Abstract

Epitaxial growth of erbium-doped cerium oxide (Er:CeO2) is achieved on Si (111) substrates by the cooperative integration of Si and oxide molecular beam epitaxy (MBE) technologies. Lattice matching between CeO2 and Si provides an attractive opportunity to build dilutely doped Er-based optical devices on a Si chip. The CeO2 host crystal is optically transparent for the telecom C-band wavelength and has quite a small magnetic moment, which serves as a disturbance-free environment for the two-level system formed in the doped Er. After the systematic optimization of the growth conditions for stoichiometric Er:CeO2; i.e., (Er + Ce)/O = 1/2, we varied the Er concentration in a range of 1 ~4%. The doped Er showed well-defined optical transitions at the wavelength of 1.533 μm irrespective of the Er concentration. With decreasing Er concentration, enhancement of the luminescence intensity, narrowing of the spectral width, and an increase in the radiative lifetime were observed. The results suggest that CeO2 on Si is promising as a platform for the doped-Er-based optical devices and their quantum optics applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Growth, processing, and optical properties of epitaxial Er2O3 on silicon

C. P. Michael, H. B. Yuen, V. A. Sabnis, T. J. Johnson, R. Sewell, R. Smith, A. Jamora, A. Clark, S. Semans, P. B. Atanackovic, and O. Painter
Opt. Express 16(24) 19649-19666 (2008)

Mechanism of concentration quenching in epitaxial (ErxSc1-x)2O3 thin layers

Takehiko Tawara, Yoshihiro Kawakami, Hiroo Omi, Reina Kaji, Satoru Adachi, and Hideki Gotoh
Opt. Mater. Express 7(3) 1097-1104 (2017)

Electroluminescence from light-emitting devices based on erbium-doped ZnO/n-Si heterostructures: Enhancement effect of fluorine co-doping

Jinxin Chen, Weijun Zhu, Yuhan Gao, Deren Yang, and Xiangyang Ma
Opt. Express 27(21) 30919-30930 (2019)

References

  • View by:
  • |
  • |
  • |

  1. E. J. Schelter, “Cerium under the lens,” Nat. Chem. 5(4), 348 (2013).
    [Crossref] [PubMed]
  2. C. K. Narula, J. E. Allison, D. R. Bauer, and H. S. Gandhi, “Materials chemistry issues related to advanced materials applications in the automotive industry,” Chem. Mater. 8(5), 984–1003 (1996).
    [Crossref]
  3. X. Wang, J. A. Rodriguez, J. C. Hanson, D. Gamarra, A. Martínez-Arias, and M. Fernández-García, “In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria,” J. Phys. Chem. B 110(1), 428–434 (2006).
    [Crossref] [PubMed]
  4. V. Stetsovych, F. Pagliuca, F. Dvořák, T. Duchoň, M. Vorokhta, M. Aulická, J. Lachnitt, S. Schernich, I. Matolínová, K. Veltruská, T. Skála, D. Mazur, J. Mysliveček, J. Libuda, and V. Matolín, “Epitaxial Cubic Ce2O3 Films via Ce-CeO2 Interfacial Reaction,” J. Phys. Chem. Lett. 4(6), 866–871 (2013).
    [Crossref] [PubMed]
  5. T. Inoue, Y. Yamamoto, S. Koyama, S. Suzuki, and Y. Ueda, “Epitaxial growth of CeO2 layers on silicon,” Appl. Phys. Lett. 56(14), 1332–1333 (1990).
    [Crossref]
  6. T. Chikyow, M. Bedair, L. Tye, and N. A. El-Masry, “Reaction and regrowth control of CeO2 on Si(111) surface for the silicon-on-insulator structure,” Appl. Phys. Lett. 65(8), 1030–1032 (1994).
    [Crossref]
  7. Y. Nishikawa, T. Yamaguchi, M. Yoshiki, H. Satake, and N. Fukushima, “Interfacial properties of single-crystalline CeO2 high-k gate dielectrics directly grown on Si(111),” Appl. Phys. Lett. 81(23), 4386–4388 (2002).
    [Crossref]
  8. C. S. Kim, S. J. Jo, S. W. Lee, W. J. Kim, H. K. Baik, S. J. Lee, D. K. Hwang, and S. Im, “High-k and low-k nanocomposite gate dielectrics for low voltage organic thin film transistors,” Appl. Phys. Lett. 88(24), 243515 (2006).
    [Crossref]
  9. J. I. Flege, B. Kaemena, J. Höcker, F. Bertram, J. Wollschläger, T. Schmidt, and J. Falta, “Ultrathin, epitaxial cerium oxide on silicon,” Appl. Phys. Lett. 104(13), 131604 (2014).
    [Crossref]
  10. C. Lv, C. Zhu, C. Wang, Y. Sao, X. Ma, and D. Yang, “Electroluminescence from metal-oxide-semiconductor devices with erbium-doped CeO2 films on silicon,” Appl. Phys. Lett. 106(14), 141102 (2015).
    [Crossref]
  11. G. Mu, S. Wang, L. Li, X. Yin, G. Wan, Y. Tang, and L. Yi, “Structural characteristics, luminescent properties and energy transfer process of CeO2:Er3+ thin films,” J. Alloys Compd. 664, 690–694 (2016).
    [Crossref]
  12. H. Guo, “Green and red upconversion luminescence in CeO2:Er3+ powders produced by 785 nm laser,” J. Solid State Chem. 180(1), 127–131 (2007).
    [Crossref]
  13. X. Li, Y. Yu, P. Luo, W. Zhang, Z. Guo, and X. Guan, “Enhanced near-infrared emission from erbium and cerium oxide codoped silica nanocomposite,” Opt. Mater. Express 7(3), 1007 (2017).
    [Crossref]
  14. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
    [Crossref] [PubMed]
  15. S. Takahashi, R. Hanson, J. van Tol, M. S. Sherwin, and D. D. Awschalom, “Quenching Spin Decoherence in Diamond Through Spin Bath Polarization,” Phys. Rev. Lett. 101(4), 047601 (2008).
    [Crossref] [PubMed]
  16. T. Tawara, G. Mariani, K. Shimizu, H. Omi, S. Adachi, and H. Gotoh, “Effect of isotopic purification on spectral-hole narrowing in 167Er3+ hyperfine transitions,” Appl. Phys. Express 10(4), 042801 (2017).
    [Crossref]
  17. H. Yamamoto, Y. Krockenberger, and M. Naito, “Multi-source MBE with high-precision rate control system as a synthesis method sui generis for multi-cation metal oxides,” J. Cryst. Growth 378, 184–188 (2013).
    [Crossref]
  18. G. Adachi Gy and N. Imanaka, “The binary rare earth oxides,” Chem. Rev. 98(4), 1479–1514 (1998).
    [Crossref] [PubMed]
  19. Joint Committee on Powder Diffraction Standards (JCPDS) card no. 34–394.
  20. D. R. Mullins, S. H. Overbury, and D. R. Huntley, “Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces,” Surf. Sci. 409(2), 307–319 (1998).
    [Crossref]
  21. L. Tye, N. A. El-Masry, T. Chikyow, P. McLarty, and S. M. Bedair, “Electrical characteristics of epiraxial CeO2 on Si(111),” Appl. Phys. Lett. 65(24), 3081–3083 (1994).
    [Crossref]
  22. F. U. Hillebrecht, M. Ronay, D. Rieger, and F. J. Himpsel, “Enhancement of Si oxidation by cerium overlayers and formation of cerium silicate,” Phys. Rev. B Condens. Matter 34(8), 5377–5380 (1986).
    [Crossref] [PubMed]
  23. R. Barnes, D. Starodub, T. Gustafsson, and E. Garfunkel, “A medium energy ion scattering and x-ray photoelectron spectroscopy study of physical vapor deposition thin cerium oxide films on Si(100),” J. Appl. Phys. 100(4), 044103 (2006).
    [Crossref]
  24. F. Pagliuca, P. Luches, and S. Valeri, “Interfacial interaction between cerium oxide and silicon surface,” Surf. Sci. 607, 164–169 (2016).
    [Crossref]
  25. T. Nakajima, Y. Tanaka, T. Kimura, and H. Isshiki, “Role of energy migration in nonradiative relaxation processes in ErxY2-xSiO5 crystalline thin films,” Jpn. J. Appl. Phys. 52(8R), 082601 (2016).
    [Crossref]
  26. T. Tawara, Y. Kawakami, H. Omi, R. Kaji, S. Adachi, and H. Gotoh, “Mechanism of concentration quenching in epitaxial (ErxSc1-x)2O3 thin layers,” Opt. Mater. Express 7(3), 1097–1104 (2017).
    [Crossref]
  27. T. Tawara, H. Omi, T. Hozumi, R. Kaji, S. Adachi, H. Gotoh, and T. Sogawa, “Population dynamics in epitaxial Er2O3 thin films grown on Si(111),” Appl. Phys. Lett. 102(24), 241918 (2013).
    [Crossref]

