Abstract

We present a two-step in situ photoalignment method for achieving stable planar alignment of nematic liquid crystals. Monodomain and multidomain planar alignments were efficiently induced by employing photochromic side chain polyimides with linearly polarized visible light. Subsequently, the induced alignment was effectively stabilized by UV-curable reactive mesogens (RMs). For efficient alignment control and stabilization, two processes were performed separately by using different wavelengths of exposed light (i.e., dual wavelength in situ photoalignment). The polymerized RM-layers acted as new alignment layers, by overcoating the pristine PI-alignment layers. As a result, the reversible photochromic PI-layer lost its function as an alignment layer and thus the LC alignment became irreversible and stable. Therefore, the proposed dual wavelength in situ photoalignment can be beneficially adopted for practical device applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope

Yang Dong, Ji Qi, Honghui He, Chao He, Shaoxiong Liu, Jian Wu, Daniel S. Elson, and Hui Ma
Biomed. Opt. Express 8(8) 3643-3655 (2017)

Chemical reactivation of resin-embedded pHuji adds red for simultaneous two-color imaging with EGFP

Wenyan Guo, Xiuli Liu, Yurong Liu, Yadong Gang, Xiaobin He, Yao Jia, Fangfang Yin, Pei Li, Fei Huang, Hongfu Zhou, Xiaojun Wang, Hui Gong, Qingming Luo, Fuqiang Xu, and Shaoqun Zeng
Biomed. Opt. Express 8(7) 3281-3288 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. Takatoh, M. Hasegawa, M. Koden, N. Otoh, R. Hasegawa, and M. Sakamoto, Alignment Technologies and Applications of Liquid Crystal Devices (Taylor and Francis, 2005).
  2. S.-C. Jeng, C.-W. Kuo, H.-L. Wang, and C.-C. Liao, “Nanoparticles-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
    [Crossref]
  3. Y. Yi, G. Lombardo, N. Ashby, R. Barberi, J. E. Maclennan, and N. A. Clark, “Topographic-pattern-induced homeotropic alignment of liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 041701 (2009).
    [Crossref] [PubMed]
  4. H. S. Jeong, H.-J. Jeon, Y. H. Kim, M. B. Oh, P. Kumar, S.-W. Kang, and H.-T. Jung, “Bifunctional ITO layer with a high resolution, surface nano-pattern for alignment and switching of LCs in device applications,” NPG Asia Mater. 4(2), e7 (2012).
    [Crossref]
  5. S. Y. Oh and S. W. Kang, “Photoreactive self-assembled monolayer for the stabilization of tilt orientation of a director in vertically aligned nematic liquid crystals,” Opt. Express 21(25), 31367–31374 (2013).
    [Crossref] [PubMed]
  6. T. Seki, “Light-directed alignment, surface morphing and related processes: recent trends,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(34), 7895–7910 (2016).
    [Crossref]
  7. J. L. Janning, “Thin film surface orientation for liquid crystals,” Appl. Phys. Lett. 21(4), 173–174 (1972).
    [Crossref]
  8. M. Lu, “Liquid crystal orientation induced by Van der Waals interaction,” Jpn. J. Appl. Phys. 43(12), 8156–8160 (2004).
    [Crossref]
  9. D. S. Seo, S. Kobayashi, D. Y. Kang, and H. Yokoyama, “Effects of rubbing and temperature dependence of polar anchoring strength of homogeneously aligned nematic liquid crystal on polyimide langmuir-blodgett orientation films,” Jpn. J. Appl. Phys. 34(1), 3607–3611 (1995).
    [Crossref]
  10. P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
    [Crossref] [PubMed]
  11. J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, ““Ion beam alignment for liquid crystal display fabrication,” Nuc. Instru. and Methods in Phys. Res. B. 206, 467–471 (2003).
  12. J. S. Gwag, C. G. Jhun, J. C. Kim, T. H. Yoon, G. D. Lee, and S. J. Cho, “Alignment of liquid crystal on a polyimide surface exposed to an Ar ion beam,” J. Appl. Phys. 96(1), 257–260 (2004).
    [Crossref]
  13. V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (John Wiley & Sons, 2008).
  14. K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by “Command Surfaces” modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
    [Crossref]
  15. W. M. Gibbons, P. J. Shannon, S. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
    [Crossref]
  16. M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(1), 2155–2164 (1992).
    [Crossref]
  17. K. Ichimura, Y. Hayashi, H. Akiyama, and N. Ishizuki, “Photoregulation of in-plane reorientation of liquid crystals by azobenzenes laterally attached to substrate surfaces,” Langmuir 9(11), 3298–3304 (1993).
    [Crossref]
  18. Y. Wu, Y. Demachi, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photoinduced alignment of polymer liquid crystals containing azobenzene moieties in the side chain. 1. Effect of light intensity on alignment behavior,” Macromolecules 31(2), 349–354 (1998).
    [Crossref]
  19. C. Ruslim, L. Komitov, Y. Matsuzawa, and K. Ichimura, “Effects of Conformations of trans- and cis- azobenzenes on photoinduced anchoring transitions in a nematic liquid crystal,” Jpn. J. Appl. Phys. 39(2), L104–L106 (2000).
    [Crossref]
  20. V. Chigrinov, H.-S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: Physics and applications,” Liquid Crystals Today 14(4), 1–15 (2005).
    [Crossref]
  21. S. Kundu, M.-H. Lee, S. H. Lee, and S. W. Kang, “In situ homeotropic alignment of nematic liquid crystals based on photoisomerization of azo-dye, physical adsorption of aggregates, and consequent topographical modification,” Adv. Mater. 25(24), 3365–3370 (2013).
    [Crossref] [PubMed]
  22. Q. Guo, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Polymer and azo-dye composite: a photo-alignment layer for liquid crystals,” Liq. Cryst. 41(10), 1465–1472 (2014).
    [Crossref]
  23. C. McGinty, V. Finnemeyer, R. Reich, H. Clark, S. Berry, and P. Bos, “Stable azodye photo-alignment layer for liquid crystal devices achieved by “turning off” dye photosensitivity,” J. Appl. Phys. 122(20), 205301 (2017).
    [Crossref]
  24. O. Yaroshchuk and Y. Reznikov, “Photoalignment of liquid crystals: basics and current trends,” J. Mater. Chem. 22(2), 286–300 (2012).
    [Crossref]
  25. M. Hasegawa and Y. Taira, “Nematic homogeneous photoalignment by polyimide exposure to linearly polarized UV,” J. Photopolym. Sci. Technol. 8(2), 241 (1995).
    [Crossref]
  26. M. Nishikawa, B. Taheri, and J. L. West, “Mechanism of unidirectional liquid-crystal alignment on polyimides with linearly polarized ultraviolet light exposure,” Appl. Phys. Lett. 72(19), 2403–2405 (1998).
    [Crossref]
  27. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
    [Crossref] [PubMed]
  28. S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
    [Crossref]
  29. Y.-J. Lee, Y.-K. Kim, S. I. Jo, J. S. Gwag, C.-J. Yu, and J.-H. Kim, “Surface-controlled patterned vertical alignment mode with reactive mesogen,” Opt. Express 17(12), 10298–10303 (2009).
    [Crossref] [PubMed]
  30. O. Yaroshchuk, V. Kyrychenko, D. Tao, V. Chigrinov, H.-S. Kwok, H. Hasebe, and H. Takatsu, “Stabilization of liquid crystal photoaligning layers by reactive mesogens,” Appl. Phys. Lett. 95(2), 021902 (2009).
    [Crossref]
  31. M.-C. Tseng, O. Yaroshchuk, T. Bidna, A. K. Srivastava, V. Chigrinov, and H.-S. Kwok, “Strengthening of liquid crystal photoalignment on azo dye films: passivation by reactive mesogens,” RSC Advances 6(53), 48181–48188 (2016).
    [Crossref]
  32. P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
    [Crossref] [PubMed]
  33. L.-L. Ma, M.-J. Tang, W. Hu, Z.-Q. Cui, S.-J. Ge, P. Chen, L.-J. Chen, H. Qian, L.-F. Chi, and Y.-Q. Lu, “Smectic layer origami via preprogrammed photoalignment,” Adv. Mater. 29(15), 1606671 (2017).
    [Crossref]

