Abstract

Additive manufacturing (AM) techniques allow for the construction of sophisticated and hollow models based on the needs of customers, and they functionalize the raw materials (e.g., metal, polymer and ceramic) by structuring them. Here, we demonstrate a simple method for the realization of a three-dimensional architecture with long afterglow properties by curing organic resin doped with inorganic long persistent phosphors (LPPs) layer by layer through the stereolithography (SLA) technique. In our process, the LPPs made by solid state reaction were incorporated homogenously into a resin matrix and pre-designed 3D structures with the resolution of 0.1 mm were printed out. The high luminescence, considerable decay time and multi-color make these organic/inorganic composites reliable for applications in artifacts, crafts, toys and night indicators. It is also demonstrated that the resin containing SrAl2O4: Eu2+, Dy3+ phosphors can be used for fiber temperature sensing from 40 °C to 70 °C.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Solar blind deep ultraviolet β-Ga2O3 photodetectors grown on sapphire by the Mist-CVD method

Yu Xu, Zhiyuan An, Lixin Zhang, Qian Feng, Jincheng Zhang, Chunfu Zhang, and Yue Hao
Opt. Mater. Express 8(9) 2941-2947 (2018)

Dual wavelength in situ photoalignment for stable planar alignment of nematic liquid crystals

Vineet Kumar, Aboozar Nasrollahi, Vijay Kumar Baliyan, Heung-Shik Park, Myong-Hoon Lee, and Shin-Woong Kang
Opt. Mater. Express 8(8) 2366-2377 (2018)

Metal germanides for practical on-chip plasmonics in the mid infrared

Evan M. Smith, William H. Streyer, Nima Nader, Shivashankar Vangala, Gordon Grzybowski, Richard Soref, Daniel Wasserman, and Justin W. Cleary
Opt. Mater. Express 8(4) 968-982 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. Zhuang, Y. Lv, L. Wang, W. Chen, T. L. Zhou, T. Takeda, N. Hirosaki, and R. J. Xie, “Trap depth engineering of SrSi2O2N2:Ln2+,Ln3+ (Ln2+ = Yb, Eu; Ln3+ = Dy, Ho, Er) persistent luminescence materials for information storage applications,” ACS Appl. Mater. Interfaces 10(2), 1854–1864 (2018).
    [Crossref] [PubMed]
  2. A. Abdukayum, J. T. Chen, Q. Zhao, and X. P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135(38), 14125–14133 (2013).
    [Crossref] [PubMed]
  3. S. K. Singh, “Red and near infrared persistent luminescence nano-probes for bioimaging and targeting applications,” RSC Advances 4(102), 58674–58698 (2014).
    [Crossref]
  4. Y. C. Lu, C. X. Yang, and X. P. Yan, “Radiopaque tantalum oxide coated persistent luminescent nanoparticles as multimodal probes for in vivo near-infrared luminescence and computed tomography bioimaging,” Nanoscale 7(42), 17929–17937 (2015).
    [Crossref] [PubMed]
  5. J. Wang, Q. Ma, Y. Wang, H. Shen, and Q. Yuan, “Recent progress in biomedical applications of persistent luminescence nanoparticles,” Nanoscale 9(19), 6204–6218 (2017).
    [Crossref] [PubMed]
  6. Y. Y. Liu, J. M. Liu, G. Z. Fang, D. D. Zhang, Q. H. Wang, and S. Wang, “Biosensor detection and imaging based on persistence luminescence nanoprobe,” Huaxue Jinzhan 29, 667–682 (2017).
  7. A. Ebrahimzade, M. R. M. Mojtahedi, and R. Semnani Rahbar, “Study on characteristics and afterglow properties of luminous polypropylene/ rare earth strontium aluminate fiber,” J. Mater. Sci. Mater. Electron. 28(11), 8167–8176 (2017).
    [Crossref]
  8. M. Ge, X. Guo, and Y. Yan, “Preparation and study on the structure and properties of rare-earth luminescent fiber,” Text. Res. J. 82(7), 677–684 (2012).
    [Crossref]
  9. Y. Yan, M. Ge, Y. Li, and D. N. T. Kumar, “Morphology and spectral characteristics of a luminous fiber containing a rare earth strontium aluminate,” Text. Res. J. 82(17), 1819–1826 (2012).
    [Crossref]
  10. C. F. Guo, D. X. Huang, and Q. Su, “Methods to improve the fluorescence intensity of CaS: Eu2+ red-emitting phosphor for white LED,” Mat Sci Eng B-Solid 130(1-3), 189–193 (2006).
    [Crossref]
  11. Y. H. Wang, L. Wang, and S. H. Zhang, “Preparation of blue long afterglow phosphors CaAl2O4: Eu2+, Nd3+ and its luminescent properties,” Chem. J. Chin. Univ. 26, 1990–1993 (2005).
  12. X. Y. Zhang, Z. H. Bai, X. Guan, X. C. Wang, W. Z. Wang, H. Z. Sun, Z. F. Cao, J. X. Du, and Y. Guo, “Preparation of long persistent phosphorescence SrAl2O4: EU2+, Dy3+ phosphors by solid state reaction and characterization,” Rare Met. Mater. Eng. 32, 379–382 (2003).
  13. J. L. Jimenez-Perez, A. Cruz-Orea, P. V. Pincel, and Z. N. Correa-Pacheco, “Study of the solidification dynamic of a photocurable resin by photoacoustic,” Int. J. Thermophys. 38(8), 129 (2017).
    [Crossref]
  14. F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
    [Crossref]
  15. Z. Chen, N. Xiong, M. Ge, and R. Shamey, “Characterization of color including temporal hue shift of a range of long-lasting phosphorescent/fluorescent (SiO_2/REC@SAOED) composites,” Opt. Mater. Express 7(11), 3909 (2017).
    [Crossref]
  16. Z. Chen, Y. Zhu, and M. Ge, “Luminescence properties of a yellow-reddish emitting SiO2/REFP @SAOED long-lasting phosphorescent composite obtained via sol-gel coating technology,” ECS Journal of Solid State Science and Technology 6(7), R81–R87 (2017).
    [Crossref]
  17. R. Romaniuk and J. Dorosz, “Temperature sensor based on double core optical fibre,” Optical Techniques for Environmental Sensing, Workplace Safety, and Health Monitoring 4887, 55–66 (2002).
    [Crossref]
  18. L. Rindorf and O. Bang, “Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing,” J. Opt. Soc. Am. B 25(3), 310–324 (2008).
    [Crossref]
  19. L. Xu, W. N. Han, P. Wang, and S. M. Wang, “Hybrid Mach-Zehnder interferometric sensor based on two core-offset attenuators and an abrupt taper in single-mode fiber,” Chin. Opt. Lett. 12, 070602 (2014).
  20. W. Yuan, A. Stefani, and O. Bang, “Tunable polymer Fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” Ieee Photonic Tech L 24(5), 401–403 (2012).
    [Crossref]
  21. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16(15), 11369–11375 (2008).
    [Crossref] [PubMed]
  22. H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
    [Crossref] [PubMed]
  23. S. Silva, E. G. P. Pachon, M. A. R. Franco, J. G. Hayashi, F. X. Malcata, O. Frazão, P. Jorge, and C. M. B. Cordeiro, “Ultrahigh-sensitivity temperature fiber sensor based on multimode interference,” Appl. Opt. 51(16), 3236–3242 (2012).
    [Crossref] [PubMed]
  24. G. Calafiore, A. Koshelev, F. I. Allen, S. Dhuey, S. Sassolini, E. Wong, P. Lum, K. Munechika, and S. Cabrini, “Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation,” Nanotechnology 27(37), 375301 (2016).
    [Crossref] [PubMed]

