Abstract

A facile sol-gel method combined with the post-annealing process has been used to synthesize Yb3+/Er3+ co-doped TiO2 nanocrystals. It is found that the high Yb3+ concentrations can promote the formation of TiO2 nanocrystals with pyrochlore phase. An intense up-conversion (UC) red light emission (658 nm) has been achieved under 980 nm laser excitation, which is enhanced by 108 folds compared with the reference sample. Both the luminescence intensity and the red-to-green emission intensity ratio are dependent of the annealing temperature, which can be explained as the distribution of rare-earth ions and phase change of TiO2 nanocrystals.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient up-conversion red emission from TiO2:Yb,Er nanocrystals

Yangqing Wu, Shaobing Lin, Jingjing Liu, Yang Ji, Jun Xu, Ling Xu, and Kunji Chen
Opt. Express 25(19) 22648-22657 (2017)

Tunable green to red upconversion fluorescence of water-soluble hexagonal-phase core-shell CaF2@NaYF4 nanocrystals

Daguang Li, Weiping Qin, Dan Zhao, Tuerxun Aidilibike, Huan Chen, Shihu Liu, Peng Zhang, and Lili Wang
Opt. Mater. Express 6(1) 270-278 (2016)

Tri-color upconversion luminescence of Rare earth doped BaTiO3 nanocrystals and lowered color separation

Yunxin Liu, Wojciech A. Pisarski, Songjun Zeng, Changfu Xu, and Qibin Yang
Opt. Express 17(11) 9089-9098 (2009)

References

  • View by:
  • |
  • |
  • |

  1. F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
    [Crossref] [PubMed]
  2. Y. H. Yao, C. Xu, Y. Zheng, C. S. Yang, P. Liu, J. X. Ding, T. Q. Jia, J. R. Qiu, S. A. Zhang, and Z. R. Sun, “Improving upconversion luminescence efficiency in Er3+-doped NaYF4 nanocrystals by two-color laser field,” J. Mater. Sci. 51(11), 5460–5468 (2016).
    [Crossref]
  3. X. Zhang, S. Lin, T. Lin, P. Zhang, J. Xu, L. Xu, and K. Chen, “Improved sensitization efficiency in Er3+ ions and SnO2 nanocrystals co-doped silica thin films,” Phys. Chem. Chem. Phys. 17(18), 11974–11980 (2015).
    [Crossref] [PubMed]
  4. Y. Wu, S. Lin, W. Shao, X. Zhang, J. Xu, L. Yu, and K. Chen, “Enhanced up-conversion luminescence from NaYF4:Yb,Er nanocrystals by Gd3+ ions induced phase transformation and plasmonic Au nanosphere arrays,” RSC Advances 6(105), 102869 (2016).
    [Crossref] [PubMed]
  5. X. Zhang, T. Lin, P. Zhang, J. Xu, S. Lin, L. Xu, and K. Chen, “Highly efficient near-infrared emission in Er3+ doped silica films containing size-tunable SnO2 nanocrystals,” Opt. Express 22(1), 369–376 (2014).
    [Crossref] [PubMed]
  6. Y. Wu, Y. Ji, J. Xu, J. Liu, Z. Lin, Y. Zhao, Y. Sun, L. Xu, and K. Chen, “Crystalline phase and morphology controlling to enhance the up-conversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
    [Crossref]
  7. J. Li, Q. Zhao, F. Shi, C. Liu, and Y. Tang, “NIR-Mediated Nanohybrids of Upconversion Nanophosphors and Fluorescent Conjugated Polymers for High-Efficiency Antibacterial Performance Based on Fluorescence Resonance Energy Transfer,” Adv. Healthc. Mater. 5(23), 2967–2971 (2016).
    [Crossref] [PubMed]
  8. P. Singh, P. K. Shahi, S. K. Singh, A. K. Singh, M. K. Singh, R. Prakash, and S. B. Rai, “Lanthanide doped ultrafine hybrid nanostructures: multicolour luminescence, upconversion based energy transfer and luminescent solar collector applications,” Nanoscale 9(2), 696–705 (2017).
    [Crossref] [PubMed]
  9. Y. L. Lu, Y. Q. Lu, H. Fang, and N. B. Ming, “Upconversion of 1.064 μm Nd:YAG laser pulses into intense visible light in erbium-doped phosphate fibers,” Opt. Commun. 115(1), 110–114 (1995).
    [Crossref]
  10. M. Kamimura, A. Omoto, H.-C. Chiu, and K. Soga, “Enhanced red upconversion emission of NaYF4:Yb3+, Er3+, Mn2+ nanoparticles for near-infrared-induced photodynamic therapy and fluorescence imaging,” Chem. Lett. 46(8), 1076–1078 (2017).
    [Crossref]
  11. P. Ramasamy, P. Manivasakan, and J. Kim, “Upconversion nanophosphors for solar cell applications,” RSC Advances 4(66), 34873–34895 (2014).
    [Crossref]
  12. M. V. DaCosta, S. Doughan, Y. Han, and U. J. Krull, “Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: a review,” Anal. Chim. Acta 832, 1–33 (2014).
    [Crossref] [PubMed]
  13. X. Chuai, X. Guo, X. Liu, G. He, K. Zheng, C. He, and W. Qin, “Bifunctional NaGdF4:Yb, Er, Fe nanocrystals with the enhanced upconversion fluorescence,” Opt. Mater. 44, 13–17 (2015).
    [Crossref]
  14. J. Cai, X. Wei, F. Hu, Z. Cao, L. Zhao, Y. Chen, C. Duan, and M. Yin, “Up-conversion luminescence and optical thermometry properties of transparent glass ceramics containing CaF2:Yb3+/Er3+ nanocrystals,” Ceram. Int. 42(12), 13990–13995 (2016).
    [Crossref]
  15. X. Zhang, D. Xu, G. Zhou, X. Wang, H. Liu, Z. Yu, G. Zhang, and L. Zhu, “Color tunable up-conversion emission from ZrO2:Er3+,Yb3+ textile fibers,” RSC Advances 6(106), 103973 (2016).
    [Crossref]
  16. H. Li, L. Xu, and G. Chen, “Controlled synthesis of monodisperse hexagonal NaYF4:Yb/Er nanocrystals with ultrasmall size and enhanced upconversion luminescence,” Molecules 22(12), 2113 (2017).
    [Crossref]
  17. X. Y. Huang, L. Jiang, X. X. Li, and A. Q. He, “Manipulating upconversion emission of cubic BaGdF5:Ce3+/Er3+/Yb3+ nanocrystals through controlling Ce3+ doping,” J. Alloys Compd. 721, 374–382 (2017).
    [Crossref]
  18. P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q. H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4(16), 5132–5137 (2012).
    [Crossref] [PubMed]
  19. J. Fu, X. Zhang, Z. Chao, Z. Li, J. Liao, D. Hou, H. Wen, X. Lu, and X. Xie, “Enhanced upconversion luminescence of NaYF4:Yb,Er microprisms via La3+ doping,” Opt. Laser Technol. 88, 280–286 (2017).
    [Crossref]
  20. M. Gunaseelan, S. Yamini, G. A. Kumar, and J. Senthilselvan, “Highly efficient upconversion luminescence in hexagonal NaYF4:Yb3+, Er3+ nanocrystals synthesized by a novel reverse microemulsion method,” Opt. Mater. 75, 174–186 (2018).
    [Crossref]
  21. V. Bartůněk, J. Rak, B. Pelánková, J. Junková, M. Mezlíková, V. Král, M. Kuchař, H. Engstová, P. Ježek, and R. Šmucler, “Large scale preparation of up- converting YF3:YbEr nanocrystals with various sizes by solvothermal syntheses using ionic liquid bmimCl,” J. Fluor. Chem. 188, 14–17 (2016).
    [Crossref]
  22. C. C. Wang, D. G. Yin, K. L. Song, J. Ouyang, and B. Liu, “Preparation of bi-functional NaGdF4-based upconversion nanocrystals and fine-tuning of emission colors of the nanocrystals by doping with Mn2+,” Vacuum 107, 311–315 (2014).
    [Crossref]
  23. H. B. Wang, W. Lu, Z. G. Yi, L. Rao, S. J. Zeng, and Z. Li, “Enhanced upconversion luminescence and single-band red emission of NaErF4 nanocrystals via Mn2+ doping,” J. Alloys Compd. 618, 776–780 (2015).
    [Crossref]
  24. Y. H. Hu, X. H. Liang, Y. B. Wang, E. Z. Liu, X. Y. Hu, and J. Fan, “Enhancement of the red upconversion luminescence in NaYF4:Yb3+, Er3+ nanoparticles by the transition metal ions doping,” Ceram. Int. 41(10), 14545–14553 (2015).
    [Crossref]
  25. X. Liu, J. Qiu, X. Xu, and D. Zhou, “Effect of Ce3+ Concentration on the Luminescence Properties of Ce3+/Er3+Nb3+ tri-doped NaYF4 nanocrystals,” J. Nanosci. Nanotechnol. 16(4), 3749–3753 (2016).
    [Crossref] [PubMed]
  26. W. L. Wang, Q. K. Shang, W. Zheng, H. Yu, X. J. Feng, Z. D. Wang, Y. B. Zhang, and G. Q. Li, “A novel near-infrared antibacterial material depending on the upconverting property of Er3+-Yb3+-Fe3+ tridoped TiO2 nanopowder,” J. Phys. Chem. C 114(32), 13663–13669 (2010).
    [Crossref]
  27. I. Camps, M. Borlaf, J. Toudert, A. de Andrés, M. T. Colomer, R. Moreno, and R. Serna, “Evidencing early pyrochlore formation in rare-earth doped TiO2 nanocrystals: Structure sensing via VIS and NIR Er3+ light emission,” J. Alloys Compd. 735, 2267–2274 (2018).
    [Crossref]
  28. J. Zhang, X. Wang, W. T. Zheng, X. G. Kong, Y. J. Sun, and X. Wang, “Structure and luminescence properties of TiO2:Er3+ nanocrystals annealed at different temperatures,” Mater. Lett. 61(8–9), 1658–1661 (2007).
    [Crossref]
  29. K. Kobwittaya, Y. Oishi, T. Torikai, M. Yada, T. Watari, and H. N. Luitel, “Bright red upconversion luminescence from Er3+ and Yb3+ co-doped ZnO-TiO2 composite phosphor powder,” Ceram. Int. 43(16), 13505–13515 (2017).
    [Crossref]
  30. J. S. Liao, Q. Wang, L. F. Lan, J. F. Guo, L. L. Nie, S. J. Liu, and H. R. Wen, “Microwave hydrothermal synthesis and temperature sensing behavior of Lu2Ti2O7:Yb3+/Er3+ nanophosphors,” Curr. Appl. Phys. 17(3), 427–432 (2017).
    [Crossref]
  31. B. S. Cao, J. L. Wu, X. H. Wang, Z. Q. Feng, and B. Dong, “Upconversion Luminescence Properties of Er3+ Doped Yb2Ti2O7 Nanophosphor by Gd3+ Codoping,” J. Nanosci. Nanotechnol. 16(4), 3690–3694 (2016).
    [Crossref] [PubMed]
  32. Y. Wu, S. Lin, J. Liu, Y. Ji, J. Xu, L. Xu, and K. Chen, “Efficient up-conversion red emission from TiO2:Yb,Er nanocrystals,” Opt. Express 25(19), 22648–22657 (2017).
    [Crossref] [PubMed]
  33. V. Badjeck, M. G. Walls, L. Chaffron, J. Malaplate, and K. March, “New insights into the chemical structure of Y2Ti2O7−δ nanoparticles in oxide dispersion-strengthened steels designed for sodium fast reactors by electron energy-loss spectroscopy,” J. Nucl. Mater. 456, 292–301 (2015).
    [Crossref]
  34. S. Y. Chen, C. C. Ting, and W. F. Hsieh, “Comparison of visible fluorescence properties between sol–gel derived Er3+–Yb3+ and Er3+–Y3+ co-doped TiO2 films,” Thin Solid Films 434(1–2), 171–177 (2003).
    [Crossref]
  35. J. A. Hodges, P. Bonville, A. Forget, M. Rams, K. Królas, and G. Dhalenne, “The crystal field and exchange interactions in Yb2Ti2O7,” J. Phys. Condens. Matter 13(41), 9301–9310 (2001).
    [Crossref]
  36. L. Li, Y. L. Yang, M. Zhou, R. Q. Fan, L. L. Qiu, X. Wang, L. Y. Zhang, X. S. Zhou, and J. L. He, “Enhanced performance of dye-sensitized solar cells based on TiO2 with NIR-absorption and visible upconversion luminescence,” J. Solid State Chem. 198, 459–465 (2013).
    [Crossref]
  37. W. H. Weng, C. H. Jhou, H. X. Xie, and T. M. Pan, “Label-Free Detection of AR-V7 mRNA in Prostate Cancer Using Yb2Ti2O7 –based electrolyte-insulator-semiconductor biosensors,” J. Electrochem. Soc. 163(14), B710–B717 (2016).
    [Crossref]
  38. B. Erdem, R. A. Hunsicker, G. W. Simmons, E. D. Sudol, V. L. Dimonie, and M. S. El-Aasser, “XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation,” Langmuir 17(9), 2664–2669 (2001).
    [Crossref]
  39. C. C. Ting, S. Y. Chen, and H. Y. Lee, “Physical characteristics and infrared fluorescence properties of sol–gel derived Er3+–Yb3+ codoped TiO2,” J. Appl. Phys. 94(3), 2102–2109 (2003).
    [Crossref]
  40. Q. K. Shang, H. Yu, X. G. Kong, H. D. Wang, X. Wang, Y. J. Sun, Y. L. Zhang, and Q. H. Zeng, “Green and red up-conversion emissions of Er3+–Yb3+ Co-doped TiO2 nanocrystals prepared by sol–gel method,” J. Lumin. 128(7), 1211–1216 (2008).
    [Crossref]
  41. X. Yin, H. Wang, M. Xing, Y. Fu, Y. Tian, X. Shen, W. Yu, and X. Luo, “Upconversion luminescence of Y2Ti2O7:Er3+ under 1550 and 980 nm excitation,” J. Rare Earths 35(3), 230–234 (2017).
    [Crossref]
  42. J. Hao, Y. Zhang, and X. Wei, “Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films,” Angew. Chem. Int. Ed. Engl. 50(30), 6876–6880 (2011).
    [Crossref] [PubMed]
  43. H. Liang, G. Chen, H. Liu, and Z. Zhang, “Ultraviolet upconversion luminescence enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals induced by tridoping with Li+ ions,” J. Lumin. 129(3), 197–202 (2009).
    [Crossref]
  44. X. G. Mao, B. X. Yan, J. Wang, and J. Shen, “Up-conversion fluorescence characteristics and mechanism of Er3+-doped TiO2 thin films,” Vacuum 102, 38–42 (2014).
    [Crossref]
  45. R. Salhi and J. L. Deschanvres, “Efficient green and red up-conversion emissions in Er/Yb co-doped TiO2 nanopowders prepared by hydrothermal-assisted sol–gel process,” J. Lumin. 176, 250–259 (2016).
    [Crossref]
  46. A. S. Gouveia-Neto, L. A. Bueno, A. C. M. Afonso, J. F. Nascimento, E. B. Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Upconversion luminescence in Ho3+/Yb3+- and Tb3+/Yb3+-codoped fluorogermanate glass and glass ceramic,” J. Non-Cryst. Solids 354(2–9), 509–514 (2008).
    [Crossref]
  47. Y. Liu, D. Li, Q. L. Ma, W. S. Yu, X. Xi, X. T. Dong, J. X. Wang, and G. X. Liu, “Fabrication of novel Ba4Y3F17:Er3+ nanofibers with upconversion fluorescence via combination of electrospinning with fluorination,” J. Mater. Sci. Mater. Electron. 27(11), 11666–11673 (2016).
    [Crossref]
  48. J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled Synthesis, Formation Mechanism, and Great Enhancement of Red Upconversion Luminescence of NaYF4:Yb3+, Er3+ Nanocrystals/Submicroplates at Low Doping Level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
    [Crossref] [PubMed]
  49. F. Wang and X. Liu, “Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles,” J. Am. Chem. Soc. 130(17), 5642–5643 (2008).
    [Crossref] [PubMed]
  50. M. Wu, E. H. Song, Z. T. Chen, S. Ding, S. Ye, J. J. Zhou, S. Q. Xu, and Q. Y. Zhang, “Single-band red upconversion luminescence of Yb3+–Er3+via nonequivalent substitution in perovskite KMgF3 nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(8), 1675–1684 (2016).
    [Crossref]
  51. Z. Y. Huang, M. J. Yi, H. P. Gao, Z. L. Zhang, and Y. L. Mao, “Enhancing single red band upconversion luminescence of KMnF3:Yb3+/Er3+ nanocrystals by Mg2+ doping,” J. Alloys Compd. 694, 241–245 (2017).
    [Crossref]
  52. C. C. Ting, Y. S. Chiu, C. W. Chang, and L. C. Chuang, “Visible and infrared luminescence properties of Er3+-doped Y2Ti2O7 nanocrystals,” J. Solid State Chem. 184(3), 563–571 (2011).
    [Crossref]
  53. J. Reszczyńska, T. Grzyb, Z. Wei, M. Klein, E. Kowalska, B. Ohtani, and A. Zaleska-Medynska, “Photocatalytic activity and luminescence properties of RE3+–TiO2 nanocrystals prepared by sol–gel and hydrothermal methods,” Appl. Catal. B 181, 825–837 (2016).
    [Crossref]

2018 (2)

M. Gunaseelan, S. Yamini, G. A. Kumar, and J. Senthilselvan, “Highly efficient upconversion luminescence in hexagonal NaYF4:Yb3+, Er3+ nanocrystals synthesized by a novel reverse microemulsion method,” Opt. Mater. 75, 174–186 (2018).
[Crossref]

I. Camps, M. Borlaf, J. Toudert, A. de Andrés, M. T. Colomer, R. Moreno, and R. Serna, “Evidencing early pyrochlore formation in rare-earth doped TiO2 nanocrystals: Structure sensing via VIS and NIR Er3+ light emission,” J. Alloys Compd. 735, 2267–2274 (2018).
[Crossref]

2017 (11)

Y. Wu, S. Lin, J. Liu, Y. Ji, J. Xu, L. Xu, and K. Chen, “Efficient up-conversion red emission from TiO2:Yb,Er nanocrystals,” Opt. Express 25(19), 22648–22657 (2017).
[Crossref] [PubMed]

K. Kobwittaya, Y. Oishi, T. Torikai, M. Yada, T. Watari, and H. N. Luitel, “Bright red upconversion luminescence from Er3+ and Yb3+ co-doped ZnO-TiO2 composite phosphor powder,” Ceram. Int. 43(16), 13505–13515 (2017).
[Crossref]