2018 (1)

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

2017 (2)

L.-L. Ma, M.-J. Tang, W. Hu, Z.-Q. Cui, S.-J. Ge, P. Chen, L.-J. Chen, H. Qian, L.-F. Chi, and Y.-Q. Lu, “Smectic layer origami via preprogrammed photoalignment,” Adv. Mater. 29(15), 1606671 (2017).
[Crossref]

C. McGinty, V. Finnemeyer, R. Reich, H. Clark, S. Berry, and P. Bos, “Stable azodye photo-alignment layer for liquid crystal devices achieved by “turning off” dye photosensitivity,” J. Appl. Phys. 122(20), 205301 (2017).
[Crossref]

2016 (2)

M.-C. Tseng, O. Yaroshchuk, T. Bidna, A. K. Srivastava, V. Chigrinov, and H.-S. Kwok, “Strengthening of liquid crystal photoalignment on azo dye films: passivation by reactive mesogens,” RSC Advances 6(53), 48181–48188 (2016).
[Crossref]

T. Seki, “Light-directed alignment, surface morphing and related processes: recent trends,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(34), 7895–7910 (2016).
[Crossref]

2014 (1)

Q. Guo, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Polymer and azo-dye composite: a photo-alignment layer for liquid crystals,” Liq. Cryst. 41(10), 1465–1472 (2014).
[Crossref]

2013 (2)

S. Kundu, M.-H. Lee, S. H. Lee, and S. W. Kang, “In situ homeotropic alignment of nematic liquid crystals based on photoisomerization of azo-dye, physical adsorption of aggregates, and consequent topographical modification,” Adv. Mater. 25(24), 3365–3370 (2013).
[Crossref] [PubMed]

S. Y. Oh and S. W. Kang, “Photoreactive self-assembled monolayer for the stabilization of tilt orientation of a director in vertically aligned nematic liquid crystals,” Opt. Express 21(25), 31367–31374 (2013).
[Crossref] [PubMed]

2012 (2)

H. S. Jeong, H.-J. Jeon, Y. H. Kim, M. B. Oh, P. Kumar, S.-W. Kang, and H.-T. Jung, “Bifunctional ITO layer with a high resolution, surface nano-pattern for alignment and switching of LCs in device applications,” NPG Asia Mater. 4(2), e7 (2012).
[Crossref]

O. Yaroshchuk and Y. Reznikov, “Photoalignment of liquid crystals: basics and current trends,” J. Mater. Chem. 22(2), 286–300 (2012).
[Crossref]

2009 (3)

Y.-J. Lee, Y.-K. Kim, S. I. Jo, J. S. Gwag, C.-J. Yu, and J.-H. Kim, “Surface-controlled patterned vertical alignment mode with reactive mesogen,” Opt. Express 17(12), 10298–10303 (2009).
[Crossref] [PubMed]

O. Yaroshchuk, V. Kyrychenko, D. Tao, V. Chigrinov, H.-S. Kwok, H. Hasebe, and H. Takatsu, “Stabilization of liquid crystal photoaligning layers by reactive mesogens,” Appl. Phys. Lett. 95(2), 021902 (2009).
[Crossref]

Y. Yi, G. Lombardo, N. Ashby, R. Barberi, J. E. Maclennan, and N. A. Clark, “Topographic-pattern-induced homeotropic alignment of liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 041701 (2009).
[Crossref] [PubMed]

2007 (2)

S.-C. Jeng, C.-W. Kuo, H.-L. Wang, and C.-C. Liao, “Nanoparticles-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
[Crossref]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

2005 (1)

V. Chigrinov, H.-S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: Physics and applications,” Liquid Crystals Today 14(4), 1–15 (2005).
[Crossref]

2004 (2)

M. Lu, “Liquid crystal orientation induced by Van der Waals interaction,” Jpn. J. Appl. Phys. 43(12), 8156–8160 (2004).
[Crossref]

J. S. Gwag, C. G. Jhun, J. C. Kim, T. H. Yoon, G. D. Lee, and S. J. Cho, “Alignment of liquid crystal on a polyimide surface exposed to an Ar ion beam,” J. Appl. Phys. 96(1), 257–260 (2004).
[Crossref]

2003 (1)

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, ““Ion beam alignment for liquid crystal display fabrication,” Nuc. Instru. and Methods in Phys. Res. B. 206, 467–471 (2003).

2002 (1)

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

2001 (1)

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

2000 (1)

C. Ruslim, L. Komitov, Y. Matsuzawa, and K. Ichimura, “Effects of Conformations of trans- and cis- azobenzenes on photoinduced anchoring transitions in a nematic liquid crystal,” Jpn. J. Appl. Phys. 39(2), L104–L106 (2000).
[Crossref]

1998 (2)

M. Nishikawa, B. Taheri, and J. L. West, “Mechanism of unidirectional liquid-crystal alignment on polyimides with linearly polarized ultraviolet light exposure,” Appl. Phys. Lett. 72(19), 2403–2405 (1998).
[Crossref]

Y. Wu, Y. Demachi, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photoinduced alignment of polymer liquid crystals containing azobenzene moieties in the side chain. 1. Effect of light intensity on alignment behavior,” Macromolecules 31(2), 349–354 (1998).
[Crossref]

1995 (2)

D. S. Seo, S. Kobayashi, D. Y. Kang, and H. Yokoyama, “Effects of rubbing and temperature dependence of polar anchoring strength of homogeneously aligned nematic liquid crystal on polyimide langmuir-blodgett orientation films,” Jpn. J. Appl. Phys. 34(1), 3607–3611 (1995).
[Crossref]

M. Hasegawa and Y. Taira, “Nematic homogeneous photoalignment by polyimide exposure to linearly polarized UV,” J. Photopolym. Sci. Technol. 8(2), 241 (1995).
[Crossref]

1993 (1)

K. Ichimura, Y. Hayashi, H. Akiyama, and N. Ishizuki, “Photoregulation of in-plane reorientation of liquid crystals by azobenzenes laterally attached to substrate surfaces,” Langmuir 9(11), 3298–3304 (1993).
[Crossref]

1992 (1)

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(1), 2155–2164 (1992).
[Crossref]

1991 (1)

W. M. Gibbons, P. J. Shannon, S. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[Crossref]

1988 (1)

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by “Command Surfaces” modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[Crossref]

1972 (1)

J. L. Janning, “Thin film surface orientation for liquid crystals,” Appl. Phys. Lett. 21(4), 173–174 (1972).
[Crossref]

Akiyama, H.

