiang, Sumei Wang, Hai Xiao, Yongfeng Lu, and Hailung Tsai
Appl. Opt. 50(33) 6254-6260 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. Rostami, H. Ahmadi, H. Heidarzadeh, and A. Taghipour, “Microsphere and Fiber Optics based Optical Sensors,” Opt. Sensors - New Dev. Pract. Appl. (2014).
  2. V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B: Lasers Opt. 88(2), 297–303 (2007).
    [Crossref]
  3. N. M. Hanumegowda, I. M. White, and X. Fan, “Aqueous mercuric ion detection with microsphere optical ring resonator sensors,” Sens. Actuators, B 120(1), 207–212 (2006).
    [Crossref]
  4. M. Bass and W. Koechner, Solid-State Lasers: A Graduate Text (Springer, 2002).
  5. S. Tanabe, “Optical transitions of rare earth ions for amplifiers: How the local structure works in glass,” J. Non-Cryst. Solids 259(1-3), 1–9 (1999).
    [Crossref]
  6. S. Tanabe, H. Hayashi, T. Hanada, and N. Onodera, “Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals,” Opt. Mater. (Amsterdam, Neth.) 19(3), 343–349 (2002).
    [Crossref]
  7. L. Feng, J. Wang, Q. Tang, L. Liang, H. Liang, and Q. Su, “Optical properties of Ho3+-doped novel oxyfluoride glasses,” J. Lumin. 124(2), 187–194 (2007).
    [Crossref]
  8. L. de Sousa-Vieira, S. Ríos, I. R. Martín, L. García-Rodríguez, V. N. Sigaev, V. I. Savinkov, and G. Y. Shakhgildyan, “Whispering gallery modes in a holmium doped glass microsphere: Temperature sensor in the second biological window,” Opt. Mater. (Amsterdam, Neth.) 83, 207–211 (2018).
    [Crossref]
  9. L. L. Martín, C. Pérez-Rodríguez, P. Haro-González, and I. R. Martín, “Whispering gallery modes in a glass microsphere as a function of temperature,” Opt. Express 19(25), 25792 (2011).
    [Crossref]
  10. E. Rivera-Pérez, I. L. Villegas, A. Díez, M. V. Andres, J. L. Cruz, and A. Rodríguez-Cobos, “Measurement of pump-induced temperature increase in doped fibers using whispering-gallery modes,” IEEE Photonics Technol. Lett. 25(24), 2498–2500 (2013).
    [Crossref]
  11. H. Guo, F. Pang, X. Zeng, N. Chen, Z. Chen, and T. Wang, “Temperature sensor using an optical fiber coupler with a thin film.,” Appl. Opt. 47(19), 3530–3534 (2008).
    [Crossref]
  12. C. Pérez-Rodríguez, L. L. Martín, S. F. León-Luis, I. R. Martín, K. K. Kumar, and C. K. Jayasankar, “Relevance of radiative transfer processes on Nd3+ doped phosphate glasses for temperature sensing by means of the fluorescence intensity ratio technique,” Sens. Actuators, B 195, 324–331 (2014).
    [Crossref]
  13. S. A. Wade, “Temperature Measurement Using Rare Earth Doped Fibre Fluorescence,” (1999).
  14. A. Siaï, P. Haro-González, K. Horchani Naifer, and M. Férid, “Optical temperature sensing of Er3+/Yb3 + doped LaGdO3based on fluorescence intensity ratio and lifetime thermometry,” Opt. Mater. 76, 34–41 (2018).
    [Crossref]
  15. T. J. A. Kippenberg, “Nonlinear Optics in Ultra-high-Q Whispering-Gallery Optical Microcavities,” Thesis (2004).
  16. G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. N. Conti, D. Ristic, and S. Soria, “Whispering Gallery Mode microresonators: Fundamentals and applications,” Riv. del Nuovo Cim. 34(7), 435–488 (2011).
    [Crossref]
  17. T. Ioppolo and M. V. Ötügen, “Pressure tuning of whispering gallery mode resonators,” J. Opt. Soc. Am. B 24(10), 2721 (2007).
    [Crossref]
  18. L. Labrador-Páez, K. Soler-Carracedo, M. Hernández-Rodríguez, I. R. Martín, T. Carmon, and L. L. Martin, “Liquid whispering-gallery-mode resonator as a humidity sensor,” Opt. Express 25(2), 1165 (2017).
    [Crossref]
  19. G. Ghosh, “Model for the Thermooptical Coefficients of Some Standard Optical-Glasses,” J. Non-Cryst. Solids 189(1-2), 191–196 (1995).
    [Crossref]
  20. D. S. Sanditov and B. S. Sydykov, “Modulus of elasticity and thermal expansion coefficient of glassy solids,” Phys. Solid State 56(5), 1006–1008 (2014).
    [Crossref]
  21. S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
    [Crossref]
  22. C. D. S. Brites, A. Millán, and L. D. Carlos, “Lanthanides in Luminescent Thermometry,” Handb. Phys. Chem. Rare Earths 49, 339–427 (2016).
    [Crossref]
  23. J. Mendez-Ramos, V. Lavin, I. R. Martin, U. R. Rodriguez-Mendoza, J. A. Gonzalez-Almeida, V. D. Rodriguez, A. D. Lozano-Gorrin, and P. Nunez, “Optical properties of Er 3+ ions in transparent glass ceramics,” J. Alloys Compd. 323-324, 753–758 (2001).
    [Crossref]
  24. P. A. Tick, N. F. Borrelli, L. K. Cornelius, and M. A. Newhouse, “Transparent glass ceramics for 1300 nm amplifier applications,” J. Appl. Phys. 78(11), 6367–6374 (1995).
    [Crossref]
  25. G. R. Elliott, D. W. Hewak, G. S. Murugan, and J. S. Wilkinson, “Chalcogenide glass microspheres; their production, characterization and potential,” Opt. Express 15(26), 17542–17553 (2007).
    [Crossref]
  26. L. L. Martín, P. Haro-González, I. R. Martín, D. Navarro-Urrios, D. Alonso, C. Pérez-Rodríguez, D. Jaque, and N. E. Capuj, “Whispering-gallery modes in glass microspheres: optimization of pumping in a modified confocal microscope,” Opt. Lett. 36(5), 615 (2011).
    [Crossref]
  27. T. J. Kippenberg, A. L. Tchebotareva, J. Kalkman, A. Polman, and K. J. Vahala, “Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity,” Phys. Rev. Lett. 103(2), 027406 (2009).
    [Crossref]
  28. H. Suo, F. Hu, X. Zhao, Z. Zhang, T. Li, C. Duan, M. Yin, and C. Guo, “All-in-one thermometer-heater up-converting platform YF 3:Yb 3+, Tm 3+ operating in the first biological window,” J. Mater. Chem. C 5(6), 1501–1507 (2017).
    [Crossref]
  29. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: Label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [Crossref]