2018 (1)

Y. Zhuang, Y. Lv, L. Wang, W. Chen, T. L. Zhou, T. Takeda, N. Hirosaki, and R. J. Xie, “Trap depth engineering of SrSi2O2N2:Ln2+,Ln3+ (Ln2+ = Yb, Eu; Ln3+ = Dy, Ho, Er) persistent luminescence materials for information storage applications,” ACS Appl. Mater. Interfaces 10(2), 1854–1864 (2018).
[Crossref] [PubMed]

2017 (6)

J. L. Jimenez-Perez, A. Cruz-Orea, P. V. Pincel, and Z. N. Correa-Pacheco, “Study of the solidification dynamic of a photocurable resin by photoacoustic,” Int. J. Thermophys. 38(8), 129 (2017).
[Crossref]

Z. Chen, N. Xiong, M. Ge, and R. Shamey, “Characterization of color including temporal hue shift of a range of long-lasting phosphorescent/fluorescent (SiO_2/REC@SAOED) composites,” Opt. Mater. Express 7(11), 3909 (2017).
[Crossref]

Z. Chen, Y. Zhu, and M. Ge, “Luminescence properties of a yellow-reddish emitting SiO2/REFP @SAOED long-lasting phosphorescent composite obtained via sol-gel coating technology,” ECS Journal of Solid State Science and Technology 6(7), R81–R87 (2017).
[Crossref]

J. Wang, Q. Ma, Y. Wang, H. Shen, and Q. Yuan, “Recent progress in biomedical applications of persistent luminescence nanoparticles,” Nanoscale 9(19), 6204–6218 (2017).
[Crossref] [PubMed]

Y. Y. Liu, J. M. Liu, G. Z. Fang, D. D. Zhang, Q. H. Wang, and S. Wang, “Biosensor detection and imaging based on persistence luminescence nanoprobe,” Huaxue Jinzhan 29, 667–682 (2017).

A. Ebrahimzade, M. R. M. Mojtahedi, and R. Semnani Rahbar, “Study on characteristics and afterglow properties of luminous polypropylene/ rare earth strontium aluminate fiber,” J. Mater. Sci. Mater. Electron. 28(11), 8167–8176 (2017).
[Crossref]

2016 (1)

G. Calafiore, A. Koshelev, F. I. Allen, S. Dhuey, S. Sassolini, E. Wong, P. Lum, K. Munechika, and S. Cabrini, “Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation,” Nanotechnology 27(37), 375301 (2016).
[Crossref] [PubMed]

2015 (1)

Y. C. Lu, C. X. Yang, and X. P. Yan, “Radiopaque tantalum oxide coated persistent luminescent nanoparticles as multimodal probes for in vivo near-infrared luminescence and computed tomography bioimaging,” Nanoscale 7(42), 17929–17937 (2015).
[Crossref] [PubMed]

2014 (2)

S. K. Singh, “Red and near infrared persistent luminescence nano-probes for bioimaging and targeting applications,” RSC Advances 4(102), 58674–58698 (2014).
[Crossref]

L. Xu, W. N. Han, P. Wang, and S. M. Wang, “Hybrid Mach-Zehnder interferometric sensor based on two core-offset attenuators and an abrupt taper in single-mode fiber,” Chin. Opt. Lett. 12, 070602 (2014).