K. Ichimura, Y. Hayashi, H. Akiyama, and N. Ishizuki, “Photoregulation of in-plane reorientation of liquid crystals by azobenzenes laterally attached to substrate surfaces,” Langmuir 9(11), 3298–3304 (1993).
[Crossref]

Andry, P. S.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Aoki, K.

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by “Command Surfaces” modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[Crossref]

Ashby, N.

Y. Yi, G. Lombardo, N. Ashby, R. Barberi, J. E. Maclennan, and N. A. Clark, “Topographic-pattern-induced homeotropic alignment of liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 041701 (2009).
[Crossref] [PubMed]

Barberi, R.

Y. Yi, G. Lombardo, N. Ashby, R. Barberi, J. E. Maclennan, and N. A. Clark, “Topographic-pattern-induced homeotropic alignment of liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 041701 (2009).
[Crossref] [PubMed]

Berry, S.

C. McGinty, V. Finnemeyer, R. Reich, H. Clark, S. Berry, and P. Bos, “Stable azodye photo-alignment layer for liquid crystal devices achieved by “turning off” dye photosensitivity,” J. Appl. Phys. 122(20), 205301 (2017).
[Crossref]

Bidna, T.

M.-C. Tseng, O. Yaroshchuk, T. Bidna, A. K. Srivastava, V. Chigrinov, and H.-S. Kwok, “Strengthening of liquid crystal photoalignment on azo dye films: passivation by reactive mesogens,” RSC Advances 6(53), 48181–48188 (2016).
[Crossref]

Bos, P.

C. McGinty, V. Finnemeyer, R. Reich, H. Clark, S. Berry, and P. Bos, “Stable azodye photo-alignment layer for liquid crystal devices achieved by “turning off” dye photosensitivity,” J. Appl. Phys. 122(20), 205301 (2017).
[Crossref]

Cai, C.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Callegari, A.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Callegari, A. C.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, ““Ion beam alignment for liquid crystal display fabrication,” Nuc. Instru. and Methods in Phys. Res. B. 206, 467–471 (2003).

Chaudhari, P.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, ““Ion beam alignment for liquid crystal display fabrication,” Nuc. Instru. and Methods in Phys. Res. B. 206, 467–471 (2003).

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Chen, J.

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

Chen, L.-J.

L.-L. Ma, M.-J. Tang, W. Hu, Z.-Q. Cui, S.-J. Ge, P. Chen, L.-J. Chen, H. Qian, L.-F. Chi, and Y.-Q. Lu, “Smectic layer origami via preprogrammed photoalignment,” Adv. Mater. 29(15), 1606671 (2017).
[Crossref]

Chen, P.

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

L.-L. Ma, M.-J. Tang, W. Hu, Z.-Q. Cui, S.-J. Ge, P. Chen, L.-J. Chen, H. Qian, L.-F. Chi, and Y.-Q. Lu, “Smectic layer origami via preprogrammed photoalignment,” Adv. Mater. 29(15), 1606671 (2017).
[Crossref]

Chi, L.-F.

L.-L. Ma, M.-J. Tang, W. Hu, Z.-Q. Cui, S.-J. Ge, P. Chen, L.-J. Chen, H. Qian, L.-F. Chi, and Y.-Q. Lu, “Smectic layer origami via preprogrammed photoalignment,” Adv. Mater. 29(15), 1606671 (2017).
[Crossref]

Chigrinov, V.

M.-C. Tseng, O. Yaroshchuk, T. Bidna, A. K. Srivastava, V. Chigrinov, and H.-S. Kwok, “Strengthening of liquid crystal photoalignment on azo dye films: passivation by reactive mesogens,” RSC Advances 6(53), 48181–48188 (2016).
[Crossref]

O. Yaroshchuk, V. Kyrychenko, D. Tao, V. Chigrinov, H.-S. Kwok, H. Hasebe, and H. Takatsu, “Stabilization of liquid crystal photoaligning layers by reactive mesogens,” Appl. Phys. Lett. 95(2), 021902 (2009).
[Crossref]

V. Chigrinov, H.-S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: Physics and applications,” Liquid Crystals Today 14(4), 1–15 (2005).
[Crossref]

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(1), 2155–2164 (1992).
[Crossref]

Chigrinov, V. G.

Q. Guo, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Polymer and azo-dye composite: a photo-alignment layer for liquid crystals,” Liq. Cryst. 41(10), 1465–1472 (2014).
[Crossref]

Cho, S. J.

J. S. Gwag, C. G. Jhun, J. C. Kim, T. H. Yoon, G. D. Lee, and S. J. Cho, “Alignment of liquid crystal on a polyimide surface exposed to an Ar ion beam,” J. Appl. Phys. 96(1), 257–260 (2004).
[Crossref]

Clark, H.

C. McGinty, V. Finnemeyer, R. Reich, H. Clark, S. Berry, and P. Bos, “Stable azodye photo-alignment layer for liquid crystal devices achieved by “turning off” dye photosensitivity,” J. Appl. Phys. 122(20), 205301 (2017).
[Crossref]

Clark, N. A.

Y. Yi, G. Lombardo, N. Ashby, R. Barberi, J. E. Maclennan, and N. A. Clark, “Topographic-pattern-induced homeotropic alignment of liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 041701 (2009).
[Crossref] [PubMed]

Cui, Z.-Q.

L.-L. Ma, M.-J. Tang, W. Hu, Z.-Q. Cui, S.-J. Ge, P. Chen, L.-J. Chen, H. Qian, L.-F. Chi, and Y.-Q. Lu, “Smectic layer origami via preprogrammed photoalignment,” Adv. Mater. 29(15), 1606671 (2017).
[Crossref]

Demachi, Y.

Y. Wu, Y. Demachi, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photoinduced alignment of polymer liquid crystals containing azobenzene moieties in the side chain. 1. Effect of light intensity on alignment behavior,” Macromolecules 31(2), 349–354 (1998).
[Crossref]

Doyle, J.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Doyle, J. P.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, ““Ion beam alignment for liquid crystal display fabrication,” Nuc. Instru. and Methods in Phys. Res. B. 206, 467–471 (2003).

Duan, W.

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

Finnemeyer, V.

C. McGinty, V. Finnemeyer, R. Reich, H. Clark, S. Berry, and P. Bos, “Stable azodye photo-alignment layer for liquid crystal devices achieved by “turning off” dye photosensitivity,” J. Appl. Phys. 122(20), 205301 (2017).
[Crossref]

Galligan, E.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Galligan, E. A.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, ““Ion beam alignment for liquid crystal display fabrication,” Nuc. Instru. and Methods in Phys. Res. B. 206, 467–471 (2003).

Gao, W.

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

Ge, S.-J.