2018 (2)

L. de Sousa-Vieira, S. Ríos, I. R. Martín, L. García-Rodríguez, V. N. Sigaev, V. I. Savinkov, and G. Y. Shakhgildyan, “Whispering gallery modes in a holmium doped glass microsphere: Temperature sensor in the second biological window,” Opt. Mater. (Amsterdam, Neth.) 83, 207–211 (2018).
[Crossref]

A. Siaï, P. Haro-González, K. Horchani Naifer, and M. Férid, “Optical temperature sensing of Er3+/Yb3 + doped LaGdO3based on fluorescence intensity ratio and lifetime thermometry,” Opt. Mater. 76, 34–41 (2018).
[Crossref]

2017 (2)

H. Suo, F. Hu, X. Zhao, Z. Zhang, T. Li, C. Duan, M. Yin, and C. Guo, “All-in-one thermometer-heater up-converting platform YF 3:Yb 3+, Tm 3+ operating in the first biological window,” J. Mater. Chem. C 5(6), 1501–1507 (2017).
[Crossref]

L. Labrador-Páez, K. Soler-Carracedo, M. Hernández-Rodríguez, I. R. Martín, T. Carmon, and L. L. Martin, “Liquid whispering-gallery-mode resonator as a humidity sensor,” Opt. Express 25(2), 1165 (2017).
[Crossref]

2016 (1)

C. D. S. Brites, A. Millán, and L. D. Carlos, “Lanthanides in Luminescent Thermometry,” Handb. Phys. Chem. Rare Earths 49, 339–427 (2016).
[Crossref]

2014 (2)

D. S. Sanditov and B. S. Sydykov, “Modulus of elasticity and thermal expansion coefficient of glassy solids,” Phys. Solid State 56(5), 1006–1008 (2014).
[Crossref]

C. Pérez-Rodríguez, L. L. Martín, S. F. León-Luis, I. R. Martín, K. K. Kumar, and C. K. Jayasankar, “Relevance of radiative transfer processes on Nd3+ doped phosphate glasses for temperature sensing by means of the fluorescence intensity ratio technique,” Sens. Actuators, B 195, 324–331 (2014).
[Crossref]

2013 (1)

E. Rivera-Pérez, I. L. Villegas, A. Díez, M. V. Andres, J. L. Cruz, and A. Rodríguez-Cobos, “Measurement of pump-induced temperature increase in doped fibers using whispering-gallery modes,” IEEE Photonics Technol. Lett. 25(24), 2498–2500 (2013).
[Crossref]

2011 (3)

2009 (1)

T. J. Kippenberg, A. L. Tchebotareva, J. Kalkman, A. Polman, and K. J. Vahala, “Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity,” Phys. Rev. Lett. 103(2), 027406 (2009).
[Crossref]

2008 (2)

H. Guo, F. Pang, X. Zeng, N. Chen, Z. Chen, and T. Wang, “Temperature sensor using an optical fiber coupler with a thin film.,” Appl. Opt. 47(19), 3530–3534 (2008).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: Label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref]

2007 (4)

T. Ioppolo and M. V. Ötügen, “Pressure tuning of whispering gallery mode resonators,” J. Opt. Soc. Am. B 24(10), 2721 (2007).
[Crossref]

G. R. Elliott, D. W. Hewak, G. S. Murugan, and J. S. Wilkinson, “Chalcogenide glass microspheres; their production, characterization and potential,” Opt. Express 15(26), 17542–17553 (2007).
[Crossref]

V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B: Lasers Opt. 88(2), 297–303 (2007).
[Crossref]

L. Feng, J. Wang, Q. Tang, L. Liang, H. Liang, and Q. Su, “Optical properties of Ho3+-doped novel oxyfluoride glasses,” J. Lumin. 124(2), 187–194 (2007).
[Crossref]

2006 (1)

N. M. Hanumegowda, I. M. White, and X. Fan, “Aqueous mercuric ion detection with microsphere optical ring resonator sensors,” Sens. Actuators, B 120(1), 207–212 (2006).
[Crossref]

2002 (1)

S. Tanabe, H. Hayashi, T. Hanada, and N. Onodera, “Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals,” Opt. Mater. (Amsterdam, Neth.) 19(3), 343–349 (2002).
[Crossref]

2001 (1)

J. Mendez-Ramos, V. Lavin, I. R. Martin, U. R. Rodriguez-Mendoza, J. A. Gonzalez-Almeida, V. D. Rodriguez, A. D. Lozano-Gorrin, and P. Nunez, “Optical properties of Er 3+ ions in transparent glass ceramics,” J. Alloys Compd. 323-324, 753–758 (2001).
[Crossref]

1999 (1)

S. Tanabe, “Optical transitions of rare earth ions for amplifiers: How the local structure works in glass,” J. Non-Cryst. Solids 259(1-3), 1–9 (1999).
[Crossref]

1998 (1)

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

1995 (2)

P. A. Tick, N. F. Borrelli, L. K. Cornelius, and M. A. Newhouse, “Transparent glass ceramics for 1300 nm amplifier applications,” J. Appl. Phys. 78(11), 6367–6374 (1995).
[Crossref]

G. Ghosh, “Model for the Thermooptical Coefficients of Some Standard Optical-Glasses,” J. Non-Cryst. Solids 189(1-2), 191–196 (1995).
[Crossref]

Ahmadi, H.