J. S. Liao, Q. Wang, L. F. Lan, J. F. Guo, L. L. Nie, S. J. Liu, and H. R. Wen, “Microwave hydrothermal synthesis and temperature sensing behavior of Lu2Ti2O7:Yb3+/Er3+ nanophosphors,” Curr. Appl. Phys. 17(3), 427–432 (2017).
[Crossref]

J. Fu, X. Zhang, Z. Chao, Z. Li, J. Liao, D. Hou, H. Wen, X. Lu, and X. Xie, “Enhanced upconversion luminescence of NaYF4:Yb,Er microprisms via La3+ doping,” Opt. Laser Technol. 88, 280–286 (2017).
[Crossref]

Y. Wu, Y. Ji, J. Xu, J. Liu, Z. Lin, Y. Zhao, Y. Sun, L. Xu, and K. Chen, “Crystalline phase and morphology controlling to enhance the up-conversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

P. Singh, P. K. Shahi, S. K. Singh, A. K. Singh, M. K. Singh, R. Prakash, and S. B. Rai, “Lanthanide doped ultrafine hybrid nanostructures: multicolour luminescence, upconversion based energy transfer and luminescent solar collector applications,” Nanoscale 9(2), 696–705 (2017).
[Crossref] [PubMed]

M. Kamimura, A. Omoto, H.-C. Chiu, and K. Soga, “Enhanced red upconversion emission of NaYF4:Yb3+, Er3+, Mn2+ nanoparticles for near-infrared-induced photodynamic therapy and fluorescence imaging,” Chem. Lett. 46(8), 1076–1078 (2017).
[Crossref]

H. Li, L. Xu, and G. Chen, “Controlled synthesis of monodisperse hexagonal NaYF4:Yb/Er nanocrystals with ultrasmall size and enhanced upconversion luminescence,” Molecules 22(12), 2113 (2017).
[Crossref]

X. Y. Huang, L. Jiang, X. X. Li, and A. Q. He, “Manipulating upconversion emission of cubic BaGdF5:Ce3+/Er3+/Yb3+ nanocrystals through controlling Ce3+ doping,” J. Alloys Compd. 721, 374–382 (2017).
[Crossref]

X. Yin, H. Wang, M. Xing, Y. Fu, Y. Tian, X. Shen, W. Yu, and X. Luo, “Upconversion luminescence of Y2Ti2O7:Er3+ under 1550 and 980 nm excitation,” J. Rare Earths 35(3), 230–234 (2017).
[Crossref]

Z. Y. Huang, M. J. Yi, H. P. Gao, Z. L. Zhang, and Y. L. Mao, “Enhancing single red band upconversion luminescence of KMnF3:Yb3+/Er3+ nanocrystals by Mg2+ doping,” J. Alloys Compd. 694, 241–245 (2017).
[Crossref]

2016 (13)

J. Reszczyńska, T. Grzyb, Z. Wei, M. Klein, E. Kowalska, B. Ohtani, and A. Zaleska-Medynska, “Photocatalytic activity and luminescence properties of RE3+–TiO2 nanocrystals prepared by sol–gel and hydrothermal methods,” Appl. Catal. B 181, 825–837 (2016).
[Crossref]

Y. Liu, D. Li, Q. L. Ma, W. S. Yu, X. Xi, X. T. Dong, J. X. Wang, and G. X. Liu, “Fabrication of novel Ba4Y3F17:Er3+ nanofibers with upconversion fluorescence via combination of electrospinning with fluorination,” J. Mater. Sci. Mater. Electron. 27(11), 11666–11673 (2016).
[Crossref]

M. Wu, E. H. Song, Z. T. Chen, S. Ding, S. Ye, J. J. Zhou, S. Q. Xu, and Q. Y. Zhang, “Single-band red upconversion luminescence of Yb3+–Er3+via nonequivalent substitution in perovskite KMgF3 nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(8), 1675–1684 (2016).
[Crossref]

R. Salhi and J. L. Deschanvres, “Efficient green and red up-conversion emissions in Er/Yb co-doped TiO2 nanopowders prepared by hydrothermal-assisted sol–gel process,” J. Lumin. 176, 250–259 (2016).
[Crossref]

W. H. Weng, C. H. Jhou, H. X. Xie, and T. M. Pan, “Label-Free Detection of AR-V7 mRNA in Prostate Cancer Using Yb2Ti2O7 –based electrolyte-insulator-semiconductor biosensors,” J. Electrochem. Soc. 163(14), B710–B717 (2016).
[Crossref]

J. Cai, X. Wei, F. Hu, Z. Cao, L. Zhao, Y. Chen, C. Duan, and M. Yin, “Up-conversion luminescence and optical thermometry properties of transparent glass ceramics containing CaF2:Yb3+/Er3+ nanocrystals,” Ceram. Int. 42(12), 13990–13995 (2016).
[Crossref]

X. Zhang, D. Xu, G. Zhou, X. Wang, H. Liu, Z. Yu, G. Zhang, and L. Zhu, “Color tunable up-conversion emission from ZrO2:Er3+,Yb3+ textile fibers,” RSC Advances 6(106), 103973 (2016).
[Crossref]

J. Li, Q. Zhao, F. Shi, C. Liu, and Y. Tang, “NIR-Mediated Nanohybrids of Upconversion Nanophosphors and Fluorescent Conjugated Polymers for High-Efficiency Antibacterial Performance Based on Fluorescence Resonance Energy Transfer,” Adv. Healthc. Mater. 5(23), 2967–2971 (2016).
[Crossref] [PubMed]

Y. H. Yao, C. Xu, Y. Zheng, C. S. Yang, P. Liu, J. X. Ding, T. Q. Jia, J. R. Qiu, S. A. Zhang, and Z. R. Sun, “Improving upconversion luminescence efficiency in Er3+-doped NaYF4 nanocrystals by two-color laser field,” J. Mater. Sci. 51(11), 5460–5468 (2016).
[Crossref]

Y. Wu, S. Lin, W. Shao, X. Zhang, J. Xu, L. Yu, and K. Chen, “Enhanced up-conversion luminescence from NaYF4:Yb,Er nanocrystals by Gd3+ ions induced phase transformation and plasmonic Au nanosphere arrays,” RSC Advances 6(105), 102869 (2016).
[Crossref] [PubMed]

B. S. Cao, J. L. Wu, X. H. Wang, Z. Q. Feng, and B. Dong, “Upconversion Luminescence Properties of Er3+ Doped Yb2Ti2O7 Nanophosphor by Gd3+ Codoping,” J. Nanosci. Nanotechnol. 16(4), 3690–3694 (2016).
[Crossref] [PubMed]

X. Liu, J. Qiu, X. Xu, and D. Zhou, “Effect of Ce3+ Concentration on the Luminescence Properties of Ce3+/Er3+Nb3+ tri-doped NaYF4 nanocrystals,” J. Nanosci. Nanotechnol. 16(4), 3749–3753 (2016).
[Crossref] [PubMed]

V. Bartůněk, J. Rak, B. Pelánková, J. Junková, M. Mezlíková, V. Král, M. Kuchař, H. Engstová, P. Ježek, and R. Šmucler, “Large scale preparation of up- converting YF3:YbEr nanocrystals with various sizes by solvothermal syntheses using ionic liquid bmimCl,” J. Fluor. Chem. 188, 14–17 (2016).
[Crossref]

2015 (5)

H. B. Wang, W. Lu, Z. G. Yi, L. Rao, S. J. Zeng, and Z. Li, “Enhanced upconversion luminescence and single-band red emission of NaErF4 nanocrystals via Mn2+ doping,” J. Alloys Compd. 618, 776–780 (2015).
[Crossref]

Y. H. Hu, X. H. Liang, Y. B. Wang, E. Z. Liu, X. Y. Hu, and J. Fan, “Enhancement of the red upconversion luminescence in NaYF4:Yb3+, Er3+ nanoparticles by the transition metal ions doping,” Ceram. Int. 41(10), 14545–14553 (2015).
[Crossref]

V. Badjeck, M. G. Walls, L. Chaffron, J. Malaplate, and K. March, “New insights into the chemical structure of Y2Ti2O7−δ nanoparticles in oxide dispersion-strengthened steels designed for sodium fast reactors by electron energy-loss spectroscopy,” J. Nucl. Mater. 456, 292–301 (2015).
[Crossref]

X. Zhang, S. Lin, T. Lin, P. Zhang, J. Xu, L. Xu, and K. Chen, “Improved sensitization efficiency in Er3+ ions and SnO2 nanocrystals co-doped silica thin films,” Phys. Chem. Chem. Phys. 17(18), 11974–11980 (2015).
[Crossref] [PubMed]

X. Chuai, X. Guo, X. Liu, G. He, K. Zheng, C. He, and W. Qin, “Bifunctional NaGdF4:Yb, Er, Fe nanocrystals with the enhanced upconversion fluorescence,” Opt. Mater. 44, 13–17 (2015).
[Crossref]

2014 (5)

P. Ramasamy, P. Manivasakan, and J. Kim, “Upconversion nanophosphors for solar cell applications,” RSC Advances 4(66), 34873–34895 (2014).
[Crossref]

M. V. DaCosta, S. Doughan, Y. Han, and U. J. Krull, “Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: a review,” Anal. Chim. Acta 832, 1–33 (2014).
[Crossref] [PubMed]

X. Zhang, T. Lin, P. Zhang, J. Xu, S. Lin, L. Xu, and K. Chen, “Highly efficient near-infrared emission in Er3+ doped silica films containing size-tunable SnO2 nanocrystals,” Opt. Express 22(1), 369–376 (2014).
[Crossref] [PubMed]

C. C. Wang, D. G. Yin, K. L. Song, J. Ouyang, and B. Liu, “Preparation of bi-functional NaGdF4-based upconversion nanocrystals and fine-tuning of emission colors of the nanocrystals by doping with Mn2+,” Vacuum 107, 311–315 (2014).
[Crossref]

X. G. Mao, B. X. Yan, J. Wang, and J. Shen, “Up-conversion fluorescence characteristics and mechanism of Er3+-doped TiO2 thin films,” Vacuum 102, 38–42 (2014).
[Crossref]

2013 (1)

L. Li, Y. L. Yang, M. Zhou, R. Q. Fan, L. L. Qiu, X. Wang, L. Y. Zhang, X. S. Zhou, and J. L. He, “Enhanced performance of dye-sensitized solar cells based on TiO2 with NIR-absorption and visible upconversion luminescence,” J. Solid State Chem. 198, 459–465 (2013).
[Crossref]

2012 (1)

P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q. H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4(16), 5132–5137 (2012).
[Crossref] [PubMed]

2011 (2)

C. C. Ting, Y. S. Chiu, C. W. Chang, and L. C. Chuang, “Visible and infrared luminescence properties of Er3+-doped Y2Ti2O7 nanocrystals,” J. Solid State Chem. 184(3), 563–571 (2011).
[Crossref]

J. Hao, Y. Zhang, and X. Wei, “Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films,” Angew. Chem. Int. Ed. Engl. 50(30), 6876–6880 (2011).
[Crossref] [PubMed]

2010 (1)

W. L. Wang, Q. K. Shang, W. Zheng, H. Yu, X. J. Feng, Z. D. Wang, Y. B. Zhang, and G. Q. Li, “A novel near-infrared antibacterial material depending on the upconverting property of Er3+-Yb3+-Fe3+ tridoped TiO2 nanopowder,” J. Phys. Chem. C 114(32), 13663–13669 (2010).
[Crossref]

2009 (2)

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[Crossref] [PubMed]

H. Liang, G. Chen, H. Liu, and Z. Zhang, “Ultraviolet upconversion luminescence enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals induced by tridoping with Li+ ions,” J. Lumin. 129(3), 197–202 (2009).
[Crossref]

2008 (4)

A. S. Gouveia-Neto, L. A. Bueno, A. C. M. Afonso, J. F. Nascimento, E. B. Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Upconversion luminescence in Ho3+/Yb3+- and Tb3+/Yb3+-codoped fluorogermanate glass and glass ceramic,” J. Non-Cryst. Solids 354(2–9), 509–514 (2008).
[Crossref]

Q. K. Shang, H. Yu, X. G. Kong, H. D. Wang, X. Wang, Y. J. Sun, Y. L. Zhang, and Q. H. Zeng, “Green and red up-conversion emissions of Er3+–Yb3+ Co-doped TiO2 nanocrystals prepared by sol–gel method,” J. Lumin. 128(7), 1211–1216 (2008).
[Crossref]

J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled Synthesis, Formation Mechanism, and Great Enhancement of Red Upconversion Luminescence of NaYF4:Yb3+, Er3+ Nanocrystals/Submicroplates at Low Doping Level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
[Crossref] [PubMed]

F. Wang and X. Liu, “Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles,” J. Am. Chem. Soc. 130(17), 5642–5643 (2008).
[Crossref] [PubMed]

2007 (1)

J. Zhang, X. Wang, W. T. Zheng, X. G. Kong, Y. J. Sun, and X. Wang, “Structure and luminescence properties of TiO2:Er3+ nanocrystals annealed at different temperatures,” Mater. Lett. 61(8–9), 1658–1661 (2007).
[Crossref]

2003 (2)

S. Y. Chen, C. C. Ting, and W. F. Hsieh, “Comparison of visible fluorescence properties between sol–gel derived Er3+–Yb3+ and Er3+–Y3+ co-doped TiO2 films,” Thin Solid Films 434(1–2), 171–177 (2003).
[Crossref]

C. C. Ting, S. Y. Chen, and H. Y. Lee, “Physical characteristics and infrared fluorescence properties of sol–gel derived Er3+–Yb3+ codoped TiO2,” J. Appl. Phys. 94(3), 2102–2109 (2003).
[Crossref]

2001 (2)

B. Erdem, R. A. Hunsicker, G. W. Simmons, E. D. Sudol, V. L. Dimonie, and M. S. El-Aasser, “XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation,” Langmuir 17(9), 2664–2669 (2001).
[Crossref]

J. A. Hodges, P. Bonville, A. Forget, M. Rams, K. Królas, and G. Dhalenne, “The crystal field and exchange interactions in Yb2Ti2O7,” J. Phys. Condens. Matter 13(41), 9301–9310 (2001).
[Crossref]

1995 (1)

Y. L. Lu, Y. Q. Lu, H. Fang, and N. B. Ming, “Upconversion of 1.064 μm Nd:YAG laser pulses into intense visible light in erbium-doped phosphate fibers,” Opt. Commun. 115(1), 110–114 (1995).
[Crossref]

Afonso, A. C. M.

A. S. Gouveia-Neto, L. A. Bueno, A. C. M. Afonso, J. F. Nascimento, E. B. Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Upconversion luminescence in Ho3+/Yb3+- and Tb3+/Yb3+-codoped fluorogermanate glass and glass ceramic,” J. Non-Cryst. Solids 354(2–9), 509–514 (2008).
[Crossref]

Badjeck, V.

V. Badjeck, M. G. Walls, L. Chaffron, J. Malaplate, and K. March, “New insights into the chemical structure of Y2Ti2O7−δ nanoparticles in oxide dispersion-strengthened steels designed for sodium fast reactors by electron energy-loss spectroscopy,” J. Nucl. Mater. 456, 292–301 (2015).
[Crossref]

Bartunek, V.

V. Bartůněk, J. Rak, B. Pelánková, J. Junková, M. Mezlíková, V. Král, M. Kuchař, H. Engstová, P. Ježek, and R. Šmucler, “Large scale preparation of up- converting YF3:YbEr nanocrystals with various sizes by solvothermal syntheses using ionic liquid bmimCl,” J. Fluor. Chem. 188, 14–17 (2016).
[Crossref]

Bonville, P.

J. A. Hodges, P. Bonville, A. Forget, M. Rams, K. Królas, and G. Dhalenne, “The crystal field and exchange interactions in Yb2Ti2O7,” J. Phys. Condens. Matter 13(41), 9301–9310 (2001).
[Crossref]

Borlaf, M.

I. Camps, M. Borlaf, J. Toudert, A. de Andrés, M. T. Colomer, R. Moreno, and R. Serna, “Evidencing early pyrochlore formation in rare-earth doped TiO2 nanocrystals: Structure sensing via VIS and NIR Er3+ light emission,” J. Alloys Compd. 735, 2267–2274 (2018).
[Crossref]

Bueno, L. A.

A. S. Gouveia-Neto, L. A. Bueno, A. C. M. Afonso, J. F. Nascimento, E. B. Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Upconversion luminescence in Ho3+/Yb3+- and Tb3+/Yb3+-codoped fluorogermanate glass and glass ceramic,” J. Non-Cryst. Solids 354(2–9), 509–514 (2008).
[Crossref]

Cai, J.

J. Cai, X. Wei, F. Hu, Z. Cao, L. Zhao, Y. Chen, C. Duan, and M. Yin, “Up-conversion luminescence and optical thermometry properties of transparent glass ceramics containing CaF2:Yb3+/Er3+ nanocrystals,” Ceram. Int. 42(12), 13990–13995 (2016).
[Crossref]

Camps, I.

I. Camps, M. Borlaf, J. Toudert, A. de Andrés, M. T. Colomer, R. Moreno, and R. Serna, “Evidencing early pyrochlore formation in rare-earth doped TiO2 nanocrystals: Structure sensing via VIS and NIR Er3+ light emission,” J. Alloys Compd. 735, 2267–2274 (2018).
[Crossref]

Cao, B. S.

B. S. Cao, J. L. Wu, X. H. Wang, Z. Q. Feng, and B. Dong, “Upconversion Luminescence Properties of Er3+ Doped Yb2Ti2O7 Nanophosphor by Gd3+ Codoping,” J. Nanosci. Nanotechnol. 16(4), 3690–3694 (2016).
[Crossref] [PubMed]

Cao, Z.

J. Cai, X. Wei, F. Hu, Z. Cao, L. Zhao, Y. Chen, C. Duan, and M. Yin, “Up-conversion luminescence and optical thermometry properties of transparent glass ceramics containing CaF2:Yb3+/Er3+ nanocrystals,” Ceram. Int. 42(12), 13990–13995 (2016).
[Crossref]

Chaffron, L.

V. Badjeck, M. G. Walls, L. Chaffron, J. Malaplate, and K. March, “New insights into the chemical structure of Y2Ti2O7−δ nanoparticles in oxide dispersion-strengthened steels designed for sodium fast reactors by electron energy-loss spectroscopy,” J. Nucl. Mater. 456, 292–301 (2015).
[Crossref]

Chang, C. W.

C. C. Ting, Y. S. Chiu, C. W. Chang, and L. C. Chuang, “Visible and infrared luminescence properties of Er3+-doped Y2Ti2O7 nanocrystals,” J. Solid State Chem. 184(3), 563–571 (2011).
[Crossref]

Chao, Z.

J. Fu, X. Zhang, Z. Chao, Z. Li, J. Liao, D. Hou, H. Wen, X. Lu, and X. Xie, “Enhanced upconversion luminescence of NaYF4:Yb,Er microprisms via La3+ doping,” Opt. Laser Technol. 88, 280–286 (2017).
[Crossref]

Chen, G.