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

L.-L. Ma, M.-J. Tang, W. Hu, Z.-Q. Cui, S.-J. Ge, P. Chen, L.-J. Chen, H. Qian, L.-F. Chi, and Y.-Q. Lu, “Smectic layer origami via preprogrammed photoalignment,” Adv. Mater. 29(15), 1606671 (2017).
[Crossref]

Gibbons, W. M.

W. M. Gibbons, P. J. Shannon, S. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[Crossref]

Guo, Q.

Q. Guo, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Polymer and azo-dye composite: a photo-alignment layer for liquid crystals,” Liq. Cryst. 41(10), 1465–1472 (2014).
[Crossref]

Gwag, J. S.

Y.-J. Lee, Y.-K. Kim, S. I. Jo, J. S. Gwag, C.-J. Yu, and J.-H. Kim, “Surface-controlled patterned vertical alignment mode with reactive mesogen,” Opt. Express 17(12), 10298–10303 (2009).
[Crossref] [PubMed]

J. S. Gwag, C. G. Jhun, J. C. Kim, T. H. Yoon, G. D. Lee, and S. J. Cho, “Alignment of liquid crystal on a polyimide surface exposed to an Ar ion beam,” J. Appl. Phys. 96(1), 257–260 (2004).
[Crossref]

Hasebe, H.

O. Yaroshchuk, V. Kyrychenko, D. Tao, V. Chigrinov, H.-S. Kwok, H. Hasebe, and H. Takatsu, “Stabilization of liquid crystal photoaligning layers by reactive mesogens,” Appl. Phys. Lett. 95(2), 021902 (2009).
[Crossref]

Hasegawa, M.

M. Hasegawa and Y. Taira, “Nematic homogeneous photoalignment by polyimide exposure to linearly polarized UV,” J. Photopolym. Sci. Technol. 8(2), 241 (1995).
[Crossref]

Hayashi, Y.

K. Ichimura, Y. Hayashi, H. Akiyama, and N. Ishizuki, “Photoregulation of in-plane reorientation of liquid crystals by azobenzenes laterally attached to substrate surfaces,” Langmuir 9(11), 3298–3304 (1993).
[Crossref]

Hisakado, Y.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Hosoki, A.

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by “Command Surfaces” modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[Crossref]

Hougham, G.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Hu, W.

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

L.-L. Ma, M.-J. Tang, W. Hu, Z.-Q. Cui, S.-J. Ge, P. Chen, L.-J. Chen, H. Qian, L.-F. Chi, and Y.-Q. Lu, “Smectic layer origami via preprogrammed photoalignment,” Adv. Mater. 29(15), 1606671 (2017).
[Crossref]

Ichimura, K.

C. Ruslim, L. Komitov, Y. Matsuzawa, and K. Ichimura, “Effects of Conformations of trans- and cis- azobenzenes on photoinduced anchoring transitions in a nematic liquid crystal,” Jpn. J. Appl. Phys. 39(2), L104–L106 (2000).
[Crossref]

K. Ichimura, Y. Hayashi, H. Akiyama, and N. Ishizuki, “Photoregulation of in-plane reorientation of liquid crystals by azobenzenes laterally attached to substrate surfaces,” Langmuir 9(11), 3298–3304 (1993).
[Crossref]

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by “Command Surfaces” modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[Crossref]

Ikeda, T.

Y. Wu, Y. Demachi, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photoinduced alignment of polymer liquid crystals containing azobenzene moieties in the side chain. 1. Effect of light intensity on alignment behavior,” Macromolecules 31(2), 349–354 (1998).
[Crossref]

Ishizuki, N.

K. Ichimura, Y. Hayashi, H. Akiyama, and N. Ishizuki, “Photoregulation of in-plane reorientation of liquid crystals by azobenzenes laterally attached to substrate surfaces,” Langmuir 9(11), 3298–3304 (1993).
[Crossref]

Janning, J. L.

J. L. Janning, “Thin film surface orientation for liquid crystals,” Appl. Phys. Lett. 21(4), 173–174 (1972).
[Crossref]

Jeng, S.-C.

S.-C. Jeng, C.-W. Kuo, H.-L. Wang, and C.-C. Liao, “Nanoparticles-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
[Crossref]

Jeon, H.-J.

H. S. Jeong, H.-J. Jeon, Y. H. Kim, M. B. Oh, P. Kumar, S.-W. Kang, and H.-T. Jung, “Bifunctional ITO layer with a high resolution, surface nano-pattern for alignment and switching of LCs in device applications,” NPG Asia Mater. 4(2), e7 (2012).
[Crossref]

Jeong, H. S.

H. S. Jeong, H.-J. Jeon, Y. H. Kim, M. B. Oh, P. Kumar, S.-W. Kang, and H.-T. Jung, “Bifunctional ITO layer with a high resolution, surface nano-pattern for alignment and switching of LCs in device applications,” NPG Asia Mater. 4(2), e7 (2012).
[Crossref]

Jhun, C. G.

J. S. Gwag, C. G. Jhun, J. C. Kim, T. H. Yoon, G. D. Lee, and S. J. Cho, “Alignment of liquid crystal on a polyimide surface exposed to an Ar ion beam,” J. Appl. Phys. 96(1), 257–260 (2004).
[Crossref]

Jo, S. I.

John, R.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Jung, H.-T.

H. S. Jeong, H.-J. Jeon, Y. H. Kim, M. B. Oh, P. Kumar, S.-W. Kang, and H.-T. Jung, “Bifunctional ITO layer with a high resolution, surface nano-pattern for alignment and switching of LCs in device applications,” NPG Asia Mater. 4(2), e7 (2012).
[Crossref]

Kajiyama, T.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Kanazawa, A.

Y. Wu, Y. Demachi, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photoinduced alignment of polymer liquid crystals containing azobenzene moieties in the side chain. 1. Effect of light intensity on alignment behavior,” Macromolecules 31(2), 349–354 (1998).
[Crossref]

Kang, D. Y.

D. S. Seo, S. Kobayashi, D. Y. Kang, and H. Yokoyama, “Effects of rubbing and temperature dependence of polar anchoring strength of homogeneously aligned nematic liquid crystal on polyimide langmuir-blodgett orientation films,” Jpn. J. Appl. Phys. 34(1), 3607–3611 (1995).
[Crossref]

Kang, S. W.

S. Kundu, M.-H. Lee, S. H. Lee, and S. W. Kang, “In situ homeotropic alignment of nematic liquid crystals based on photoisomerization of azo-dye, physical adsorption of aggregates, and consequent topographical modification,” Adv. Mater. 25(24), 3365–3370 (2013).
[Crossref] [PubMed]

S. Y. Oh and S. W. Kang, “Photoreactive self-assembled monolayer for the stabilization of tilt orientation of a director in vertically aligned nematic liquid crystals,” Opt. Express 21(25), 31367–31374 (2013).
[Crossref] [PubMed]

Kang, S.-W.