A. Rostami, H. Ahmadi, H. Heidarzadeh, and A. Taghipour, “Microsphere and Fiber Optics based Optical Sensors,” Opt. Sensors - New Dev. Pract. Appl. (2014).

Alonso, D.

Andres, M. V.

E. Rivera-Pérez, I. L. Villegas, A. Díez, M. V. Andres, J. L. Cruz, and A. Rodríguez-Cobos, “Measurement of pump-induced temperature increase in doped fibers using whispering-gallery modes,” IEEE Photonics Technol. Lett. 25(24), 2498–2500 (2013).
[Crossref]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: Label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref]

Bass, M.

M. Bass and W. Koechner, Solid-State Lasers: A Graduate Text (Springer, 2002).

Baxter, G. W.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

Borrelli, N. F.

P. A. Tick, N. F. Borrelli, L. K. Cornelius, and M. A. Newhouse, “Transparent glass ceramics for 1300 nm amplifier applications,” J. Appl. Phys. 78(11), 6367–6374 (1995).
[Crossref]

Brites, C. D. S.

C. D. S. Brites, A. Millán, and L. D. Carlos, “Lanthanides in Luminescent Thermometry,” Handb. Phys. Chem. Rare Earths 49, 339–427 (2016).
[Crossref]

Capuj, N. E.

Carlos, L. D.

C. D. S. Brites, A. Millán, and L. D. Carlos, “Lanthanides in Luminescent Thermometry,” Handb. Phys. Chem. Rare Earths 49, 339–427 (2016).
[Crossref]

Carmon, T.

Chen, N.

Chen, Z.

Collins, S. F.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

Conti, G. N.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. N. Conti, D. Ristic, and S. Soria, “Whispering Gallery Mode microresonators: Fundamentals and applications,” Riv. del Nuovo Cim. 34(7), 435–488 (2011).
[Crossref]

Cornelius, L. K.

P. A. Tick, N. F. Borrelli, L. K. Cornelius, and M. A. Newhouse, “Transparent glass ceramics for 1300 nm amplifier applications,” J. Appl. Phys. 78(11), 6367–6374 (1995).
[Crossref]

Cruz, J. L.

E. Rivera-Pérez, I. L. Villegas, A. Díez, M. V. Andres, J. L. Cruz, and A. Rodríguez-Cobos, “Measurement of pump-induced temperature increase in doped fibers using whispering-gallery modes,” IEEE Photonics Technol. Lett. 25(24), 2498–2500 (2013).
[Crossref]

de Sousa-Vieira, L.

L. de Sousa-Vieira, S. Ríos, I. R. Martín, L. García-Rodríguez, V. N. Sigaev, V. I. Savinkov, and G. Y. Shakhgildyan, “Whispering gallery modes in a holmium doped glass microsphere: Temperature sensor in the second biological window,” Opt. Mater. (Amsterdam, Neth.) 83, 207–211 (2018).
[Crossref]

Díez, A.

E. Rivera-Pérez, I. L. Villegas, A. Díez, M. V. Andres, J. L. Cruz, and A. Rodríguez-Cobos, “Measurement of pump-induced temperature increase in doped fibers using whispering-gallery modes,” IEEE Photonics Technol. Lett. 25(24), 2498–2500 (2013).
[Crossref]

Duan, C.

H. Suo, F. Hu, X. Zhao, Z. Zhang, T. Li, C. Duan, M. Yin, and C. Guo, “All-in-one thermometer-heater up-converting platform YF 3:Yb 3+, Tm 3+ operating in the first biological window,” J. Mater. Chem. C 5(6), 1501–1507 (2017).
[Crossref]

Dumeige, Y.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. N. Conti, D. Ristic, and S. Soria, “Whispering Gallery Mode microresonators: Fundamentals and applications,” Riv. del Nuovo Cim. 34(7), 435–488 (2011).
[Crossref]

Elliott, G. R.

Fan, X.

N. M. Hanumegowda, I. M. White, and X. Fan, “Aqueous mercuric ion detection with microsphere optical ring resonator sensors,” Sens. Actuators, B 120(1), 207–212 (2006).
[Crossref]

Feng, L.

L. Feng, J. Wang, Q. Tang, L. Liang, H. Liang, and Q. Su, “Optical properties of Ho3+-doped novel oxyfluoride glasses,” J. Lumin. 124(2), 187–194 (2007).
[Crossref]

Férid, M.

A. Siaï, P. Haro-González, K. Horchani Naifer, and M. Férid, “Optical temperature sensing of Er3+/Yb3 + doped LaGdO3based on fluorescence intensity ratio and lifetime thermometry,” Opt. Mater. 76, 34–41 (2018).
[Crossref]

Féron, P.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. N. Conti, D. Ristic, and S. Soria, “Whispering Gallery Mode microresonators: Fundamentals and applications,” Riv. del Nuovo Cim. 34(7), 435–488 (2011).
[Crossref]

Ferrari, M.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. N. Conti, D. Ristic, and S. Soria, “Whispering Gallery Mode microresonators: Fundamentals and applications,” Riv. del Nuovo Cim. 34(7), 435–488 (2011).
[Crossref]

García-Rodríguez, L.