H. Li, L. Xu, and G. Chen, “Controlled synthesis of monodisperse hexagonal NaYF4:Yb/Er nanocrystals with ultrasmall size and enhanced upconversion luminescence,” Molecules 22(12), 2113 (2017).
[Crossref]

H. Liang, G. Chen, H. Liu, and Z. Zhang, “Ultraviolet upconversion luminescence enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals induced by tridoping with Li+ ions,” J. Lumin. 129(3), 197–202 (2009).
[Crossref]

Chen, K.

Y. Wu, S. Lin, J. Liu, Y. Ji, J. Xu, L. Xu, and K. Chen, “Efficient up-conversion red emission from TiO2:Yb,Er nanocrystals,” Opt. Express 25(19), 22648–22657 (2017).
[Crossref] [PubMed]

Y. Wu, Y. Ji, J. Xu, J. Liu, Z. Lin, Y. Zhao, Y. Sun, L. Xu, and K. Chen, “Crystalline phase and morphology controlling to enhance the up-conversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

Y. Wu, S. Lin, W. Shao, X. Zhang, J. Xu, L. Yu, and K. Chen, “Enhanced up-conversion luminescence from NaYF4:Yb,Er nanocrystals by Gd3+ ions induced phase transformation and plasmonic Au nanosphere arrays,” RSC Advances 6(105), 102869 (2016).
[Crossref] [PubMed]

X. Zhang, S. Lin, T. Lin, P. Zhang, J. Xu, L. Xu, and K. Chen, “Improved sensitization efficiency in Er3+ ions and SnO2 nanocrystals co-doped silica thin films,” Phys. Chem. Chem. Phys. 17(18), 11974–11980 (2015).
[Crossref] [PubMed]

X. Zhang, T. Lin, P. Zhang, J. Xu, S. Lin, L. Xu, and K. Chen, “Highly efficient near-infrared emission in Er3+ doped silica films containing size-tunable SnO2 nanocrystals,” Opt. Express 22(1), 369–376 (2014).
[Crossref] [PubMed]

Chen, S. Y.

S. Y. Chen, C. C. Ting, and W. F. Hsieh, “Comparison of visible fluorescence properties between sol–gel derived Er3+–Yb3+ and Er3+–Y3+ co-doped TiO2 films,” Thin Solid Films 434(1–2), 171–177 (2003).
[Crossref]

C. C. Ting, S. Y. Chen, and H. Y. Lee, “Physical characteristics and infrared fluorescence properties of sol–gel derived Er3+–Yb3+ codoped TiO2,” J. Appl. Phys. 94(3), 2102–2109 (2003).
[Crossref]

Chen, Y.

J. Cai, X. Wei, F. Hu, Z. Cao, L. Zhao, Y. Chen, C. Duan, and M. Yin, “Up-conversion luminescence and optical thermometry properties of transparent glass ceramics containing CaF2:Yb3+/Er3+ nanocrystals,” Ceram. Int. 42(12), 13990–13995 (2016).
[Crossref]

Chen, Z. T.

M. Wu, E. H. Song, Z. T. Chen, S. Ding, S. Ye, J. J. Zhou, S. Q. Xu, and Q. Y. Zhang, “Single-band red upconversion luminescence of Yb3+–Er3+via nonequivalent substitution in perovskite KMgF3 nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(8), 1675–1684 (2016).
[Crossref]

Chiu, H.-C.

M. Kamimura, A. Omoto, H.-C. Chiu, and K. Soga, “Enhanced red upconversion emission of NaYF4:Yb3+, Er3+, Mn2+ nanoparticles for near-infrared-induced photodynamic therapy and fluorescence imaging,” Chem. Lett. 46(8), 1076–1078 (2017).
[Crossref]

Chiu, Y. S.

C. C. Ting, Y. S. Chiu, C. W. Chang, and L. C. Chuang, “Visible and infrared luminescence properties of Er3+-doped Y2Ti2O7 nanocrystals,” J. Solid State Chem. 184(3), 563–571 (2011).
[Crossref]

Chuai, X.

X. Chuai, X. Guo, X. Liu, G. He, K. Zheng, C. He, and W. Qin, “Bifunctional NaGdF4:Yb, Er, Fe nanocrystals with the enhanced upconversion fluorescence,” Opt. Mater. 44, 13–17 (2015).
[Crossref]

Chuang, L. C.

C. C. Ting, Y. S. Chiu, C. W. Chang, and L. C. Chuang, “Visible and infrared luminescence properties of Er3+-doped Y2Ti2O7 nanocrystals,” J. Solid State Chem. 184(3), 563–571 (2011).
[Crossref]

Colomer, M. T.

I. Camps, M. Borlaf, J. Toudert, A. de Andrés, M. T. Colomer, R. Moreno, and R. Serna, “Evidencing early pyrochlore formation in rare-earth doped TiO2 nanocrystals: Structure sensing via VIS and NIR Er3+ light emission,” J. Alloys Compd. 735, 2267–2274 (2018).
[Crossref]

Costa, E. B.

A. S. Gouveia-Neto, L. A. Bueno, A. C. M. Afonso, J. F. Nascimento, E. B. Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Upconversion luminescence in Ho3+/Yb3+- and Tb3+/Yb3+-codoped fluorogermanate glass and glass ceramic,” J. Non-Cryst. Solids 354(2–9), 509–514 (2008).
[Crossref]

DaCosta, M. V.

M. V. DaCosta, S. Doughan, Y. Han, and U. J. Krull, “Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: a review,” Anal. Chim. Acta 832, 1–33 (2014).
[Crossref] [PubMed]

de Andrés, A.

I. Camps, M. Borlaf, J. Toudert, A. de Andrés, M. T. Colomer, R. Moreno, and R. Serna, “Evidencing early pyrochlore formation in rare-earth doped TiO2 nanocrystals: Structure sensing via VIS and NIR Er3+ light emission,” J. Alloys Compd. 735, 2267–2274 (2018).
[Crossref]

Deschanvres, J. L.

R. Salhi and J. L. Deschanvres, “Efficient green and red up-conversion emissions in Er/Yb co-doped TiO2 nanopowders prepared by hydrothermal-assisted sol–gel process,” J. Lumin. 176, 250–259 (2016).
[Crossref]

Dhalenne, G.

J. A. Hodges, P. Bonville, A. Forget, M. Rams, K. Królas, and G. Dhalenne, “The crystal field and exchange interactions in Yb2Ti2O7,” J. Phys. Condens. Matter 13(41), 9301–9310 (2001).
[Crossref]

Dimonie, V. L.

B. Erdem, R. A. Hunsicker, G. W. Simmons, E. D. Sudol, V. L. Dimonie, and M. S. El-Aasser, “XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation,” Langmuir 17(9), 2664–2669 (2001).
[Crossref]

Ding, J. X.

Y. H. Yao, C. Xu, Y. Zheng, C. S. Yang, P. Liu, J. X. Ding, T. Q. Jia, J. R. Qiu, S. A. Zhang, and Z. R. Sun, “Improving upconversion luminescence efficiency in Er3+-doped NaYF4 nanocrystals by two-color laser field,” J. Mater. Sci. 51(11), 5460–5468 (2016).
[Crossref]

Ding, S.

M. Wu, E. H. Song, Z. T. Chen, S. Ding, S. Ye, J. J. Zhou, S. Q. Xu, and Q. Y. Zhang, “Single-band red upconversion luminescence of Yb3+–Er3+via nonequivalent substitution in perovskite KMgF3 nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(8), 1675–1684 (2016).
[Crossref]

Dong, B.

B. S. Cao, J. L. Wu, X. H. Wang, Z. Q. Feng, and B. Dong, “Upconversion Luminescence Properties of Er3+ Doped Yb2Ti2O7 Nanophosphor by Gd3+ Codoping,” J. Nanosci. Nanotechnol. 16(4), 3690–3694 (2016).
[Crossref] [PubMed]

Dong, X. T.

Y. Liu, D. Li, Q. L. Ma, W. S. Yu, X. Xi, X. T. Dong, J. X. Wang, and G. X. Liu, “Fabrication of novel Ba4Y3F17:Er3+ nanofibers with upconversion fluorescence via combination of electrospinning with fluorination,” J. Mater. Sci. Mater. Electron. 27(11), 11666–11673 (2016).
[Crossref]

Doughan, S.

M. V. DaCosta, S. Doughan, Y. Han, and U. J. Krull, “Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: a review,” Anal. Chim. Acta 832, 1–33 (2014).
[Crossref] [PubMed]

Duan, C.

J. Cai, X. Wei, F. Hu, Z. Cao, L. Zhao, Y. Chen, C. Duan, and M. Yin, “Up-conversion luminescence and optical thermometry properties of transparent glass ceramics containing CaF2:Yb3+/Er3+ nanocrystals,” Ceram. Int. 42(12), 13990–13995 (2016).
[Crossref]

El-Aasser, M. S.

B. Erdem, R. A. Hunsicker, G. W. Simmons, E. D. Sudol, V. L. Dimonie, and M. S. El-Aasser, “XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation,” Langmuir 17(9), 2664–2669 (2001).
[Crossref]

Engstová, H.

V. Bartůněk, J. Rak, B. Pelánková, J. Junková, M. Mezlíková, V. Král, M. Kuchař, H. Engstová, P. Ježek, and R. Šmucler, “Large scale preparation of up- converting YF3:YbEr nanocrystals with various sizes by solvothermal syntheses using ionic liquid bmimCl,” J. Fluor. Chem. 188, 14–17 (2016).
[Crossref]

Erdem, B.

B. Erdem, R. A. Hunsicker, G. W. Simmons, E. D. Sudol, V. L. Dimonie, and M. S. El-Aasser, “XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation,” Langmuir 17(9), 2664–2669 (2001).
[Crossref]

Fan, J.

Y. H. Hu, X. H. Liang, Y. B. Wang, E. Z. Liu, X. Y. Hu, and J. Fan, “Enhancement of the red upconversion luminescence in NaYF4:Yb3+, Er3+ nanoparticles by the transition metal ions doping,” Ceram. Int. 41(10), 14545–14553 (2015).
[Crossref]

Fan, R. Q.

L. Li, Y. L. Yang, M. Zhou, R. Q. Fan, L. L. Qiu, X. Wang, L. Y. Zhang, X. S. Zhou, and J. L. He, “Enhanced performance of dye-sensitized solar cells based on TiO2 with NIR-absorption and visible upconversion luminescence,” J. Solid State Chem. 198, 459–465 (2013).
[Crossref]

Fang, H.

Y. L. Lu, Y. Q. Lu, H. Fang, and N. B. Ming, “Upconversion of 1.064 μm Nd:YAG laser pulses into intense visible light in erbium-doped phosphate fibers,” Opt. Commun. 115(1), 110–114 (1995).
[Crossref]

Feng, X. J.

W. L. Wang, Q. K. Shang, W. Zheng, H. Yu, X. J. Feng, Z. D. Wang, Y. B. Zhang, and G. Q. Li, “A novel near-infrared antibacterial material depending on the upconverting property of Er3+-Yb3+-Fe3+ tridoped TiO2 nanopowder,” J. Phys. Chem. C 114(32), 13663–13669 (2010).
[Crossref]

Feng, Z. Q.

B. S. Cao, J. L. Wu, X. H. Wang, Z. Q. Feng, and B. Dong, “Upconversion Luminescence Properties of Er3+ Doped Yb2Ti2O7 Nanophosphor by Gd3+ Codoping,” J. Nanosci. Nanotechnol. 16(4), 3690–3694 (2016).
[Crossref] [PubMed]

Forget, A.

J. A. Hodges, P. Bonville, A. Forget, M. Rams, K. Królas, and G. Dhalenne, “The crystal field and exchange interactions in Yb2Ti2O7,” J. Phys. Condens. Matter 13(41), 9301–9310 (2001).
[Crossref]

Fu, J.

J. Fu, X. Zhang, Z. Chao, Z. Li, J. Liao, D. Hou, H. Wen, X. Lu, and X. Xie, “Enhanced upconversion luminescence of NaYF4:Yb,Er microprisms via La3+ doping,” Opt. Laser Technol. 88, 280–286 (2017).
[Crossref]

Fu, Y.

X. Yin, H. Wang, M. Xing, Y. Fu, Y. Tian, X. Shen, W. Yu, and X. Luo, “Upconversion luminescence of Y2Ti2O7:Er3+ under 1550 and 980 nm excitation,” J. Rare Earths 35(3), 230–234 (2017).
[Crossref]

Gao, H. P.

Z. Y. Huang, M. J. Yi, H. P. Gao, Z. L. Zhang, and Y. L. Mao, “Enhancing single red band upconversion luminescence of KMnF3:Yb3+/Er3+ nanocrystals by Mg2+ doping,” J. Alloys Compd. 694, 241–245 (2017).
[Crossref]

Gnanasammandhan, M. K.

P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q. H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4(16), 5132–5137 (2012).
[Crossref] [PubMed]

Gouveia-Neto, A. S.

A. S. Gouveia-Neto, L. A. Bueno, A. C. M. Afonso, J. F. Nascimento, E. B. Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Upconversion luminescence in Ho3+/Yb3+- and Tb3+/Yb3+-codoped fluorogermanate glass and glass ceramic,” J. Non-Cryst. Solids 354(2–9), 509–514 (2008).
[Crossref]

Grzyb, T.

J. Reszczyńska, T. Grzyb, Z. Wei, M. Klein, E. Kowalska, B. Ohtani, and A. Zaleska-Medynska, “Photocatalytic activity and luminescence properties of RE3+–TiO2 nanocrystals prepared by sol–gel and hydrothermal methods,” Appl. Catal. B 181, 825–837 (2016).
[Crossref]

Guan, Z.

P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q. H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4(16), 5132–5137 (2012).
[Crossref] [PubMed]

Gunaseelan, M.

M. Gunaseelan, S. Yamini, G. A. Kumar, and J. Senthilselvan, “Highly efficient upconversion luminescence in hexagonal NaYF4:Yb3+, Er3+ nanocrystals synthesized by a novel reverse microemulsion method,” Opt. Mater. 75, 174–186 (2018).
[Crossref]

Guo, J. F.

J. S. Liao, Q. Wang, L. F. Lan, J. F. Guo, L. L. Nie, S. J. Liu, and H. R. Wen, “Microwave hydrothermal synthesis and temperature sensing behavior of Lu2Ti2O7:Yb3+/Er3+ nanophosphors,” Curr. Appl. Phys. 17(3), 427–432 (2017).
[Crossref]

Guo, X.

X. Chuai, X. Guo, X. Liu, G. He, K. Zheng, C. He, and W. Qin, “Bifunctional NaGdF4:Yb, Er, Fe nanocrystals with the enhanced upconversion fluorescence,” Opt. Mater. 44, 13–17 (2015).
[Crossref]

Han, Y.

M. V. DaCosta, S. Doughan, Y. Han, and U. J. Krull, “Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: a review,” Anal. Chim. Acta 832, 1–33 (2014).
[Crossref] [PubMed]

Hao, J.

J. Hao, Y. Zhang, and X. Wei, “Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films,” Angew. Chem. Int. Ed. Engl. 50(30), 6876–6880 (2011).
[Crossref] [PubMed]

He, A. Q.

X. Y. Huang, L. Jiang, X. X. Li, and A. Q. He, “Manipulating upconversion emission of cubic BaGdF5:Ce3+/Er3+/Yb3+ nanocrystals through controlling Ce3+ doping,” J. Alloys Compd. 721, 374–382 (2017).
[Crossref]

He, C.

X. Chuai, X. Guo, X. Liu, G. He, K. Zheng, C. He, and W. Qin, “Bifunctional NaGdF4:Yb, Er, Fe nanocrystals with the enhanced upconversion fluorescence,” Opt. Mater. 44, 13–17 (2015).
[Crossref]

He, G.

X. Chuai, X. Guo, X. Liu, G. He, K. Zheng, C. He, and W. Qin, “Bifunctional NaGdF4:Yb, Er, Fe nanocrystals with the enhanced upconversion fluorescence,” Opt. Mater. 44, 13–17 (2015).
[Crossref]

He, J. L.

L. Li, Y. L. Yang, M. Zhou, R. Q. Fan, L. L. Qiu, X. Wang, L. Y. Zhang, X. S. Zhou, and J. L. He, “Enhanced performance of dye-sensitized solar cells based on TiO2 with NIR-absorption and visible upconversion luminescence,” J. Solid State Chem. 198, 459–465 (2013).
[Crossref]

Hodges, J. A.

J. A. Hodges, P. Bonville, A. Forget, M. Rams, K. Królas, and G. Dhalenne, “The crystal field and exchange interactions in Yb2Ti2O7,” J. Phys. Condens. Matter 13(41), 9301–9310 (2001).
[Crossref]

Hou, D.

J. Fu, X. Zhang, Z. Chao, Z. Li, J. Liao, D. Hou, H. Wen, X. Lu, and X. Xie, “Enhanced upconversion luminescence of NaYF4:Yb,Er microprisms via La3+ doping,” Opt. Laser Technol. 88, 280–286 (2017).
[Crossref]

Hsieh, W. F.

S. Y. Chen, C. C. Ting, and W. F. Hsieh, “Comparison of visible fluorescence properties between sol–gel derived Er3+–Yb3+ and Er3+–Y3+ co-doped TiO2 films,” Thin Solid Films 434(1–2), 171–177 (2003).
[Crossref]

Hu, F.

J. Cai, X. Wei, F. Hu, Z. Cao, L. Zhao, Y. Chen, C. Duan, and M. Yin, “Up-conversion luminescence and optical thermometry properties of transparent glass ceramics containing CaF2:Yb3+/Er3+ nanocrystals,” Ceram. Int. 42(12), 13990–13995 (2016).
[Crossref]

Hu, X. Y.

Y. H. Hu, X. H. Liang, Y. B. Wang, E. Z. Liu, X. Y. Hu, and J. Fan, “Enhancement of the red upconversion luminescence in NaYF4:Yb3+, Er3+ nanoparticles by the transition metal ions doping,” Ceram. Int. 41(10), 14545–14553 (2015).
[Crossref]

Hu, Y. H.

Y. H. Hu, X. H. Liang, Y. B. Wang, E. Z. Liu, X. Y. Hu, and J. Fan, “Enhancement of the red upconversion luminescence in NaYF4:Yb3+, Er3+ nanoparticles by the transition metal ions doping,” Ceram. Int. 41(10), 14545–14553 (2015).
[Crossref]

Huang, X. Y.

X. Y. Huang, L. Jiang, X. X. Li, and A. Q. He, “Manipulating upconversion emission of cubic BaGdF5:Ce3+/Er3+/Yb3+ nanocrystals through controlling Ce3+ doping,” J. Alloys Compd. 721, 374–382 (2017).
[Crossref]

Huang, Z. Y.

Z. Y. Huang, M. J. Yi, H. P. Gao, Z. L. Zhang, and Y. L. Mao, “Enhancing single red band upconversion luminescence of KMnF3:Yb3+/Er3+ nanocrystals by Mg2+ doping,” J. Alloys Compd. 694, 241–245 (2017).
[Crossref]

Hunsicker, R. A.