2017 (3)

2016 (3)

F. Pagliuca, P. Luches, and S. Valeri, “Interfacial interaction between cerium oxide and silicon surface,” Surf. Sci. 607, 164–169 (2016).
[Crossref]

T. Nakajima, Y. Tanaka, T. Kimura, and H. Isshiki, “Role of energy migration in nonradiative relaxation processes in ErxY2-xSiO5 crystalline thin films,” Jpn. J. Appl. Phys. 52(8R), 082601 (2016).
[Crossref]

G. Mu, S. Wang, L. Li, X. Yin, G. Wan, Y. Tang, and L. Yi, “Structural characteristics, luminescent properties and energy transfer process of CeO2:Er3+ thin films,” J. Alloys Compd. 664, 690–694 (2016).
[Crossref]

2015 (1)

C. Lv, C. Zhu, C. Wang, Y. Sao, X. Ma, and D. Yang, “Electroluminescence from metal-oxide-semiconductor devices with erbium-doped CeO2 films on silicon,” Appl. Phys. Lett. 106(14), 141102 (2015).
[Crossref]

2014 (1)

J. I. Flege, B. Kaemena, J. Höcker, F. Bertram, J. Wollschläger, T. Schmidt, and J. Falta, “Ultrathin, epitaxial cerium oxide on silicon,” Appl. Phys. Lett. 104(13), 131604 (2014).
[Crossref]

2013 (4)

H. Yamamoto, Y. Krockenberger, and M. Naito, “Multi-source MBE with high-precision rate control system as a synthesis method sui generis for multi-cation metal oxides,” J. Cryst. Growth 378, 184–188 (2013).
[Crossref]

E. J. Schelter, “Cerium under the lens,” Nat. Chem. 5(4), 348 (2013).
[Crossref] [PubMed]

V. Stetsovych, F. Pagliuca, F. Dvořák, T. Duchoň, M. Vorokhta, M. Aulická, J. Lachnitt, S. Schernich, I. Matolínová, K. Veltruská, T. Skála, D. Mazur, J. Mysliveček, J. Libuda, and V. Matolín, “Epitaxial Cubic Ce2O3 Films via Ce-CeO2 Interfacial Reaction,” J. Phys. Chem. Lett. 4(6), 866–871 (2013).
[Crossref] [PubMed]

T. Tawara, H. Omi, T. Hozumi, R. Kaji, S. Adachi, H. Gotoh, and T. Sogawa, “Population dynamics in epitaxial Er2O3 thin films grown on Si(111),” Appl. Phys. Lett. 102(24), 241918 (2013).
[Crossref]

2009 (1)

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

2008 (1)

S. Takahashi, R. Hanson, J. van Tol, M. S. Sherwin, and D. D. Awschalom, “Quenching Spin Decoherence in Diamond Through Spin Bath Polarization,” Phys. Rev. Lett. 101(4), 047601 (2008).
[Crossref] [PubMed]

2007 (1)

H. Guo, “Green and red upconversion luminescence in CeO2:Er3+ powders produced by 785 nm laser,” J. Solid State Chem. 180(1), 127–131 (2007).
[Crossref]

2006 (3)

X. Wang, J. A. Rodriguez, J. C. Hanson, D. Gamarra, A. Martínez-Arias, and M. Fernández-García, “In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria,” J. Phys. Chem. B 110(1), 428–434 (2006).
[Crossref] [PubMed]

C. S. Kim, S. J. Jo, S. W. Lee, W. J. Kim, H. K. Baik, S. J. Lee, D. K. Hwang, and S. Im, “High-k and low-k nanocomposite gate dielectrics for low voltage organic thin film transistors,” Appl. Phys. Lett. 88(24), 243515 (2006).
[Crossref]

R. Barnes, D. Starodub, T. Gustafsson, and E. Garfunkel, “A medium energy ion scattering and x-ray photoelectron spectroscopy study of physical vapor deposition thin cerium oxide films on Si(100),” J. Appl. Phys. 100(4), 044103 (2006).
[Crossref]

2002 (1)

Y. Nishikawa, T. Yamaguchi, M. Yoshiki, H. Satake, and N. Fukushima, “Interfacial properties of single-crystalline CeO2 high-k gate dielectrics directly grown on Si(111),” Appl. Phys. Lett. 81(23), 4386–4388 (2002).
[Crossref]

1998 (2)

G. Adachi Gy and N. Imanaka, “The binary rare earth oxides,” Chem. Rev. 98(4), 1479–1514 (1998).
[Crossref] [PubMed]

D. R. Mullins, S. H. Overbury, and D. R. Huntley, “Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces,” Surf. Sci. 409(2), 307–319 (1998).
[Crossref]

1996 (1)

C. K. Narula, J. E. Allison, D. R. Bauer, and H. S. Gandhi, “Materials chemistry issues related to advanced materials applications in the automotive industry,” Chem. Mater. 8(5), 984–1003 (1996).
[Crossref]

1994 (2)

T. Chikyow, M. Bedair, L. Tye, and N. A. El-Masry, “Reaction and regrowth control of CeO2 on Si(111) surface for the silicon-on-insulator structure,” Appl. Phys. Lett. 65(8), 1030–1032 (1994).
[Crossref]

L. Tye, N. A. El-Masry, T. Chikyow, P. McLarty, and S. M. Bedair, “Electrical characteristics of epiraxial CeO2 on Si(111),” Appl. Phys. Lett. 65(24), 3081–3083 (1994).
[Crossref]

1990 (1)

T. Inoue, Y. Yamamoto, S. Koyama, S. Suzuki, and Y. Ueda, “Epitaxial growth of CeO2 layers on silicon,” Appl. Phys. Lett. 56(14), 1332–1333 (1990).
[Crossref]

1986 (1)

F. U. Hillebrecht, M. Ronay, D. Rieger, and F. J. Himpsel, “Enhancement of Si oxidation by cerium overlayers and formation of cerium silicate,” Phys. Rev. B Condens. Matter 34(8), 5377–5380 (1986).
[Crossref] [PubMed]

Achard, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Adachi, S.