L. de Sousa-Vieira, S. Ríos, I. R. Martín, L. García-Rodríguez, V. N. Sigaev, V. I. Savinkov, and G. Y. Shakhgildyan, “Whispering gallery modes in a holmium doped glass microsphere: Temperature sensor in the second biological window,” Opt. Mater. (Amsterdam, Neth.) 83, 207–211 (2018).
[Crossref]

Ghosh, G.

G. Ghosh, “Model for the Thermooptical Coefficients of Some Standard Optical-Glasses,” J. Non-Cryst. Solids 189(1-2), 191–196 (1995).
[Crossref]

Gonzalez-Almeida, J. A.

J. Mendez-Ramos, V. Lavin, I. R. Martin, U. R. Rodriguez-Mendoza, J. A. Gonzalez-Almeida, V. D. Rodriguez, A. D. Lozano-Gorrin, and P. Nunez, “Optical properties of Er 3+ ions in transparent glass ceramics,” J. Alloys Compd. 323-324, 753–758 (2001).
[Crossref]

Grattan, K. T. V.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

Guo, C.

H. Suo, F. Hu, X. Zhao, Z. Zhang, T. Li, C. Duan, M. Yin, and C. Guo, “All-in-one thermometer-heater up-converting platform YF 3:Yb 3+, Tm 3+ operating in the first biological window,” J. Mater. Chem. C 5(6), 1501–1507 (2017).
[Crossref]

Guo, H.

Hanada, T.

S. Tanabe, H. Hayashi, T. Hanada, and N. Onodera, “Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals,” Opt. Mater. (Amsterdam, Neth.) 19(3), 343–349 (2002).
[Crossref]

Hanumegowda, N. M.

N. M. Hanumegowda, I. M. White, and X. Fan, “Aqueous mercuric ion detection with microsphere optical ring resonator sensors,” Sens. Actuators, B 120(1), 207–212 (2006).
[Crossref]

Haro-González, P.

Hayashi, H.

S. Tanabe, H. Hayashi, T. Hanada, and N. Onodera, “Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals,” Opt. Mater. (Amsterdam, Neth.) 19(3), 343–349 (2002).
[Crossref]

Heidarzadeh, H.

A. Rostami, H. Ahmadi, H. Heidarzadeh, and A. Taghipour, “Microsphere and Fiber Optics based Optical Sensors,” Opt. Sensors - New Dev. Pract. Appl. (2014).

Hernández-Rodríguez, M.

Hewak, D. W.

Horchani Naifer, K.

A. Siaï, P. Haro-González, K. Horchani Naifer, and M. Férid, “Optical temperature sensing of Er3+/Yb3 + doped LaGdO3based on fluorescence intensity ratio and lifetime thermometry,” Opt. Mater. 76, 34–41 (2018).
[Crossref]

Hu, F.

H. Suo, F. Hu, X. Zhao, Z. Zhang, T. Li, C. Duan, M. Yin, and C. Guo, “All-in-one thermometer-heater up-converting platform YF 3:Yb 3+, Tm 3+ operating in the first biological window,” J. Mater. Chem. C 5(6), 1501–1507 (2017).
[Crossref]

Ioppolo, T.

Jaque, D.

Jayasankar, C. K.

C. Pérez-Rodríguez, L. L. Martín, S. F. León-Luis, I. R. Martín, K. K. Kumar, and C. K. Jayasankar, “Relevance of radiative transfer processes on Nd3+ doped phosphate glasses for temperature sensing by means of the fluorescence intensity ratio technique,” Sens. Actuators, B 195, 324–331 (2014).
[Crossref]

Kalkman, J.

T. J. Kippenberg, A. L. Tchebotareva, J. Kalkman, A. Polman, and K. J. Vahala, “Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity,” Phys. Rev. Lett. 103(2), 027406 (2009).
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg, A. L. Tchebotareva, J. Kalkman, A. Polman, and K. J. Vahala, “Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity,” Phys. Rev. Lett. 103(2), 027406 (2009).
[Crossref]

Kippenberg, T. J. A.

T. J. A. Kippenberg, “Nonlinear Optics in Ultra-high-Q Whispering-Gallery Optical Microcavities,” Thesis (2004).

Koechner, W.

M. Bass and W. Koechner, Solid-State Lasers: A Graduate Text (Springer, 2002).

Kumar, K. K.

C. Pérez-Rodríguez, L. L. Martín, S. F. León-Luis, I. R. Martín, K. K. Kumar, and C. K. Jayasankar, “Relevance of radiative transfer processes on Nd3+ doped phosphate glasses for temperature sensing by means of the fluorescence intensity ratio technique,” Sens. Actuators, B 195, 324–331 (2014).
[Crossref]

Labrador-Páez, L.

Lavin, V.

J. Mendez-Ramos, V. Lavin, I. R. Martin, U. R. Rodriguez-Mendoza, J. A. Gonzalez-Almeida, V. D. Rodriguez, A. D. Lozano-Gorrin, and P. Nunez, “Optical properties of Er 3+ ions in transparent glass ceramics,” J. Alloys Compd. 323-324, 753–758 (2001).
[Crossref]

León-Luis, S. F.

C. Pérez-Rodríguez, L. L. Martín, S. F. León-Luis, I. R. Martín, K. K. Kumar, and C. K. Jayasankar, “Relevance of radiative transfer processes on Nd3+ doped phosphate glasses for temperature sensing by means of the fluorescence intensity ratio technique,” Sens. Actuators, B 195, 324–331 (2014).
[Crossref]

Li, T.