B. Erdem, R. A. Hunsicker, G. W. Simmons, E. D. Sudol, V. L. Dimonie, and M. S. El-Aasser, “XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation,” Langmuir 17(9), 2664–2669 (2001).
[Crossref]

Ježek, P.

V. Bartůněk, J. Rak, B. Pelánková, J. Junková, M. Mezlíková, V. Král, M. Kuchař, H. Engstová, P. Ježek, and R. Šmucler, “Large scale preparation of up- converting YF3:YbEr nanocrystals with various sizes by solvothermal syntheses using ionic liquid bmimCl,” J. Fluor. Chem. 188, 14–17 (2016).
[Crossref]

Jhou, C. H.

W. H. Weng, C. H. Jhou, H. X. Xie, and T. M. Pan, “Label-Free Detection of AR-V7 mRNA in Prostate Cancer Using Yb2Ti2O7 –based electrolyte-insulator-semiconductor biosensors,” J. Electrochem. Soc. 163(14), B710–B717 (2016).
[Crossref]

Ji, Y.

Y. Wu, S. Lin, J. Liu, Y. Ji, J. Xu, L. Xu, and K. Chen, “Efficient up-conversion red emission from TiO2:Yb,Er nanocrystals,” Opt. Express 25(19), 22648–22657 (2017).
[Crossref] [PubMed]

Y. Wu, Y. Ji, J. Xu, J. Liu, Z. Lin, Y. Zhao, Y. Sun, L. Xu, and K. Chen, “Crystalline phase and morphology controlling to enhance the up-conversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

Jia, T. Q.

Y. H. Yao, C. Xu, Y. Zheng, C. S. Yang, P. Liu, J. X. Ding, T. Q. Jia, J. R. Qiu, S. A. Zhang, and Z. R. Sun, “Improving upconversion luminescence efficiency in Er3+-doped NaYF4 nanocrystals by two-color laser field,” J. Mater. Sci. 51(11), 5460–5468 (2016).
[Crossref]

Jiang, L.

X. Y. Huang, L. Jiang, X. X. Li, and A. Q. He, “Manipulating upconversion emission of cubic BaGdF5:Ce3+/Er3+/Yb3+ nanocrystals through controlling Ce3+ doping,” J. Alloys Compd. 721, 374–382 (2017).
[Crossref]

Junková, J.

V. Bartůněk, J. Rak, B. Pelánková, J. Junková, M. Mezlíková, V. Král, M. Kuchař, H. Engstová, P. Ježek, and R. Šmucler, “Large scale preparation of up- converting YF3:YbEr nanocrystals with various sizes by solvothermal syntheses using ionic liquid bmimCl,” J. Fluor. Chem. 188, 14–17 (2016).
[Crossref]

Kamimura, M.

M. Kamimura, A. Omoto, H.-C. Chiu, and K. Soga, “Enhanced red upconversion emission of NaYF4:Yb3+, Er3+, Mn2+ nanoparticles for near-infrared-induced photodynamic therapy and fluorescence imaging,” Chem. Lett. 46(8), 1076–1078 (2017).
[Crossref]

Kim, J.

P. Ramasamy, P. Manivasakan, and J. Kim, “Upconversion nanophosphors for solar cell applications,” RSC Advances 4(66), 34873–34895 (2014).
[Crossref]

Klein, M.

J. Reszczyńska, T. Grzyb, Z. Wei, M. Klein, E. Kowalska, B. Ohtani, and A. Zaleska-Medynska, “Photocatalytic activity and luminescence properties of RE3+–TiO2 nanocrystals prepared by sol–gel and hydrothermal methods,” Appl. Catal. B 181, 825–837 (2016).
[Crossref]

Kobwittaya, K.

K. Kobwittaya, Y. Oishi, T. Torikai, M. Yada, T. Watari, and H. N. Luitel, “Bright red upconversion luminescence from Er3+ and Yb3+ co-doped ZnO-TiO2 composite phosphor powder,” Ceram. Int. 43(16), 13505–13515 (2017).
[Crossref]

Kong, X.

J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled Synthesis, Formation Mechanism, and Great Enhancement of Red Upconversion Luminescence of NaYF4:Yb3+, Er3+ Nanocrystals/Submicroplates at Low Doping Level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
[Crossref] [PubMed]

Kong, X. G.

Q. K. Shang, H. Yu, X. G. Kong, H. D. Wang, X. Wang, Y. J. Sun, Y. L. Zhang, and Q. H. Zeng, “Green and red up-conversion emissions of Er3+–Yb3+ Co-doped TiO2 nanocrystals prepared by sol–gel method,” J. Lumin. 128(7), 1211–1216 (2008).
[Crossref]

J. Zhang, X. Wang, W. T. Zheng, X. G. Kong, Y. J. Sun, and X. Wang, “Structure and luminescence properties of TiO2:Er3+ nanocrystals annealed at different temperatures,” Mater. Lett. 61(8–9), 1658–1661 (2007).
[Crossref]

Kowalska, E.

J. Reszczyńska, T. Grzyb, Z. Wei, M. Klein, E. Kowalska, B. Ohtani, and A. Zaleska-Medynska, “Photocatalytic activity and luminescence properties of RE3+–TiO2 nanocrystals prepared by sol–gel and hydrothermal methods,” Appl. Catal. B 181, 825–837 (2016).
[Crossref]

Král, V.

V. Bartůněk, J. Rak, B. Pelánková, J. Junková, M. Mezlíková, V. Král, M. Kuchař, H. Engstová, P. Ježek, and R. Šmucler, “Large scale preparation of up- converting YF3:YbEr nanocrystals with various sizes by solvothermal syntheses using ionic liquid bmimCl,” J. Fluor. Chem. 188, 14–17 (2016).
[Crossref]

Królas, K.

J. A. Hodges, P. Bonville, A. Forget, M. Rams, K. Królas, and G. Dhalenne, “The crystal field and exchange interactions in Yb2Ti2O7,” J. Phys. Condens. Matter 13(41), 9301–9310 (2001).
[Crossref]

Krull, U. J.

M. V. DaCosta, S. Doughan, Y. Han, and U. J. Krull, “Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: a review,” Anal. Chim. Acta 832, 1–33 (2014).
[Crossref] [PubMed]

Kuchar, M.

V. Bartůněk, J. Rak, B. Pelánková, J. Junková, M. Mezlíková, V. Král, M. Kuchař, H. Engstová, P. Ježek, and R. Šmucler, “Large scale preparation of up- converting YF3:YbEr nanocrystals with various sizes by solvothermal syntheses using ionic liquid bmimCl,” J. Fluor. Chem. 188, 14–17 (2016).
[Crossref]

Kumar, G. A.

M. Gunaseelan, S. Yamini, G. A. Kumar, and J. Senthilselvan, “Highly efficient upconversion luminescence in hexagonal NaYF4:Yb3+, Er3+ nanocrystals synthesized by a novel reverse microemulsion method,” Opt. Mater. 75, 174–186 (2018).
[Crossref]

Lan, L. F.

J. S. Liao, Q. Wang, L. F. Lan, J. F. Guo, L. L. Nie, S. J. Liu, and H. R. Wen, “Microwave hydrothermal synthesis and temperature sensing behavior of Lu2Ti2O7:Yb3+/Er3+ nanophosphors,” Curr. Appl. Phys. 17(3), 427–432 (2017).
[Crossref]

Lee, H. Y.

C. C. Ting, S. Y. Chen, and H. Y. Lee, “Physical characteristics and infrared fluorescence properties of sol–gel derived Er3+–Yb3+ codoped TiO2,” J. Appl. Phys. 94(3), 2102–2109 (2003).
[Crossref]

Lee, Y. H.

P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q. H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4(16), 5132–5137 (2012).
[Crossref] [PubMed]

Li, D.

Y. Liu, D. Li, Q. L. Ma, W. S. Yu, X. Xi, X. T. Dong, J. X. Wang, and G. X. Liu, “Fabrication of novel Ba4Y3F17:Er3+ nanofibers with upconversion fluorescence via combination of electrospinning with fluorination,” J. Mater. Sci. Mater. Electron. 27(11), 11666–11673 (2016).
[Crossref]

Li, G. Q.

W. L. Wang, Q. K. Shang, W. Zheng, H. Yu, X. J. Feng, Z. D. Wang, Y. B. Zhang, and G. Q. Li, “A novel near-infrared antibacterial material depending on the upconverting property of Er3+-Yb3+-Fe3+ tridoped TiO2 nanopowder,” J. Phys. Chem. C 114(32), 13663–13669 (2010).
[Crossref]

Li, H.

H. Li, L. Xu, and G. Chen, “Controlled synthesis of monodisperse hexagonal NaYF4:Yb/Er nanocrystals with ultrasmall size and enhanced upconversion luminescence,” Molecules 22(12), 2113 (2017).
[Crossref]

Li, J.

J. Li, Q. Zhao, F. Shi, C. Liu, and Y. Tang, “NIR-Mediated Nanohybrids of Upconversion Nanophosphors and Fluorescent Conjugated Polymers for High-Efficiency Antibacterial Performance Based on Fluorescence Resonance Energy Transfer,” Adv. Healthc. Mater. 5(23), 2967–2971 (2016).
[Crossref] [PubMed]

Li, L.

L. Li, Y. L. Yang, M. Zhou, R. Q. Fan, L. L. Qiu, X. Wang, L. Y. Zhang, X. S. Zhou, and J. L. He, “Enhanced performance of dye-sensitized solar cells based on TiO2 with NIR-absorption and visible upconversion luminescence,” J. Solid State Chem. 198, 459–465 (2013).
[Crossref]

Li, X. X.

X. Y. Huang, L. Jiang, X. X. Li, and A. Q. He, “Manipulating upconversion emission of cubic BaGdF5:Ce3+/Er3+/Yb3+ nanocrystals through controlling Ce3+ doping,” J. Alloys Compd. 721, 374–382 (2017).
[Crossref]

Li, Z.

J. Fu, X. Zhang, Z. Chao, Z. Li, J. Liao, D. Hou, H. Wen, X. Lu, and X. Xie, “Enhanced upconversion luminescence of NaYF4:Yb,Er microprisms via La3+ doping,” Opt. Laser Technol. 88, 280–286 (2017).
[Crossref]

H. B. Wang, W. Lu, Z. G. Yi, L. Rao, S. J. Zeng, and Z. Li, “Enhanced upconversion luminescence and single-band red emission of NaErF4 nanocrystals via Mn2+ doping,” J. Alloys Compd. 618, 776–780 (2015).
[Crossref]

Liang, H.

H. Liang, G. Chen, H. Liu, and Z. Zhang, “Ultraviolet upconversion luminescence enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals induced by tridoping with Li+ ions,” J. Lumin. 129(3), 197–202 (2009).
[Crossref]

Liang, X. H.

Y. H. Hu, X. H. Liang, Y. B. Wang, E. Z. Liu, X. Y. Hu, and J. Fan, “Enhancement of the red upconversion luminescence in NaYF4:Yb3+, Er3+ nanoparticles by the transition metal ions doping,” Ceram. Int. 41(10), 14545–14553 (2015).
[Crossref]

Liao, J.

J. Fu, X. Zhang, Z. Chao, Z. Li, J. Liao, D. Hou, H. Wen, X. Lu, and X. Xie, “Enhanced upconversion luminescence of NaYF4:Yb,Er microprisms via La3+ doping,” Opt. Laser Technol. 88, 280–286 (2017).
[Crossref]

Liao, J. S.

J. S. Liao, Q. Wang, L. F. Lan, J. F. Guo, L. L. Nie, S. J. Liu, and H. R. Wen, “Microwave hydrothermal synthesis and temperature sensing behavior of Lu2Ti2O7:Yb3+/Er3+ nanophosphors,” Curr. Appl. Phys. 17(3), 427–432 (2017).
[Crossref]

Lin, S.

Y. Wu, S. Lin, J. Liu, Y. Ji, J. Xu, L. Xu, and K. Chen, “Efficient up-conversion red emission from TiO2:Yb,Er nanocrystals,” Opt. Express 25(19), 22648–22657 (2017).
[Crossref] [PubMed]

Y. Wu, S. Lin, W. Shao, X. Zhang, J. Xu, L. Yu, and K. Chen, “Enhanced up-conversion luminescence from NaYF4:Yb,Er nanocrystals by Gd3+ ions induced phase transformation and plasmonic Au nanosphere arrays,” RSC Advances 6(105), 102869 (2016).
[Crossref] [PubMed]

X. Zhang, S. Lin, T. Lin, P. Zhang, J. Xu, L. Xu, and K. Chen, “Improved sensitization efficiency in Er3+ ions and SnO2 nanocrystals co-doped silica thin films,” Phys. Chem. Chem. Phys. 17(18), 11974–11980 (2015).
[Crossref] [PubMed]

X. Zhang, T. Lin, P. Zhang, J. Xu, S. Lin, L. Xu, and K. Chen, “Highly efficient near-infrared emission in Er3+ doped silica films containing size-tunable SnO2 nanocrystals,” Opt. Express 22(1), 369–376 (2014).
[Crossref] [PubMed]

Lin, T.

X. Zhang, S. Lin, T. Lin, P. Zhang, J. Xu, L. Xu, and K. Chen, “Improved sensitization efficiency in Er3+ ions and SnO2 nanocrystals co-doped silica thin films,” Phys. Chem. Chem. Phys. 17(18), 11974–11980 (2015).
[Crossref] [PubMed]

X. Zhang, T. Lin, P. Zhang, J. Xu, S. Lin, L. Xu, and K. Chen, “Highly efficient near-infrared emission in Er3+ doped silica films containing size-tunable SnO2 nanocrystals,” Opt. Express 22(1), 369–376 (2014).
[Crossref] [PubMed]

Lin, Z.

Y. Wu, Y. Ji, J. Xu, J. Liu, Z. Lin, Y. Zhao, Y. Sun, L. Xu, and K. Chen, “Crystalline phase and morphology controlling to enhance the up-conversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

Liu, B.

C. C. Wang, D. G. Yin, K. L. Song, J. Ouyang, and B. Liu, “Preparation of bi-functional NaGdF4-based upconversion nanocrystals and fine-tuning of emission colors of the nanocrystals by doping with Mn2+,” Vacuum 107, 311–315 (2014).
[Crossref]

Liu, C.

J. Li, Q. Zhao, F. Shi, C. Liu, and Y. Tang, “NIR-Mediated Nanohybrids of Upconversion Nanophosphors and Fluorescent Conjugated Polymers for High-Efficiency Antibacterial Performance Based on Fluorescence Resonance Energy Transfer,” Adv. Healthc. Mater. 5(23), 2967–2971 (2016).
[Crossref] [PubMed]

Liu, E. Z.

Y. H. Hu, X. H. Liang, Y. B. Wang, E. Z. Liu, X. Y. Hu, and J. Fan, “Enhancement of the red upconversion luminescence in NaYF4:Yb3+, Er3+ nanoparticles by the transition metal ions doping,” Ceram. Int. 41(10), 14545–14553 (2015).
[Crossref]

Liu, G. X.

Y. Liu, D. Li, Q. L. Ma, W. S. Yu, X. Xi, X. T. Dong, J. X. Wang, and G. X. Liu, “Fabrication of novel Ba4Y3F17:Er3+ nanofibers with upconversion fluorescence via combination of electrospinning with fluorination,” J. Mater. Sci. Mater. Electron. 27(11), 11666–11673 (2016).
[Crossref]

Liu, H.

X. Zhang, D. Xu, G. Zhou, X. Wang, H. Liu, Z. Yu, G. Zhang, and L. Zhu, “Color tunable up-conversion emission from ZrO2:Er3+,Yb3+ textile fibers,” RSC Advances 6(106), 103973 (2016).
[Crossref]

H. Liang, G. Chen, H. Liu, and Z. Zhang, “Ultraviolet upconversion luminescence enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals induced by tridoping with Li+ ions,” J. Lumin. 129(3), 197–202 (2009).
[Crossref]

Liu, J.

Y. Wu, S. Lin, J. Liu, Y. Ji, J. Xu, L. Xu, and K. Chen, “Efficient up-conversion red emission from TiO2:Yb,Er nanocrystals,” Opt. Express 25(19), 22648–22657 (2017).
[Crossref] [PubMed]

Y. Wu, Y. Ji, J. Xu, J. Liu, Z. Lin, Y. Zhao, Y. Sun, L. Xu, and K. Chen, “Crystalline phase and morphology controlling to enhance the up-conversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

Liu, P.

Y. H. Yao, C. Xu, Y. Zheng, C. S. Yang, P. Liu, J. X. Ding, T. Q. Jia, J. R. Qiu, S. A. Zhang, and Z. R. Sun, “Improving upconversion luminescence efficiency in Er3+-doped NaYF4 nanocrystals by two-color laser field,” J. Mater. Sci. 51(11), 5460–5468 (2016).
[Crossref]

Liu, S. J.

J. S. Liao, Q. Wang, L. F. Lan, J. F. Guo, L. L. Nie, S. J. Liu, and H. R. Wen, “Microwave hydrothermal synthesis and temperature sensing behavior of Lu2Ti2O7:Yb3+/Er3+ nanophosphors,” Curr. Appl. Phys. 17(3), 427–432 (2017).
[Crossref]

Liu, X.

X. Liu, J. Qiu, X. Xu, and D. Zhou, “Effect of Ce3+ Concentration on the Luminescence Properties of Ce3+/Er3+Nb3+ tri-doped NaYF4 nanocrystals,” J. Nanosci. Nanotechnol. 16(4), 3749–3753 (2016).
[Crossref] [PubMed]

X. Chuai, X. Guo, X. Liu, G. He, K. Zheng, C. He, and W. Qin, “Bifunctional NaGdF4:Yb, Er, Fe nanocrystals with the enhanced upconversion fluorescence,” Opt. Mater. 44, 13–17 (2015).
[Crossref]

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[Crossref] [PubMed]

F. Wang and X. Liu, “Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles,” J. Am. Chem. Soc. 130(17), 5642–5643 (2008).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, D. Li, Q. L. Ma, W. S. Yu, X. Xi, X. T. Dong, J. X. Wang, and G. X. Liu, “Fabrication of novel Ba4Y3F17:Er3+ nanofibers with upconversion fluorescence via combination of electrospinning with fluorination,” J. Mater. Sci. Mater. Electron. 27(11), 11666–11673 (2016).
[Crossref]

Lu, W.

H. B. Wang, W. Lu, Z. G. Yi, L. Rao, S. J. Zeng, and Z. Li, “Enhanced upconversion luminescence and single-band red emission of NaErF4 nanocrystals via Mn2+ doping,” J. Alloys Compd. 618, 776–780 (2015).
[Crossref]

Lu, X.

