Abstract

In this report, we demonstrate high spectral responsivity (SR) solar blind deep ultraviolet (UV) β-Ga2O3 metal-semiconductor-metal (MSM) photodetectors grown by the mist chemical-vapor deposition (Mist-CVD) method. The β-Ga2O3 thin film was grown on c-plane sapphire substrates, and the fabricated MSM PDs with Al contacts in an interdigitated geometry were found to exhibit peak SR>150A/W for the incident light wavelength of 254 nm at a bias of 20 V. The devices exhibited very low dark current, about 14 pA at 20 V, and showed sharp transients with a photo-to-dark current ratio>105. The corresponding external quantum efficiency is over 7 × 104%. The excellent deep UV β-Ga2O3 photodetectors will enable significant advancements for the next-generation photodetection applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optimizing the performance of a β-Ga2O3 solar-blind UV photodetector by compromising between photoabsorption and electric field distribution

Xia Wang, Zhenwei Chen, Daoyou Guo, Xiao Zhang, Zhenping Wu, Peigang Li, and Weihua Tang
Opt. Mater. Express 8(9) 2918-2927 (2018)

High-sensitivity β-Ga2O3 solar-blind photodetector on high-temperature pretreated c-plane sapphire substrate

Ling-Xuan Qian, Hua-Fan Zhang, P. T. Lai, Ze-Han Wu, and Xing-Zhao Liu
Opt. Mater. Express 7(10) 3643-3653 (2017)

Development of solar-blind photodetectors based on Si-implanted β-Ga2O3

Sooyeoun Oh, Younghun Jung, Michael A. Mastro, Jennifer K. Hite, Charles R. Eddy, and Jihyun Kim
Opt. Express 23(22) 28300-28305 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. Feng, J. Zhang, Q. Li, and T. Wang, “Individual β-Ga2O3 nanowires as solar-blind photodetectors,” Appl. Phys. Lett. 88(15), 153107 (2006).
    [Crossref]
  2. M. Y. Liao and K. Yasuo, “High-performance metal-semiconductor-metal deep-ultraviolet photodetectors based on homoepitaxial diamond thin film,” Appl. Phys. Lett. 89(11), 113509 (2006).
    [Crossref]
  3. M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors,” Jpn. J. Appl. Phys. 79(10), 7433–7473 (1996).
    [Crossref]
  4. T. Gruber, C. Kirchner, R. Kling, F. Reuss, and A. Waag, “ZnMgO epilayers and ZnO–ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region,” Appl. Phys. Lett. 84(26), 5359–5361 (2004).
    [Crossref]
  5. Y. Huang, X. Duan, Y. Cui, and C. M. Lieber, “Gallium nitride nanowire nanodevices,” Nano Lett. 2(2), 101–104 (2002).
    [Crossref]
  6. C. Y. Cho, Y. Zhang, E. Cicek, B. Rahnema, Y. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett. 102(21), 211110 (2013).
    [Crossref]
  7. R. Suzuki, S. Nakagomi, and Y. Kokubun, “Solar-blind photodiodes composed of an Au Schottky contact and a β-Ga2O3 single crystal with a high resistivity cap layer,” Appl. Phys. Lett. 98(13), 131114 (2011).
    [Crossref]
  8. W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β- Ga2O3/GaN hetero-structured solar-blind and visible-blind dual-band photodetector,” IEEE Sens. J. 11(6), 1491–1492 (2011).
    [Crossref]
  9. D. Shinohara and S. Fujita, “Heteroepitaxy of corundum-structured α- Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition,” Jpn. J. Appl. Phys. 47(9), 7311–7313 (2008).
    [Crossref]
  10. T. T. Kawaharamura, Giang, Dang, and F. Mamoru, “Successful growth of conductive highly crystalline Sn-doped α- Ga2O3 thin films by fine-channel mist chemical vapor deposition,” Jpn. J. Appl. Phys. 51(4R), 040207 (2012).
  11. H. Nishinaka and F. Shizuo, “Step-flow growth of homoepitaxial ZnO thin films by ultrasonic spray-assisted MOVPE,” J. Cryst. Growth 310(23), 5007–5010 (2008).
    [Crossref]
  12. T. Okuno, T. Oshima, S. Lee, and S. Fujita, “Growth of SnO2 crystalline thin films by mist chemical vapour deposition method,” Phys. Status Solidi 8(2), 540–542 (2011).
    [Crossref]
  13. K. Kaneko, H. Kawanowa, H. Ito, and S. Fujita, “Evaluation of misfit relaxation in α- Ga2O3 epitaxial growth on α-Al2O3 substrate,” Jpn. J. Appl. Phys. 51(2R), 020201 (2012).
  14. S. D. Lee, K. Akaiwa, and S. Fujita, “Thermal stability of single crystalline alpha gallium oxide films on sapphire substrates,” Phys. Status Solidi 10(11), 1592–1595 (2013).
    [Crossref]
  15. R. Roy, V. G. Hill, and E. F. Osborn, “Polymorphism of Ga2O3 and the system Ga2O3-H2O,” J. Am. Chem. Soc. 74(3), 719–722 (1952).
    [Crossref]
  16. H. Nishinaka, D. Tahara, S. Morimoto, and M. Yoshimoto, “Epitaxial growth of α- Ga2O3 thin films on  a-, m-, and r-plane sapphire substrates by mist chemical vapor deposition using α-Fe2O3 buffer layers,” Mater. Lett. 205, 28–31 (2017).
    [Crossref]
  17. M. Ristić, P. Stanko, and M. Svetozar, “Application of sol–gel method in the synthesis of gallium (III)-oxide,” Mater. Lett. 59(10), 1227–1233 (2005).
    [Crossref]
  18. Y. Li, T. Tokizono, M. Liao, M. Zhong, Y. Koide, I. Yamada, and J. J. Delaunay, “Efficient assembly of bridged β‐ Ga2O3 nanowires for solar‐blind photodetection,” Adv. Funct. Mater. 20(22), 3972–3978 (2010).
    [Crossref]
  19. D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105(2), 031912 (2014).
    [Crossref]