2013 (1)

A. Abdukayum, J. T. Chen, Q. Zhao, and X. P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135(38), 14125–14133 (2013).
[Crossref] [PubMed]

2012 (4)

M. Ge, X. Guo, and Y. Yan, “Preparation and study on the structure and properties of rare-earth luminescent fiber,” Text. Res. J. 82(7), 677–684 (2012).
[Crossref]

Y. Yan, M. Ge, Y. Li, and D. N. T. Kumar, “Morphology and spectral characteristics of a luminous fiber containing a rare earth strontium aluminate,” Text. Res. J. 82(17), 1819–1826 (2012).
[Crossref]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer Fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” Ieee Photonic Tech L 24(5), 401–403 (2012).
[Crossref]

S. Silva, E. G. P. Pachon, M. A. R. Franco, J. G. Hayashi, F. X. Malcata, O. Frazão, P. Jorge, and C. M. B. Cordeiro, “Ultrahigh-sensitivity temperature fiber sensor based on multimode interference,” Appl. Opt. 51(16), 3236–3242 (2012).
[Crossref] [PubMed]

2008 (3)

2006 (1)

C. F. Guo, D. X. Huang, and Q. Su, “Methods to improve the fluorescence intensity of CaS: Eu2+ red-emitting phosphor for white LED,” Mat Sci Eng B-Solid 130(1-3), 189–193 (2006).
[Crossref]

2005 (2)

Y. H. Wang, L. Wang, and S. H. Zhang, “Preparation of blue long afterglow phosphors CaAl2O4: Eu2+, Nd3+ and its luminescent properties,” Chem. J. Chin. Univ. 26, 1990–1993 (2005).

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

2003 (1)

X. Y. Zhang, Z. H. Bai, X. Guan, X. C. Wang, W. Z. Wang, H. Z. Sun, Z. F. Cao, J. X. Du, and Y. Guo, “Preparation of long persistent phosphorescence SrAl2O4: EU2+, Dy3+ phosphors by solid state reaction and characterization,” Rare Met. Mater. Eng. 32, 379–382 (2003).

2002 (1)

R. Romaniuk and J. Dorosz, “Temperature sensor based on double core optical fibre,” Optical Techniques for Environmental Sensing, Workplace Safety, and Health Monitoring 4887, 55–66 (2002).
[Crossref]

Abdukayum, A.

A. Abdukayum, J. T. Chen, Q. Zhao, and X. P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135(38), 14125–14133 (2013).
[Crossref] [PubMed]

Allen, F. I.

G. Calafiore, A. Koshelev, F. I. Allen, S. Dhuey, S. Sassolini, E. Wong, P. Lum, K. Munechika, and S. Cabrini, “Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation,” Nanotechnology 27(37), 375301 (2016).
[Crossref] [PubMed]

Bai, Z. H.

X. Y. Zhang, Z. H. Bai, X. Guan, X. C. Wang, W. Z. Wang, H. Z. Sun, Z. F. Cao, J. X. Du, and Y. Guo, “Preparation of long persistent phosphorescence SrAl2O4: EU2+, Dy3+ phosphors by solid state reaction and characterization,” Rare Met. Mater. Eng. 32, 379–382 (2003).

Bang, O.

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer Fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” Ieee Photonic Tech L 24(5), 401–403 (2012).
[Crossref]

L. Rindorf and O. Bang, “Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing,” J. Opt. Soc. Am. B 25(3), 310–324 (2008).
[Crossref]

Cabrini, S.

G. Calafiore, A. Koshelev, F. I. Allen, S. Dhuey, S. Sassolini, E. Wong, P. Lum, K. Munechika, and S. Cabrini, “Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation,” Nanotechnology 27(37), 375301 (2016).
[Crossref] [PubMed]

Calafiore, G.

G. Calafiore, A. Koshelev, F. I. Allen, S. Dhuey, S. Sassolini, E. Wong, P. Lum, K. Munechika, and S. Cabrini, “Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation,” Nanotechnology 27(37), 375301 (2016).
[Crossref] [PubMed]

Cao, Z. F.

X. Y. Zhang, Z. H. Bai, X. Guan, X. C. Wang, W. Z. Wang, H. Z. Sun, Z. F. Cao, J. X. Du, and Y. Guo, “Preparation of long persistent phosphorescence SrAl2O4: EU2+, Dy3+ phosphors by solid state reaction and characterization,” Rare Met. Mater. Eng. 32, 379–382 (2003).

Chen, J. T.

A. Abdukayum, J. T. Chen, Q. Zhao, and X. P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135(38), 14125–14133 (2013).
[Crossref] [PubMed]

Chen, W.

Y. Zhuang, Y. Lv, L. Wang, W. Chen, T. L. Zhou, T. Takeda, N. Hirosaki, and R. J. Xie, “Trap depth engineering of SrSi2O2N2:Ln2+,Ln3+ (Ln2+ = Yb, Eu; Ln3+ = Dy, Ho, Er) persistent luminescence materials for information storage applications,” ACS Appl. Mater. Interfaces 10(2), 1854–1864 (2018).
[Crossref] [PubMed]

Chen, Z.

Z. Chen, Y. Zhu, and M. Ge, “Luminescence properties of a yellow-reddish emitting SiO2/REFP @SAOED long-lasting phosphorescent composite obtained via sol-gel coating technology,” ECS Journal of Solid State Science and Technology 6(7), R81–R87 (2017).
[Crossref]

Z. Chen, N. Xiong, M. Ge, and R. Shamey, “Characterization of color including temporal hue shift of a range of long-lasting phosphorescent/fluorescent (SiO_2/REC@SAOED) composites,” Opt. Mater. Express 7(11), 3909 (2017).
[Crossref]

Choi, E. S.

Choi, H. Y.

Chung, Y.

Clabau, F.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Cordeiro, C. M. B.

Correa-Pacheco, Z. N.