T. Tawara, G. Mariani, K. Shimizu, H. Omi, S. Adachi, and H. Gotoh, “Effect of isotopic purification on spectral-hole narrowing in 167Er3+ hyperfine transitions,” Appl. Phys. Express 10(4), 042801 (2017).
[Crossref]

T. Tawara, Y. Kawakami, H. Omi, R. Kaji, S. Adachi, and H. Gotoh, “Mechanism of concentration quenching in epitaxial (ErxSc1-x)2O3 thin layers,” Opt. Mater. Express 7(3), 1097–1104 (2017).
[Crossref]

T. Tawara, H. Omi, T. Hozumi, R. Kaji, S. Adachi, H. Gotoh, and T. Sogawa, “Population dynamics in epitaxial Er2O3 thin films grown on Si(111),” Appl. Phys. Lett. 102(24), 241918 (2013).
[Crossref]

Adachi Gy, G.

G. Adachi Gy and N. Imanaka, “The binary rare earth oxides,” Chem. Rev. 98(4), 1479–1514 (1998).
[Crossref] [PubMed]

Allison, J. E.

C. K. Narula, J. E. Allison, D. R. Bauer, and H. S. Gandhi, “Materials chemistry issues related to advanced materials applications in the automotive industry,” Chem. Mater. 8(5), 984–1003 (1996).
[Crossref]

Aulická, M.

V. Stetsovych, F. Pagliuca, F. Dvořák, T. Duchoň, M. Vorokhta, M. Aulická, J. Lachnitt, S. Schernich, I. Matolínová, K. Veltruská, T. Skála, D. Mazur, J. Mysliveček, J. Libuda, and V. Matolín, “Epitaxial Cubic Ce2O3 Films via Ce-CeO2 Interfacial Reaction,” J. Phys. Chem. Lett. 4(6), 866–871 (2013).
[Crossref] [PubMed]

Awschalom, D. D.

S. Takahashi, R. Hanson, J. van Tol, M. S. Sherwin, and D. D. Awschalom, “Quenching Spin Decoherence in Diamond Through Spin Bath Polarization,” Phys. Rev. Lett. 101(4), 047601 (2008).
[Crossref] [PubMed]

Baik, H. K.

C. S. Kim, S. J. Jo, S. W. Lee, W. J. Kim, H. K. Baik, S. J. Lee, D. K. Hwang, and S. Im, “High-k and low-k nanocomposite gate dielectrics for low voltage organic thin film transistors,” Appl. Phys. Lett. 88(24), 243515 (2006).
[Crossref]

Balasubramanian, G.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Barnes, R.

R. Barnes, D. Starodub, T. Gustafsson, and E. Garfunkel, “A medium energy ion scattering and x-ray photoelectron spectroscopy study of physical vapor deposition thin cerium oxide films on Si(100),” J. Appl. Phys. 100(4), 044103 (2006).
[Crossref]

Bauer, D. R.

C. K. Narula, J. E. Allison, D. R. Bauer, and H. S. Gandhi, “Materials chemistry issues related to advanced materials applications in the automotive industry,” Chem. Mater. 8(5), 984–1003 (1996).
[Crossref]

Beck, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Bedair, M.

T. Chikyow, M. Bedair, L. Tye, and N. A. El-Masry, “Reaction and regrowth control of CeO2 on Si(111) surface for the silicon-on-insulator structure,” Appl. Phys. Lett. 65(8), 1030–1032 (1994).
[Crossref]

Bedair, S. M.

L. Tye, N. A. El-Masry, T. Chikyow, P. McLarty, and S. M. Bedair, “Electrical characteristics of epiraxial CeO2 on Si(111),” Appl. Phys. Lett. 65(24), 3081–3083 (1994).
[Crossref]

Bertram, F.

J. I. Flege, B. Kaemena, J. Höcker, F. Bertram, J. Wollschläger, T. Schmidt, and J. Falta, “Ultrathin, epitaxial cerium oxide on silicon,” Appl. Phys. Lett. 104(13), 131604 (2014).
[Crossref]

Chikyow, T.

T. Chikyow, M. Bedair, L. Tye, and N. A. El-Masry, “Reaction and regrowth control of CeO2 on Si(111) surface for the silicon-on-insulator structure,” Appl. Phys. Lett. 65(8), 1030–1032 (1994).
[Crossref]

L. Tye, N. A. El-Masry, T. Chikyow, P. McLarty, and S. M. Bedair, “Electrical characteristics of epiraxial CeO2 on Si(111),” Appl. Phys. Lett. 65(24), 3081–3083 (1994).
[Crossref]

Duchon, T.

V. Stetsovych, F. Pagliuca, F. Dvořák, T. Duchoň, M. Vorokhta, M. Aulická, J. Lachnitt, S. Schernich, I. Matolínová, K. Veltruská, T. Skála, D. Mazur, J. Mysliveček, J. Libuda, and V. Matolín, “Epitaxial Cubic Ce2O3 Films via Ce-CeO2 Interfacial Reaction,” J. Phys. Chem. Lett. 4(6), 866–871 (2013).
[Crossref] [PubMed]

Dvorák, F.

V. Stetsovych, F. Pagliuca, F. Dvořák, T. Duchoň, M. Vorokhta, M. Aulická, J. Lachnitt, S. Schernich, I. Matolínová, K. Veltruská, T. Skála, D. Mazur, J. Mysliveček, J. Libuda, and V. Matolín, “Epitaxial Cubic Ce2O3 Films via Ce-CeO2 Interfacial Reaction,” J. Phys. Chem. Lett. 4(6), 866–871 (2013).
[Crossref] [PubMed]

El-Masry, N. A.

T. Chikyow, M. Bedair, L. Tye, and N. A. El-Masry, “Reaction and regrowth control of CeO2 on Si(111) surface for the silicon-on-insulator structure,” Appl. Phys. Lett. 65(8), 1030–1032 (1994).
[Crossref]

L. Tye, N. A. El-Masry, T. Chikyow, P. McLarty, and S. M. Bedair, “Electrical characteristics of epiraxial CeO2 on Si(111),” Appl. Phys. Lett. 65(24), 3081–3083 (1994).
[Crossref]

Falta, J.

J. I. Flege, B. Kaemena, J. Höcker, F. Bertram, J. Wollschläger, T. Schmidt, and J. Falta, “Ultrathin, epitaxial cerium oxide on silicon,” Appl. Phys. Lett. 104(13), 131604 (2014).
[Crossref]

Fernández-García, M.

X. Wang, J. A. Rodriguez, J. C. Hanson, D. Gamarra, A. Martínez-Arias, and M. Fernández-García, “In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria,” J. Phys. Chem. B 110(1), 428–434 (2006).
[Crossref] [PubMed]

Flege, J. I.

J. I. Flege, B. Kaemena, J. Höcker, F. Bertram, J. Wollschläger, T. Schmidt, and J. Falta, “Ultrathin, epitaxial cerium oxide on silicon,” Appl. Phys. Lett. 104(13), 131604 (2014).
[Crossref]

Fukushima, N.

Y. Nishikawa, T. Yamaguchi, M. Yoshiki, H. Satake, and N. Fukushima, “Interfacial properties of single-crystalline CeO2 high-k gate dielectrics directly grown on Si(111),” Appl. Phys. Lett. 81(23), 4386–4388 (2002).
[Crossref]

Gamarra, D.

X. Wang, J. A. Rodriguez, J. C. Hanson, D. Gamarra, A. Martínez-Arias, and M. Fernández-García, “In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria,” J. Phys. Chem. B 110(1), 428–434 (2006).
[Crossref] [PubMed]

Gandhi, H. S.

C. K. Narula, J. E. Allison, D. R. Bauer, and H. S. Gandhi, “Materials chemistry issues related to advanced materials applications in the automotive industry,” Chem. Mater. 8(5), 984–1003 (1996).
[Crossref]

Garfunkel, E.