2017 (1)

H. Nishinaka, D. Tahara, S. Morimoto, and M. Yoshimoto, “Epitaxial growth of α- Ga2O3 thin films on  a-, m-, and r-plane sapphire substrates by mist chemical vapor deposition using α-Fe2O3 buffer layers,” Mater. Lett. 205, 28–31 (2017).
[Crossref]

2014 (1)

D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105(2), 031912 (2014).
[Crossref]

2013 (2)

S. D. Lee, K. Akaiwa, and S. Fujita, “Thermal stability of single crystalline alpha gallium oxide films on sapphire substrates,” Phys. Status Solidi 10(11), 1592–1595 (2013).
[Crossref]

C. Y. Cho, Y. Zhang, E. Cicek, B. Rahnema, Y. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett. 102(21), 211110 (2013).
[Crossref]

2012 (2)

T. T. Kawaharamura, Giang, Dang, and F. Mamoru, “Successful growth of conductive highly crystalline Sn-doped α- Ga2O3 thin films by fine-channel mist chemical vapor deposition,” Jpn. J. Appl. Phys. 51(4R), 040207 (2012).

K. Kaneko, H. Kawanowa, H. Ito, and S. Fujita, “Evaluation of misfit relaxation in α- Ga2O3 epitaxial growth on α-Al2O3 substrate,” Jpn. J. Appl. Phys. 51(2R), 020201 (2012).

2011 (3)

T. Okuno, T. Oshima, S. Lee, and S. Fujita, “Growth of SnO2 crystalline thin films by mist chemical vapour deposition method,” Phys. Status Solidi 8(2), 540–542 (2011).
[Crossref]

R. Suzuki, S. Nakagomi, and Y. Kokubun, “Solar-blind photodiodes composed of an Au Schottky contact and a β-Ga2O3 single crystal with a high resistivity cap layer,” Appl. Phys. Lett. 98(13), 131114 (2011).
[Crossref]

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β- Ga2O3/GaN hetero-structured solar-blind and visible-blind dual-band photodetector,” IEEE Sens. J. 11(6), 1491–1492 (2011).
[Crossref]

2010 (1)

Y. Li, T. Tokizono, M. Liao, M. Zhong, Y. Koide, I. Yamada, and J. J. Delaunay, “Efficient assembly of bridged β‐ Ga2O3 nanowires for solar‐blind photodetection,” Adv. Funct. Mater. 20(22), 3972–3978 (2010).
[Crossref]