J. Fu, X. Zhang, Z. Chao, Z. Li, J. Liao, D. Hou, H. Wen, X. Lu, and X. Xie, “Enhanced upconversion luminescence of NaYF4:Yb,Er microprisms via La3+ doping,” Opt. Laser Technol. 88, 280–286 (2017).
[Crossref]

Lu, Y. L.

Y. L. Lu, Y. Q. Lu, H. Fang, and N. B. Ming, “Upconversion of 1.064 μm Nd:YAG laser pulses into intense visible light in erbium-doped phosphate fibers,” Opt. Commun. 115(1), 110–114 (1995).
[Crossref]

Lu, Y. Q.

Y. L. Lu, Y. Q. Lu, H. Fang, and N. B. Ming, “Upconversion of 1.064 μm Nd:YAG laser pulses into intense visible light in erbium-doped phosphate fibers,” Opt. Commun. 115(1), 110–114 (1995).
[Crossref]

Luitel, H. N.

K. Kobwittaya, Y. Oishi, T. Torikai, M. Yada, T. Watari, and H. N. Luitel, “Bright red upconversion luminescence from Er3+ and Yb3+ co-doped ZnO-TiO2 composite phosphor powder,” Ceram. Int. 43(16), 13505–13515 (2017).
[Crossref]

Luo, X.

X. Yin, H. Wang, M. Xing, Y. Fu, Y. Tian, X. Shen, W. Yu, and X. Luo, “Upconversion luminescence of Y2Ti2O7:Er3+ under 1550 and 980 nm excitation,” J. Rare Earths 35(3), 230–234 (2017).
[Crossref]

Ma, Q. L.

Y. Liu, D. Li, Q. L. Ma, W. S. Yu, X. Xi, X. T. Dong, J. X. Wang, and G. X. Liu, “Fabrication of novel Ba4Y3F17:Er3+ nanofibers with upconversion fluorescence via combination of electrospinning with fluorination,” J. Mater. Sci. Mater. Electron. 27(11), 11666–11673 (2016).
[Crossref]

Malaplate, J.

V. Badjeck, M. G. Walls, L. Chaffron, J. Malaplate, and K. March, “New insights into the chemical structure of Y2Ti2O7−δ nanoparticles in oxide dispersion-strengthened steels designed for sodium fast reactors by electron energy-loss spectroscopy,” J. Nucl. Mater. 456, 292–301 (2015).
[Crossref]

Manivasakan, P.

P. Ramasamy, P. Manivasakan, and J. Kim, “Upconversion nanophosphors for solar cell applications,” RSC Advances 4(66), 34873–34895 (2014).
[Crossref]

Mao, X. G.

X. G. Mao, B. X. Yan, J. Wang, and J. Shen, “Up-conversion fluorescence characteristics and mechanism of Er3+-doped TiO2 thin films,” Vacuum 102, 38–42 (2014).
[Crossref]

Mao, Y. L.

Z. Y. Huang, M. J. Yi, H. P. Gao, Z. L. Zhang, and Y. L. Mao, “Enhancing single red band upconversion luminescence of KMnF3:Yb3+/Er3+ nanocrystals by Mg2+ doping,” J. Alloys Compd. 694, 241–245 (2017).
[Crossref]

March, K.

V. Badjeck, M. G. Walls, L. Chaffron, J. Malaplate, and K. March, “New insights into the chemical structure of Y2Ti2O7−δ nanoparticles in oxide dispersion-strengthened steels designed for sodium fast reactors by electron energy-loss spectroscopy,” J. Nucl. Mater. 456, 292–301 (2015).
[Crossref]

Messaddeq, Y.

A. S. Gouveia-Neto, L. A. Bueno, A. C. M. Afonso, J. F. Nascimento, E. B. Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Upconversion luminescence in Ho3+/Yb3+- and Tb3+/Yb3+-codoped fluorogermanate glass and glass ceramic,” J. Non-Cryst. Solids 354(2–9), 509–514 (2008).
[Crossref]

Mezlíková, M.

V. Bartůněk, J. Rak, B. Pelánková, J. Junková, M. Mezlíková, V. Král, M. Kuchař, H. Engstová, P. Ježek, and R. Šmucler, “Large scale preparation of up- converting YF3:YbEr nanocrystals with various sizes by solvothermal syntheses using ionic liquid bmimCl,” J. Fluor. Chem. 188, 14–17 (2016).
[Crossref]

Ming, N. B.

Y. L. Lu, Y. Q. Lu, H. Fang, and N. B. Ming, “Upconversion of 1.064 μm Nd:YAG laser pulses into intense visible light in erbium-doped phosphate fibers,” Opt. Commun. 115(1), 110–114 (1995).
[Crossref]

Moreno, R.

I. Camps, M. Borlaf, J. Toudert, A. de Andrés, M. T. Colomer, R. Moreno, and R. Serna, “Evidencing early pyrochlore formation in rare-earth doped TiO2 nanocrystals: Structure sensing via VIS and NIR Er3+ light emission,” J. Alloys Compd. 735, 2267–2274 (2018).
[Crossref]

Nascimento, J. F.

A. S. Gouveia-Neto, L. A. Bueno, A. C. M. Afonso, J. F. Nascimento, E. B. Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Upconversion luminescence in Ho3+/Yb3+- and Tb3+/Yb3+-codoped fluorogermanate glass and glass ceramic,” J. Non-Cryst. Solids 354(2–9), 509–514 (2008).
[Crossref]

Nie, L. L.

J. S. Liao, Q. Wang, L. F. Lan, J. F. Guo, L. L. Nie, S. J. Liu, and H. R. Wen, “Microwave hydrothermal synthesis and temperature sensing behavior of Lu2Ti2O7:Yb3+/Er3+ nanophosphors,” Curr. Appl. Phys. 17(3), 427–432 (2017).
[Crossref]

Ohtani, B.

J. Reszczyńska, T. Grzyb, Z. Wei, M. Klein, E. Kowalska, B. Ohtani, and A. Zaleska-Medynska, “Photocatalytic activity and luminescence properties of RE3+–TiO2 nanocrystals prepared by sol–gel and hydrothermal methods,” Appl. Catal. B 181, 825–837 (2016).
[Crossref]

Oishi, Y.

K. Kobwittaya, Y. Oishi, T. Torikai, M. Yada, T. Watari, and H. N. Luitel, “Bright red upconversion luminescence from Er3+ and Yb3+ co-doped ZnO-TiO2 composite phosphor powder,” Ceram. Int. 43(16), 13505–13515 (2017).
[Crossref]

Omoto, A.

M. Kamimura, A. Omoto, H.-C. Chiu, and K. Soga, “Enhanced red upconversion emission of NaYF4:Yb3+, Er3+, Mn2+ nanoparticles for near-infrared-induced photodynamic therapy and fluorescence imaging,” Chem. Lett. 46(8), 1076–1078 (2017).
[Crossref]

Ouyang, J.

C. C. Wang, D. G. Yin, K. L. Song, J. Ouyang, and B. Liu, “Preparation of bi-functional NaGdF4-based upconversion nanocrystals and fine-tuning of emission colors of the nanocrystals by doping with Mn2+,” Vacuum 107, 311–315 (2014).
[Crossref]

Pan, T. M.

W. H. Weng, C. H. Jhou, H. X. Xie, and T. M. Pan, “Label-Free Detection of AR-V7 mRNA in Prostate Cancer Using Yb2Ti2O7 –based electrolyte-insulator-semiconductor biosensors,” J. Electrochem. Soc. 163(14), B710–B717 (2016).
[Crossref]

Pelánková, B.

V. Bartůněk, J. Rak, B. Pelánková, J. Junková, M. Mezlíková, V. Král, M. Kuchař, H. Engstová, P. Ježek, and R. Šmucler, “Large scale preparation of up- converting YF3:YbEr nanocrystals with various sizes by solvothermal syntheses using ionic liquid bmimCl,” J. Fluor. Chem. 188, 14–17 (2016).
[Crossref]

Prakash, R.

P. Singh, P. K. Shahi, S. K. Singh, A. K. Singh, M. K. Singh, R. Prakash, and S. B. Rai, “Lanthanide doped ultrafine hybrid nanostructures: multicolour luminescence, upconversion based energy transfer and luminescent solar collector applications,” Nanoscale 9(2), 696–705 (2017).
[Crossref] [PubMed]

Qin, W.

X. Chuai, X. Guo, X. Liu, G. He, K. Zheng, C. He, and W. Qin, “Bifunctional NaGdF4:Yb, Er, Fe nanocrystals with the enhanced upconversion fluorescence,” Opt. Mater. 44, 13–17 (2015).
[Crossref]

Qiu, J.

X. Liu, J. Qiu, X. Xu, and D. Zhou, “Effect of Ce3+ Concentration on the Luminescence Properties of Ce3+/Er3+Nb3+ tri-doped NaYF4 nanocrystals,” J. Nanosci. Nanotechnol. 16(4), 3749–3753 (2016).
[Crossref] [PubMed]

Qiu, J. R.

Y. H. Yao, C. Xu, Y. Zheng, C. S. Yang, P. Liu, J. X. Ding, T. Q. Jia, J. R. Qiu, S. A. Zhang, and Z. R. Sun, “Improving upconversion luminescence efficiency in Er3+-doped NaYF4 nanocrystals by two-color laser field,” J. Mater. Sci. 51(11), 5460–5468 (2016).
[Crossref]

Qiu, L. L.

L. Li, Y. L. Yang, M. Zhou, R. Q. Fan, L. L. Qiu, X. Wang, L. Y. Zhang, X. S. Zhou, and J. L. He, “Enhanced performance of dye-sensitized solar cells based on TiO2 with NIR-absorption and visible upconversion luminescence,” J. Solid State Chem. 198, 459–465 (2013).
[Crossref]

Rai, S. B.

P. Singh, P. K. Shahi, S. K. Singh, A. K. Singh, M. K. Singh, R. Prakash, and S. B. Rai, “Lanthanide doped ultrafine hybrid nanostructures: multicolour luminescence, upconversion based energy transfer and luminescent solar collector applications,” Nanoscale 9(2), 696–705 (2017).
[Crossref] [PubMed]

Rak, J.

V. Bartůněk, J. Rak, B. Pelánková, J. Junková, M. Mezlíková, V. Král, M. Kuchař, H. Engstová, P. Ježek, and R. Šmucler, “Large scale preparation of up- converting YF3:YbEr nanocrystals with various sizes by solvothermal syntheses using ionic liquid bmimCl,” J. Fluor. Chem. 188, 14–17 (2016).
[Crossref]

Ramasamy, P.

P. Ramasamy, P. Manivasakan, and J. Kim, “Upconversion nanophosphors for solar cell applications,” RSC Advances 4(66), 34873–34895 (2014).
[Crossref]

Rams, M.

J. A. Hodges, P. Bonville, A. Forget, M. Rams, K. Królas, and G. Dhalenne, “The crystal field and exchange interactions in Yb2Ti2O7,” J. Phys. Condens. Matter 13(41), 9301–9310 (2001).
[Crossref]

Rao, L.

H. B. Wang, W. Lu, Z. G. Yi, L. Rao, S. J. Zeng, and Z. Li, “Enhanced upconversion luminescence and single-band red emission of NaErF4 nanocrystals via Mn2+ doping,” J. Alloys Compd. 618, 776–780 (2015).
[Crossref]

Reszczynska, J.

J. Reszczyńska, T. Grzyb, Z. Wei, M. Klein, E. Kowalska, B. Ohtani, and A. Zaleska-Medynska, “Photocatalytic activity and luminescence properties of RE3+–TiO2 nanocrystals prepared by sol–gel and hydrothermal methods,” Appl. Catal. B 181, 825–837 (2016).
[Crossref]

Ribeiro, S. J. L.

A. S. Gouveia-Neto, L. A. Bueno, A. C. M. Afonso, J. F. Nascimento, E. B. Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Upconversion luminescence in Ho3+/Yb3+- and Tb3+/Yb3+-codoped fluorogermanate glass and glass ceramic,” J. Non-Cryst. Solids 354(2–9), 509–514 (2008).
[Crossref]

Salhi, R.

R. Salhi and J. L. Deschanvres, “Efficient green and red up-conversion emissions in Er/Yb co-doped TiO2 nanopowders prepared by hydrothermal-assisted sol–gel process,” J. Lumin. 176, 250–259 (2016).
[Crossref]

Senthilselvan, J.

M. Gunaseelan, S. Yamini, G. A. Kumar, and J. Senthilselvan, “Highly efficient upconversion luminescence in hexagonal NaYF4:Yb3+, Er3+ nanocrystals synthesized by a novel reverse microemulsion method,” Opt. Mater. 75, 174–186 (2018).
[Crossref]

Serna, R.

I. Camps, M. Borlaf, J. Toudert, A. de Andrés, M. T. Colomer, R. Moreno, and R. Serna, “Evidencing early pyrochlore formation in rare-earth doped TiO2 nanocrystals: Structure sensing via VIS and NIR Er3+ light emission,” J. Alloys Compd. 735, 2267–2274 (2018).
[Crossref]

Shahi, P. K.

P. Singh, P. K. Shahi, S. K. Singh, A. K. Singh, M. K. Singh, R. Prakash, and S. B. Rai, “Lanthanide doped ultrafine hybrid nanostructures: multicolour luminescence, upconversion based energy transfer and luminescent solar collector applications,” Nanoscale 9(2), 696–705 (2017).
[Crossref] [PubMed]

Shang, Q. K.

W. L. Wang, Q. K. Shang, W. Zheng, H. Yu, X. J. Feng, Z. D. Wang, Y. B. Zhang, and G. Q. Li, “A novel near-infrared antibacterial material depending on the upconverting property of Er3+-Yb3+-Fe3+ tridoped TiO2 nanopowder,” J. Phys. Chem. C 114(32), 13663–13669 (2010).
[Crossref]

Q. K. Shang, H. Yu, X. G. Kong, H. D. Wang, X. Wang, Y. J. Sun, Y. L. Zhang, and Q. H. Zeng, “Green and red up-conversion emissions of Er3+–Yb3+ Co-doped TiO2 nanocrystals prepared by sol–gel method,” J. Lumin. 128(7), 1211–1216 (2008).
[Crossref]

Shao, W.

Y. Wu, S. Lin, W. Shao, X. Zhang, J. Xu, L. Yu, and K. Chen, “Enhanced up-conversion luminescence from NaYF4:Yb,Er nanocrystals by Gd3+ ions induced phase transformation and plasmonic Au nanosphere arrays,” RSC Advances 6(105), 102869 (2016).
[Crossref] [PubMed]

Shen, J.

X. G. Mao, B. X. Yan, J. Wang, and J. Shen, “Up-conversion fluorescence characteristics and mechanism of Er3+-doped TiO2 thin films,” Vacuum 102, 38–42 (2014).
[Crossref]

Shen, X.

X. Yin, H. Wang, M. Xing, Y. Fu, Y. Tian, X. Shen, W. Yu, and X. Luo, “Upconversion luminescence of Y2Ti2O7:Er3+ under 1550 and 980 nm excitation,” J. Rare Earths 35(3), 230–234 (2017).
[Crossref]

Shi, F.

J. Li, Q. Zhao, F. Shi, C. Liu, and Y. Tang, “NIR-Mediated Nanohybrids of Upconversion Nanophosphors and Fluorescent Conjugated Polymers for High-Efficiency Antibacterial Performance Based on Fluorescence Resonance Energy Transfer,” Adv. Healthc. Mater. 5(23), 2967–2971 (2016).
[Crossref] [PubMed]

Simmons, G. W.

B. Erdem, R. A. Hunsicker, G. W. Simmons, E. D. Sudol, V. L. Dimonie, and M. S. El-Aasser, “XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation,” Langmuir 17(9), 2664–2669 (2001).
[Crossref]

Singh, A. K.

P. Singh, P. K. Shahi, S. K. Singh, A. K. Singh, M. K. Singh, R. Prakash, and S. B. Rai, “Lanthanide doped ultrafine hybrid nanostructures: multicolour luminescence, upconversion based energy transfer and luminescent solar collector applications,” Nanoscale 9(2), 696–705 (2017).
[Crossref] [PubMed]

Singh, M. K.

P. Singh, P. K. Shahi, S. K. Singh, A. K. Singh, M. K. Singh, R. Prakash, and S. B. Rai, “Lanthanide doped ultrafine hybrid nanostructures: multicolour luminescence, upconversion based energy transfer and luminescent solar collector applications,” Nanoscale 9(2), 696–705 (2017).
[Crossref] [PubMed]

Singh, P.

P. Singh, P. K. Shahi, S. K. Singh, A. K. Singh, M. K. Singh, R. Prakash, and S. B. Rai, “Lanthanide doped ultrafine hybrid nanostructures: multicolour luminescence, upconversion based energy transfer and luminescent solar collector applications,” Nanoscale 9(2), 696–705 (2017).
[Crossref] [PubMed]

Singh, S. K.

P. Singh, P. K. Shahi, S. K. Singh, A. K. Singh, M. K. Singh, R. Prakash, and S. B. Rai, “Lanthanide doped ultrafine hybrid nanostructures: multicolour luminescence, upconversion based energy transfer and luminescent solar collector applications,” Nanoscale 9(2), 696–705 (2017).
[Crossref] [PubMed]

Šmucler, R.

V. Bartůněk, J. Rak, B. Pelánková, J. Junková, M. Mezlíková, V. Král, M. Kuchař, H. Engstová, P. Ježek, and R. Šmucler, “Large scale preparation of up- converting YF3:YbEr nanocrystals with various sizes by solvothermal syntheses using ionic liquid bmimCl,” J. Fluor. Chem. 188, 14–17 (2016).
[Crossref]

Soga, K.

M. Kamimura, A. Omoto, H.-C. Chiu, and K. Soga, “Enhanced red upconversion emission of NaYF4:Yb3+, Er3+, Mn2+ nanoparticles for near-infrared-induced photodynamic therapy and fluorescence imaging,” Chem. Lett. 46(8), 1076–1078 (2017).
[Crossref]

Song, E. H.

M. Wu, E. H. Song, Z. T. Chen, S. Ding, S. Ye, J. J. Zhou, S. Q. Xu, and Q. Y. Zhang, “Single-band red upconversion luminescence of Yb3+–Er3+via nonequivalent substitution in perovskite KMgF3 nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(8), 1675–1684 (2016).
[Crossref]

Song, K. L.

C. C. Wang, D. G. Yin, K. L. Song, J. Ouyang, and B. Liu, “Preparation of bi-functional NaGdF4-based upconversion nanocrystals and fine-tuning of emission colors of the nanocrystals by doping with Mn2+,” Vacuum 107, 311–315 (2014).
[Crossref]

Sudol, E. D.

B. Erdem, R. A. Hunsicker, G. W. Simmons, E. D. Sudol, V. L. Dimonie, and M. S. El-Aasser, “XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation,” Langmuir 17(9), 2664–2669 (2001).
[Crossref]

Sun, Y.