R. Barnes, D. Starodub, T. Gustafsson, and E. Garfunkel, “A medium energy ion scattering and x-ray photoelectron spectroscopy study of physical vapor deposition thin cerium oxide films on Si(100),” J. Appl. Phys. 100(4), 044103 (2006).
[Crossref]

Gotoh, H.

T. Tawara, G. Mariani, K. Shimizu, H. Omi, S. Adachi, and H. Gotoh, “Effect of isotopic purification on spectral-hole narrowing in 167Er3+ hyperfine transitions,” Appl. Phys. Express 10(4), 042801 (2017).
[Crossref]

T. Tawara, Y. Kawakami, H. Omi, R. Kaji, S. Adachi, and H. Gotoh, “Mechanism of concentration quenching in epitaxial (ErxSc1-x)2O3 thin layers,” Opt. Mater. Express 7(3), 1097–1104 (2017).
[Crossref]

T. Tawara, H. Omi, T. Hozumi, R. Kaji, S. Adachi, H. Gotoh, and T. Sogawa, “Population dynamics in epitaxial Er2O3 thin films grown on Si(111),” Appl. Phys. Lett. 102(24), 241918 (2013).
[Crossref]

Guan, X.

Guo, H.

H. Guo, “Green and red upconversion luminescence in CeO2:Er3+ powders produced by 785 nm laser,” J. Solid State Chem. 180(1), 127–131 (2007).
[Crossref]

Guo, Z.

Gustafsson, T.

R. Barnes, D. Starodub, T. Gustafsson, and E. Garfunkel, “A medium energy ion scattering and x-ray photoelectron spectroscopy study of physical vapor deposition thin cerium oxide films on Si(100),” J. Appl. Phys. 100(4), 044103 (2006).
[Crossref]

Hanson, J. C.

X. Wang, J. A. Rodriguez, J. C. Hanson, D. Gamarra, A. Martínez-Arias, and M. Fernández-García, “In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria,” J. Phys. Chem. B 110(1), 428–434 (2006).
[Crossref] [PubMed]

Hanson, R.

S. Takahashi, R. Hanson, J. van Tol, M. S. Sherwin, and D. D. Awschalom, “Quenching Spin Decoherence in Diamond Through Spin Bath Polarization,” Phys. Rev. Lett. 101(4), 047601 (2008).
[Crossref] [PubMed]

Hemmer, P. R.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Hillebrecht, F. U.

F. U. Hillebrecht, M. Ronay, D. Rieger, and F. J. Himpsel, “Enhancement of Si oxidation by cerium overlayers and formation of cerium silicate,” Phys. Rev. B Condens. Matter 34(8), 5377–5380 (1986).
[Crossref] [PubMed]

Himpsel, F. J.

F. U. Hillebrecht, M. Ronay, D. Rieger, and F. J. Himpsel, “Enhancement of Si oxidation by cerium overlayers and formation of cerium silicate,” Phys. Rev. B Condens. Matter 34(8), 5377–5380 (1986).
[Crossref] [PubMed]

Höcker, J.

J. I. Flege, B. Kaemena, J. Höcker, F. Bertram, J. Wollschläger, T. Schmidt, and J. Falta, “Ultrathin, epitaxial cerium oxide on silicon,” Appl. Phys. Lett. 104(13), 131604 (2014).
[Crossref]

Hozumi, T.

T. Tawara, H. Omi, T. Hozumi, R. Kaji, S. Adachi, H. Gotoh, and T. Sogawa, “Population dynamics in epitaxial Er2O3 thin films grown on Si(111),” Appl. Phys. Lett. 102(24), 241918 (2013).
[Crossref]

Huntley, D. R.

D. R. Mullins, S. H. Overbury, and D. R. Huntley, “Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces,” Surf. Sci. 409(2), 307–319 (1998).
[Crossref]

Hwang, D. K.

C. S. Kim, S. J. Jo, S. W. Lee, W. J. Kim, H. K. Baik, S. J. Lee, D. K. Hwang, and S. Im, “High-k and low-k nanocomposite gate dielectrics for low voltage organic thin film transistors,” Appl. Phys. Lett. 88(24), 243515 (2006).
[Crossref]

Im, S.

C. S. Kim, S. J. Jo, S. W. Lee, W. J. Kim, H. K. Baik, S. J. Lee, D. K. Hwang, and S. Im, “High-k and low-k nanocomposite gate dielectrics for low voltage organic thin film transistors,” Appl. Phys. Lett. 88(24), 243515 (2006).
[Crossref]

Imanaka, N.

G. Adachi Gy and N. Imanaka, “The binary rare earth oxides,” Chem. Rev. 98(4), 1479–1514 (1998).
[Crossref] [PubMed]

Inoue, T.

T. Inoue, Y. Yamamoto, S. Koyama, S. Suzuki, and Y. Ueda, “Epitaxial growth of CeO2 layers on silicon,” Appl. Phys. Lett. 56(14), 1332–1333 (1990).
[Crossref]

Isoya, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Isshiki, H.

T. Nakajima, Y. Tanaka, T. Kimura, and H. Isshiki, “Role of energy migration in nonradiative relaxation processes in ErxY2-xSiO5 crystalline thin films,” Jpn. J. Appl. Phys. 52(8R), 082601 (2016).
[Crossref]

Jacques, V.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Jelezko, F.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Jo, S. J.

C. S. Kim, S. J. Jo, S. W. Lee, W. J. Kim, H. K. Baik, S. J. Lee, D. K. Hwang, and S. Im, “High-k and low-k nanocomposite gate dielectrics for low voltage organic thin film transistors,” Appl. Phys. Lett. 88(24), 243515 (2006).
[Crossref]

Kaemena, B.

J. I. Flege, B. Kaemena, J. Höcker, F. Bertram, J. Wollschläger, T. Schmidt, and J. Falta, “Ultrathin, epitaxial cerium oxide on silicon,” Appl. Phys. Lett. 104(13), 131604 (2014).
[Crossref]

Kaji, R.

T. Tawara, Y. Kawakami, H. Omi, R. Kaji, S. Adachi, and H. Gotoh, “Mechanism of concentration quenching in epitaxial (ErxSc1-x)2O3 thin layers,” Opt. Mater. Express 7(3), 1097–1104 (2017).
[Crossref]

T. Tawara, H. Omi, T. Hozumi, R. Kaji, S. Adachi, H. Gotoh, and T. Sogawa, “Population dynamics in epitaxial Er2O3 thin films grown on Si(111),” Appl. Phys. Lett. 102(24), 241918 (2013).
[Crossref]

Kawakami, Y.

Kim, C. S.

C. S. Kim, S. J. Jo, S. W. Lee, W. J. Kim, H. K. Baik, S. J. Lee, D. K. Hwang, and S. Im, “High-k and low-k nanocomposite gate dielectrics for low voltage organic thin film transistors,” Appl. Phys. Lett. 88(24), 243515 (2006).
[Crossref]

Kim, W. J.

C. S. Kim, S. J. Jo, S. W. Lee, W. J. Kim, H. K. Baik, S. J. Lee, D. K. Hwang, and S. Im, “High-k and low-k nanocomposite gate dielectrics for low voltage organic thin film transistors,” Appl. Phys. Lett. 88(24), 243515 (2006).
[Crossref]

Kimura, T.

T. Nakajima, Y. Tanaka, T. Kimura, and H. Isshiki, “Role of energy migration in nonradiative relaxation processes in ErxY2-xSiO5 crystalline thin films,” Jpn. J. Appl. Phys. 52(8R), 082601 (2016).
[Crossref]

Kolesov, R.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Koyama, S.

T. Inoue, Y. Yamamoto, S. Koyama, S. Suzuki, and Y. Ueda, “Epitaxial growth of CeO2 layers on silicon,” Appl. Phys. Lett. 56(14), 1332–1333 (1990).
[Crossref]

Krockenberger, Y.