2008 (2)

D. Shinohara and S. Fujita, “Heteroepitaxy of corundum-structured α- Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition,” Jpn. J. Appl. Phys. 47(9), 7311–7313 (2008).
[Crossref]

H. Nishinaka and F. Shizuo, “Step-flow growth of homoepitaxial ZnO thin films by ultrasonic spray-assisted MOVPE,” J. Cryst. Growth 310(23), 5007–5010 (2008).
[Crossref]

2006 (2)

P. Feng, J. Zhang, Q. Li, and T. Wang, “Individual β-Ga2O3 nanowires as solar-blind photodetectors,” Appl. Phys. Lett. 88(15), 153107 (2006).
[Crossref]

M. Y. Liao and K. Yasuo, “High-performance metal-semiconductor-metal deep-ultraviolet photodetectors based on homoepitaxial diamond thin film,” Appl. Phys. Lett. 89(11), 113509 (2006).
[Crossref]

2005 (1)

M. Ristić, P. Stanko, and M. Svetozar, “Application of sol–gel method in the synthesis of gallium (III)-oxide,” Mater. Lett. 59(10), 1227–1233 (2005).
[Crossref]

2004 (1)

T. Gruber, C. Kirchner, R. Kling, F. Reuss, and A. Waag, “ZnMgO epilayers and ZnO–ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region,” Appl. Phys. Lett. 84(26), 5359–5361 (2004).
[Crossref]

2002 (1)

Y. Huang, X. Duan, Y. Cui, and C. M. Lieber, “Gallium nitride nanowire nanodevices,” Nano Lett. 2(2), 101–104 (2002).
[Crossref]

1996 (1)

M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors,” Jpn. J. Appl. Phys. 79(10), 7433–7473 (1996).
[Crossref]

1952 (1)

R. Roy, V. G. Hill, and E. F. Osborn, “Polymorphism of Ga2O3 and the system Ga2O3-H2O,” J. Am. Chem. Soc. 74(3), 719–722 (1952).
[Crossref]

Akaiwa, K.

S. D. Lee, K. Akaiwa, and S. Fujita, “Thermal stability of single crystalline alpha gallium oxide films on sapphire substrates,” Phys. Status Solidi 10(11), 1592–1595 (2013).
[Crossref]

An, Y. H.

D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105(2), 031912 (2014).
[Crossref]

Bai, Y.

C. Y. Cho, Y. Zhang, E. Cicek, B. Rahnema, Y. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett. 102(21), 211110 (2013).
[Crossref]

Chang, S. J.

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β- Ga2O3/GaN hetero-structured solar-blind and visible-blind dual-band photodetector,” IEEE Sens. J. 11(6), 1491–1492 (2011).
[Crossref]

Cho, C. Y.

C. Y. Cho, Y. Zhang, E. Cicek, B. Rahnema, Y. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett. 102(21), 211110 (2013).
[Crossref]

Chu, X. L.

D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105(2), 031912 (2014).
[Crossref]

Cicek, E.

C. Y. Cho, Y. Zhang, E. Cicek, B. Rahnema, Y. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett. 102(21), 211110 (2013).
[Crossref]

Cui, Y.

Y. Huang, X. Duan, Y. Cui, and C. M. Lieber, “Gallium nitride nanowire nanodevices,” Nano Lett. 2(2), 101–104 (2002).
[Crossref]

Dang,

T. T. Kawaharamura, Giang, Dang, and F. Mamoru, “Successful growth of conductive highly crystalline Sn-doped α- Ga2O3 thin films by fine-channel mist chemical vapor deposition,” Jpn. J. Appl. Phys. 51(4R), 040207 (2012).

Delaunay, J. J.

Y. Li, T. Tokizono, M. Liao, M. Zhong, Y. Koide, I. Yamada, and J. J. Delaunay, “Efficient assembly of bridged β‐ Ga2O3 nanowires for solar‐blind photodetection,” Adv. Funct. Mater. 20(22), 3972–3978 (2010).
[Crossref]

Duan, X.

Y. Huang, X. Duan, Y. Cui, and C. M. Lieber, “Gallium nitride nanowire nanodevices,” Nano Lett. 2(2), 101–104 (2002).
[Crossref]

Feng, P.