J. L. Jimenez-Perez, A. Cruz-Orea, P. V. Pincel, and Z. N. Correa-Pacheco, “Study of the solidification dynamic of a photocurable resin by photoacoustic,” Int. J. Thermophys. 38(8), 129 (2017).
[Crossref]

Cruz-Orea, A.

J. L. Jimenez-Perez, A. Cruz-Orea, P. V. Pincel, and Z. N. Correa-Pacheco, “Study of the solidification dynamic of a photocurable resin by photoacoustic,” Int. J. Thermophys. 38(8), 129 (2017).
[Crossref]

Deniard, P.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Dhuey, S.

G. Calafiore, A. Koshelev, F. I. Allen, S. Dhuey, S. Sassolini, E. Wong, P. Lum, K. Munechika, and S. Cabrini, “Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation,” Nanotechnology 27(37), 375301 (2016).
[Crossref] [PubMed]

Dorosz, J.

R. Romaniuk and J. Dorosz, “Temperature sensor based on double core optical fibre,” Optical Techniques for Environmental Sensing, Workplace Safety, and Health Monitoring 4887, 55–66 (2002).
[Crossref]

Du, J. X.

X. Y. Zhang, Z. H. Bai, X. Guan, X. C. Wang, W. Z. Wang, H. Z. Sun, Z. F. Cao, J. X. Du, and Y. Guo, “Preparation of long persistent phosphorescence SrAl2O4: EU2+, Dy3+ phosphors by solid state reaction and characterization,” Rare Met. Mater. Eng. 32, 379–382 (2003).

Ebrahimzade, A.

A. Ebrahimzade, M. R. M. Mojtahedi, and R. Semnani Rahbar, “Study on characteristics and afterglow properties of luminous polypropylene/ rare earth strontium aluminate fiber,” J. Mater. Sci. Mater. Electron. 28(11), 8167–8176 (2017).
[Crossref]

Fang, G. Z.

Y. Y. Liu, J. M. Liu, G. Z. Fang, D. D. Zhang, Q. H. Wang, and S. Wang, “Biosensor detection and imaging based on persistence luminescence nanoprobe,” Huaxue Jinzhan 29, 667–682 (2017).

Franco, M. A. R.

Frazão, O.

Garcia, A.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Ge, M.

Z. Chen, N. Xiong, M. Ge, and R. Shamey, “Characterization of color including temporal hue shift of a range of long-lasting phosphorescent/fluorescent (SiO_2/REC@SAOED) composites,” Opt. Mater. Express 7(11), 3909 (2017).
[Crossref]

Z. Chen, Y. Zhu, and M. Ge, “Luminescence properties of a yellow-reddish emitting SiO2/REFP @SAOED long-lasting phosphorescent composite obtained via sol-gel coating technology,” ECS Journal of Solid State Science and Technology 6(7), R81–R87 (2017).
[Crossref]

M. Ge, X. Guo, and Y. Yan, “Preparation and study on the structure and properties of rare-earth luminescent fiber,” Text. Res. J. 82(7), 677–684 (2012).
[Crossref]

Y. Yan, M. Ge, Y. Li, and D. N. T. Kumar, “Morphology and spectral characteristics of a luminous fiber containing a rare earth strontium aluminate,” Text. Res. J. 82(17), 1819–1826 (2012).
[Crossref]

Guan, X.

X. Y. Zhang, Z. H. Bai, X. Guan, X. C. Wang, W. Z. Wang, H. Z. Sun, Z. F. Cao, J. X. Du, and Y. Guo, “Preparation of long persistent phosphorescence SrAl2O4: EU2+, Dy3+ phosphors by solid state reaction and characterization,” Rare Met. Mater. Eng. 32, 379–382 (2003).

Guo, C. F.

C. F. Guo, D. X. Huang, and Q. Su, “Methods to improve the fluorescence intensity of CaS: Eu2+ red-emitting phosphor for white LED,” Mat Sci Eng B-Solid 130(1-3), 189–193 (2006).
[Crossref]

Guo, X.

M. Ge, X. Guo, and Y. Yan, “Preparation and study on the structure and properties of rare-earth luminescent fiber,” Text. Res. J. 82(7), 677–684 (2012).
[Crossref]

Guo, Y.

X. Y. Zhang, Z. H. Bai, X. Guan, X. C. Wang, W. Z. Wang, H. Z. Sun, Z. F. Cao, J. X. Du, and Y. Guo, “Preparation of long persistent phosphorescence SrAl2O4: EU2+, Dy3+ phosphors by solid state reaction and characterization,” Rare Met. Mater. Eng. 32, 379–382 (2003).

Han, W. N.

Hayashi, J. G.

Hirosaki, N.

Y. Zhuang, Y. Lv, L. Wang, W. Chen, T. L. Zhou, T. Takeda, N. Hirosaki, and R. J. Xie, “Trap depth engineering of SrSi2O2N2:Ln2+,Ln3+ (Ln2+ = Yb, Eu; Ln3+ = Dy, Ho, Er) persistent luminescence materials for information storage applications,” ACS Appl. Mater. Interfaces 10(2), 1854–1864 (2018).
[Crossref] [PubMed]

Huang, D. X.

C. F. Guo, D. X. Huang, and Q. Su, “Methods to improve the fluorescence intensity of CaS: Eu2+ red-emitting phosphor for white LED,” Mat Sci Eng B-Solid 130(1-3), 189–193 (2006).
[Crossref]

Hwang, D.

Jimenez-Perez, J. L.

J. L. Jimenez-Perez, A. Cruz-Orea, P. V. Pincel, and Z. N. Correa-Pacheco, “Study of the solidification dynamic of a photocurable resin by photoacoustic,” Int. J. Thermophys. 38(8), 129 (2017).
[Crossref]

Jobic, S.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Jorge, P.