H. Yamamoto, Y. Krockenberger, and M. Naito, “Multi-source MBE with high-precision rate control system as a synthesis method sui generis for multi-cation metal oxides,” J. Cryst. Growth 378, 184–188 (2013).
[Crossref]

Lachnitt, J.

V. Stetsovych, F. Pagliuca, F. Dvořák, T. Duchoň, M. Vorokhta, M. Aulická, J. Lachnitt, S. Schernich, I. Matolínová, K. Veltruská, T. Skála, D. Mazur, J. Mysliveček, J. Libuda, and V. Matolín, “Epitaxial Cubic Ce2O3 Films via Ce-CeO2 Interfacial Reaction,” J. Phys. Chem. Lett. 4(6), 866–871 (2013).
[Crossref] [PubMed]

Lee, S. J.

C. S. Kim, S. J. Jo, S. W. Lee, W. J. Kim, H. K. Baik, S. J. Lee, D. K. Hwang, and S. Im, “High-k and low-k nanocomposite gate dielectrics for low voltage organic thin film transistors,” Appl. Phys. Lett. 88(24), 243515 (2006).
[Crossref]

Lee, S. W.

C. S. Kim, S. J. Jo, S. W. Lee, W. J. Kim, H. K. Baik, S. J. Lee, D. K. Hwang, and S. Im, “High-k and low-k nanocomposite gate dielectrics for low voltage organic thin film transistors,” Appl. Phys. Lett. 88(24), 243515 (2006).
[Crossref]

Li, L.

G. Mu, S. Wang, L. Li, X. Yin, G. Wan, Y. Tang, and L. Yi, “Structural characteristics, luminescent properties and energy transfer process of CeO2:Er3+ thin films,” J. Alloys Compd. 664, 690–694 (2016).
[Crossref]

Li, X.

Libuda, J.

V. Stetsovych, F. Pagliuca, F. Dvořák, T. Duchoň, M. Vorokhta, M. Aulická, J. Lachnitt, S. Schernich, I. Matolínová, K. Veltruská, T. Skála, D. Mazur, J. Mysliveček, J. Libuda, and V. Matolín, “Epitaxial Cubic Ce2O3 Films via Ce-CeO2 Interfacial Reaction,” J. Phys. Chem. Lett. 4(6), 866–871 (2013).
[Crossref] [PubMed]

Luches, P.

F. Pagliuca, P. Luches, and S. Valeri, “Interfacial interaction between cerium oxide and silicon surface,” Surf. Sci. 607, 164–169 (2016).
[Crossref]

Luo, P.

Lv, C.

C. Lv, C. Zhu, C. Wang, Y. Sao, X. Ma, and D. Yang, “Electroluminescence from metal-oxide-semiconductor devices with erbium-doped CeO2 films on silicon,” Appl. Phys. Lett. 106(14), 141102 (2015).
[Crossref]

Ma, X.

C. Lv, C. Zhu, C. Wang, Y. Sao, X. Ma, and D. Yang, “Electroluminescence from metal-oxide-semiconductor devices with erbium-doped CeO2 films on silicon,” Appl. Phys. Lett. 106(14), 141102 (2015).
[Crossref]

Mariani, G.

T. Tawara, G. Mariani, K. Shimizu, H. Omi, S. Adachi, and H. Gotoh, “Effect of isotopic purification on spectral-hole narrowing in 167Er3+ hyperfine transitions,” Appl. Phys. Express 10(4), 042801 (2017).
[Crossref]

Markham, M.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Martínez-Arias, A.

X. Wang, J. A. Rodriguez, J. C. Hanson, D. Gamarra, A. Martínez-Arias, and M. Fernández-García, “In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria,” J. Phys. Chem. B 110(1), 428–434 (2006).
[Crossref] [PubMed]

Matolín, V.

V. Stetsovych, F. Pagliuca, F. Dvořák, T. Duchoň, M. Vorokhta, M. Aulická, J. Lachnitt, S. Schernich, I. Matolínová, K. Veltruská, T. Skála, D. Mazur, J. Mysliveček, J. Libuda, and V. Matolín, “Epitaxial Cubic Ce2O3 Films via Ce-CeO2 Interfacial Reaction,” J. Phys. Chem. Lett. 4(6), 866–871 (2013).
[Crossref] [PubMed]

Matolínová, I.

V. Stetsovych, F. Pagliuca, F. Dvořák, T. Duchoň, M. Vorokhta, M. Aulická, J. Lachnitt, S. Schernich, I. Matolínová, K. Veltruská, T. Skála, D. Mazur, J. Mysliveček, J. Libuda, and V. Matolín, “Epitaxial Cubic Ce2O3 Films via Ce-CeO2 Interfacial Reaction,” J. Phys. Chem. Lett. 4(6), 866–871 (2013).
[Crossref] [PubMed]

Mazur, D.

V. Stetsovych, F. Pagliuca, F. Dvořák, T. Duchoň, M. Vorokhta, M. Aulická, J. Lachnitt, S. Schernich, I. Matolínová, K. Veltruská, T. Skála, D. Mazur, J. Mysliveček, J. Libuda, and V. Matolín, “Epitaxial Cubic Ce2O3 Films via Ce-CeO2 Interfacial Reaction,” J. Phys. Chem. Lett. 4(6), 866–871 (2013).
[Crossref] [PubMed]

McLarty, P.

L. Tye, N. A. El-Masry, T. Chikyow, P. McLarty, and S. M. Bedair, “Electrical characteristics of epiraxial CeO2 on Si(111),” Appl. Phys. Lett. 65(24), 3081–3083 (1994).
[Crossref]

Mizuochi, N.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Mu, G.

G. Mu, S. Wang, L. Li, X. Yin, G. Wan, Y. Tang, and L. Yi, “Structural characteristics, luminescent properties and energy transfer process of CeO2:Er3+ thin films,” J. Alloys Compd. 664, 690–694 (2016).
[Crossref]

Mullins, D. R.

D. R. Mullins, S. H. Overbury, and D. R. Huntley, “Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces,” Surf. Sci. 409(2), 307–319 (1998).
[Crossref]

Myslivecek, J.

V. Stetsovych, F. Pagliuca, F. Dvořák, T. Duchoň, M. Vorokhta, M. Aulická, J. Lachnitt, S. Schernich, I. Matolínová, K. Veltruská, T. Skála, D. Mazur, J. Mysliveček, J. Libuda, and V. Matolín, “Epitaxial Cubic Ce2O3 Films via Ce-CeO2 Interfacial Reaction,” J. Phys. Chem. Lett. 4(6), 866–871 (2013).
[Crossref] [PubMed]

Naito, M.

H. Yamamoto, Y. Krockenberger, and M. Naito, “Multi-source MBE with high-precision rate control system as a synthesis method sui generis for multi-cation metal oxides,” J. Cryst. Growth 378, 184–188 (2013).
[Crossref]

Nakajima, T.

T. Nakajima, Y. Tanaka, T. Kimura, and H. Isshiki, “Role of energy migration in nonradiative relaxation processes in ErxY2-xSiO5 crystalline thin films,” Jpn. J. Appl. Phys. 52(8R), 082601 (2016).
[Crossref]

Narula, C. K.

C. K. Narula, J. E. Allison, D. R. Bauer, and H. S. Gandhi, “Materials chemistry issues related to advanced materials applications in the automotive industry,” Chem. Mater. 8(5), 984–1003 (1996).
[Crossref]

Neumann, P.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Nishikawa, Y.