P. Feng, J. Zhang, Q. Li, and T. Wang, “Individual β-Ga2O3 nanowires as solar-blind photodetectors,” Appl. Phys. Lett. 88(15), 153107 (2006).
[Crossref]

Fujita, S.

S. D. Lee, K. Akaiwa, and S. Fujita, “Thermal stability of single crystalline alpha gallium oxide films on sapphire substrates,” Phys. Status Solidi 10(11), 1592–1595 (2013).
[Crossref]

K. Kaneko, H. Kawanowa, H. Ito, and S. Fujita, “Evaluation of misfit relaxation in α- Ga2O3 epitaxial growth on α-Al2O3 substrate,” Jpn. J. Appl. Phys. 51(2R), 020201 (2012).

T. Okuno, T. Oshima, S. Lee, and S. Fujita, “Growth of SnO2 crystalline thin films by mist chemical vapour deposition method,” Phys. Status Solidi 8(2), 540–542 (2011).
[Crossref]

D. Shinohara and S. Fujita, “Heteroepitaxy of corundum-structured α- Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition,” Jpn. J. Appl. Phys. 47(9), 7311–7313 (2008).
[Crossref]

Giang,

T. T. Kawaharamura, Giang, Dang, and F. Mamoru, “Successful growth of conductive highly crystalline Sn-doped α- Ga2O3 thin films by fine-channel mist chemical vapor deposition,” Jpn. J. Appl. Phys. 51(4R), 040207 (2012).

Gruber, T.

T. Gruber, C. Kirchner, R. Kling, F. Reuss, and A. Waag, “ZnMgO epilayers and ZnO–ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region,” Appl. Phys. Lett. 84(26), 5359–5361 (2004).
[Crossref]

Guo, D. Y.

D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105(2), 031912 (2014).
[Crossref]

Guo, X. C.

D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105(2), 031912 (2014).
[Crossref]

Hill, V. G.

R. Roy, V. G. Hill, and E. F. Osborn, “Polymorphism of Ga2O3 and the system Ga2O3-H2O,” J. Am. Chem. Soc. 74(3), 719–722 (1952).
[Crossref]

Hsueh, H. T.

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β- Ga2O3/GaN hetero-structured solar-blind and visible-blind dual-band photodetector,” IEEE Sens. J. 11(6), 1491–1492 (2011).
[Crossref]

Hsueh, T. J.

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β- Ga2O3/GaN hetero-structured solar-blind and visible-blind dual-band photodetector,” IEEE Sens. J. 11(6), 1491–1492 (2011).
[Crossref]

Huang, G. J.

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β- Ga2O3/GaN hetero-structured solar-blind and visible-blind dual-band photodetector,” IEEE Sens. J. 11(6), 1491–1492 (2011).
[Crossref]

Huang, Y.

Y. Huang, X. Duan, Y. Cui, and C. M. Lieber, “Gallium nitride nanowire nanodevices,” Nano Lett. 2(2), 101–104 (2002).
[Crossref]

Ito, H.

K. Kaneko, H. Kawanowa, H. Ito, and S. Fujita, “Evaluation of misfit relaxation in α- Ga2O3 epitaxial growth on α-Al2O3 substrate,” Jpn. J. Appl. Phys. 51(2R), 020201 (2012).

Kaneko, K.

K. Kaneko, H. Kawanowa, H. Ito, and S. Fujita, “Evaluation of misfit relaxation in α- Ga2O3 epitaxial growth on α-Al2O3 substrate,” Jpn. J. Appl. Phys. 51(2R), 020201 (2012).

Kawaharamura, T. T.

T. T. Kawaharamura, Giang, Dang, and F. Mamoru, “Successful growth of conductive highly crystalline Sn-doped α- Ga2O3 thin films by fine-channel mist chemical vapor deposition,” Jpn. J. Appl. Phys. 51(4R), 040207 (2012).

Kawanowa, H.

K. Kaneko, H. Kawanowa, H. Ito, and S. Fujita, “Evaluation of misfit relaxation in α- Ga2O3 epitaxial growth on α-Al2O3 substrate,” Jpn. J. Appl. Phys. 51(2R), 020201 (2012).

Kirchner, C.