H. Suo, F. Hu, X. Zhao, Z. Zhang, T. Li, C. Duan, M. Yin, and C. Guo, “All-in-one thermometer-heater up-converting platform YF 3:Yb 3+, Tm 3+ operating in the first biological window,” J. Mater. Chem. C 5(6), 1501–1507 (2017).
[Crossref]

Liang, H.

L. Feng, J. Wang, Q. Tang, L. Liang, H. Liang, and Q. Su, “Optical properties of Ho3+-doped novel oxyfluoride glasses,” J. Lumin. 124(2), 187–194 (2007).
[Crossref]

Liang, L.

L. Feng, J. Wang, Q. Tang, L. Liang, H. Liang, and Q. Su, “Optical properties of Ho3+-doped novel oxyfluoride glasses,” J. Lumin. 124(2), 187–194 (2007).
[Crossref]

Lozano-Gorrin, A. D.

J. Mendez-Ramos, V. Lavin, I. R. Martin, U. R. Rodriguez-Mendoza, J. A. Gonzalez-Almeida, V. D. Rodriguez, A. D. Lozano-Gorrin, and P. Nunez, “Optical properties of Er 3+ ions in transparent glass ceramics,” J. Alloys Compd. 323-324, 753–758 (2001).
[Crossref]

Martin, I. R.

J. Mendez-Ramos, V. Lavin, I. R. Martin, U. R. Rodriguez-Mendoza, J. A. Gonzalez-Almeida, V. D. Rodriguez, A. D. Lozano-Gorrin, and P. Nunez, “Optical properties of Er 3+ ions in transparent glass ceramics,” J. Alloys Compd. 323-324, 753–758 (2001).
[Crossref]

Martin, L. L.

Martín, I. R.

L. de Sousa-Vieira, S. Ríos, I. R. Martín, L. García-Rodríguez, V. N. Sigaev, V. I. Savinkov, and G. Y. Shakhgildyan, “Whispering gallery modes in a holmium doped glass microsphere: Temperature sensor in the second biological window,” Opt. Mater. (Amsterdam, Neth.) 83, 207–211 (2018).
[Crossref]

L. Labrador-Páez, K. Soler-Carracedo, M. Hernández-Rodríguez, I. R. Martín, T. Carmon, and L. L. Martin, “Liquid whispering-gallery-mode resonator as a humidity sensor,” Opt. Express 25(2), 1165 (2017).
[Crossref]

C. Pérez-Rodríguez, L. L. Martín, S. F. León-Luis, I. R. Martín, K. K. Kumar, and C. K. Jayasankar, “Relevance of radiative transfer processes on Nd3+ doped phosphate glasses for temperature sensing by means of the fluorescence intensity ratio technique,” Sens. Actuators, B 195, 324–331 (2014).
[Crossref]

L. L. Martín, C. Pérez-Rodríguez, P. Haro-González, and I. R. Martín, “Whispering gallery modes in a glass microsphere as a function of temperature,” Opt. Express 19(25), 25792 (2011).
[Crossref]

L. L. Martín, P. Haro-González, I. R. Martín, D. Navarro-Urrios, D. Alonso, C. Pérez-Rodríguez, D. Jaque, and N. E. Capuj, “Whispering-gallery modes in glass microspheres: optimization of pumping in a modified confocal microscope,” Opt. Lett. 36(5), 615 (2011).
[Crossref]

Martín, L. L.

Mendez-Ramos, J.

J. Mendez-Ramos, V. Lavin, I. R. Martin, U. R. Rodriguez-Mendoza, J. A. Gonzalez-Almeida, V. D. Rodriguez, A. D. Lozano-Gorrin, and P. Nunez, “Optical properties of Er 3+ ions in transparent glass ceramics,” J. Alloys Compd. 323-324, 753–758 (2001).
[Crossref]

Millán, A.

C. D. S. Brites, A. Millán, and L. D. Carlos, “Lanthanides in Luminescent Thermometry,” Handb. Phys. Chem. Rare Earths 49, 339–427 (2016).
[Crossref]

Murugan, G. S.

Navarro-Urrios, D.

Newhouse, M. A.

P. A. Tick, N. F. Borrelli, L. K. Cornelius, and M. A. Newhouse, “Transparent glass ceramics for 1300 nm amplifier applications,” J. Appl. Phys. 78(11), 6367–6374 (1995).
[Crossref]

Nunez, P.

J. Mendez-Ramos, V. Lavin, I. R. Martin, U. R. Rodriguez-Mendoza, J. A. Gonzalez-Almeida, V. D. Rodriguez, A. D. Lozano-Gorrin, and P. Nunez, “Optical properties of Er 3+ ions in transparent glass ceramics,” J. Alloys Compd. 323-324, 753–758 (2001).
[Crossref]

Onodera, N.

S. Tanabe, H. Hayashi, T. Hanada, and N. Onodera, “Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals,” Opt. Mater. (Amsterdam, Neth.) 19(3), 343–349 (2002).
[Crossref]

Ötügen, M. V.

Palmer, A. W.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

Pang, F.

Pérez-Rodríguez, C.

Polman, A.

T. J. Kippenberg, A. L. Tchebotareva, J. Kalkman, A. Polman, and K. J. Vahala, “Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity,” Phys. Rev. Lett. 103(2), 027406 (2009).
[Crossref]

Rai, V. K.

V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B: Lasers Opt. 88(2), 297–303 (2007).
[Crossref]

Righini, G. C.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. N. Conti, D. Ristic, and S. Soria, “Whispering Gallery Mode microresonators: Fundamentals and applications,” Riv. del Nuovo Cim. 34(7), 435–488 (2011).
[Crossref]

Ríos, S.