H. S. Jeong, H.-J. Jeon, Y. H. Kim, M. B. Oh, P. Kumar, S.-W. Kang, and H.-T. Jung, “Bifunctional ITO layer with a high resolution, surface nano-pattern for alignment and switching of LCs in device applications,” NPG Asia Mater. 4(2), e7 (2012).
[Crossref]

Katoh, Y.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, ““Ion beam alignment for liquid crystal display fabrication,” Nuc. Instru. and Methods in Phys. Res. B. 206, 467–471 (2003).

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Kikuchi, H.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Kim, J. C.

J. S. Gwag, C. G. Jhun, J. C. Kim, T. H. Yoon, G. D. Lee, and S. J. Cho, “Alignment of liquid crystal on a polyimide surface exposed to an Ar ion beam,” J. Appl. Phys. 96(1), 257–260 (2004).
[Crossref]

Kim, J.-H.

Kim, K. H.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

Kim, S. G.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

Kim, S. M.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

Kim, Y. H.

H. S. Jeong, H.-J. Jeon, Y. H. Kim, M. B. Oh, P. Kumar, S.-W. Kang, and H.-T. Jung, “Bifunctional ITO layer with a high resolution, surface nano-pattern for alignment and switching of LCs in device applications,” NPG Asia Mater. 4(2), e7 (2012).
[Crossref]

Kim, Y. S.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

Kim, Y.-K.

Kobayashi, S.

D. S. Seo, S. Kobayashi, D. Y. Kang, and H. Yokoyama, “Effects of rubbing and temperature dependence of polar anchoring strength of homogeneously aligned nematic liquid crystal on polyimide langmuir-blodgett orientation films,” Jpn. J. Appl. Phys. 34(1), 3607–3611 (1995).
[Crossref]

Komitov, L.

C. Ruslim, L. Komitov, Y. Matsuzawa, and K. Ichimura, “Effects of Conformations of trans- and cis- azobenzenes on photoinduced anchoring transitions in a nematic liquid crystal,” Jpn. J. Appl. Phys. 39(2), L104–L106 (2000).
[Crossref]

Kozinkov, V.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(1), 2155–2164 (1992).
[Crossref]

Kumar, P.

H. S. Jeong, H.-J. Jeon, Y. H. Kim, M. B. Oh, P. Kumar, S.-W. Kang, and H.-T. Jung, “Bifunctional ITO layer with a high resolution, surface nano-pattern for alignment and switching of LCs in device applications,” NPG Asia Mater. 4(2), e7 (2012).
[Crossref]

Kundu, S.

S. Kundu, M.-H. Lee, S. H. Lee, and S. W. Kang, “In situ homeotropic alignment of nematic liquid crystals based on photoisomerization of azo-dye, physical adsorption of aggregates, and consequent topographical modification,” Adv. Mater. 25(24), 3365–3370 (2013).
[Crossref] [PubMed]

Kuo, C.-W.

S.-C. Jeng, C.-W. Kuo, H.-L. Wang, and C.-C. Liao, “Nanoparticles-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
[Crossref]

Kwok, H. S.

Q. Guo, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Polymer and azo-dye composite: a photo-alignment layer for liquid crystals,” Liq. Cryst. 41(10), 1465–1472 (2014).
[Crossref]

Kwok, H.-S.

M.-C. Tseng, O. Yaroshchuk, T. Bidna, A. K. Srivastava, V. Chigrinov, and H.-S. Kwok, “Strengthening of liquid crystal photoalignment on azo dye films: passivation by reactive mesogens,” RSC Advances 6(53), 48181–48188 (2016).
[Crossref]

O. Yaroshchuk, V. Kyrychenko, D. Tao, V. Chigrinov, H.-S. Kwok, H. Hasebe, and H. Takatsu, “Stabilization of liquid crystal photoaligning layers by reactive mesogens,” Appl. Phys. Lett. 95(2), 021902 (2009).
[Crossref]

V. Chigrinov, H.-S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: Physics and applications,” Liquid Crystals Today 14(4), 1–15 (2005).
[Crossref]

Kyrychenko, V.

O. Yaroshchuk, V. Kyrychenko, D. Tao, V. Chigrinov, H.-S. Kwok, H. Hasebe, and H. Takatsu, “Stabilization of liquid crystal photoaligning layers by reactive mesogens,” Appl. Phys. Lett. 95(2), 021902 (2009).
[Crossref]

Lacey, J.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Lacey, J. L.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, ““Ion beam alignment for liquid crystal display fabrication,” Nuc. Instru. and Methods in Phys. Res. B. 206, 467–471 (2003).

Lang, N. D.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, ““Ion beam alignment for liquid crystal display fabrication,” Nuc. Instru. and Methods in Phys. Res. B. 206, 467–471 (2003).

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Lee, G. D.

J. S. Gwag, C. G. Jhun, J. C. Kim, T. H. Yoon, G. D. Lee, and S. J. Cho, “Alignment of liquid crystal on a polyimide surface exposed to an Ar ion beam,” J. Appl. Phys. 96(1), 257–260 (2004).
[Crossref]

Lee, G.-D.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

Lee, H. K.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

Lee, M.-H.

S. Kundu, M.-H. Lee, S. H. Lee, and S. W. Kang, “In situ homeotropic alignment of nematic liquid crystals based on photoisomerization of azo-dye, physical adsorption of aggregates, and consequent topographical modification,” Adv. Mater. 25(24), 3365–3370 (2013).
[Crossref] [PubMed]

Lee, S. H.

S. Kundu, M.-H. Lee, S. H. Lee, and S. W. Kang, “In situ homeotropic alignment of nematic liquid crystals based on photoisomerization of azo-dye, physical adsorption of aggregates, and consequent topographical modification,” Adv. Mater. 25(24), 3365–3370 (2013).
[Crossref] [PubMed]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

Lee, Y.-J.

Li, T.

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

Liao, C.-C.

S.-C. Jeng, C.-W. Kuo, H.-L. Wang, and C.-C. Liao, “Nanoparticles-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
[Crossref]

Lien, S. C.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, ““Ion beam alignment for liquid crystal display fabrication,” Nuc. Instru. and Methods in Phys. Res. B. 206, 467–471 (2003).

Lien, S. C. A.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Lombardo, G.

Y. Yi, G. Lombardo, N. Ashby, R. Barberi, J. E. Maclennan, and N. A. Clark, “Topographic-pattern-induced homeotropic alignment of liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 041701 (2009).
[Crossref] [PubMed]

Lu, M.

M. Lu, “Liquid crystal orientation induced by Van der Waals interaction,” Jpn. J. Appl. Phys. 43(12), 8156–8160 (2004).
[Crossref]

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, ““Ion beam alignment for liquid crystal display fabrication,” Nuc. Instru. and Methods in Phys. Res. B. 206, 467–471 (2003).

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Lu, Y.-Q.

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

L.-L. Ma, M.-J. Tang, W. Hu, Z.-Q. Cui, S.-J. Ge, P. Chen, L.-J. Chen, H. Qian, L.-F. Chi, and Y.-Q. Lu, “Smectic layer origami via preprogrammed photoalignment,” Adv. Mater. 29(15), 1606671 (2017).
[Crossref]

Lyu, J.-J.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

Ma, L.-L.