T. Gruber, C. Kirchner, R. Kling, F. Reuss, and A. Waag, “ZnMgO epilayers and ZnO–ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region,” Appl. Phys. Lett. 84(26), 5359–5361 (2004).
[Crossref]

Kling, R.

T. Gruber, C. Kirchner, R. Kling, F. Reuss, and A. Waag, “ZnMgO epilayers and ZnO–ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region,” Appl. Phys. Lett. 84(26), 5359–5361 (2004).
[Crossref]

Koide, Y.

Y. Li, T. Tokizono, M. Liao, M. Zhong, Y. Koide, I. Yamada, and J. J. Delaunay, “Efficient assembly of bridged β‐ Ga2O3 nanowires for solar‐blind photodetection,” Adv. Funct. Mater. 20(22), 3972–3978 (2010).
[Crossref]

Kokubun, Y.

R. Suzuki, S. Nakagomi, and Y. Kokubun, “Solar-blind photodiodes composed of an Au Schottky contact and a β-Ga2O3 single crystal with a high resistivity cap layer,” Appl. Phys. Lett. 98(13), 131114 (2011).
[Crossref]

Lee, S.

T. Okuno, T. Oshima, S. Lee, and S. Fujita, “Growth of SnO2 crystalline thin films by mist chemical vapour deposition method,” Phys. Status Solidi 8(2), 540–542 (2011).
[Crossref]

Lee, S. D.

S. D. Lee, K. Akaiwa, and S. Fujita, “Thermal stability of single crystalline alpha gallium oxide films on sapphire substrates,” Phys. Status Solidi 10(11), 1592–1595 (2013).
[Crossref]

Li, L. H.

D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105(2), 031912 (2014).
[Crossref]

Li, P. G.

D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105(2), 031912 (2014).
[Crossref]

Li, Q.

P. Feng, J. Zhang, Q. Li, and T. Wang, “Individual β-Ga2O3 nanowires as solar-blind photodetectors,” Appl. Phys. Lett. 88(15), 153107 (2006).
[Crossref]

Li, Y.

Y. Li, T. Tokizono, M. Liao, M. Zhong, Y. Koide, I. Yamada, and J. J. Delaunay, “Efficient assembly of bridged β‐ Ga2O3 nanowires for solar‐blind photodetection,” Adv. Funct. Mater. 20(22), 3972–3978 (2010).
[Crossref]

Liao, M.

Y. Li, T. Tokizono, M. Liao, M. Zhong, Y. Koide, I. Yamada, and J. J. Delaunay, “Efficient assembly of bridged β‐ Ga2O3 nanowires for solar‐blind photodetection,” Adv. Funct. Mater. 20(22), 3972–3978 (2010).
[Crossref]

Liao, M. Y.

M. Y. Liao and K. Yasuo, “High-performance metal-semiconductor-metal deep-ultraviolet photodetectors based on homoepitaxial diamond thin film,” Appl. Phys. Lett. 89(11), 113509 (2006).
[Crossref]

Lieber, C. M.

Y. Huang, X. Duan, Y. Cui, and C. M. Lieber, “Gallium nitride nanowire nanodevices,” Nano Lett. 2(2), 101–104 (2002).
[Crossref]

Mamoru, F.

T. T. Kawaharamura, Giang, Dang, and F. Mamoru, “Successful growth of conductive highly crystalline Sn-doped α- Ga2O3 thin films by fine-channel mist chemical vapor deposition,” Jpn. J. Appl. Phys. 51(4R), 040207 (2012).

McClintock, R.

C. Y. Cho, Y. Zhang, E. Cicek, B. Rahnema, Y. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett. 102(21), 211110 (2013).
[Crossref]

Morimoto, S.

H. Nishinaka, D. Tahara, S. Morimoto, and M. Yoshimoto, “Epitaxial growth of α- Ga2O3 thin films on  a-, m-, and r-plane sapphire substrates by mist chemical vapor deposition using α-Fe2O3 buffer layers,” Mater. Lett. 205, 28–31 (2017).
[Crossref]

Nakagomi, S.

R. Suzuki, S. Nakagomi, and Y. Kokubun, “Solar-blind photodiodes composed of an Au Schottky contact and a β-Ga2O3 single crystal with a high resistivity cap layer,” Appl. Phys. Lett. 98(13), 131114 (2011).
[Crossref]

Nishinaka, H.