L. de Sousa-Vieira, S. Ríos, I. R. Martín, L. García-Rodríguez, V. N. Sigaev, V. I. Savinkov, and G. Y. Shakhgildyan, “Whispering gallery modes in a holmium doped glass microsphere: Temperature sensor in the second biological window,” Opt. Mater. (Amsterdam, Neth.) 83, 207–211 (2018).
[Crossref]

Ristic, D.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. N. Conti, D. Ristic, and S. Soria, “Whispering Gallery Mode microresonators: Fundamentals and applications,” Riv. del Nuovo Cim. 34(7), 435–488 (2011).
[Crossref]

Rivera-Pérez, E.

E. Rivera-Pérez, I. L. Villegas, A. Díez, M. V. Andres, J. L. Cruz, and A. Rodríguez-Cobos, “Measurement of pump-induced temperature increase in doped fibers using whispering-gallery modes,” IEEE Photonics Technol. Lett. 25(24), 2498–2500 (2013).
[Crossref]

Rodriguez, V. D.

J. Mendez-Ramos, V. Lavin, I. R. Martin, U. R. Rodriguez-Mendoza, J. A. Gonzalez-Almeida, V. D. Rodriguez, A. D. Lozano-Gorrin, and P. Nunez, “Optical properties of Er 3+ ions in transparent glass ceramics,” J. Alloys Compd. 323-324, 753–758 (2001).
[Crossref]

Rodríguez-Cobos, A.

E. Rivera-Pérez, I. L. Villegas, A. Díez, M. V. Andres, J. L. Cruz, and A. Rodríguez-Cobos, “Measurement of pump-induced temperature increase in doped fibers using whispering-gallery modes,” IEEE Photonics Technol. Lett. 25(24), 2498–2500 (2013).
[Crossref]

Rodriguez-Mendoza, U. R.

J. Mendez-Ramos, V. Lavin, I. R. Martin, U. R. Rodriguez-Mendoza, J. A. Gonzalez-Almeida, V. D. Rodriguez, A. D. Lozano-Gorrin, and P. Nunez, “Optical properties of Er 3+ ions in transparent glass ceramics,” J. Alloys Compd. 323-324, 753–758 (2001).
[Crossref]

Rostami, A.

A. Rostami, H. Ahmadi, H. Heidarzadeh, and A. Taghipour, “Microsphere and Fiber Optics based Optical Sensors,” Opt. Sensors - New Dev. Pract. Appl. (2014).

Sanditov, D. S.

D. S. Sanditov and B. S. Sydykov, “Modulus of elasticity and thermal expansion coefficient of glassy solids,” Phys. Solid State 56(5), 1006–1008 (2014).
[Crossref]

Savinkov, V. I.

L. de Sousa-Vieira, S. Ríos, I. R. Martín, L. García-Rodríguez, V. N. Sigaev, V. I. Savinkov, and G. Y. Shakhgildyan, “Whispering gallery modes in a holmium doped glass microsphere: Temperature sensor in the second biological window,” Opt. Mater. (Amsterdam, Neth.) 83, 207–211 (2018).
[Crossref]

Shakhgildyan, G. Y.

L. de Sousa-Vieira, S. Ríos, I. R. Martín, L. García-Rodríguez, V. N. Sigaev, V. I. Savinkov, and G. Y. Shakhgildyan, “Whispering gallery modes in a holmium doped glass microsphere: Temperature sensor in the second biological window,” Opt. Mater. (Amsterdam, Neth.) 83, 207–211 (2018).
[Crossref]

Siaï, A.

A. Siaï, P. Haro-González, K. Horchani Naifer, and M. Férid, “Optical temperature sensing of Er3+/Yb3 + doped LaGdO3based on fluorescence intensity ratio and lifetime thermometry,” Opt. Mater. 76, 34–41 (2018).
[Crossref]

Sigaev, V. N.

L. de Sousa-Vieira, S. Ríos, I. R. Martín, L. García-Rodríguez, V. N. Sigaev, V. I. Savinkov, and G. Y. Shakhgildyan, “Whispering gallery modes in a holmium doped glass microsphere: Temperature sensor in the second biological window,” Opt. Mater. (Amsterdam, Neth.) 83, 207–211 (2018).
[Crossref]

Soler-Carracedo, K.

Soria, S.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. N. Conti, D. Ristic, and S. Soria, “Whispering Gallery Mode microresonators: Fundamentals and applications,” Riv. del Nuovo Cim. 34(7), 435–488 (2011).
[Crossref]

Su, Q.

L. Feng, J. Wang, Q. Tang, L. Liang, H. Liang, and Q. Su, “Optical properties of Ho3+-doped novel oxyfluoride glasses,” J. Lumin. 124(2), 187–194 (2007).
[Crossref]

Sun, T.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

Suo, H.

H. Suo, F. Hu, X. Zhao, Z. Zhang, T. Li, C. Duan, M. Yin, and C. Guo, “All-in-one thermometer-heater up-converting platform YF 3:Yb 3+, Tm 3+ operating in the first biological window,” J. Mater. Chem. C 5(6), 1501–1507 (2017).
[Crossref]

Sydykov, B. S.

D. S. Sanditov and B. S. Sydykov, “Modulus of elasticity and thermal expansion coefficient of glassy solids,” Phys. Solid State 56(5), 1006–1008 (2014).
[Crossref]

Taghipour, A.

A. Rostami, H. Ahmadi, H. Heidarzadeh, and A. Taghipour, “Microsphere and Fiber Optics based Optical Sensors,” Opt. Sensors - New Dev. Pract. Appl. (2014).

Tanabe, S.

S. Tanabe, H. Hayashi, T. Hanada, and N. Onodera, “Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals,” Opt. Mater. (Amsterdam, Neth.) 19(3), 343–349 (2002).
[Crossref]

S. Tanabe, “Optical transitions of rare earth ions for amplifiers: How the local structure works in glass,” J. Non-Cryst. Solids 259(1-3), 1–9 (1999).
[Crossref]

Tang, Q.