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

L.-L. Ma, M.-J. Tang, W. Hu, Z.-Q. Cui, S.-J. Ge, P. Chen, L.-J. Chen, H. Qian, L.-F. Chi, and Y.-Q. Lu, “Smectic layer origami via preprogrammed photoalignment,” Adv. Mater. 29(15), 1606671 (2017).
[Crossref]

Maclennan, J. E.

Y. Yi, G. Lombardo, N. Ashby, R. Barberi, J. E. Maclennan, and N. A. Clark, “Topographic-pattern-induced homeotropic alignment of liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 041701 (2009).
[Crossref] [PubMed]

Matsuzawa, Y.

C. Ruslim, L. Komitov, Y. Matsuzawa, and K. Ichimura, “Effects of Conformations of trans- and cis- azobenzenes on photoinduced anchoring transitions in a nematic liquid crystal,” Jpn. J. Appl. Phys. 39(2), L104–L106 (2000).
[Crossref]

McGinty, C.

C. McGinty, V. Finnemeyer, R. Reich, H. Clark, S. Berry, and P. Bos, “Stable azodye photo-alignment layer for liquid crystal devices achieved by “turning off” dye photosensitivity,” J. Appl. Phys. 122(20), 205301 (2017).
[Crossref]

Nakagaki, J.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Nakagawa, Y.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, ““Ion beam alignment for liquid crystal display fabrication,” Nuc. Instru. and Methods in Phys. Res. B. 206, 467–471 (2003).

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Nakano, H.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, ““Ion beam alignment for liquid crystal display fabrication,” Nuc. Instru. and Methods in Phys. Res. B. 206, 467–471 (2003).

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Nishikawa, M.

M. Nishikawa, B. Taheri, and J. L. West, “Mechanism of unidirectional liquid-crystal alignment on polyimides with linearly polarized ultraviolet light exposure,” Appl. Phys. Lett. 72(19), 2403–2405 (1998).
[Crossref]

Odahara, S.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, ““Ion beam alignment for liquid crystal display fabrication,” Nuc. Instru. and Methods in Phys. Res. B. 206, 467–471 (2003).

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Oh, M. B.

H. S. Jeong, H.-J. Jeon, Y. H. Kim, M. B. Oh, P. Kumar, S.-W. Kang, and H.-T. Jung, “Bifunctional ITO layer with a high resolution, surface nano-pattern for alignment and switching of LCs in device applications,” NPG Asia Mater. 4(2), e7 (2012).
[Crossref]

Oh, S. Y.

Okazaki, N.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, ““Ion beam alignment for liquid crystal display fabrication,” Nuc. Instru. and Methods in Phys. Res. B. 206, 467–471 (2003).

Purushothaman, S.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Qian, H.

L.-L. Ma, M.-J. Tang, W. Hu, Z.-Q. Cui, S.-J. Ge, P. Chen, L.-J. Chen, H. Qian, L.-F. Chi, and Y.-Q. Lu, “Smectic layer origami via preprogrammed photoalignment,” Adv. Mater. 29(15), 1606671 (2017).
[Crossref]

Reich, R.

C. McGinty, V. Finnemeyer, R. Reich, H. Clark, S. Berry, and P. Bos, “Stable azodye photo-alignment layer for liquid crystal devices achieved by “turning off” dye photosensitivity,” J. Appl. Phys. 122(20), 205301 (2017).
[Crossref]

Reznikov, Y.

O. Yaroshchuk and Y. Reznikov, “Photoalignment of liquid crystals: basics and current trends,” J. Mater. Chem. 22(2), 286–300 (2012).
[Crossref]

Ritsko, J.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Ruslim, C.

C. Ruslim, L. Komitov, Y. Matsuzawa, and K. Ichimura, “Effects of Conformations of trans- and cis- azobenzenes on photoinduced anchoring transitions in a nematic liquid crystal,” Jpn. J. Appl. Phys. 39(2), L104–L106 (2000).
[Crossref]

Saitoh, Y.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, ““Ion beam alignment for liquid crystal display fabrication,” Nuc. Instru. and Methods in Phys. Res. B. 206, 467–471 (2003).

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Sakai, K.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, ““Ion beam alignment for liquid crystal display fabrication,” Nuc. Instru. and Methods in Phys. Res. B. 206, 467–471 (2003).

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Samant, M.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Satoh, H.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, ““Ion beam alignment for liquid crystal display fabrication,” Nuc. Instru. and Methods in Phys. Res. B. 206, 467–471 (2003).

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Schadt, M.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(1), 2155–2164 (1992).
[Crossref]

Schmitt, K.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(1), 2155–2164 (1992).
[Crossref]

Seki, T.

T. Seki, “Light-directed alignment, surface morphing and related processes: recent trends,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(34), 7895–7910 (2016).
[Crossref]

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by “Command Surfaces” modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[Crossref]

Seo, D. S.

D. S. Seo, S. Kobayashi, D. Y. Kang, and H. Yokoyama, “Effects of rubbing and temperature dependence of polar anchoring strength of homogeneously aligned nematic liquid crystal on polyimide langmuir-blodgett orientation films,” Jpn. J. Appl. Phys. 34(1), 3607–3611 (1995).
[Crossref]

Shannon, P. J.

W. M. Gibbons, P. J. Shannon, S. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[Crossref]

Shiono, T.

Y. Wu, Y. Demachi, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photoinduced alignment of polymer liquid crystals containing azobenzene moieties in the side chain. 1. Effect of light intensity on alignment behavior,” Macromolecules 31(2), 349–354 (1998).
[Crossref]

Shiota, Y.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, ““Ion beam alignment for liquid crystal display fabrication,” Nuc. Instru. and Methods in Phys. Res. B. 206, 467–471 (2003).

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Speidell, J.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Srivastava, A. K.

M.-C. Tseng, O. Yaroshchuk, T. Bidna, A. K. Srivastava, V. Chigrinov, and H.-S. Kwok, “Strengthening of liquid crystal photoalignment on azo dye films: passivation by reactive mesogens,” RSC Advances 6(53), 48181–48188 (2016).
[Crossref]

Q. Guo, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Polymer and azo-dye composite: a photo-alignment layer for liquid crystals,” Liq. Cryst. 41(10), 1465–1472 (2014).
[Crossref]

Stöhr, J.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Sun, S.

W. M. Gibbons, P. J. Shannon, S. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[Crossref]

Suzuki, Y.

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by “Command Surfaces” modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[Crossref]

Swetlin, B. J.

W. M. Gibbons, P. J. Shannon, S. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[Crossref]

Taheri, B.

M. Nishikawa, B. Taheri, and J. L. West, “Mechanism of unidirectional liquid-crystal alignment on polyimides with linearly polarized ultraviolet light exposure,” Appl. Phys. Lett. 72(19), 2403–2405 (1998).
[Crossref]

Taira, Y.

M. Hasegawa and Y. Taira, “Nematic homogeneous photoalignment by polyimide exposure to linearly polarized UV,” J. Photopolym. Sci. Technol. 8(2), 241 (1995).
[Crossref]

Takada, H.

V. Chigrinov, H.-S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: Physics and applications,” Liquid Crystals Today 14(4), 1–15 (2005).
[Crossref]

Takatsu, H.