Koshelev, A.

G. Calafiore, A. Koshelev, F. I. Allen, S. Dhuey, S. Sassolini, E. Wong, P. Lum, K. Munechika, and S. Cabrini, “Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation,” Nanotechnology 27(37), 375301 (2016).
[Crossref] [PubMed]

Kumar, D. N. T.

Y. Yan, M. Ge, Y. Li, and D. N. T. Kumar, “Morphology and spectral characteristics of a luminous fiber containing a rare earth strontium aluminate,” Text. Res. J. 82(17), 1819–1826 (2012).
[Crossref]

Le Mercier, T.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Lee, B. H.

Li, Y.

Y. Yan, M. Ge, Y. Li, and D. N. T. Kumar, “Morphology and spectral characteristics of a luminous fiber containing a rare earth strontium aluminate,” Text. Res. J. 82(17), 1819–1826 (2012).
[Crossref]

Liu, J. M.

Y. Y. Liu, J. M. Liu, G. Z. Fang, D. D. Zhang, Q. H. Wang, and S. Wang, “Biosensor detection and imaging based on persistence luminescence nanoprobe,” Huaxue Jinzhan 29, 667–682 (2017).

Liu, Y. Y.

Y. Y. Liu, J. M. Liu, G. Z. Fang, D. D. Zhang, Q. H. Wang, and S. Wang, “Biosensor detection and imaging based on persistence luminescence nanoprobe,” Huaxue Jinzhan 29, 667–682 (2017).

Lu, Y. C.

Y. C. Lu, C. X. Yang, and X. P. Yan, “Radiopaque tantalum oxide coated persistent luminescent nanoparticles as multimodal probes for in vivo near-infrared luminescence and computed tomography bioimaging,” Nanoscale 7(42), 17929–17937 (2015).
[Crossref] [PubMed]

Lum, P.

G. Calafiore, A. Koshelev, F. I. Allen, S. Dhuey, S. Sassolini, E. Wong, P. Lum, K. Munechika, and S. Cabrini, “Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation,” Nanotechnology 27(37), 375301 (2016).
[Crossref] [PubMed]

Lv, Y.

Y. Zhuang, Y. Lv, L. Wang, W. Chen, T. L. Zhou, T. Takeda, N. Hirosaki, and R. J. Xie, “Trap depth engineering of SrSi2O2N2:Ln2+,Ln3+ (Ln2+ = Yb, Eu; Ln3+ = Dy, Ho, Er) persistent luminescence materials for information storage applications,” ACS Appl. Mater. Interfaces 10(2), 1854–1864 (2018).
[Crossref] [PubMed]

Ma, Q.

J. Wang, Q. Ma, Y. Wang, H. Shen, and Q. Yuan, “Recent progress in biomedical applications of persistent luminescence nanoparticles,” Nanoscale 9(19), 6204–6218 (2017).
[Crossref] [PubMed]

Malcata, F. X.

Mojtahedi, M. R. M.

A. Ebrahimzade, M. R. M. Mojtahedi, and R. Semnani Rahbar, “Study on characteristics and afterglow properties of luminous polypropylene/ rare earth strontium aluminate fiber,” J. Mater. Sci. Mater. Electron. 28(11), 8167–8176 (2017).
[Crossref]

Moon, D. S.

Moon, S.

Munechika, K.

G. Calafiore, A. Koshelev, F. I. Allen, S. Dhuey, S. Sassolini, E. Wong, P. Lum, K. Munechika, and S. Cabrini, “Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation,” Nanotechnology 27(37), 375301 (2016).
[Crossref] [PubMed]

Nguyen, L. V.

Pachon, E. G. P.

Paek, U. C.

Park, K. S.

Park, S. J.

Pincel, P. V.

J. L. Jimenez-Perez, A. Cruz-Orea, P. V. Pincel, and Z. N. Correa-Pacheco, “Study of the solidification dynamic of a photocurable resin by photoacoustic,” Int. J. Thermophys. 38(8), 129 (2017).
[Crossref]

Rindorf, L.

Rocquefelte, X.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Romaniuk, R.

R. Romaniuk and J. Dorosz, “Temperature sensor based on double core optical fibre,” Optical Techniques for Environmental Sensing, Workplace Safety, and Health Monitoring 4887, 55–66 (2002).
[Crossref]

Sassolini, S.

G. Calafiore, A. Koshelev, F. I. Allen, S. Dhuey, S. Sassolini, E. Wong, P. Lum, K. Munechika, and S. Cabrini, “Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation,” Nanotechnology 27(37), 375301 (2016).
[Crossref] [PubMed]

Semnani Rahbar, R.

A. Ebrahimzade, M. R. M. Mojtahedi, and R. Semnani Rahbar, “Study on characteristics and afterglow properties of luminous polypropylene/ rare earth strontium aluminate fiber,” J. Mater. Sci. Mater. Electron. 28(11), 8167–8176 (2017).
[Crossref]

Shamey, R.

Shen, H.

J. Wang, Q. Ma, Y. Wang, H. Shen, and Q. Yuan, “Recent progress in biomedical applications of persistent luminescence nanoparticles,” Nanoscale 9(19), 6204–6218 (2017).
[Crossref] [PubMed]

Silva, S.

Singh, S. K.

S. K. Singh, “Red and near infrared persistent luminescence nano-probes for bioimaging and targeting applications,” RSC Advances 4(102), 58674–58698 (2014).
[Crossref]

Stefani, A.

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer Fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” Ieee Photonic Tech L 24(5), 401–403 (2012).
[Crossref]

Su, Q.