H. Nishinaka, D. Tahara, S. Morimoto, and M. Yoshimoto, “Epitaxial growth of α- Ga2O3 thin films on  a-, m-, and r-plane sapphire substrates by mist chemical vapor deposition using α-Fe2O3 buffer layers,” Mater. Lett. 205, 28–31 (2017).
[Crossref]

H. Nishinaka and F. Shizuo, “Step-flow growth of homoepitaxial ZnO thin films by ultrasonic spray-assisted MOVPE,” J. Cryst. Growth 310(23), 5007–5010 (2008).
[Crossref]

Okuno, T.

T. Okuno, T. Oshima, S. Lee, and S. Fujita, “Growth of SnO2 crystalline thin films by mist chemical vapour deposition method,” Phys. Status Solidi 8(2), 540–542 (2011).
[Crossref]

Osborn, E. F.

R. Roy, V. G. Hill, and E. F. Osborn, “Polymorphism of Ga2O3 and the system Ga2O3-H2O,” J. Am. Chem. Soc. 74(3), 719–722 (1952).
[Crossref]

Oshima, T.

T. Okuno, T. Oshima, S. Lee, and S. Fujita, “Growth of SnO2 crystalline thin films by mist chemical vapour deposition method,” Phys. Status Solidi 8(2), 540–542 (2011).
[Crossref]

Rahnema, B.

C. Y. Cho, Y. Zhang, E. Cicek, B. Rahnema, Y. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett. 102(21), 211110 (2013).
[Crossref]

Razeghi, M.

C. Y. Cho, Y. Zhang, E. Cicek, B. Rahnema, Y. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett. 102(21), 211110 (2013).
[Crossref]

M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors,” Jpn. J. Appl. Phys. 79(10), 7433–7473 (1996).
[Crossref]

Reuss, F.

T. Gruber, C. Kirchner, R. Kling, F. Reuss, and A. Waag, “ZnMgO epilayers and ZnO–ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region,” Appl. Phys. Lett. 84(26), 5359–5361 (2004).
[Crossref]

Ristic, M.

M. Ristić, P. Stanko, and M. Svetozar, “Application of sol–gel method in the synthesis of gallium (III)-oxide,” Mater. Lett. 59(10), 1227–1233 (2005).
[Crossref]

Rogalski, A.

M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors,” Jpn. J. Appl. Phys. 79(10), 7433–7473 (1996).
[Crossref]

Roy, R.

R. Roy, V. G. Hill, and E. F. Osborn, “Polymorphism of Ga2O3 and the system Ga2O3-H2O,” J. Am. Chem. Soc. 74(3), 719–722 (1952).
[Crossref]

Shinohara, D.

D. Shinohara and S. Fujita, “Heteroepitaxy of corundum-structured α- Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition,” Jpn. J. Appl. Phys. 47(9), 7311–7313 (2008).
[Crossref]

Shizuo, F.

H. Nishinaka and F. Shizuo, “Step-flow growth of homoepitaxial ZnO thin films by ultrasonic spray-assisted MOVPE,” J. Cryst. Growth 310(23), 5007–5010 (2008).
[Crossref]

Stanko, P.

M. Ristić, P. Stanko, and M. Svetozar, “Application of sol–gel method in the synthesis of gallium (III)-oxide,” Mater. Lett. 59(10), 1227–1233 (2005).
[Crossref]

Sun, C. L.

D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105(2), 031912 (2014).
[Crossref]

Suzuki, R.

R. Suzuki, S. Nakagomi, and Y. Kokubun, “Solar-blind photodiodes composed of an Au Schottky contact and a β-Ga2O3 single crystal with a high resistivity cap layer,” Appl. Phys. Lett. 98(13), 131114 (2011).
[Crossref]

Svetozar, M.

M. Ristić, P. Stanko, and M. Svetozar, “Application of sol–gel method in the synthesis of gallium (III)-oxide,” Mater. Lett. 59(10), 1227–1233 (2005).
[Crossref]

Tahara, D.

H. Nishinaka, D. Tahara, S. Morimoto, and M. Yoshimoto, “Epitaxial growth of α- Ga2O3 thin films on  a-, m-, and r-plane sapphire substrates by mist chemical vapor deposition using α-Fe2O3 buffer layers,” Mater. Lett. 205, 28–31 (2017).
[Crossref]

Tang, W. H.