Y. Wu, Y. Ji, J. Xu, J. Liu, Z. Lin, Y. Zhao, Y. Sun, L. Xu, and K. Chen, “Crystalline phase and morphology controlling to enhance the up-conversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled Synthesis, Formation Mechanism, and Great Enhancement of Red Upconversion Luminescence of NaYF4:Yb3+, Er3+ Nanocrystals/Submicroplates at Low Doping Level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
[Crossref] [PubMed]

Sun, Y. J.

Q. K. Shang, H. Yu, X. G. Kong, H. D. Wang, X. Wang, Y. J. Sun, Y. L. Zhang, and Q. H. Zeng, “Green and red up-conversion emissions of Er3+–Yb3+ Co-doped TiO2 nanocrystals prepared by sol–gel method,” J. Lumin. 128(7), 1211–1216 (2008).
[Crossref]

J. Zhang, X. Wang, W. T. Zheng, X. G. Kong, Y. J. Sun, and X. Wang, “Structure and luminescence properties of TiO2:Er3+ nanocrystals annealed at different temperatures,” Mater. Lett. 61(8–9), 1658–1661 (2007).
[Crossref]

Sun, Z. R.

Y. H. Yao, C. Xu, Y. Zheng, C. S. Yang, P. Liu, J. X. Ding, T. Q. Jia, J. R. Qiu, S. A. Zhang, and Z. R. Sun, “Improving upconversion luminescence efficiency in Er3+-doped NaYF4 nanocrystals by two-color laser field,” J. Mater. Sci. 51(11), 5460–5468 (2016).
[Crossref]

Tang, Y.

J. Li, Q. Zhao, F. Shi, C. Liu, and Y. Tang, “NIR-Mediated Nanohybrids of Upconversion Nanophosphors and Fluorescent Conjugated Polymers for High-Efficiency Antibacterial Performance Based on Fluorescence Resonance Energy Transfer,” Adv. Healthc. Mater. 5(23), 2967–2971 (2016).
[Crossref] [PubMed]

Tian, L.

J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled Synthesis, Formation Mechanism, and Great Enhancement of Red Upconversion Luminescence of NaYF4:Yb3+, Er3+ Nanocrystals/Submicroplates at Low Doping Level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
[Crossref] [PubMed]

Tian, Y.

X. Yin, H. Wang, M. Xing, Y. Fu, Y. Tian, X. Shen, W. Yu, and X. Luo, “Upconversion luminescence of Y2Ti2O7:Er3+ under 1550 and 980 nm excitation,” J. Rare Earths 35(3), 230–234 (2017).
[Crossref]

Ting, C. C.

C. C. Ting, Y. S. Chiu, C. W. Chang, and L. C. Chuang, “Visible and infrared luminescence properties of Er3+-doped Y2Ti2O7 nanocrystals,” J. Solid State Chem. 184(3), 563–571 (2011).
[Crossref]

C. C. Ting, S. Y. Chen, and H. Y. Lee, “Physical characteristics and infrared fluorescence properties of sol–gel derived Er3+–Yb3+ codoped TiO2,” J. Appl. Phys. 94(3), 2102–2109 (2003).
[Crossref]

S. Y. Chen, C. C. Ting, and W. F. Hsieh, “Comparison of visible fluorescence properties between sol–gel derived Er3+–Yb3+ and Er3+–Y3+ co-doped TiO2 films,” Thin Solid Films 434(1–2), 171–177 (2003).
[Crossref]

Torikai, T.

K. Kobwittaya, Y. Oishi, T. Torikai, M. Yada, T. Watari, and H. N. Luitel, “Bright red upconversion luminescence from Er3+ and Yb3+ co-doped ZnO-TiO2 composite phosphor powder,” Ceram. Int. 43(16), 13505–13515 (2017).
[Crossref]

Toudert, J.

I. Camps, M. Borlaf, J. Toudert, A. de Andrés, M. T. Colomer, R. Moreno, and R. Serna, “Evidencing early pyrochlore formation in rare-earth doped TiO2 nanocrystals: Structure sensing via VIS and NIR Er3+ light emission,” J. Alloys Compd. 735, 2267–2274 (2018).
[Crossref]

Tu, L.

J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled Synthesis, Formation Mechanism, and Great Enhancement of Red Upconversion Luminescence of NaYF4:Yb3+, Er3+ Nanocrystals/Submicroplates at Low Doping Level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
[Crossref] [PubMed]

Walls, M. G.

V. Badjeck, M. G. Walls, L. Chaffron, J. Malaplate, and K. March, “New insights into the chemical structure of Y2Ti2O7−δ nanoparticles in oxide dispersion-strengthened steels designed for sodium fast reactors by electron energy-loss spectroscopy,” J. Nucl. Mater. 456, 292–301 (2015).
[Crossref]

Wang, C. C.

C. C. Wang, D. G. Yin, K. L. Song, J. Ouyang, and B. Liu, “Preparation of bi-functional NaGdF4-based upconversion nanocrystals and fine-tuning of emission colors of the nanocrystals by doping with Mn2+,” Vacuum 107, 311–315 (2014).
[Crossref]

Wang, F.

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[Crossref] [PubMed]

F. Wang and X. Liu, “Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles,” J. Am. Chem. Soc. 130(17), 5642–5643 (2008).
[Crossref] [PubMed]

Wang, H.

X. Yin, H. Wang, M. Xing, Y. Fu, Y. Tian, X. Shen, W. Yu, and X. Luo, “Upconversion luminescence of Y2Ti2O7:Er3+ under 1550 and 980 nm excitation,” J. Rare Earths 35(3), 230–234 (2017).
[Crossref]

Wang, H. B.

H. B. Wang, W. Lu, Z. G. Yi, L. Rao, S. J. Zeng, and Z. Li, “Enhanced upconversion luminescence and single-band red emission of NaErF4 nanocrystals via Mn2+ doping,” J. Alloys Compd. 618, 776–780 (2015).
[Crossref]

Wang, H. D.

Q. K. Shang, H. Yu, X. G. Kong, H. D. Wang, X. Wang, Y. J. Sun, Y. L. Zhang, and Q. H. Zeng, “Green and red up-conversion emissions of Er3+–Yb3+ Co-doped TiO2 nanocrystals prepared by sol–gel method,” J. Lumin. 128(7), 1211–1216 (2008).
[Crossref]

Wang, J.

X. G. Mao, B. X. Yan, J. Wang, and J. Shen, “Up-conversion fluorescence characteristics and mechanism of Er3+-doped TiO2 thin films,” Vacuum 102, 38–42 (2014).
[Crossref]

Wang, J. X.

Y. Liu, D. Li, Q. L. Ma, W. S. Yu, X. Xi, X. T. Dong, J. X. Wang, and G. X. Liu, “Fabrication of novel Ba4Y3F17:Er3+ nanofibers with upconversion fluorescence via combination of electrospinning with fluorination,” J. Mater. Sci. Mater. Electron. 27(11), 11666–11673 (2016).
[Crossref]

Wang, Q.

J. S. Liao, Q. Wang, L. F. Lan, J. F. Guo, L. L. Nie, S. J. Liu, and H. R. Wen, “Microwave hydrothermal synthesis and temperature sensing behavior of Lu2Ti2O7:Yb3+/Er3+ nanophosphors,” Curr. Appl. Phys. 17(3), 427–432 (2017).
[Crossref]

Wang, W. L.

W. L. Wang, Q. K. Shang, W. Zheng, H. Yu, X. J. Feng, Z. D. Wang, Y. B. Zhang, and G. Q. Li, “A novel near-infrared antibacterial material depending on the upconverting property of Er3+-Yb3+-Fe3+ tridoped TiO2 nanopowder,” J. Phys. Chem. C 114(32), 13663–13669 (2010).
[Crossref]

Wang, X.

X. Zhang, D. Xu, G. Zhou, X. Wang, H. Liu, Z. Yu, G. Zhang, and L. Zhu, “Color tunable up-conversion emission from ZrO2:Er3+,Yb3+ textile fibers,” RSC Advances 6(106), 103973 (2016).
[Crossref]

L. Li, Y. L. Yang, M. Zhou, R. Q. Fan, L. L. Qiu, X. Wang, L. Y. Zhang, X. S. Zhou, and J. L. He, “Enhanced performance of dye-sensitized solar cells based on TiO2 with NIR-absorption and visible upconversion luminescence,” J. Solid State Chem. 198, 459–465 (2013).
[Crossref]

Q. K. Shang, H. Yu, X. G. Kong, H. D. Wang, X. Wang, Y. J. Sun, Y. L. Zhang, and Q. H. Zeng, “Green and red up-conversion emissions of Er3+–Yb3+ Co-doped TiO2 nanocrystals prepared by sol–gel method,” J. Lumin. 128(7), 1211–1216 (2008).
[Crossref]

J. Zhang, X. Wang, W. T. Zheng, X. G. Kong, Y. J. Sun, and X. Wang, “Structure and luminescence properties of TiO2:Er3+ nanocrystals annealed at different temperatures,” Mater. Lett. 61(8–9), 1658–1661 (2007).
[Crossref]

J. Zhang, X. Wang, W. T. Zheng, X. G. Kong, Y. J. Sun, and X. Wang, “Structure and luminescence properties of TiO2:Er3+ nanocrystals annealed at different temperatures,” Mater. Lett. 61(8–9), 1658–1661 (2007).
[Crossref]

Wang, X. H.

B. S. Cao, J. L. Wu, X. H. Wang, Z. Q. Feng, and B. Dong, “Upconversion Luminescence Properties of Er3+ Doped Yb2Ti2O7 Nanophosphor by Gd3+ Codoping,” J. Nanosci. Nanotechnol. 16(4), 3690–3694 (2016).
[Crossref] [PubMed]

Wang, Y.

J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled Synthesis, Formation Mechanism, and Great Enhancement of Red Upconversion Luminescence of NaYF4:Yb3+, Er3+ Nanocrystals/Submicroplates at Low Doping Level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
[Crossref] [PubMed]

Wang, Y. B.

Y. H. Hu, X. H. Liang, Y. B. Wang, E. Z. Liu, X. Y. Hu, and J. Fan, “Enhancement of the red upconversion luminescence in NaYF4:Yb3+, Er3+ nanoparticles by the transition metal ions doping,” Ceram. Int. 41(10), 14545–14553 (2015).
[Crossref]

Wang, Z. D.

W. L. Wang, Q. K. Shang, W. Zheng, H. Yu, X. J. Feng, Z. D. Wang, Y. B. Zhang, and G. Q. Li, “A novel near-infrared antibacterial material depending on the upconverting property of Er3+-Yb3+-Fe3+ tridoped TiO2 nanopowder,” J. Phys. Chem. C 114(32), 13663–13669 (2010).
[Crossref]

Watari, T.

K. Kobwittaya, Y. Oishi, T. Torikai, M. Yada, T. Watari, and H. N. Luitel, “Bright red upconversion luminescence from Er3+ and Yb3+ co-doped ZnO-TiO2 composite phosphor powder,” Ceram. Int. 43(16), 13505–13515 (2017).
[Crossref]

Wei, X.

J. Cai, X. Wei, F. Hu, Z. Cao, L. Zhao, Y. Chen, C. Duan, and M. Yin, “Up-conversion luminescence and optical thermometry properties of transparent glass ceramics containing CaF2:Yb3+/Er3+ nanocrystals,” Ceram. Int. 42(12), 13990–13995 (2016).
[Crossref]

J. Hao, Y. Zhang, and X. Wei, “Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films,” Angew. Chem. Int. Ed. Engl. 50(30), 6876–6880 (2011).
[Crossref] [PubMed]

Wei, Z.

J. Reszczyńska, T. Grzyb, Z. Wei, M. Klein, E. Kowalska, B. Ohtani, and A. Zaleska-Medynska, “Photocatalytic activity and luminescence properties of RE3+–TiO2 nanocrystals prepared by sol–gel and hydrothermal methods,” Appl. Catal. B 181, 825–837 (2016).
[Crossref]

Wen, H.

J. Fu, X. Zhang, Z. Chao, Z. Li, J. Liao, D. Hou, H. Wen, X. Lu, and X. Xie, “Enhanced upconversion luminescence of NaYF4:Yb,Er microprisms via La3+ doping,” Opt. Laser Technol. 88, 280–286 (2017).
[Crossref]

Wen, H. R.

J. S. Liao, Q. Wang, L. F. Lan, J. F. Guo, L. L. Nie, S. J. Liu, and H. R. Wen, “Microwave hydrothermal synthesis and temperature sensing behavior of Lu2Ti2O7:Yb3+/Er3+ nanophosphors,” Curr. Appl. Phys. 17(3), 427–432 (2017).
[Crossref]

Weng, W. H.

W. H. Weng, C. H. Jhou, H. X. Xie, and T. M. Pan, “Label-Free Detection of AR-V7 mRNA in Prostate Cancer Using Yb2Ti2O7 –based electrolyte-insulator-semiconductor biosensors,” J. Electrochem. Soc. 163(14), B710–B717 (2016).
[Crossref]

Wu, J. L.

B. S. Cao, J. L. Wu, X. H. Wang, Z. Q. Feng, and B. Dong, “Upconversion Luminescence Properties of Er3+ Doped Yb2Ti2O7 Nanophosphor by Gd3+ Codoping,” J. Nanosci. Nanotechnol. 16(4), 3690–3694 (2016).
[Crossref] [PubMed]

Wu, M.

M. Wu, E. H. Song, Z. T. Chen, S. Ding, S. Ye, J. J. Zhou, S. Q. Xu, and Q. Y. Zhang, “Single-band red upconversion luminescence of Yb3+–Er3+via nonequivalent substitution in perovskite KMgF3 nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(8), 1675–1684 (2016).
[Crossref]

Wu, Y.

Y. Wu, S. Lin, J. Liu, Y. Ji, J. Xu, L. Xu, and K. Chen, “Efficient up-conversion red emission from TiO2:Yb,Er nanocrystals,” Opt. Express 25(19), 22648–22657 (2017).
[Crossref] [PubMed]

Y. Wu, Y. Ji, J. Xu, J. Liu, Z. Lin, Y. Zhao, Y. Sun, L. Xu, and K. Chen, “Crystalline phase and morphology controlling to enhance the up-conversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

Y. Wu, S. Lin, W. Shao, X. Zhang, J. Xu, L. Yu, and K. Chen, “Enhanced up-conversion luminescence from NaYF4:Yb,Er nanocrystals by Gd3+ ions induced phase transformation and plasmonic Au nanosphere arrays,” RSC Advances 6(105), 102869 (2016).
[Crossref] [PubMed]

Xi, X.

Y. Liu, D. Li, Q. L. Ma, W. S. Yu, X. Xi, X. T. Dong, J. X. Wang, and G. X. Liu, “Fabrication of novel Ba4Y3F17:Er3+ nanofibers with upconversion fluorescence via combination of electrospinning with fluorination,” J. Mater. Sci. Mater. Electron. 27(11), 11666–11673 (2016).
[Crossref]

Xie, H. X.

W. H. Weng, C. H. Jhou, H. X. Xie, and T. M. Pan, “Label-Free Detection of AR-V7 mRNA in Prostate Cancer Using Yb2Ti2O7 –based electrolyte-insulator-semiconductor biosensors,” J. Electrochem. Soc. 163(14), B710–B717 (2016).
[Crossref]

Xie, X.

J. Fu, X. Zhang, Z. Chao, Z. Li, J. Liao, D. Hou, H. Wen, X. Lu, and X. Xie, “Enhanced upconversion luminescence of NaYF4:Yb,Er microprisms via La3+ doping,” Opt. Laser Technol. 88, 280–286 (2017).
[Crossref]

Xing, M.

X. Yin, H. Wang, M. Xing, Y. Fu, Y. Tian, X. Shen, W. Yu, and X. Luo, “Upconversion luminescence of Y2Ti2O7:Er3+ under 1550 and 980 nm excitation,” J. Rare Earths 35(3), 230–234 (2017).
[Crossref]

Xu, C.

Y. H. Yao, C. Xu, Y. Zheng, C. S. Yang, P. Liu, J. X. Ding, T. Q. Jia, J. R. Qiu, S. A. Zhang, and Z. R. Sun, “Improving upconversion luminescence efficiency in Er3+-doped NaYF4 nanocrystals by two-color laser field,” J. Mater. Sci. 51(11), 5460–5468 (2016).
[Crossref]

Xu, D.

X. Zhang, D. Xu, G. Zhou, X. Wang, H. Liu, Z. Yu, G. Zhang, and L. Zhu, “Color tunable up-conversion emission from ZrO2:Er3+,Yb3+ textile fibers,” RSC Advances 6(106), 103973 (2016).
[Crossref]

Xu, J.

Y. Wu, Y. Ji, J. Xu, J. Liu, Z. Lin, Y. Zhao, Y. Sun, L. Xu, and K. Chen, “Crystalline phase and morphology controlling to enhance the up-conversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

Y. Wu, S. Lin, J. Liu, Y. Ji, J. Xu, L. Xu, and K. Chen, “Efficient up-conversion red emission from TiO2:Yb,Er nanocrystals,” Opt. Express 25(19), 22648–22657 (2017).
[Crossref] [PubMed]

Y. Wu, S. Lin, W. Shao, X. Zhang, J. Xu, L. Yu, and K. Chen, “Enhanced up-conversion luminescence from NaYF4:Yb,Er nanocrystals by Gd3+ ions induced phase transformation and plasmonic Au nanosphere arrays,” RSC Advances 6(105), 102869 (2016).
[Crossref] [PubMed]

X. Zhang, S. Lin, T. Lin, P. Zhang, J. Xu, L. Xu, and K. Chen, “Improved sensitization efficiency in Er3+ ions and SnO2 nanocrystals co-doped silica thin films,” Phys. Chem. Chem. Phys. 17(18), 11974–11980 (2015).
[Crossref] [PubMed]

X. Zhang, T. Lin, P. Zhang, J. Xu, S. Lin, L. Xu, and K. Chen, “Highly efficient near-infrared emission in Er3+ doped silica films containing size-tunable SnO2 nanocrystals,” Opt. Express 22(1), 369–376 (2014).
[Crossref] [PubMed]

Xu, L.

Y. Wu, Y. Ji, J. Xu, J. Liu, Z. Lin, Y. Zhao, Y. Sun, L. Xu, and K. Chen, “Crystalline phase and morphology controlling to enhance the up-conversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

H. Li, L. Xu, and G. Chen, “Controlled synthesis of monodisperse hexagonal NaYF4:Yb/Er nanocrystals with ultrasmall size and enhanced upconversion luminescence,” Molecules 22(12), 2113 (2017).
[Crossref]

Y. Wu, S. Lin, J. Liu, Y. Ji, J. Xu, L. Xu, and K. Chen, “Efficient up-conversion red emission from TiO2:Yb,Er nanocrystals,” Opt. Express 25(19), 22648–22657 (2017).
[Crossref] [PubMed]

X. Zhang, S. Lin, T. Lin, P. Zhang, J. Xu, L. Xu, and K. Chen, “Improved sensitization efficiency in Er3+ ions and SnO2 nanocrystals co-doped silica thin films,” Phys. Chem. Chem. Phys. 17(18), 11974–11980 (2015).
[Crossref] [PubMed]

X. Zhang, T. Lin, P. Zhang, J. Xu, S. Lin, L. Xu, and K. Chen, “Highly efficient near-infrared emission in Er3+ doped silica films containing size-tunable SnO2 nanocrystals,” Opt. Express 22(1), 369–376 (2014).
[Crossref] [PubMed]

Xu, Q. H.