L. Feng, J. Wang, Q. Tang, L. Liang, H. Liang, and Q. Su, “Optical properties of Ho3+-doped novel oxyfluoride glasses,” J. Lumin. 124(2), 187–194 (2007).
[Crossref]

Tchebotareva, A. L.

T. J. Kippenberg, A. L. Tchebotareva, J. Kalkman, A. Polman, and K. J. Vahala, “Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity,” Phys. Rev. Lett. 103(2), 027406 (2009).
[Crossref]

Tick, P. A.

P. A. Tick, N. F. Borrelli, L. K. Cornelius, and M. A. Newhouse, “Transparent glass ceramics for 1300 nm amplifier applications,” J. Appl. Phys. 78(11), 6367–6374 (1995).
[Crossref]

Vahala, K. J.

T. J. Kippenberg, A. L. Tchebotareva, J. Kalkman, A. Polman, and K. J. Vahala, “Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity,” Phys. Rev. Lett. 103(2), 027406 (2009).
[Crossref]

Villegas, I. L.

E. Rivera-Pérez, I. L. Villegas, A. Díez, M. V. Andres, J. L. Cruz, and A. Rodríguez-Cobos, “Measurement of pump-induced temperature increase in doped fibers using whispering-gallery modes,” IEEE Photonics Technol. Lett. 25(24), 2498–2500 (2013).
[Crossref]

Vollmer, F.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: Label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref]

Wade, S. A.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

S. A. Wade, “Temperature Measurement Using Rare Earth Doped Fibre Fluorescence,” (1999).

Wang, J.

L. Feng, J. Wang, Q. Tang, L. Liang, H. Liang, and Q. Su, “Optical properties of Ho3+-doped novel oxyfluoride glasses,” J. Lumin. 124(2), 187–194 (2007).
[Crossref]

Wang, T.

White, I. M.

N. M. Hanumegowda, I. M. White, and X. Fan, “Aqueous mercuric ion detection with microsphere optical ring resonator sensors,” Sens. Actuators, B 120(1), 207–212 (2006).
[Crossref]

Wilkinson, J. S.

Yin, M.

H. Suo, F. Hu, X. Zhao, Z. Zhang, T. Li, C. Duan, M. Yin, and C. Guo, “All-in-one thermometer-heater up-converting platform YF 3:Yb 3+, Tm 3+ operating in the first biological window,” J. Mater. Chem. C 5(6), 1501–1507 (2017).
[Crossref]

Zeng, X.

Zhang, Z.

H. Suo, F. Hu, X. Zhao, Z. Zhang, T. Li, C. Duan, M. Yin, and C. Guo, “All-in-one thermometer-heater up-converting platform YF 3:Yb 3+, Tm 3+ operating in the first biological window,” J. Mater. Chem. C 5(6), 1501–1507 (2017).
[Crossref]

Zhang, Z. Y.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

Zhao, X.

H. Suo, F. Hu, X. Zhao, Z. Zhang, T. Li, C. Duan, M. Yin, and C. Guo, “All-in-one thermometer-heater up-converting platform YF 3:Yb 3+, Tm 3+ operating in the first biological window,” J. Mater. Chem. C 5(6), 1501–1507 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B: Lasers Opt. (1)

V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B: Lasers Opt. 88(2), 297–303 (2007).
[Crossref]

Handb. Phys. Chem. Rare Earths (1)

C. D. S. Brites, A. Millán, and L. D. Carlos, “Lanthanides in Luminescent Thermometry,” Handb. Phys. Chem. Rare Earths 49, 339–427 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

E. Rivera-Pérez, I. L. Villegas, A. Díez, M. V. Andres, J. L. Cruz, and A. Rodríguez-Cobos, “Measurement of pump-induced temperature increase in doped fibers using whispering-gallery modes,” IEEE Photonics Technol. Lett. 25(24), 2498–2500 (2013).
[Crossref]

J. Alloys Compd. (1)

J. Mendez-Ramos, V. Lavin, I. R. Martin, U. R. Rodriguez-Mendoza, J. A. Gonzalez-Almeida, V. D. Rodriguez, A. D. Lozano-Gorrin, and P. Nunez, “Optical properties of Er 3+ ions in transparent glass ceramics,” J. Alloys Compd. 323-324, 753–758 (2001).
[Crossref]

J. Appl. Phys. (2)

P. A. Tick, N. F. Borrelli, L. K. Cornelius, and M. A. Newhouse, “Transparent glass ceramics for 1300 nm amplifier applications,” J. Appl. Phys. 78(11), 6367–6374 (1995).
[Crossref]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

J. Lumin. (1)

L. Feng, J. Wang, Q. Tang, L. Liang, H. Liang, and Q. Su, “Optical properties of Ho3+-doped novel oxyfluoride glasses,” J. Lumin. 124(2), 187–194 (2007).
[Crossref]

J. Mater. Chem. C (1)

H. Suo, F. Hu, X. Zhao, Z. Zhang, T. Li, C. Duan, M. Yin, and C. Guo, “All-in-one thermometer-heater up-converting platform YF 3:Yb 3+, Tm 3+ operating in the first biological window,” J. Mater. Chem. C 5(6), 1501–1507 (2017).
[Crossref]

J. Non-Cryst. Solids (2)

G. Ghosh, “Model for the Thermooptical Coefficients of Some Standard Optical-Glasses,” J. Non-Cryst. Solids 189(1-2), 191–196 (1995).
[Crossref]

S. Tanabe, “Optical transitions of rare earth ions for amplifiers: How the local structure works in glass,” J. Non-Cryst. Solids 259(1-3), 1–9 (1999).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: Label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. (1)