D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105(2), 031912 (2014).
[Crossref]

Tokizono, T.

Y. Li, T. Tokizono, M. Liao, M. Zhong, Y. Koide, I. Yamada, and J. J. Delaunay, “Efficient assembly of bridged β‐ Ga2O3 nanowires for solar‐blind photodetection,” Adv. Funct. Mater. 20(22), 3972–3978 (2010).
[Crossref]

Waag, A.

T. Gruber, C. Kirchner, R. Kling, F. Reuss, and A. Waag, “ZnMgO epilayers and ZnO–ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region,” Appl. Phys. Lett. 84(26), 5359–5361 (2004).
[Crossref]

Wang, T.

P. Feng, J. Zhang, Q. Li, and T. Wang, “Individual β-Ga2O3 nanowires as solar-blind photodetectors,” Appl. Phys. Lett. 88(15), 153107 (2006).
[Crossref]

Weng, W. Y.

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β- Ga2O3/GaN hetero-structured solar-blind and visible-blind dual-band photodetector,” IEEE Sens. J. 11(6), 1491–1492 (2011).
[Crossref]

Wu, Z. P.

D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105(2), 031912 (2014).
[Crossref]

Yamada, I.

Y. Li, T. Tokizono, M. Liao, M. Zhong, Y. Koide, I. Yamada, and J. J. Delaunay, “Efficient assembly of bridged β‐ Ga2O3 nanowires for solar‐blind photodetection,” Adv. Funct. Mater. 20(22), 3972–3978 (2010).
[Crossref]

Yasuo, K.

M. Y. Liao and K. Yasuo, “High-performance metal-semiconductor-metal deep-ultraviolet photodetectors based on homoepitaxial diamond thin film,” Appl. Phys. Lett. 89(11), 113509 (2006).
[Crossref]

Yoshimoto, M.

H. Nishinaka, D. Tahara, S. Morimoto, and M. Yoshimoto, “Epitaxial growth of α- Ga2O3 thin films on  a-, m-, and r-plane sapphire substrates by mist chemical vapor deposition using α-Fe2O3 buffer layers,” Mater. Lett. 205, 28–31 (2017).
[Crossref]

Zhang, J.

P. Feng, J. Zhang, Q. Li, and T. Wang, “Individual β-Ga2O3 nanowires as solar-blind photodetectors,” Appl. Phys. Lett. 88(15), 153107 (2006).
[Crossref]

Zhang, Y.

C. Y. Cho, Y. Zhang, E. Cicek, B. Rahnema, Y. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett. 102(21), 211110 (2013).
[Crossref]

Zhong, M.

Y. Li, T. Tokizono, M. Liao, M. Zhong, Y. Koide, I. Yamada, and J. J. Delaunay, “Efficient assembly of bridged β‐ Ga2O3 nanowires for solar‐blind photodetection,” Adv. Funct. Mater. 20(22), 3972–3978 (2010).
[Crossref]

Adv. Funct. Mater. (1)

Y. Li, T. Tokizono, M. Liao, M. Zhong, Y. Koide, I. Yamada, and J. J. Delaunay, “Efficient assembly of bridged β‐ Ga2O3 nanowires for solar‐blind photodetection,” Adv. Funct. Mater. 20(22), 3972–3978 (2010).
[Crossref]

Appl. Phys. Lett. (6)

D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105(2), 031912 (2014).
[Crossref]

P. Feng, J. Zhang, Q. Li, and T. Wang, “Individual β-Ga2O3 nanowires as solar-blind photodetectors,” Appl. Phys. Lett. 88(15), 153107 (2006).
[Crossref]

M. Y. Liao and K. Yasuo, “High-performance metal-semiconductor-metal deep-ultraviolet photodetectors based on homoepitaxial diamond thin film,” Appl. Phys. Lett. 89(11), 113509 (2006).
[Crossref]

T. Gruber, C. Kirchner, R. Kling, F. Reuss, and A. Waag, “ZnMgO epilayers and ZnO–ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region,” Appl. Phys. Lett. 84(26), 5359–5361 (2004).
[Crossref]