P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q. H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4(16), 5132–5137 (2012).
[Crossref] [PubMed]

Xu, S. Q.

M. Wu, E. H. Song, Z. T. Chen, S. Ding, S. Ye, J. J. Zhou, S. Q. Xu, and Q. Y. Zhang, “Single-band red upconversion luminescence of Yb3+–Er3+via nonequivalent substitution in perovskite KMgF3 nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(8), 1675–1684 (2016).
[Crossref]

Xu, X.

X. Liu, J. Qiu, X. Xu, and D. Zhou, “Effect of Ce3+ Concentration on the Luminescence Properties of Ce3+/Er3+Nb3+ tri-doped NaYF4 nanocrystals,” J. Nanosci. Nanotechnol. 16(4), 3749–3753 (2016).
[Crossref] [PubMed]

Yada, M.

K. Kobwittaya, Y. Oishi, T. Torikai, M. Yada, T. Watari, and H. N. Luitel, “Bright red upconversion luminescence from Er3+ and Yb3+ co-doped ZnO-TiO2 composite phosphor powder,” Ceram. Int. 43(16), 13505–13515 (2017).
[Crossref]

Yamini, S.

M. Gunaseelan, S. Yamini, G. A. Kumar, and J. Senthilselvan, “Highly efficient upconversion luminescence in hexagonal NaYF4:Yb3+, Er3+ nanocrystals synthesized by a novel reverse microemulsion method,” Opt. Mater. 75, 174–186 (2018).
[Crossref]

Yan, B. X.

X. G. Mao, B. X. Yan, J. Wang, and J. Shen, “Up-conversion fluorescence characteristics and mechanism of Er3+-doped TiO2 thin films,” Vacuum 102, 38–42 (2014).
[Crossref]

Yang, C. S.

Y. H. Yao, C. Xu, Y. Zheng, C. S. Yang, P. Liu, J. X. Ding, T. Q. Jia, J. R. Qiu, S. A. Zhang, and Z. R. Sun, “Improving upconversion luminescence efficiency in Er3+-doped NaYF4 nanocrystals by two-color laser field,” J. Mater. Sci. 51(11), 5460–5468 (2016).
[Crossref]

Yang, Y. L.

L. Li, Y. L. Yang, M. Zhou, R. Q. Fan, L. L. Qiu, X. Wang, L. Y. Zhang, X. S. Zhou, and J. L. He, “Enhanced performance of dye-sensitized solar cells based on TiO2 with NIR-absorption and visible upconversion luminescence,” J. Solid State Chem. 198, 459–465 (2013).
[Crossref]

Yao, Y. H.

Y. H. Yao, C. Xu, Y. Zheng, C. S. Yang, P. Liu, J. X. Ding, T. Q. Jia, J. R. Qiu, S. A. Zhang, and Z. R. Sun, “Improving upconversion luminescence efficiency in Er3+-doped NaYF4 nanocrystals by two-color laser field,” J. Mater. Sci. 51(11), 5460–5468 (2016).
[Crossref]

Ye, S.

M. Wu, E. H. Song, Z. T. Chen, S. Ding, S. Ye, J. J. Zhou, S. Q. Xu, and Q. Y. Zhang, “Single-band red upconversion luminescence of Yb3+–Er3+via nonequivalent substitution in perovskite KMgF3 nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(8), 1675–1684 (2016).
[Crossref]

Yi, M. J.

Z. Y. Huang, M. J. Yi, H. P. Gao, Z. L. Zhang, and Y. L. Mao, “Enhancing single red band upconversion luminescence of KMnF3:Yb3+/Er3+ nanocrystals by Mg2+ doping,” J. Alloys Compd. 694, 241–245 (2017).
[Crossref]

Yi, Z. G.

H. B. Wang, W. Lu, Z. G. Yi, L. Rao, S. J. Zeng, and Z. Li, “Enhanced upconversion luminescence and single-band red emission of NaErF4 nanocrystals via Mn2+ doping,” J. Alloys Compd. 618, 776–780 (2015).
[Crossref]

Yin, D. G.

C. C. Wang, D. G. Yin, K. L. Song, J. Ouyang, and B. Liu, “Preparation of bi-functional NaGdF4-based upconversion nanocrystals and fine-tuning of emission colors of the nanocrystals by doping with Mn2+,” Vacuum 107, 311–315 (2014).
[Crossref]

Yin, M.

J. Cai, X. Wei, F. Hu, Z. Cao, L. Zhao, Y. Chen, C. Duan, and M. Yin, “Up-conversion luminescence and optical thermometry properties of transparent glass ceramics containing CaF2:Yb3+/Er3+ nanocrystals,” Ceram. Int. 42(12), 13990–13995 (2016).
[Crossref]

Yin, X.

X. Yin, H. Wang, M. Xing, Y. Fu, Y. Tian, X. Shen, W. Yu, and X. Luo, “Upconversion luminescence of Y2Ti2O7:Er3+ under 1550 and 980 nm excitation,” J. Rare Earths 35(3), 230–234 (2017).
[Crossref]

Yu, H.

W. L. Wang, Q. K. Shang, W. Zheng, H. Yu, X. J. Feng, Z. D. Wang, Y. B. Zhang, and G. Q. Li, “A novel near-infrared antibacterial material depending on the upconverting property of Er3+-Yb3+-Fe3+ tridoped TiO2 nanopowder,” J. Phys. Chem. C 114(32), 13663–13669 (2010).
[Crossref]

Q. K. Shang, H. Yu, X. G. Kong, H. D. Wang, X. Wang, Y. J. Sun, Y. L. Zhang, and Q. H. Zeng, “Green and red up-conversion emissions of Er3+–Yb3+ Co-doped TiO2 nanocrystals prepared by sol–gel method,” J. Lumin. 128(7), 1211–1216 (2008).
[Crossref]

Yu, L.

Y. Wu, S. Lin, W. Shao, X. Zhang, J. Xu, L. Yu, and K. Chen, “Enhanced up-conversion luminescence from NaYF4:Yb,Er nanocrystals by Gd3+ ions induced phase transformation and plasmonic Au nanosphere arrays,” RSC Advances 6(105), 102869 (2016).
[Crossref] [PubMed]

Yu, W.

X. Yin, H. Wang, M. Xing, Y. Fu, Y. Tian, X. Shen, W. Yu, and X. Luo, “Upconversion luminescence of Y2Ti2O7:Er3+ under 1550 and 980 nm excitation,” J. Rare Earths 35(3), 230–234 (2017).
[Crossref]

Yu, W. S.

Y. Liu, D. Li, Q. L. Ma, W. S. Yu, X. Xi, X. T. Dong, J. X. Wang, and G. X. Liu, “Fabrication of novel Ba4Y3F17:Er3+ nanofibers with upconversion fluorescence via combination of electrospinning with fluorination,” J. Mater. Sci. Mater. Electron. 27(11), 11666–11673 (2016).
[Crossref]

Yu, Z.

X. Zhang, D. Xu, G. Zhou, X. Wang, H. Liu, Z. Yu, G. Zhang, and L. Zhu, “Color tunable up-conversion emission from ZrO2:Er3+,Yb3+ textile fibers,” RSC Advances 6(106), 103973 (2016).
[Crossref]

Yuan, P.

P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q. H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4(16), 5132–5137 (2012).
[Crossref] [PubMed]

Zaleska-Medynska, A.

J. Reszczyńska, T. Grzyb, Z. Wei, M. Klein, E. Kowalska, B. Ohtani, and A. Zaleska-Medynska, “Photocatalytic activity and luminescence properties of RE3+–TiO2 nanocrystals prepared by sol–gel and hydrothermal methods,” Appl. Catal. B 181, 825–837 (2016).
[Crossref]

Zeng, Q. H.

Q. K. Shang, H. Yu, X. G. Kong, H. D. Wang, X. Wang, Y. J. Sun, Y. L. Zhang, and Q. H. Zeng, “Green and red up-conversion emissions of Er3+–Yb3+ Co-doped TiO2 nanocrystals prepared by sol–gel method,” J. Lumin. 128(7), 1211–1216 (2008).
[Crossref]

Zeng, S. J.

H. B. Wang, W. Lu, Z. G. Yi, L. Rao, S. J. Zeng, and Z. Li, “Enhanced upconversion luminescence and single-band red emission of NaErF4 nanocrystals via Mn2+ doping,” J. Alloys Compd. 618, 776–780 (2015).
[Crossref]

Zhang, G.

X. Zhang, D. Xu, G. Zhou, X. Wang, H. Liu, Z. Yu, G. Zhang, and L. Zhu, “Color tunable up-conversion emission from ZrO2:Er3+,Yb3+ textile fibers,” RSC Advances 6(106), 103973 (2016).
[Crossref]

Zhang, H.

J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled Synthesis, Formation Mechanism, and Great Enhancement of Red Upconversion Luminescence of NaYF4:Yb3+, Er3+ Nanocrystals/Submicroplates at Low Doping Level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, X. Wang, W. T. Zheng, X. G. Kong, Y. J. Sun, and X. Wang, “Structure and luminescence properties of TiO2:Er3+ nanocrystals annealed at different temperatures,” Mater. Lett. 61(8–9), 1658–1661 (2007).
[Crossref]

Zhang, L. Y.

L. Li, Y. L. Yang, M. Zhou, R. Q. Fan, L. L. Qiu, X. Wang, L. Y. Zhang, X. S. Zhou, and J. L. He, “Enhanced performance of dye-sensitized solar cells based on TiO2 with NIR-absorption and visible upconversion luminescence,” J. Solid State Chem. 198, 459–465 (2013).
[Crossref]

Zhang, P.

X. Zhang, S. Lin, T. Lin, P. Zhang, J. Xu, L. Xu, and K. Chen, “Improved sensitization efficiency in Er3+ ions and SnO2 nanocrystals co-doped silica thin films,” Phys. Chem. Chem. Phys. 17(18), 11974–11980 (2015).
[Crossref] [PubMed]

X. Zhang, T. Lin, P. Zhang, J. Xu, S. Lin, L. Xu, and K. Chen, “Highly efficient near-infrared emission in Er3+ doped silica films containing size-tunable SnO2 nanocrystals,” Opt. Express 22(1), 369–376 (2014).
[Crossref] [PubMed]

Zhang, Q. Y.

M. Wu, E. H. Song, Z. T. Chen, S. Ding, S. Ye, J. J. Zhou, S. Q. Xu, and Q. Y. Zhang, “Single-band red upconversion luminescence of Yb3+–Er3+via nonequivalent substitution in perovskite KMgF3 nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(8), 1675–1684 (2016).
[Crossref]

Zhang, S. A.

Y. H. Yao, C. Xu, Y. Zheng, C. S. Yang, P. Liu, J. X. Ding, T. Q. Jia, J. R. Qiu, S. A. Zhang, and Z. R. Sun, “Improving upconversion luminescence efficiency in Er3+-doped NaYF4 nanocrystals by two-color laser field,” J. Mater. Sci. 51(11), 5460–5468 (2016).
[Crossref]

Zhang, X.

J. Fu, X. Zhang, Z. Chao, Z. Li, J. Liao, D. Hou, H. Wen, X. Lu, and X. Xie, “Enhanced upconversion luminescence of NaYF4:Yb,Er microprisms via La3+ doping,” Opt. Laser Technol. 88, 280–286 (2017).
[Crossref]

X. Zhang, D. Xu, G. Zhou, X. Wang, H. Liu, Z. Yu, G. Zhang, and L. Zhu, “Color tunable up-conversion emission from ZrO2:Er3+,Yb3+ textile fibers,” RSC Advances 6(106), 103973 (2016).
[Crossref]

Y. Wu, S. Lin, W. Shao, X. Zhang, J. Xu, L. Yu, and K. Chen, “Enhanced up-conversion luminescence from NaYF4:Yb,Er nanocrystals by Gd3+ ions induced phase transformation and plasmonic Au nanosphere arrays,” RSC Advances 6(105), 102869 (2016).
[Crossref] [PubMed]

X. Zhang, S. Lin, T. Lin, P. Zhang, J. Xu, L. Xu, and K. Chen, “Improved sensitization efficiency in Er3+ ions and SnO2 nanocrystals co-doped silica thin films,” Phys. Chem. Chem. Phys. 17(18), 11974–11980 (2015).
[Crossref] [PubMed]

X. Zhang, T. Lin, P. Zhang, J. Xu, S. Lin, L. Xu, and K. Chen, “Highly efficient near-infrared emission in Er3+ doped silica films containing size-tunable SnO2 nanocrystals,” Opt. Express 22(1), 369–376 (2014).
[Crossref] [PubMed]

Zhang, Y.

P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q. H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4(16), 5132–5137 (2012).
[Crossref] [PubMed]

J. Hao, Y. Zhang, and X. Wei, “Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films,” Angew. Chem. Int. Ed. Engl. 50(30), 6876–6880 (2011).
[Crossref] [PubMed]

Zhang, Y. B.

W. L. Wang, Q. K. Shang, W. Zheng, H. Yu, X. J. Feng, Z. D. Wang, Y. B. Zhang, and G. Q. Li, “A novel near-infrared antibacterial material depending on the upconverting property of Er3+-Yb3+-Fe3+ tridoped TiO2 nanopowder,” J. Phys. Chem. C 114(32), 13663–13669 (2010).
[Crossref]

Zhang, Y. L.

Q. K. Shang, H. Yu, X. G. Kong, H. D. Wang, X. Wang, Y. J. Sun, Y. L. Zhang, and Q. H. Zeng, “Green and red up-conversion emissions of Er3+–Yb3+ Co-doped TiO2 nanocrystals prepared by sol–gel method,” J. Lumin. 128(7), 1211–1216 (2008).
[Crossref]

Zhang, Z.

H. Liang, G. Chen, H. Liu, and Z. Zhang, “Ultraviolet upconversion luminescence enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals induced by tridoping with Li+ ions,” J. Lumin. 129(3), 197–202 (2009).
[Crossref]

Zhang, Z. L.

Z. Y. Huang, M. J. Yi, H. P. Gao, Z. L. Zhang, and Y. L. Mao, “Enhancing single red band upconversion luminescence of KMnF3:Yb3+/Er3+ nanocrystals by Mg2+ doping,” J. Alloys Compd. 694, 241–245 (2017).
[Crossref]

Zhao, J.

J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled Synthesis, Formation Mechanism, and Great Enhancement of Red Upconversion Luminescence of NaYF4:Yb3+, Er3+ Nanocrystals/Submicroplates at Low Doping Level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
[Crossref] [PubMed]

J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled Synthesis, Formation Mechanism, and Great Enhancement of Red Upconversion Luminescence of NaYF4:Yb3+, Er3+ Nanocrystals/Submicroplates at Low Doping Level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
[Crossref] [PubMed]

Zhao, L.

J. Cai, X. Wei, F. Hu, Z. Cao, L. Zhao, Y. Chen, C. Duan, and M. Yin, “Up-conversion luminescence and optical thermometry properties of transparent glass ceramics containing CaF2:Yb3+/Er3+ nanocrystals,” Ceram. Int. 42(12), 13990–13995 (2016).
[Crossref]

Zhao, Q.

J. Li, Q. Zhao, F. Shi, C. Liu, and Y. Tang, “NIR-Mediated Nanohybrids of Upconversion Nanophosphors and Fluorescent Conjugated Polymers for High-Efficiency Antibacterial Performance Based on Fluorescence Resonance Energy Transfer,” Adv. Healthc. Mater. 5(23), 2967–2971 (2016).
[Crossref] [PubMed]

Zhao, Y.

Y. Wu, Y. Ji, J. Xu, J. Liu, Z. Lin, Y. Zhao, Y. Sun, L. Xu, and K. Chen, “Crystalline phase and morphology controlling to enhance the up-conversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

Zheng, K.

X. Chuai, X. Guo, X. Liu, G. He, K. Zheng, C. He, and W. Qin, “Bifunctional NaGdF4:Yb, Er, Fe nanocrystals with the enhanced upconversion fluorescence,” Opt. Mater. 44, 13–17 (2015).
[Crossref]

Zheng, W.

W. L. Wang, Q. K. Shang, W. Zheng, H. Yu, X. J. Feng, Z. D. Wang, Y. B. Zhang, and G. Q. Li, “A novel near-infrared antibacterial material depending on the upconverting property of Er3+-Yb3+-Fe3+ tridoped TiO2 nanopowder,” J. Phys. Chem. C 114(32), 13663–13669 (2010).
[Crossref]

Zheng, W. T.

J. Zhang, X. Wang, W. T. Zheng, X. G. Kong, Y. J. Sun, and X. Wang, “Structure and luminescence properties of TiO2:Er3+ nanocrystals annealed at different temperatures,” Mater. Lett. 61(8–9), 1658–1661 (2007).
[Crossref]

Zheng, Y.

Y. H. Yao, C. Xu, Y. Zheng, C. S. Yang, P. Liu, J. X. Ding, T. Q. Jia, J. R. Qiu, S. A. Zhang, and Z. R. Sun, “Improving upconversion luminescence efficiency in Er3+-doped NaYF4 nanocrystals by two-color laser field,” J. Mater. Sci. 51(11), 5460–5468 (2016).
[Crossref]

Zhou, D.

X. Liu, J. Qiu, X. Xu, and D. Zhou, “Effect of Ce3+ Concentration on the Luminescence Properties of Ce3+/Er3+Nb3+ tri-doped NaYF4 nanocrystals,” J. Nanosci. Nanotechnol. 16(4), 3749–3753 (2016).
[Crossref] [PubMed]

Zhou, G.

X. Zhang, D. Xu, G. Zhou, X. Wang, H. Liu, Z. Yu, G. Zhang, and L. Zhu, “Color tunable up-conversion emission from ZrO2:Er3+,Yb3+ textile fibers,” RSC Advances 6(106), 103973 (2016).
[Crossref]

Zhou, J. J.

M. Wu, E. H. Song, Z. T. Chen, S. Ding, S. Ye, J. J. Zhou, S. Q. Xu, and Q. Y. Zhang, “Single-band red upconversion luminescence of Yb3+–Er3+via nonequivalent substitution in perovskite KMgF3 nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(8), 1675–1684 (2016).
[Crossref]

Zhou, M.

L. Li, Y. L. Yang, M. Zhou, R. Q. Fan, L. L. Qiu, X. Wang, L. Y. Zhang, X. S. Zhou, and J. L. He, “Enhanced performance of dye-sensitized solar cells based on TiO2 with NIR-absorption and visible upconversion luminescence,” J. Solid State Chem. 198, 459–465 (2013).
[Crossref]

Zhou, X. S.