Y. Nishikawa, T. Yamaguchi, M. Yoshiki, H. Satake, and N. Fukushima, “Interfacial properties of single-crystalline CeO2 high-k gate dielectrics directly grown on Si(111),” Appl. Phys. Lett. 81(23), 4386–4388 (2002).
[Crossref]

Omi, H.

T. Tawara, G. Mariani, K. Shimizu, H. Omi, S. Adachi, and H. Gotoh, “Effect of isotopic purification on spectral-hole narrowing in 167Er3+ hyperfine transitions,” Appl. Phys. Express 10(4), 042801 (2017).
[Crossref]

T. Tawara, Y. Kawakami, H. Omi, R. Kaji, S. Adachi, and H. Gotoh, “Mechanism of concentration quenching in epitaxial (ErxSc1-x)2O3 thin layers,” Opt. Mater. Express 7(3), 1097–1104 (2017).
[Crossref]

T. Tawara, H. Omi, T. Hozumi, R. Kaji, S. Adachi, H. Gotoh, and T. Sogawa, “Population dynamics in epitaxial Er2O3 thin films grown on Si(111),” Appl. Phys. Lett. 102(24), 241918 (2013).
[Crossref]

Overbury, S. H.

D. R. Mullins, S. H. Overbury, and D. R. Huntley, “Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces,” Surf. Sci. 409(2), 307–319 (1998).
[Crossref]

Pagliuca, F.

F. Pagliuca, P. Luches, and S. Valeri, “Interfacial interaction between cerium oxide and silicon surface,” Surf. Sci. 607, 164–169 (2016).
[Crossref]

V. Stetsovych, F. Pagliuca, F. Dvořák, T. Duchoň, M. Vorokhta, M. Aulická, J. Lachnitt, S. Schernich, I. Matolínová, K. Veltruská, T. Skála, D. Mazur, J. Mysliveček, J. Libuda, and V. Matolín, “Epitaxial Cubic Ce2O3 Films via Ce-CeO2 Interfacial Reaction,” J. Phys. Chem. Lett. 4(6), 866–871 (2013).
[Crossref] [PubMed]

Rieger, D.

F. U. Hillebrecht, M. Ronay, D. Rieger, and F. J. Himpsel, “Enhancement of Si oxidation by cerium overlayers and formation of cerium silicate,” Phys. Rev. B Condens. Matter 34(8), 5377–5380 (1986).
[Crossref] [PubMed]

Rodriguez, J. A.

X. Wang, J. A. Rodriguez, J. C. Hanson, D. Gamarra, A. Martínez-Arias, and M. Fernández-García, “In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria,” J. Phys. Chem. B 110(1), 428–434 (2006).
[Crossref] [PubMed]

Ronay, M.

F. U. Hillebrecht, M. Ronay, D. Rieger, and F. J. Himpsel, “Enhancement of Si oxidation by cerium overlayers and formation of cerium silicate,” Phys. Rev. B Condens. Matter 34(8), 5377–5380 (1986).
[Crossref] [PubMed]

Sao, Y.

C. Lv, C. Zhu, C. Wang, Y. Sao, X. Ma, and D. Yang, “Electroluminescence from metal-oxide-semiconductor devices with erbium-doped CeO2 films on silicon,” Appl. Phys. Lett. 106(14), 141102 (2015).
[Crossref]

Satake, H.

Y. Nishikawa, T. Yamaguchi, M. Yoshiki, H. Satake, and N. Fukushima, “Interfacial properties of single-crystalline CeO2 high-k gate dielectrics directly grown on Si(111),” Appl. Phys. Lett. 81(23), 4386–4388 (2002).
[Crossref]

Schelter, E. J.

E. J. Schelter, “Cerium under the lens,” Nat. Chem. 5(4), 348 (2013).
[Crossref] [PubMed]

Schernich, S.

V. Stetsovych, F. Pagliuca, F. Dvořák, T. Duchoň, M. Vorokhta, M. Aulická, J. Lachnitt, S. Schernich, I. Matolínová, K. Veltruská, T. Skála, D. Mazur, J. Mysliveček, J. Libuda, and V. Matolín, “Epitaxial Cubic Ce2O3 Films via Ce-CeO2 Interfacial Reaction,” J. Phys. Chem. Lett. 4(6), 866–871 (2013).
[Crossref] [PubMed]

Schmidt, T.

J. I. Flege, B. Kaemena, J. Höcker, F. Bertram, J. Wollschläger, T. Schmidt, and J. Falta, “Ultrathin, epitaxial cerium oxide on silicon,” Appl. Phys. Lett. 104(13), 131604 (2014).
[Crossref]

Sherwin, M. S.

S. Takahashi, R. Hanson, J. van Tol, M. S. Sherwin, and D. D. Awschalom, “Quenching Spin Decoherence in Diamond Through Spin Bath Polarization,” Phys. Rev. Lett. 101(4), 047601 (2008).
[Crossref] [PubMed]

Shimizu, K.

T. Tawara, G. Mariani, K. Shimizu, H. Omi, S. Adachi, and H. Gotoh, “Effect of isotopic purification on spectral-hole narrowing in 167Er3+ hyperfine transitions,” Appl. Phys. Express 10(4), 042801 (2017).
[Crossref]

Skála, T.

V. Stetsovych, F. Pagliuca, F. Dvořák, T. Duchoň, M. Vorokhta, M. Aulická, J. Lachnitt, S. Schernich, I. Matolínová, K. Veltruská, T. Skála, D. Mazur, J. Mysliveček, J. Libuda, and V. Matolín, “Epitaxial Cubic Ce2O3 Films via Ce-CeO2 Interfacial Reaction,” J. Phys. Chem. Lett. 4(6), 866–871 (2013).
[Crossref] [PubMed]

Sogawa, T.

T. Tawara, H. Omi, T. Hozumi, R. Kaji, S. Adachi, H. Gotoh, and T. Sogawa, “Population dynamics in epitaxial Er2O3 thin films grown on Si(111),” Appl. Phys. Lett. 102(24), 241918 (2013).
[Crossref]

Starodub, D.

R. Barnes, D. Starodub, T. Gustafsson, and E. Garfunkel, “A medium energy ion scattering and x-ray photoelectron spectroscopy study of physical vapor deposition thin cerium oxide films on Si(100),” J. Appl. Phys. 100(4), 044103 (2006).
[Crossref]

Stetsovych, V.

V. Stetsovych, F. Pagliuca, F. Dvořák, T. Duchoň, M. Vorokhta, M. Aulická, J. Lachnitt, S. Schernich, I. Matolínová, K. Veltruská, T. Skála, D. Mazur, J. Mysliveček, J. Libuda, and V. Matolín, “Epitaxial Cubic Ce2O3 Films via Ce-CeO2 Interfacial Reaction,” J. Phys. Chem. Lett. 4(6), 866–871 (2013).
[Crossref] [PubMed]

Suzuki, S.

T. Inoue, Y. Yamamoto, S. Koyama, S. Suzuki, and Y. Ueda, “Epitaxial growth of CeO2 layers on silicon,” Appl. Phys. Lett. 56(14), 1332–1333 (1990).
[Crossref]

Takahashi, S.

S. Takahashi, R. Hanson, J. van Tol, M. S. Sherwin, and D. D. Awschalom, “Quenching Spin Decoherence in Diamond Through Spin Bath Polarization,” Phys. Rev. Lett. 101(4), 047601 (2008).
[Crossref] [PubMed]

Tanaka, Y.

T. Nakajima, Y. Tanaka, T. Kimura, and H. Isshiki, “Role of energy migration in nonradiative relaxation processes in ErxY2-xSiO5 crystalline thin films,” Jpn. J. Appl. Phys. 52(8R), 082601 (2016).
[Crossref]

Tang, Y.