O. Yaroshchuk, V. Kyrychenko, D. Tao, V. Chigrinov, H.-S. Kwok, H. Hasebe, and H. Takatsu, “Stabilization of liquid crystal photoaligning layers by reactive mesogens,” Appl. Phys. Lett. 95(2), 021902 (2009).
[Crossref]

V. Chigrinov, H.-S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: Physics and applications,” Liquid Crystals Today 14(4), 1–15 (2005).
[Crossref]

Tang, M.-J.

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

L.-L. Ma, M.-J. Tang, W. Hu, Z.-Q. Cui, S.-J. Ge, P. Chen, L.-J. Chen, H. Qian, L.-F. Chi, and Y.-Q. Lu, “Smectic layer origami via preprogrammed photoalignment,” Adv. Mater. 29(15), 1606671 (2017).
[Crossref]

Tao, D.

O. Yaroshchuk, V. Kyrychenko, D. Tao, V. Chigrinov, H.-S. Kwok, H. Hasebe, and H. Takatsu, “Stabilization of liquid crystal photoaligning layers by reactive mesogens,” Appl. Phys. Lett. 95(2), 021902 (2009).
[Crossref]

Tseng, M.-C.

M.-C. Tseng, O. Yaroshchuk, T. Bidna, A. K. Srivastava, V. Chigrinov, and H.-S. Kwok, “Strengthening of liquid crystal photoalignment on azo dye films: passivation by reactive mesogens,” RSC Advances 6(53), 48181–48188 (2016).
[Crossref]

Tsutsumi, O.

Y. Wu, Y. Demachi, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photoinduced alignment of polymer liquid crystals containing azobenzene moieties in the side chain. 1. Effect of light intensity on alignment behavior,” Macromolecules 31(2), 349–354 (1998).
[Crossref]

Wang, H.-L.

S.-C. Jeng, C.-W. Kuo, H.-L. Wang, and C.-C. Liao, “Nanoparticles-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
[Crossref]

West, J. L.

M. Nishikawa, B. Taheri, and J. L. West, “Mechanism of unidirectional liquid-crystal alignment on polyimides with linearly polarized ultraviolet light exposure,” Appl. Phys. Lett. 72(19), 2403–2405 (1998).
[Crossref]

Wu, Y.

Y. Wu, Y. Demachi, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photoinduced alignment of polymer liquid crystals containing azobenzene moieties in the side chain. 1. Effect of light intensity on alignment behavior,” Macromolecules 31(2), 349–354 (1998).
[Crossref]

Xu, R.

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

Yang, H.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Yang, K. H.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Yaroshchuk, O.

M.-C. Tseng, O. Yaroshchuk, T. Bidna, A. K. Srivastava, V. Chigrinov, and H.-S. Kwok, “Strengthening of liquid crystal photoalignment on azo dye films: passivation by reactive mesogens,” RSC Advances 6(53), 48181–48188 (2016).
[Crossref]

O. Yaroshchuk and Y. Reznikov, “Photoalignment of liquid crystals: basics and current trends,” J. Mater. Chem. 22(2), 286–300 (2012).
[Crossref]

O. Yaroshchuk, V. Kyrychenko, D. Tao, V. Chigrinov, H.-S. Kwok, H. Hasebe, and H. Takatsu, “Stabilization of liquid crystal photoaligning layers by reactive mesogens,” Appl. Phys. Lett. 95(2), 021902 (2009).
[Crossref]

Yi, Y.

Y. Yi, G. Lombardo, N. Ashby, R. Barberi, J. E. Maclennan, and N. A. Clark, “Topographic-pattern-induced homeotropic alignment of liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 041701 (2009).
[Crossref] [PubMed]

Yokota, M.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Yokoyama, H.

D. S. Seo, S. Kobayashi, D. Y. Kang, and H. Yokoyama, “Effects of rubbing and temperature dependence of polar anchoring strength of homogeneously aligned nematic liquid crystal on polyimide langmuir-blodgett orientation films,” Jpn. J. Appl. Phys. 34(1), 3607–3611 (1995).
[Crossref]

Yoon, T. H.

J. S. Gwag, C. G. Jhun, J. C. Kim, T. H. Yoon, G. D. Lee, and S. J. Cho, “Alignment of liquid crystal on a polyimide surface exposed to an Ar ion beam,” J. Appl. Phys. 96(1), 257–260 (2004).
[Crossref]

Yu, C.-J.

Zhu, Z.-H.

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

Adv. Mater. (3)

S. Kundu, M.-H. Lee, S. H. Lee, and S. W. Kang, “In situ homeotropic alignment of nematic liquid crystals based on photoisomerization of azo-dye, physical adsorption of aggregates, and consequent topographical modification,” Adv. Mater. 25(24), 3365–3370 (2013).
[Crossref] [PubMed]

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

L.-L. Ma, M.-J. Tang, W. Hu, Z.-Q. Cui, S.-J. Ge, P. Chen, L.-J. Chen, H. Qian, L.-F. Chi, and Y.-Q. Lu, “Smectic layer origami via preprogrammed photoalignment,” Adv. Mater. 29(15), 1606671 (2017).
[Crossref]

Appl. Phys. Lett. (5)

M. Nishikawa, B. Taheri, and J. L. West, “Mechanism of unidirectional liquid-crystal alignment on polyimides with linearly polarized ultraviolet light exposure,” Appl. Phys. Lett. 72(19), 2403–2405 (1998).
[Crossref]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

O. Yaroshchuk, V. Kyrychenko, D. Tao, V. Chigrinov, H.-S. Kwok, H. Hasebe, and H. Takatsu, “Stabilization of liquid crystal photoaligning layers by reactive mesogens,” Appl. Phys. Lett. 95(2), 021902 (2009).
[Crossref]

S.-C. Jeng, C.-W. Kuo, H.-L. Wang, and C.-C. Liao, “Nanoparticles-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
[Crossref]

J. L. Janning, “Thin film surface orientation for liquid crystals,” Appl. Phys. Lett. 21(4), 173–174 (1972).
[Crossref]

J. Appl. Phys. (2)

J. S. Gwag, C. G. Jhun, J. C. Kim, T. H. Yoon, G. D. Lee, and S. J. Cho, “Alignment of liquid crystal on a polyimide surface exposed to an Ar ion beam,” J. Appl. Phys. 96(1), 257–260 (2004).
[Crossref]

C. McGinty, V. Finnemeyer, R. Reich, H. Clark, S. Berry, and P. Bos, “Stable azodye photo-alignment layer for liquid crystal devices achieved by “turning off” dye photosensitivity,” J. Appl. Phys. 122(20), 205301 (2017).
[Crossref]

J. Mater. Chem. (1)

O. Yaroshchuk and Y. Reznikov, “Photoalignment of liquid crystals: basics and current trends,” J. Mater. Chem. 22(2), 286–300 (2012).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

T. Seki, “Light-directed alignment, surface morphing and related processes: recent trends,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(34), 7895–7910 (2016).
[Crossref]

J. Photopolym. Sci. Technol. (1)

M. Hasegawa and Y. Taira, “Nematic homogeneous photoalignment by polyimide exposure to linearly polarized UV,” J. Photopolym. Sci. Technol. 8(2), 241 (1995).
[Crossref]