C. F. Guo, D. X. Huang, and Q. Su, “Methods to improve the fluorescence intensity of CaS: Eu2+ red-emitting phosphor for white LED,” Mat Sci Eng B-Solid 130(1-3), 189–193 (2006).
[Crossref]

Sun, H. Z.

X. Y. Zhang, Z. H. Bai, X. Guan, X. C. Wang, W. Z. Wang, H. Z. Sun, Z. F. Cao, J. X. Du, and Y. Guo, “Preparation of long persistent phosphorescence SrAl2O4: EU2+, Dy3+ phosphors by solid state reaction and characterization,” Rare Met. Mater. Eng. 32, 379–382 (2003).

Takeda, T.

Y. Zhuang, Y. Lv, L. Wang, W. Chen, T. L. Zhou, T. Takeda, N. Hirosaki, and R. J. Xie, “Trap depth engineering of SrSi2O2N2:Ln2+,Ln3+ (Ln2+ = Yb, Eu; Ln3+ = Dy, Ho, Er) persistent luminescence materials for information storage applications,” ACS Appl. Mater. Interfaces 10(2), 1854–1864 (2018).
[Crossref] [PubMed]

Wang, J.

J. Wang, Q. Ma, Y. Wang, H. Shen, and Q. Yuan, “Recent progress in biomedical applications of persistent luminescence nanoparticles,” Nanoscale 9(19), 6204–6218 (2017).
[Crossref] [PubMed]

Wang, L.

Y. Zhuang, Y. Lv, L. Wang, W. Chen, T. L. Zhou, T. Takeda, N. Hirosaki, and R. J. Xie, “Trap depth engineering of SrSi2O2N2:Ln2+,Ln3+ (Ln2+ = Yb, Eu; Ln3+ = Dy, Ho, Er) persistent luminescence materials for information storage applications,” ACS Appl. Mater. Interfaces 10(2), 1854–1864 (2018).
[Crossref] [PubMed]

Y. H. Wang, L. Wang, and S. H. Zhang, “Preparation of blue long afterglow phosphors CaAl2O4: Eu2+, Nd3+ and its luminescent properties,” Chem. J. Chin. Univ. 26, 1990–1993 (2005).

Wang, P.

Wang, Q. H.

Y. Y. Liu, J. M. Liu, G. Z. Fang, D. D. Zhang, Q. H. Wang, and S. Wang, “Biosensor detection and imaging based on persistence luminescence nanoprobe,” Huaxue Jinzhan 29, 667–682 (2017).

Wang, S.

Y. Y. Liu, J. M. Liu, G. Z. Fang, D. D. Zhang, Q. H. Wang, and S. Wang, “Biosensor detection and imaging based on persistence luminescence nanoprobe,” Huaxue Jinzhan 29, 667–682 (2017).

Wang, S. M.

Wang, W. Z.

X. Y. Zhang, Z. H. Bai, X. Guan, X. C. Wang, W. Z. Wang, H. Z. Sun, Z. F. Cao, J. X. Du, and Y. Guo, “Preparation of long persistent phosphorescence SrAl2O4: EU2+, Dy3+ phosphors by solid state reaction and characterization,” Rare Met. Mater. Eng. 32, 379–382 (2003).

Wang, X. C.

X. Y. Zhang, Z. H. Bai, X. Guan, X. C. Wang, W. Z. Wang, H. Z. Sun, Z. F. Cao, J. X. Du, and Y. Guo, “Preparation of long persistent phosphorescence SrAl2O4: EU2+, Dy3+ phosphors by solid state reaction and characterization,” Rare Met. Mater. Eng. 32, 379–382 (2003).

Wang, Y.

J. Wang, Q. Ma, Y. Wang, H. Shen, and Q. Yuan, “Recent progress in biomedical applications of persistent luminescence nanoparticles,” Nanoscale 9(19), 6204–6218 (2017).
[Crossref] [PubMed]

Wang, Y. H.

Y. H. Wang, L. Wang, and S. H. Zhang, “Preparation of blue long afterglow phosphors CaAl2O4: Eu2+, Nd3+ and its luminescent properties,” Chem. J. Chin. Univ. 26, 1990–1993 (2005).

Whangbo, M. H.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Wong, E.

G. Calafiore, A. Koshelev, F. I. Allen, S. Dhuey, S. Sassolini, E. Wong, P. Lum, K. Munechika, and S. Cabrini, “Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation,” Nanotechnology 27(37), 375301 (2016).
[Crossref] [PubMed]

Xie, R. J.

Y. Zhuang, Y. Lv, L. Wang, W. Chen, T. L. Zhou, T. Takeda, N. Hirosaki, and R. J. Xie, “Trap depth engineering of SrSi2O2N2:Ln2+,Ln3+ (Ln2+ = Yb, Eu; Ln3+ = Dy, Ho, Er) persistent luminescence materials for information storage applications,” ACS Appl. Mater. Interfaces 10(2), 1854–1864 (2018).
[Crossref] [PubMed]

Xiong, N.

Xu, L.

Yan, X. P.

Y. C. Lu, C. X. Yang, and X. P. Yan, “Radiopaque tantalum oxide coated persistent luminescent nanoparticles as multimodal probes for in vivo near-infrared luminescence and computed tomography bioimaging,” Nanoscale 7(42), 17929–17937 (2015).
[Crossref] [PubMed]

A. Abdukayum, J. T. Chen, Q. Zhao, and X. P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135(38), 14125–14133 (2013).
[Crossref] [PubMed]

Yan, Y.