C. Y. Cho, Y. Zhang, E. Cicek, B. Rahnema, Y. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett. 102(21), 211110 (2013).
[Crossref]

R. Suzuki, S. Nakagomi, and Y. Kokubun, “Solar-blind photodiodes composed of an Au Schottky contact and a β-Ga2O3 single crystal with a high resistivity cap layer,” Appl. Phys. Lett. 98(13), 131114 (2011).
[Crossref]

IEEE Sens. J. (1)

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β- Ga2O3/GaN hetero-structured solar-blind and visible-blind dual-band photodetector,” IEEE Sens. J. 11(6), 1491–1492 (2011).
[Crossref]

J. Am. Chem. Soc. (1)

R. Roy, V. G. Hill, and E. F. Osborn, “Polymorphism of Ga2O3 and the system Ga2O3-H2O,” J. Am. Chem. Soc. 74(3), 719–722 (1952).
[Crossref]

J. Cryst. Growth (1)

H. Nishinaka and F. Shizuo, “Step-flow growth of homoepitaxial ZnO thin films by ultrasonic spray-assisted MOVPE,” J. Cryst. Growth 310(23), 5007–5010 (2008).
[Crossref]

Jpn. J. Appl. Phys. (4)

K. Kaneko, H. Kawanowa, H. Ito, and S. Fujita, “Evaluation of misfit relaxation in α- Ga2O3 epitaxial growth on α-Al2O3 substrate,” Jpn. J. Appl. Phys. 51(2R), 020201 (2012).

D. Shinohara and S. Fujita, “Heteroepitaxy of corundum-structured α- Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition,” Jpn. J. Appl. Phys. 47(9), 7311–7313 (2008).
[Crossref]

T. T. Kawaharamura, Giang, Dang, and F. Mamoru, “Successful growth of conductive highly crystalline Sn-doped α- Ga2O3 thin films by fine-channel mist chemical vapor deposition,” Jpn. J. Appl. Phys. 51(4R), 040207 (2012).

M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors,” Jpn. J. Appl. Phys. 79(10), 7433–7473 (1996).
[Crossref]

Mater. Lett. (2)

H. Nishinaka, D. Tahara, S. Morimoto, and M. Yoshimoto, “Epitaxial growth of α- Ga2O3 thin films on  a-, m-, and r-plane sapphire substrates by mist chemical vapor deposition using α-Fe2O3 buffer layers,” Mater. Lett. 205, 28–31 (2017).
[Crossref]

M. Ristić, P. Stanko, and M. Svetozar, “Application of sol–gel method in the synthesis of gallium (III)-oxide,” Mater. Lett. 59(10), 1227–1233 (2005).
[Crossref]

Nano Lett. (1)

Y. Huang, X. Duan, Y. Cui, and C. M. Lieber, “Gallium nitride nanowire nanodevices,” Nano Lett. 2(2), 101–104 (2002).
[Crossref]

Phys. Status Solidi (2)

S. D. Lee, K. Akaiwa, and S. Fujita, “Thermal stability of single crystalline alpha gallium oxide films on sapphire substrates,” Phys. Status Solidi 10(11), 1592–1595 (2013).
[Crossref]

T. Okuno, T. Oshima, S. Lee, and S. Fujita, “Growth of SnO2 crystalline thin films by mist chemical vapour deposition method,” Phys. Status Solidi 8(2), 540–542 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic cross section and (b) top view of photodetector.
Fig. 2
Fig. 2 (a) AFM surface images of Ga2O3 films grown at different temperatures. (b)Those of XRD data for the Ga2O3 samples grown on Sapphire .
Fig. 3
Fig. 3 Optical transmission and (αhv)2-hv plots of Ga2O3 films.
Fig. 4
Fig. 4 (a) The current voltage (I-V) characteristics of the Ga2O3 films in dark, 254nm and 365nm illumination,(b) and its log scale.(c) Time-dependent photoresponse of the detector obtain at 550°C under 254 nm illumination at 20 V (log scale), (d) and those of 400°C.
Fig. 5
Fig. 5 (a)Photocurrent at diffenent growth temperatures(400°C,470°C,550°C,600°C) under 254nm illumination. (b) I–V characteristics of the 550°C device under irradiation with 254 nm light at different light intensities.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

EQE= hcR qλ

Metrics