Jpn. J. Appl. Phys. (4)

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(1), 2155–2164 (1992).
[Crossref]

C. Ruslim, L. Komitov, Y. Matsuzawa, and K. Ichimura, “Effects of Conformations of trans- and cis- azobenzenes on photoinduced anchoring transitions in a nematic liquid crystal,” Jpn. J. Appl. Phys. 39(2), L104–L106 (2000).
[Crossref]

M. Lu, “Liquid crystal orientation induced by Van der Waals interaction,” Jpn. J. Appl. Phys. 43(12), 8156–8160 (2004).
[Crossref]

D. S. Seo, S. Kobayashi, D. Y. Kang, and H. Yokoyama, “Effects of rubbing and temperature dependence of polar anchoring strength of homogeneously aligned nematic liquid crystal on polyimide langmuir-blodgett orientation films,” Jpn. J. Appl. Phys. 34(1), 3607–3611 (1995).
[Crossref]

Langmuir (2)

K. Ichimura, Y. Hayashi, H. Akiyama, and N. Ishizuki, “Photoregulation of in-plane reorientation of liquid crystals by azobenzenes laterally attached to substrate surfaces,” Langmuir 9(11), 3298–3304 (1993).
[Crossref]

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by “Command Surfaces” modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[Crossref]

Liq. Cryst. (1)

Q. Guo, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Polymer and azo-dye composite: a photo-alignment layer for liquid crystals,” Liq. Cryst. 41(10), 1465–1472 (2014).
[Crossref]

Liquid Crystals Today (1)

V. Chigrinov, H.-S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: Physics and applications,” Liquid Crystals Today 14(4), 1–15 (2005).
[Crossref]

Macromolecules (1)

Y. Wu, Y. Demachi, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photoinduced alignment of polymer liquid crystals containing azobenzene moieties in the side chain. 1. Effect of light intensity on alignment behavior,” Macromolecules 31(2), 349–354 (1998).
[Crossref]

Nat. Mater. (1)

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Nature (2)

W. M. Gibbons, P. J. Shannon, S. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[Crossref]

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

NPG Asia Mater. (1)

H. S. Jeong, H.-J. Jeon, Y. H. Kim, M. B. Oh, P. Kumar, S.-W. Kang, and H.-T. Jung, “Bifunctional ITO layer with a high resolution, surface nano-pattern for alignment and switching of LCs in device applications,” NPG Asia Mater. 4(2), e7 (2012).
[Crossref]

Nuc. Instru. and Methods in Phys. Res. B. (1)

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, ““Ion beam alignment for liquid crystal display fabrication,” Nuc. Instru. and Methods in Phys. Res. B. 206, 467–471 (2003).

Opt. Express (2)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

Y. Yi, G. Lombardo, N. Ashby, R. Barberi, J. E. Maclennan, and N. A. Clark, “Topographic-pattern-induced homeotropic alignment of liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 041701 (2009).
[Crossref] [PubMed]

RSC Advances (1)

M.-C. Tseng, O. Yaroshchuk, T. Bidna, A. K. Srivastava, V. Chigrinov, and H.-S. Kwok, “Strengthening of liquid crystal photoalignment on azo dye films: passivation by reactive mesogens,” RSC Advances 6(53), 48181–48188 (2016).
[Crossref]

Other (2)

K. Takatoh, M. Hasegawa, M. Koden, N. Otoh, R. Hasegawa, and M. Sakamoto, Alignment Technologies and Applications of Liquid Crystal Devices (Taylor and Francis, 2005).

V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (John Wiley & Sons, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Chemical structures and UV-Vis absorption spectra of the PI (black), photochromic polyimides PI-MR (blue) and PI-DR (red).
Fig. 2
Fig. 2 Schematic illustration of the “dual wavelength in situ photoalignment”: (a) molecular reorientation through reversible photochromic isomerization with LPVL irradiation; (b) pristine LC cell with no alignment (isotropic surfaces denoted by the gray blocks); (c) LPVL-induced uniform planar alignment with anisotropic surfaces (yellow blocks); (d) permanent alignment stabilized by the polymerized RM-networks (red blocks); (e) multidomain alignment with patterned anisotropic surfaces (blue and yellow blocks) induced by the two-step LPVL irradiation with a photomask; (f) irreversible patterned alignment stabilized by the polymerized RM-networks (red blocks). The double-ended arrows and arrow head indicate the polarization direction of LPVL.
Fig. 3
Fig. 3 In situ photo-controlled monodomain and multidomain LC alignment: (a-i)/(a-ii) macroscopic polarized optical images of monodomain uniform planar cell; POM images of (b) unexposed area and (c-i)/(c-ii) LPVL-exposed area with different orientations; (d-i)/(d-ii) POM images of the chessboard patterned planar alignment with different orientations. The single and crossed arrows indicate the direction of LPVL and crossed polarizers, respectively. The pitch of chessboard pattern corresponds to 400 μm in (d). The exposed circle corresponds to 1.2 cm in diameter. The microscopic images were taken with 200 times magnification.
Fig. 4
Fig. 4 Polarized optical images of the in situ photo-aligned LC cells before stabilization: (a-i) macroscopic image of the cell and (a-ii)/(a-iii) microscopic images with different orientation after photoalignment; (b-i) macroscopic and (b-ii)/(b-iii) microscopic images after thermal treatment (110 °C for 1 h); (c-i) macroscopic and (c-ii)/(c-iii) microscopic images after thermal and circularly polarized visible-light treatment (6.0 J/cm2 at 110 °C). The single and crossed arrows indicate the direction of LPVL and crossed polarizers, respectively. The ellipses in (a) represent LC molecules. The exposed circle corresponds to 1.2 cm in diameter. The microscopic images were taken with 200 times magnification.
Fig. 5
Fig. 5 Polarized optical images of the in situ photo-aligned LC cells after stabilization: (a-i) macrograph and (a-ii)/(a-iii) micrographs of the cell after photoalignment; (b-i) macroscopic and (b-ii)/(b-iii) microscopic images after thermal treatment (110 °C for 3 days); (c-i) macroscopic and (c-ii)/(c-iii) microscopic images after thermal and circularly polarized visible-light treatment (36.0 J/cm2 at 110 °C). The single and crossed arrows indicate the direction of LPVL and crossed polarizers, respectively. The ellipses in (a) represent LC molecules. The exposed circle corresponds to 1.2 cm in diameter. The microscopic images were taken with 200 times magnification.
Fig. 6
Fig. 6 The morphology of RM-stabilization layers observed by FE-SEM: (a-i) normal and (a-ii) 60 degree tilted views for the stabilized LC cell with 0.2 wt.% RMs; (b-i) normal and (b-ii) 60 degree tilted views for the 0.5 wt.% RM cell.
Fig. 7
Fig. 7 3D AFM topography of the inner surfaces of the LC cell before and after RM-stabilization: (a) the pristine surface of the PI-MR layer with no stabilization layer; the surface of RM-stabilization layer, formed by 2.0 wt.% RMs, (b) inside and (c) outside the circular LPVL-exposed area. The images were taken for 1 µm × 1µm area.

Metrics