M. Ge, X. Guo, and Y. Yan, “Preparation and study on the structure and properties of rare-earth luminescent fiber,” Text. Res. J. 82(7), 677–684 (2012).
[Crossref]

Y. Yan, M. Ge, Y. Li, and D. N. T. Kumar, “Morphology and spectral characteristics of a luminous fiber containing a rare earth strontium aluminate,” Text. Res. J. 82(17), 1819–1826 (2012).
[Crossref]

Yang, C. X.

Y. C. Lu, C. X. Yang, and X. P. Yan, “Radiopaque tantalum oxide coated persistent luminescent nanoparticles as multimodal probes for in vivo near-infrared luminescence and computed tomography bioimaging,” Nanoscale 7(42), 17929–17937 (2015).
[Crossref] [PubMed]

Yuan, Q.

J. Wang, Q. Ma, Y. Wang, H. Shen, and Q. Yuan, “Recent progress in biomedical applications of persistent luminescence nanoparticles,” Nanoscale 9(19), 6204–6218 (2017).
[Crossref] [PubMed]

Yuan, W.

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer Fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” Ieee Photonic Tech L 24(5), 401–403 (2012).
[Crossref]

Zhang, D. D.

Y. Y. Liu, J. M. Liu, G. Z. Fang, D. D. Zhang, Q. H. Wang, and S. Wang, “Biosensor detection and imaging based on persistence luminescence nanoprobe,” Huaxue Jinzhan 29, 667–682 (2017).

Zhang, S. H.

Y. H. Wang, L. Wang, and S. H. Zhang, “Preparation of blue long afterglow phosphors CaAl2O4: Eu2+, Nd3+ and its luminescent properties,” Chem. J. Chin. Univ. 26, 1990–1993 (2005).

Zhang, X. Y.

X. Y. Zhang, Z. H. Bai, X. Guan, X. C. Wang, W. Z. Wang, H. Z. Sun, Z. F. Cao, J. X. Du, and Y. Guo, “Preparation of long persistent phosphorescence SrAl2O4: EU2+, Dy3+ phosphors by solid state reaction and characterization,” Rare Met. Mater. Eng. 32, 379–382 (2003).

Zhao, Q.

A. Abdukayum, J. T. Chen, Q. Zhao, and X. P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135(38), 14125–14133 (2013).
[Crossref] [PubMed]

Zhou, T. L.

Y. Zhuang, Y. Lv, L. Wang, W. Chen, T. L. Zhou, T. Takeda, N. Hirosaki, and R. J. Xie, “Trap depth engineering of SrSi2O2N2:Ln2+,Ln3+ (Ln2+ = Yb, Eu; Ln3+ = Dy, Ho, Er) persistent luminescence materials for information storage applications,” ACS Appl. Mater. Interfaces 10(2), 1854–1864 (2018).
[Crossref] [PubMed]

Zhu, Y.

Z. Chen, Y. Zhu, and M. Ge, “Luminescence properties of a yellow-reddish emitting SiO2/REFP @SAOED long-lasting phosphorescent composite obtained via sol-gel coating technology,” ECS Journal of Solid State Science and Technology 6(7), R81–R87 (2017).
[Crossref]

Zhuang, Y.

Y. Zhuang, Y. Lv, L. Wang, W. Chen, T. L. Zhou, T. Takeda, N. Hirosaki, and R. J. Xie, “Trap depth engineering of SrSi2O2N2:Ln2+,Ln3+ (Ln2+ = Yb, Eu; Ln3+ = Dy, Ho, Er) persistent luminescence materials for information storage applications,” ACS Appl. Mater. Interfaces 10(2), 1854–1864 (2018).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

Y. Zhuang, Y. Lv, L. Wang, W. Chen, T. L. Zhou, T. Takeda, N. Hirosaki, and R. J. Xie, “Trap depth engineering of SrSi2O2N2:Ln2+,Ln3+ (Ln2+ = Yb, Eu; Ln3+ = Dy, Ho, Er) persistent luminescence materials for information storage applications,” ACS Appl. Mater. Interfaces 10(2), 1854–1864 (2018).
[Crossref] [PubMed]

Appl. Opt. (1)

Chem. J. Chin. Univ. (1)

Y. H. Wang, L. Wang, and S. H. Zhang, “Preparation of blue long afterglow phosphors CaAl2O4: Eu2+, Nd3+ and its luminescent properties,” Chem. J. Chin. Univ. 26, 1990–1993 (2005).

Chem. Mater. (1)

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Chin. Opt. Lett. (1)

ECS Journal of Solid State Science and Technology (1)

Z. Chen, Y. Zhu, and M. Ge, “Luminescence properties of a yellow-reddish emitting SiO2/REFP @SAOED long-lasting phosphorescent composite obtained via sol-gel coating technology,” ECS Journal of Solid State Science and Technology 6(7), R81–R87 (2017).
[Crossref]

Huaxue Jinzhan (1)

Y. Y. Liu, J. M. Liu, G. Z. Fang, D. D. Zhang, Q. H. Wang, and S. Wang, “Biosensor detection and imaging based on persistence luminescence nanoprobe,” Huaxue Jinzhan 29, 667–682 (2017).