G. Mu, S. Wang, L. Li, X. Yin, G. Wan, Y. Tang, and L. Yi, “Structural characteristics, luminescent properties and energy transfer process of CeO2:Er3+ thin films,” J. Alloys Compd. 664, 690–694 (2016).
[Crossref]

Tawara, T.

T. Tawara, Y. Kawakami, H. Omi, R. Kaji, S. Adachi, and H. Gotoh, “Mechanism of concentration quenching in epitaxial (ErxSc1-x)2O3 thin layers,” Opt. Mater. Express 7(3), 1097–1104 (2017).
[Crossref]

T. Tawara, G. Mariani, K. Shimizu, H. Omi, S. Adachi, and H. Gotoh, “Effect of isotopic purification on spectral-hole narrowing in 167Er3+ hyperfine transitions,” Appl. Phys. Express 10(4), 042801 (2017).
[Crossref]

T. Tawara, H. Omi, T. Hozumi, R. Kaji, S. Adachi, H. Gotoh, and T. Sogawa, “Population dynamics in epitaxial Er2O3 thin films grown on Si(111),” Appl. Phys. Lett. 102(24), 241918 (2013).
[Crossref]

Tissler, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Twitchen, D.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Tye, L.

L. Tye, N. A. El-Masry, T. Chikyow, P. McLarty, and S. M. Bedair, “Electrical characteristics of epiraxial CeO2 on Si(111),” Appl. Phys. Lett. 65(24), 3081–3083 (1994).
[Crossref]

T. Chikyow, M. Bedair, L. Tye, and N. A. El-Masry, “Reaction and regrowth control of CeO2 on Si(111) surface for the silicon-on-insulator structure,” Appl. Phys. Lett. 65(8), 1030–1032 (1994).
[Crossref]

Ueda, Y.

T. Inoue, Y. Yamamoto, S. Koyama, S. Suzuki, and Y. Ueda, “Epitaxial growth of CeO2 layers on silicon,” Appl. Phys. Lett. 56(14), 1332–1333 (1990).
[Crossref]

Valeri, S.

F. Pagliuca, P. Luches, and S. Valeri, “Interfacial interaction between cerium oxide and silicon surface,” Surf. Sci. 607, 164–169 (2016).
[Crossref]

van Tol, J.

S. Takahashi, R. Hanson, J. van Tol, M. S. Sherwin, and D. D. Awschalom, “Quenching Spin Decoherence in Diamond Through Spin Bath Polarization,” Phys. Rev. Lett. 101(4), 047601 (2008).
[Crossref] [PubMed]

Veltruská, K.

V. Stetsovych, F. Pagliuca, F. Dvořák, T. Duchoň, M. Vorokhta, M. Aulická, J. Lachnitt, S. Schernich, I. Matolínová, K. Veltruská, T. Skála, D. Mazur, J. Mysliveček, J. Libuda, and V. Matolín, “Epitaxial Cubic Ce2O3 Films via Ce-CeO2 Interfacial Reaction,” J. Phys. Chem. Lett. 4(6), 866–871 (2013).
[Crossref] [PubMed]

Vorokhta, M.

V. Stetsovych, F. Pagliuca, F. Dvořák, T. Duchoň, M. Vorokhta, M. Aulická, J. Lachnitt, S. Schernich, I. Matolínová, K. Veltruská, T. Skála, D. Mazur, J. Mysliveček, J. Libuda, and V. Matolín, “Epitaxial Cubic Ce2O3 Films via Ce-CeO2 Interfacial Reaction,” J. Phys. Chem. Lett. 4(6), 866–871 (2013).
[Crossref] [PubMed]

Wan, G.

G. Mu, S. Wang, L. Li, X. Yin, G. Wan, Y. Tang, and L. Yi, “Structural characteristics, luminescent properties and energy transfer process of CeO2:Er3+ thin films,” J. Alloys Compd. 664, 690–694 (2016).
[Crossref]

Wang, C.

C. Lv, C. Zhu, C. Wang, Y. Sao, X. Ma, and D. Yang, “Electroluminescence from metal-oxide-semiconductor devices with erbium-doped CeO2 films on silicon,” Appl. Phys. Lett. 106(14), 141102 (2015).
[Crossref]

Wang, S.

G. Mu, S. Wang, L. Li, X. Yin, G. Wan, Y. Tang, and L. Yi, “Structural characteristics, luminescent properties and energy transfer process of CeO2:Er3+ thin films,” J. Alloys Compd. 664, 690–694 (2016).
[Crossref]

Wang, X.

X. Wang, J. A. Rodriguez, J. C. Hanson, D. Gamarra, A. Martínez-Arias, and M. Fernández-García, “In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria,” J. Phys. Chem. B 110(1), 428–434 (2006).
[Crossref] [PubMed]

Wollschläger, J.

J. I. Flege, B. Kaemena, J. Höcker, F. Bertram, J. Wollschläger, T. Schmidt, and J. Falta, “Ultrathin, epitaxial cerium oxide on silicon,” Appl. Phys. Lett. 104(13), 131604 (2014).
[Crossref]

Wrachtrup, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Yamaguchi, T.

Y. Nishikawa, T. Yamaguchi, M. Yoshiki, H. Satake, and N. Fukushima, “Interfacial properties of single-crystalline CeO2 high-k gate dielectrics directly grown on Si(111),” Appl. Phys. Lett. 81(23), 4386–4388 (2002).
[Crossref]

Yamamoto, H.

H. Yamamoto, Y. Krockenberger, and M. Naito, “Multi-source MBE with high-precision rate control system as a synthesis method sui generis for multi-cation metal oxides,” J. Cryst. Growth 378, 184–188 (2013).
[Crossref]

Yamamoto, Y.

T. Inoue, Y. Yamamoto, S. Koyama, S. Suzuki, and Y. Ueda, “Epitaxial growth of CeO2 layers on silicon,” Appl. Phys. Lett. 56(14), 1332–1333 (1990).
[Crossref]

Yang, D.

C. Lv, C. Zhu, C. Wang, Y. Sao, X. Ma, and D. Yang, “Electroluminescence from metal-oxide-semiconductor devices with erbium-doped CeO2 films on silicon,” Appl. Phys. Lett. 106(14), 141102 (2015).
[Crossref]

Yi, L.

G. Mu, S. Wang, L. Li, X. Yin, G. Wan, Y. Tang, and L. Yi, “Structural characteristics, luminescent properties and energy transfer process of CeO2:Er3+ thin films,” J. Alloys Compd. 664, 690–694 (2016).
[Crossref]

Yin, X.

G. Mu, S. Wang, L. Li, X. Yin, G. Wan, Y. Tang, and L. Yi, “Structural characteristics, luminescent properties and energy transfer process of CeO2:Er3+ thin films,” J. Alloys Compd. 664, 690–694 (2016).
[Crossref]

Yoshiki, M.

Y. Nishikawa, T. Yamaguchi, M. Yoshiki, H. Satake, and N. Fukushima, “Interfacial properties of single-crystalline CeO2 high-k gate dielectrics directly grown on Si(111),” Appl. Phys. Lett. 81(23), 4386–4388 (2002).
[Crossref]

Yu, Y.

Zhang, W.

Zhu, C.