A. Siaï, P. Haro-González, K. Horchani Naifer, and M. Férid, “Optical temperature sensing of Er3+/Yb3 + doped LaGdO3based on fluorescence intensity ratio and lifetime thermometry,” Opt. Mater. 76, 34–41 (2018).
[Crossref]

Opt. Mater. (Amsterdam, Neth.) (2)

S. Tanabe, H. Hayashi, T. Hanada, and N. Onodera, “Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals,” Opt. Mater. (Amsterdam, Neth.) 19(3), 343–349 (2002).
[Crossref]

L. de Sousa-Vieira, S. Ríos, I. R. Martín, L. García-Rodríguez, V. N. Sigaev, V. I. Savinkov, and G. Y. Shakhgildyan, “Whispering gallery modes in a holmium doped glass microsphere: Temperature sensor in the second biological window,” Opt. Mater. (Amsterdam, Neth.) 83, 207–211 (2018).
[Crossref]

Phys. Rev. Lett. (1)

T. J. Kippenberg, A. L. Tchebotareva, J. Kalkman, A. Polman, and K. J. Vahala, “Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity,” Phys. Rev. Lett. 103(2), 027406 (2009).
[Crossref]

Phys. Solid State (1)

D. S. Sanditov and B. S. Sydykov, “Modulus of elasticity and thermal expansion coefficient of glassy solids,” Phys. Solid State 56(5), 1006–1008 (2014).
[Crossref]

Riv. del Nuovo Cim. (1)

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. N. Conti, D. Ristic, and S. Soria, “Whispering Gallery Mode microresonators: Fundamentals and applications,” Riv. del Nuovo Cim. 34(7), 435–488 (2011).
[Crossref]

Sens. Actuators, B (2)

N. M. Hanumegowda, I. M. White, and X. Fan, “Aqueous mercuric ion detection with microsphere optical ring resonator sensors,” Sens. Actuators, B 120(1), 207–212 (2006).
[Crossref]

C. Pérez-Rodríguez, L. L. Martín, S. F. León-Luis, I. R. Martín, K. K. Kumar, and C. K. Jayasankar, “Relevance of radiative transfer processes on Nd3+ doped phosphate glasses for temperature sensing by means of the fluorescence intensity ratio technique,” Sens. Actuators, B 195, 324–331 (2014).
[Crossref]

Other (4)

S. A. Wade, “Temperature Measurement Using Rare Earth Doped Fibre Fluorescence,” (1999).

T. J. A. Kippenberg, “Nonlinear Optics in Ultra-high-Q Whispering-Gallery Optical Microcavities,” Thesis (2004).

A. Rostami, H. Ahmadi, H. Heidarzadeh, and A. Taghipour, “Microsphere and Fiber Optics based Optical Sensors,” Opt. Sensors - New Dev. Pract. Appl. (2014).

M. Bass and W. Koechner, Solid-State Lasers: A Graduate Text (Springer, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Shift of WGM peaks with increasing temperature for an Er3+ doped oxyfluoride microsphere with a radius of 35 µm and the (b) change in relative spectrum intensities for the 800 nm and 850 nm emission bands of Er3+ ions for two different temperatures in a bulk glass of the same material.
Fig. 2.
Fig. 2. Optical image of Er3+ doped oxyfluoride (a) microspheres with radii from 15 µm – 40 µm and (b) fiber with a radius of 41 µm used in this work.
Fig. 3.
Fig. 3. The emission band at 670 nm showing the resonances associated to the WGM in the microsphere with a radius of 35 µm and fiber with a radius of 41 µm. The intensity bands were normalized and displaced vertically for comparison purposes.
Fig. 4.
Fig. 4. Displacement of the WGM peaks of the optical fiber and microsphere as a function of the laser pump power.
Fig. 5.
Fig. 5. (a) WGM displacement of the 850 nm band of the microsphere as a function of temperature from the experimental data (black points) with a displacement rate of 17 pm/K (black solid line). Numerical simulations of the WGM displacement in a microsphere (red points) and fiber (blue points) with displacement rates of 16 pm/K and 17 pm/K, respectively. (b) Ratio of the areas of the thermally coupled emission bands (800 nm over the 850 nm band) of Er3+ as a function of the bulk sample temperature. Parameters of the fit to Eq. (3) are ΔE = 635 cm−1 and B = 0.88.
Fig. 6.
Fig. 6. Profile of the electric field norm of a WGM simulation with polarization TE of (a) microsphere: n = 1, l = 435, m = l and (b) fiber: n = 1, l = 516, m = l; where n, l, and m are the radial, polar, and azimuthal mode number, respectively.
Fig. 7.
Fig. 7. Distribution of the measured parameters (i.e. wavelength, ratio) for microsphere (red), fiber (green) and bulk glass (blue), the corresponding temperature distribution obtained from the WGM displacement analysis and FIR technique for the three samples.

Tables (1)

Tables Icon

Table 1. Sensor parameters of the three morphologies of Er3+ doped oxyfluoride glass

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = ( 1 R R T + 1 n n T ) λ Δ T
Δ λ = ( α + β ) λ Δ T
F I R = N 2 N 1 = I 20 I 10 = g 2 A 20 h ν 2 g 1 A 10 h ν 1 exp ( Δ E k T ) = B exp ( Δ E k T ) ; B = g 2 A 20 h ν 2 g 1 A 10 h ν 1
S r e l = 1 M P d M P d T
S W G M = 1 λ d λ d T = α + β
S F I R = 1 F I R d F I R d T = Δ E k T 2
δ T = 1 S r e l δ M P M P
Δ O P D = 2 d Δ T [ ( n 1 ) α + n β ] = N λ

Metrics