L. Li, Y. L. Yang, M. Zhou, R. Q. Fan, L. L. Qiu, X. Wang, L. Y. Zhang, X. S. Zhou, and J. L. He, “Enhanced performance of dye-sensitized solar cells based on TiO2 with NIR-absorption and visible upconversion luminescence,” J. Solid State Chem. 198, 459–465 (2013).
[Crossref]

Zhu, L.

X. Zhang, D. Xu, G. Zhou, X. Wang, H. Liu, Z. Yu, G. Zhang, and L. Zhu, “Color tunable up-conversion emission from ZrO2:Er3+,Yb3+ textile fibers,” RSC Advances 6(106), 103973 (2016).
[Crossref]

Acta Mater. (1)

Y. Wu, Y. Ji, J. Xu, J. Liu, Z. Lin, Y. Zhao, Y. Sun, L. Xu, and K. Chen, “Crystalline phase and morphology controlling to enhance the up-conversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

Adv. Healthc. Mater. (1)

J. Li, Q. Zhao, F. Shi, C. Liu, and Y. Tang, “NIR-Mediated Nanohybrids of Upconversion Nanophosphors and Fluorescent Conjugated Polymers for High-Efficiency Antibacterial Performance Based on Fluorescence Resonance Energy Transfer,” Adv. Healthc. Mater. 5(23), 2967–2971 (2016).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

M. V. DaCosta, S. Doughan, Y. Han, and U. J. Krull, “Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: a review,” Anal. Chim. Acta 832, 1–33 (2014).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

J. Hao, Y. Zhang, and X. Wei, “Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films,” Angew. Chem. Int. Ed. Engl. 50(30), 6876–6880 (2011).
[Crossref] [PubMed]

Appl. Catal. B (1)

J. Reszczyńska, T. Grzyb, Z. Wei, M. Klein, E. Kowalska, B. Ohtani, and A. Zaleska-Medynska, “Photocatalytic activity and luminescence properties of RE3+–TiO2 nanocrystals prepared by sol–gel and hydrothermal methods,” Appl. Catal. B 181, 825–837 (2016).
[Crossref]

Ceram. Int. (3)

J. Cai, X. Wei, F. Hu, Z. Cao, L. Zhao, Y. Chen, C. Duan, and M. Yin, “Up-conversion luminescence and optical thermometry properties of transparent glass ceramics containing CaF2:Yb3+/Er3+ nanocrystals,” Ceram. Int. 42(12), 13990–13995 (2016).
[Crossref]

Y. H. Hu, X. H. Liang, Y. B. Wang, E. Z. Liu, X. Y. Hu, and J. Fan, “Enhancement of the red upconversion luminescence in NaYF4:Yb3+, Er3+ nanoparticles by the transition metal ions doping,” Ceram. Int. 41(10), 14545–14553 (2015).
[Crossref]

K. Kobwittaya, Y. Oishi, T. Torikai, M. Yada, T. Watari, and H. N. Luitel, “Bright red upconversion luminescence from Er3+ and Yb3+ co-doped ZnO-TiO2 composite phosphor powder,” Ceram. Int. 43(16), 13505–13515 (2017).
[Crossref]

Chem. Lett. (1)

M. Kamimura, A. Omoto, H.-C. Chiu, and K. Soga, “Enhanced red upconversion emission of NaYF4:Yb3+, Er3+, Mn2+ nanoparticles for near-infrared-induced photodynamic therapy and fluorescence imaging,” Chem. Lett. 46(8), 1076–1078 (2017).
[Crossref]

Chem. Soc. Rev. (1)

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[Crossref] [PubMed]

Curr. Appl. Phys. (1)

J. S. Liao, Q. Wang, L. F. Lan, J. F. Guo, L. L. Nie, S. J. Liu, and H. R. Wen, “Microwave hydrothermal synthesis and temperature sensing behavior of Lu2Ti2O7:Yb3+/Er3+ nanophosphors,” Curr. Appl. Phys. 17(3), 427–432 (2017).
[Crossref]

J. Alloys Compd. (4)

I. Camps, M. Borlaf, J. Toudert, A. de Andrés, M. T. Colomer, R. Moreno, and R. Serna, “Evidencing early pyrochlore formation in rare-earth doped TiO2 nanocrystals: Structure sensing via VIS and NIR Er3+ light emission,” J. Alloys Compd. 735, 2267–2274 (2018).
[Crossref]

X. Y. Huang, L. Jiang, X. X. Li, and A. Q. He, “Manipulating upconversion emission of cubic BaGdF5:Ce3+/Er3+/Yb3+ nanocrystals through controlling Ce3+ doping,” J. Alloys Compd. 721, 374–382 (2017).
[Crossref]

H. B. Wang, W. Lu, Z. G. Yi, L. Rao, S. J. Zeng, and Z. Li, “Enhanced upconversion luminescence and single-band red emission of NaErF4 nanocrystals via Mn2+ doping,” J. Alloys Compd. 618, 776–780 (2015).
[Crossref]

Z. Y. Huang, M. J. Yi, H. P. Gao, Z. L. Zhang, and Y. L. Mao, “Enhancing single red band upconversion luminescence of KMnF3:Yb3+/Er3+ nanocrystals by Mg2+ doping,” J. Alloys Compd. 694, 241–245 (2017).
[Crossref]

J. Am. Chem. Soc. (1)

F. Wang and X. Liu, “Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles,” J. Am. Chem. Soc. 130(17), 5642–5643 (2008).
[Crossref] [PubMed]

J. Appl. Phys. (1)

C. C. Ting, S. Y. Chen, and H. Y. Lee, “Physical characteristics and infrared fluorescence properties of sol–gel derived Er3+–Yb3+ codoped TiO2,” J. Appl. Phys. 94(3), 2102–2109 (2003).
[Crossref]

J. Electrochem. Soc. (1)

W. H. Weng, C. H. Jhou, H. X. Xie, and T. M. Pan, “Label-Free Detection of AR-V7 mRNA in Prostate Cancer Using Yb2Ti2O7 –based electrolyte-insulator-semiconductor biosensors,” J. Electrochem. Soc. 163(14), B710–B717 (2016).
[Crossref]

J. Fluor. Chem. (1)

V. Bartůněk, J. Rak, B. Pelánková, J. Junková, M. Mezlíková, V. Král, M. Kuchař, H. Engstová, P. Ježek, and R. Šmucler, “Large scale preparation of up- converting YF3:YbEr nanocrystals with various sizes by solvothermal syntheses using ionic liquid bmimCl,” J. Fluor. Chem. 188, 14–17 (2016).
[Crossref]

J. Lumin. (3)

Q. K. Shang, H. Yu, X. G. Kong, H. D. Wang, X. Wang, Y. J. Sun, Y. L. Zhang, and Q. H. Zeng, “Green and red up-conversion emissions of Er3+–Yb3+ Co-doped TiO2 nanocrystals prepared by sol–gel method,” J. Lumin. 128(7), 1211–1216 (2008).
[Crossref]

H. Liang, G. Chen, H. Liu, and Z. Zhang, “Ultraviolet upconversion luminescence enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals induced by tridoping with Li+ ions,” J. Lumin. 129(3), 197–202 (2009).
[Crossref]

R. Salhi and J. L. Deschanvres, “Efficient green and red up-conversion emissions in Er/Yb co-doped TiO2 nanopowders prepared by hydrothermal-assisted sol–gel process,” J. Lumin. 176, 250–259 (2016).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

M. Wu, E. H. Song, Z. T. Chen, S. Ding, S. Ye, J. J. Zhou, S. Q. Xu, and Q. Y. Zhang, “Single-band red upconversion luminescence of Yb3+–Er3+via nonequivalent substitution in perovskite KMgF3 nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(8), 1675–1684 (2016).
[Crossref]

J. Mater. Sci. (1)

Y. H. Yao, C. Xu, Y. Zheng, C. S. Yang, P. Liu, J. X. Ding, T. Q. Jia, J. R. Qiu, S. A. Zhang, and Z. R. Sun, “Improving upconversion luminescence efficiency in Er3+-doped NaYF4 nanocrystals by two-color laser field,” J. Mater. Sci. 51(11), 5460–5468 (2016).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

Y. Liu, D. Li, Q. L. Ma, W. S. Yu, X. Xi, X. T. Dong, J. X. Wang, and G. X. Liu, “Fabrication of novel Ba4Y3F17:Er3+ nanofibers with upconversion fluorescence via combination of electrospinning with fluorination,” J. Mater. Sci. Mater. Electron. 27(11), 11666–11673 (2016).
[Crossref]

J. Nanosci. Nanotechnol. (2)

X. Liu, J. Qiu, X. Xu, and D. Zhou, “Effect of Ce3+ Concentration on the Luminescence Properties of Ce3+/Er3+Nb3+ tri-doped NaYF4 nanocrystals,” J. Nanosci. Nanotechnol. 16(4), 3749–3753 (2016).
[Crossref] [PubMed]

B. S. Cao, J. L. Wu, X. H. Wang, Z. Q. Feng, and B. Dong, “Upconversion Luminescence Properties of Er3+ Doped Yb2Ti2O7 Nanophosphor by Gd3+ Codoping,” J. Nanosci. Nanotechnol. 16(4), 3690–3694 (2016).
[Crossref] [PubMed]

J. Non-Cryst. Solids (1)

A. S. Gouveia-Neto, L. A. Bueno, A. C. M. Afonso, J. F. Nascimento, E. B. Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Upconversion luminescence in Ho3+/Yb3+- and Tb3+/Yb3+-codoped fluorogermanate glass and glass ceramic,” J. Non-Cryst. Solids 354(2–9), 509–514 (2008).
[Crossref]

J. Nucl. Mater. (1)

V. Badjeck, M. G. Walls, L. Chaffron, J. Malaplate, and K. March, “New insights into the chemical structure of Y2Ti2O7−δ nanoparticles in oxide dispersion-strengthened steels designed for sodium fast reactors by electron energy-loss spectroscopy,” J. Nucl. Mater. 456, 292–301 (2015).
[Crossref]

J. Phys. Chem. B (1)

J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled Synthesis, Formation Mechanism, and Great Enhancement of Red Upconversion Luminescence of NaYF4:Yb3+, Er3+ Nanocrystals/Submicroplates at Low Doping Level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

W. L. Wang, Q. K. Shang, W. Zheng, H. Yu, X. J. Feng, Z. D. Wang, Y. B. Zhang, and G. Q. Li, “A novel near-infrared antibacterial material depending on the upconverting property of Er3+-Yb3+-Fe3+ tridoped TiO2 nanopowder,” J. Phys. Chem. C 114(32), 13663–13669 (2010).
[Crossref]

J. Phys. Condens. Matter (1)

J. A. Hodges, P. Bonville, A. Forget, M. Rams, K. Królas, and G. Dhalenne, “The crystal field and exchange interactions in Yb2Ti2O7,” J. Phys. Condens. Matter 13(41), 9301–9310 (2001).
[Crossref]

J. Rare Earths (1)

X. Yin, H. Wang, M. Xing, Y. Fu, Y. Tian, X. Shen, W. Yu, and X. Luo, “Upconversion luminescence of Y2Ti2O7:Er3+ under 1550 and 980 nm excitation,” J. Rare Earths 35(3), 230–234 (2017).
[Crossref]

J. Solid State Chem. (2)

L. Li, Y. L. Yang, M. Zhou, R. Q. Fan, L. L. Qiu, X. Wang, L. Y. Zhang, X. S. Zhou, and J. L. He, “Enhanced performance of dye-sensitized solar cells based on TiO2 with NIR-absorption and visible upconversion luminescence,” J. Solid State Chem. 198, 459–465 (2013).
[Crossref]

C. C. Ting, Y. S. Chiu, C. W. Chang, and L. C. Chuang, “Visible and infrared luminescence properties of Er3+-doped Y2Ti2O7 nanocrystals,” J. Solid State Chem. 184(3), 563–571 (2011).
[Crossref]

Langmuir (1)

B. Erdem, R. A. Hunsicker, G. W. Simmons, E. D. Sudol, V. L. Dimonie, and M. S. El-Aasser, “XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation,” Langmuir 17(9), 2664–2669 (2001).
[Crossref]

Mater. Lett. (1)

J. Zhang, X. Wang, W. T. Zheng, X. G. Kong, Y. J. Sun, and X. Wang, “Structure and luminescence properties of TiO2:Er3+ nanocrystals annealed at different temperatures,” Mater. Lett. 61(8–9), 1658–1661 (2007).
[Crossref]

Molecules (1)

H. Li, L. Xu, and G. Chen, “Controlled synthesis of monodisperse hexagonal NaYF4:Yb/Er nanocrystals with ultrasmall size and enhanced upconversion luminescence,” Molecules 22(12), 2113 (2017).
[Crossref]

Nanoscale (2)

P. Singh, P. K. Shahi, S. K. Singh, A. K. Singh, M. K. Singh, R. Prakash, and S. B. Rai, “Lanthanide doped ultrafine hybrid nanostructures: multicolour luminescence, upconversion based energy transfer and luminescent solar collector applications,” Nanoscale 9(2), 696–705 (2017).
[Crossref] [PubMed]

P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q. H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4(16), 5132–5137 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

Y. L. Lu, Y. Q. Lu, H. Fang, and N. B. Ming, “Upconversion of 1.064 μm Nd:YAG laser pulses into intense visible light in erbium-doped phosphate fibers,” Opt. Commun. 115(1), 110–114 (1995).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

J. Fu, X. Zhang, Z. Chao, Z. Li, J. Liao, D. Hou, H. Wen, X. Lu, and X. Xie, “Enhanced upconversion luminescence of NaYF4:Yb,Er microprisms via La3+ doping,” Opt. Laser Technol. 88, 280–286 (2017).
[Crossref]

Opt. Mater. (2)

M. Gunaseelan, S. Yamini, G. A. Kumar, and J. Senthilselvan, “Highly efficient upconversion luminescence in hexagonal NaYF4:Yb3+, Er3+ nanocrystals synthesized by a novel reverse microemulsion method,” Opt. Mater. 75, 174–186 (2018).
[Crossref]

X. Chuai, X. Guo, X. Liu, G. He, K. Zheng, C. He, and W. Qin, “Bifunctional NaGdF4:Yb, Er, Fe nanocrystals with the enhanced upconversion fluorescence,” Opt. Mater. 44, 13–17 (2015).
[Crossref]

Phys. Chem. Chem. Phys. (1)

X. Zhang, S. Lin, T. Lin, P. Zhang, J. Xu, L. Xu, and K. Chen, “Improved sensitization efficiency in Er3+ ions and SnO2 nanocrystals co-doped silica thin films,” Phys. Chem. Chem. Phys. 17(18), 11974–11980 (2015).
[Crossref] [PubMed]

RSC Advances (3)

Y. Wu, S. Lin, W. Shao, X. Zhang, J. Xu, L. Yu, and K. Chen, “Enhanced up-conversion luminescence from NaYF4:Yb,Er nanocrystals by Gd3+ ions induced phase transformation and plasmonic Au nanosphere arrays,” RSC Advances 6(105), 102869 (2016).
[Crossref] [PubMed]

P. Ramasamy, P. Manivasakan, and J. Kim, “Upconversion nanophosphors for solar cell applications,” RSC Advances 4(66), 34873–34895 (2014).
[Crossref]

X. Zhang, D. Xu, G. Zhou, X. Wang, H. Liu, Z. Yu, G. Zhang, and L. Zhu, “Color tunable up-conversion emission from ZrO2:Er3+,Yb3+ textile fibers,” RSC Advances 6(106), 103973 (2016).
[Crossref]

Thin Solid Films (1)

S. Y. Chen, C. C. Ting, and W. F. Hsieh, “Comparison of visible fluorescence properties between sol–gel derived Er3+–Yb3+ and Er3+–Y3+ co-doped TiO2 films,” Thin Solid Films 434(1–2), 171–177 (2003).
[Crossref]

Vacuum (2)

C. C. Wang, D. G. Yin, K. L. Song, J. Ouyang, and B. Liu, “Preparation of bi-functional NaGdF4-based upconversion nanocrystals and fine-tuning of emission colors of the nanocrystals by doping with Mn2+,” Vacuum 107, 311–315 (2014).
[Crossref]

X. G. Mao, B. X. Yan, J. Wang, and J. Shen, “Up-conversion fluorescence characteristics and mechanism of Er3+-doped TiO2 thin films,” Vacuum 102, 38–42 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the synthesis procedure.
Fig. 2
Fig. 2 (a) XRD patterns of samples annealed at different temperatures. (b) Structure models of anatase, rutile and pyrochlore phase [33].
Fig. 3
Fig. 3 TEM images of Yb3+/Er3+ co-doped TiO2 annealed at different temperatures: (a) 600 °C, (b) 700 °C, (c) 800 °C. The insets are high-resolution images and corresponding Fast Fourier Transform images. (d) EDX spectrum of the sample annealed at 700°C.
Fig. 4
Fig. 4 XPS spectra: (a) Ti 2p, and (b) O 1s, for Yb3+/Er3+ co-doped TiO2 nanocrystals annealed at 700 °C.
Fig. 5
Fig. 5 (a) UC emission spectra of samples; (b) Integrated intensity of red emission as a function of annealing temperature, insets are the corresponding luminescent photos of the samples in ethanol solutions; (c) Double-logarithmic plot of excitation power dependent luminescence intensity of the sample annealed at 700 °C; (d) Schematic diagram of proposed UC mechanisms in Yb3+/Er3+ co-doped TiO2 nanocrystals.
Fig. 6
Fig. 6 Transient UC spectra and decay times of 4F9/24I15/2 transition under a 980 nm pulsed laser.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

2 F 5/2 ( Yb 3+ ) + 4 I 15/2 ( Er 3+ ) 2 F 7/2 ( Yb 3+ ) + 4 I 11/2 ( Er 3+ )
2 F 5/2 ( Yb 3+ ) + 4 I 13/2 ( Er 3+ ) 2 F 7/2 ( Yb 3+ ) + 4 F 9/2 ( Er 3+ )
2 H 11/2 / 4 S 3/2 ( Er 3+ ) 4 F 9/2 ( Er 3+ ) ( nonradiative relaxation )
2 F 5/2 ( Yb 3+ ) + 4 I 15/2 ( Er 3+ ) 2 F 7/2 ( Yb 3+ ) + 4 I 11/2 ( Er 3+ )
2 F 5/2 ( Yb 3+ ) + 4 I 11/2 ( Er 3+ ) 4 F 7/2 ( Er 3+ ) + 2 F 7/2 ( Yb 3+ )
4 F 7/2 ( Er 3+ ) 2 H 11/2 / 4 S 3/2 ( Er 3+ ) ( nonradiative relaxation )
I(t)= Α 1 exp( t τ 1 )+ Α 2 exp( t τ 2 )
τ average = ( Α 1 τ 1 2 + Α 2 τ 2 2 ) ( Α 1 τ 1 + Α 2 τ 2 )

Metrics