Ieee Photonic Tech L (1)

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer Fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” Ieee Photonic Tech L 24(5), 401–403 (2012).
[Crossref]

Int. J. Thermophys. (1)

J. L. Jimenez-Perez, A. Cruz-Orea, P. V. Pincel, and Z. N. Correa-Pacheco, “Study of the solidification dynamic of a photocurable resin by photoacoustic,” Int. J. Thermophys. 38(8), 129 (2017).
[Crossref]

J. Am. Chem. Soc. (1)

A. Abdukayum, J. T. Chen, Q. Zhao, and X. P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135(38), 14125–14133 (2013).
[Crossref] [PubMed]

J. Mater. Sci. Mater. Electron. (1)

A. Ebrahimzade, M. R. M. Mojtahedi, and R. Semnani Rahbar, “Study on characteristics and afterglow properties of luminous polypropylene/ rare earth strontium aluminate fiber,” J. Mater. Sci. Mater. Electron. 28(11), 8167–8176 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

Mat Sci Eng B-Solid (1)

C. F. Guo, D. X. Huang, and Q. Su, “Methods to improve the fluorescence intensity of CaS: Eu2+ red-emitting phosphor for white LED,” Mat Sci Eng B-Solid 130(1-3), 189–193 (2006).
[Crossref]

Nanoscale (2)

Y. C. Lu, C. X. Yang, and X. P. Yan, “Radiopaque tantalum oxide coated persistent luminescent nanoparticles as multimodal probes for in vivo near-infrared luminescence and computed tomography bioimaging,” Nanoscale 7(42), 17929–17937 (2015).
[Crossref] [PubMed]

J. Wang, Q. Ma, Y. Wang, H. Shen, and Q. Yuan, “Recent progress in biomedical applications of persistent luminescence nanoparticles,” Nanoscale 9(19), 6204–6218 (2017).
[Crossref] [PubMed]

Nanotechnology (1)

G. Calafiore, A. Koshelev, F. I. Allen, S. Dhuey, S. Sassolini, E. Wong, P. Lum, K. Munechika, and S. Cabrini, “Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation,” Nanotechnology 27(37), 375301 (2016).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. Express (1)

Optical Techniques for Environmental Sensing, Workplace Safety, and Health Monitoring (1)

R. Romaniuk and J. Dorosz, “Temperature sensor based on double core optical fibre,” Optical Techniques for Environmental Sensing, Workplace Safety, and Health Monitoring 4887, 55–66 (2002).
[Crossref]

Rare Met. Mater. Eng. (1)

X. Y. Zhang, Z. H. Bai, X. Guan, X. C. Wang, W. Z. Wang, H. Z. Sun, Z. F. Cao, J. X. Du, and Y. Guo, “Preparation of long persistent phosphorescence SrAl2O4: EU2+, Dy3+ phosphors by solid state reaction and characterization,” Rare Met. Mater. Eng. 32, 379–382 (2003).

RSC Advances (1)

S. K. Singh, “Red and near infrared persistent luminescence nano-probes for bioimaging and targeting applications,” RSC Advances 4(102), 58674–58698 (2014).
[Crossref]

Text. Res. J. (2)

M. Ge, X. Guo, and Y. Yan, “Preparation and study on the structure and properties of rare-earth luminescent fiber,” Text. Res. J. 82(7), 677–684 (2012).
[Crossref]

Y. Yan, M. Ge, Y. Li, and D. N. T. Kumar, “Morphology and spectral characteristics of a luminous fiber containing a rare earth strontium aluminate,” Text. Res. J. 82(17), 1819–1826 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 SEM images of long persistent phosphors of CaS: Eu2+, SrAl2O4: Eu2+, Dy3+ and CaAl2O4: Eu2+, Nd3+ respectively.
Fig. 2
Fig. 2 Schematic illustration of slurry synthesis, the stereolithography process, long afterglow of the printed samples.
Fig. 3
Fig. 3 Viscosity of the three slurries incorporated with 3 wt% long persistent phosphors of CaS: Eu2+, SrAl2O4: Eu2+, Dy3+ and CaAl2O4: Eu2+, Nd3+ respectively.
Fig. 4
Fig. 4 Emission spectra of organic/inorganic 3D-printed composites containing 3 wt% CaS: Eu2+, SrAl2O4: Eu2+, Dy3+ and CaAl2O4: Eu2+, Nd3+ LPPs. The excitation wavelengths are 468 nm, 399nm and 398 nm respectively. The inset picture in the right corner shows the CIE color coordinates calculated from the emission spectra.
Fig. 5
Fig. 5 The afterglow decay curves of the composites containing 3 wt% phosphors: (a) CaS: Eu2+, (b) SrAl2O4: Eu2+, Dy3+ and (c) CaAl2O4: Eu2+, Nd3+. The vertical axis is log10 of the emission intensity. The excitation wavelengths are 468 nm, 399nm and 398nm and the recorded wavelengths are 653 nm, 520 nm and 470 nm, respectively. The inset pictures are the composites photographed after 10-minutes exposure to their excitation light.
Fig. 6
Fig. 6 Optical images of the complex-shaped parts printed by SLA in daylight photographed by a digital camera: (a) A gear wheel printed with resin slurry containing CaS: Eu2+ phosphors; (b) A hollow dog printed with resin slurry containing SrAl2O4: Eu2+, Dy3+ phosphors; (c) a hollow birdcage hanging decoration printed with resin slurry containing CaAl2O4: Eu2+, Nd3+ phosphors. Optical images photographed in the darkroom right after 5-minutes excitation by a xenon lamp. (d) A gear wheel containing CaS: Eu2+ phosphors. (e) A dog containing SrAl2O4: Eu2+, Dy3+ phosphors. (f) A hollow birdcage hanging decoration containing CaAl2O4: Eu2+, Nd3+ phosphors.
Fig. 7
Fig. 7 TGA and DSC curves of the resin composites incorporated with SrAl2O4: Eu2+, Dy3+ phosphors.
Fig. 8
Fig. 8 Luminescence spectra of resin composite containing SrAl2O4: Eu2+, Dy3+ recorded at different temperatures. The excitation wavelength is 399 nm. The inset picture shows the dependence of emission intensity on sample temperature at 520 nm.

Metrics