C. Lv, C. Zhu, C. Wang, Y. Sao, X. Ma, and D. Yang, “Electroluminescence from metal-oxide-semiconductor devices with erbium-doped CeO2 films on silicon,” Appl. Phys. Lett. 106(14), 141102 (2015).
[Crossref]

Appl. Phys. Express (1)

T. Tawara, G. Mariani, K. Shimizu, H. Omi, S. Adachi, and H. Gotoh, “Effect of isotopic purification on spectral-hole narrowing in 167Er3+ hyperfine transitions,” Appl. Phys. Express 10(4), 042801 (2017).
[Crossref]

Appl. Phys. Lett. (8)

T. Inoue, Y. Yamamoto, S. Koyama, S. Suzuki, and Y. Ueda, “Epitaxial growth of CeO2 layers on silicon,” Appl. Phys. Lett. 56(14), 1332–1333 (1990).
[Crossref]

T. Chikyow, M. Bedair, L. Tye, and N. A. El-Masry, “Reaction and regrowth control of CeO2 on Si(111) surface for the silicon-on-insulator structure,” Appl. Phys. Lett. 65(8), 1030–1032 (1994).
[Crossref]

Y. Nishikawa, T. Yamaguchi, M. Yoshiki, H. Satake, and N. Fukushima, “Interfacial properties of single-crystalline CeO2 high-k gate dielectrics directly grown on Si(111),” Appl. Phys. Lett. 81(23), 4386–4388 (2002).
[Crossref]

C. S. Kim, S. J. Jo, S. W. Lee, W. J. Kim, H. K. Baik, S. J. Lee, D. K. Hwang, and S. Im, “High-k and low-k nanocomposite gate dielectrics for low voltage organic thin film transistors,” Appl. Phys. Lett. 88(24), 243515 (2006).
[Crossref]

J. I. Flege, B. Kaemena, J. Höcker, F. Bertram, J. Wollschläger, T. Schmidt, and J. Falta, “Ultrathin, epitaxial cerium oxide on silicon,” Appl. Phys. Lett. 104(13), 131604 (2014).
[Crossref]

C. Lv, C. Zhu, C. Wang, Y. Sao, X. Ma, and D. Yang, “Electroluminescence from metal-oxide-semiconductor devices with erbium-doped CeO2 films on silicon,” Appl. Phys. Lett. 106(14), 141102 (2015).
[Crossref]

L. Tye, N. A. El-Masry, T. Chikyow, P. McLarty, and S. M. Bedair, “Electrical characteristics of epiraxial CeO2 on Si(111),” Appl. Phys. Lett. 65(24), 3081–3083 (1994).
[Crossref]

T. Tawara, H. Omi, T. Hozumi, R. Kaji, S. Adachi, H. Gotoh, and T. Sogawa, “Population dynamics in epitaxial Er2O3 thin films grown on Si(111),” Appl. Phys. Lett. 102(24), 241918 (2013).
[Crossref]

Chem. Mater. (1)

C. K. Narula, J. E. Allison, D. R. Bauer, and H. S. Gandhi, “Materials chemistry issues related to advanced materials applications in the automotive industry,” Chem. Mater. 8(5), 984–1003 (1996).
[Crossref]

Chem. Rev. (1)

G. Adachi Gy and N. Imanaka, “The binary rare earth oxides,” Chem. Rev. 98(4), 1479–1514 (1998).
[Crossref] [PubMed]

J. Alloys Compd. (1)

G. Mu, S. Wang, L. Li, X. Yin, G. Wan, Y. Tang, and L. Yi, “Structural characteristics, luminescent properties and energy transfer process of CeO2:Er3+ thin films,” J. Alloys Compd. 664, 690–694 (2016).
[Crossref]

J. Appl. Phys. (1)

R. Barnes, D. Starodub, T. Gustafsson, and E. Garfunkel, “A medium energy ion scattering and x-ray photoelectron spectroscopy study of physical vapor deposition thin cerium oxide films on Si(100),” J. Appl. Phys. 100(4), 044103 (2006).
[Crossref]

J. Cryst. Growth (1)

H. Yamamoto, Y. Krockenberger, and M. Naito, “Multi-source MBE with high-precision rate control system as a synthesis method sui generis for multi-cation metal oxides,” J. Cryst. Growth 378, 184–188 (2013).
[Crossref]

J. Phys. Chem. B (1)

X. Wang, J. A. Rodriguez, J. C. Hanson, D. Gamarra, A. Martínez-Arias, and M. Fernández-García, “In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria,” J. Phys. Chem. B 110(1), 428–434 (2006).
[Crossref] [PubMed]

J. Phys. Chem. Lett. (1)

V. Stetsovych, F. Pagliuca, F. Dvořák, T. Duchoň, M. Vorokhta, M. Aulická, J. Lachnitt, S. Schernich, I. Matolínová, K. Veltruská, T. Skála, D. Mazur, J. Mysliveček, J. Libuda, and V. Matolín, “Epitaxial Cubic Ce2O3 Films via Ce-CeO2 Interfacial Reaction,” J. Phys. Chem. Lett. 4(6), 866–871 (2013).
[Crossref] [PubMed]

J. Solid State Chem. (1)

H. Guo, “Green and red upconversion luminescence in CeO2:Er3+ powders produced by 785 nm laser,” J. Solid State Chem. 180(1), 127–131 (2007).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Nakajima, Y. Tanaka, T. Kimura, and H. Isshiki, “Role of energy migration in nonradiative relaxation processes in ErxY2-xSiO5 crystalline thin films,” Jpn. J. Appl. Phys. 52(8R), 082601 (2016).
[Crossref]

Nat. Chem. (1)

E. J. Schelter, “Cerium under the lens,” Nat. Chem. 5(4), 348 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Opt. Mater. Express (2)

Phys. Rev. B Condens. Matter (1)

F. U. Hillebrecht, M. Ronay, D. Rieger, and F. J. Himpsel, “Enhancement of Si oxidation by cerium overlayers and formation of cerium silicate,” Phys. Rev. B Condens. Matter 34(8), 5377–5380 (1986).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

S. Takahashi, R. Hanson, J. van Tol, M. S. Sherwin, and D. D. Awschalom, “Quenching Spin Decoherence in Diamond Through Spin Bath Polarization,” Phys. Rev. Lett. 101(4), 047601 (2008).
[Crossref] [PubMed]

Surf. Sci. (2)

D. R. Mullins, S. H. Overbury, and D. R. Huntley, “Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces,” Surf. Sci. 409(2), 307–319 (1998).
[Crossref]

F. Pagliuca, P. Luches, and S. Valeri, “Interfacial interaction between cerium oxide and silicon surface,” Surf. Sci. 607, 164–169 (2016).
[Crossref]

Other (1)

Joint Committee on Powder Diffraction Standards (JCPDS) card no. 34–394.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 RHEED patterns after Er:CeO2 growth: Ce rate dependence. Er fluxes are supplied at a constant rate (0.01 Å/s). (a-e) O*+O2 are supplied with a fixed O2 flow rate of 0.1 sccm. (f) Ce is supplied at a rate of 1.00 Å/s, which is three times higher than that in (c). Oxygen flow rate is also increased so that the Ce/O2 ratio becomes equal to that in (c).
Fig. 2
Fig. 2 (a) 2θ−ω scanned XRD pattern and (b) XPS spectrum for Er:CeO2/Si(111).
Fig. 3
Fig. 3 (a) Depth profile of each constituent element determined by RBS. Cross-sectional images obtained by (b) TEM and (c) HAADF-STEM.
Fig. 4
Fig. 4 PLE color plots for Er:CeO2/Si(111) with Er concentrations of (a) 4%, (b) 2%, and (c) 1%. The measurements were performed at 4K. (d) Excitation spectrum detected at 1533 nm.
Fig. 5
Fig. 5 (a) PL spectra under the resonant excitation for Er:CeO2/Si(111) with various Er concentrations. (b) Radiative lifetime as a function of Er concentration. Solid circles and squares indicate Er:CeO2 and Er:Sc2O3 [26,27], respectively. The black dotted line shows the intrinsic lifetime of Er [16] and the red dotted curve is the guide to the eye.

Metrics