Abstract

Here we present a novel fabrication approach that allows for the implementation of sophisticated planar nanostructures with deep subwavelength dimensions on fiber end faces by electron beam lithography. Specifically, we planarize the end faces of fiber bundles such that they are compatible with planar nanostructuring technology, with the result that fibers can be treated in the same way as typical wafers, opening up the entire field of nanotechnology for fiber optics. To demonstrate our approach, we have implemented densely-packed arrays of gold nanotrimers on the end face of 50 cm long standard single mode fibers, showing asymmetrical resonance lineshapes that arise due to the interplay of diffractive coupling of the individual timer response at infrared wavelengths that overlap with the single mode regime of typical telecommunication fibers. Refractive index sensing experiments suggest sensitivities of about 390 nm/RIU, representing the state-of-the-art for such a device type. Due to its unique capability of making optical fibers compatible with planar nanostructuring technology, we anticipate our approach to be applied in numerous fields including bioanalytics, telecommunications, nonlinear photonics, optical trapping and beam shaping.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Gold nanoring trimers: a versatile structure for infrared sensing

Siew Lang Teo, Vivian Kaixin Lin, Renaud Marty, Nicolas Large, Esther Alarcon Llado, Arnaud Arbouet, Christian Girard, Javier Aizpurua, Sudhiranjan Tripathy, and Adnen Mlayah
Opt. Express 18(21) 22271-22282 (2010)

A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing

Yongbin Lin, Yang Zou, and Robert G. Lindquist
Biomed. Opt. Express 2(3) 478-484 (2011)

Plasmon coupling between complex gold nanostructures and a dielectric substrate

Zahra Rostampour Fathi, M. Pinar Menguc, and Hakan Erturk
Appl. Opt. 57(30) 8954-8963 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.  9, 193 (2010).
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).
  3. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.  9, 707 (2010).
  4. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
  5. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater.  13, 139 (2014).
  6. M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle–microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun.  3, 1108 (2012).
  7. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
  8. A. Tuniz, M. Chemnitz, J. Dellith, S. Weidlich, and M. A. Schmidt, “Hybrid-mode-assisted long-distance excitation of short-range surface plasmons in a nanotip-enhanced step-index fiber,” Nano Lett. 17, 631–637 (2017).
  9. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
  10. B. Doherty, A. Csáki, M. Thiele, M. Zeisberger, A. Schwuchow, J. Kobelke, W. Fritzsche, and M. A. Schmidt, “Nanoparticle functionalised small-core suspended-core fibre–a novel platform for efficient sensing,” Biomed. Opt. Express 8, 790–799 (2017).
  11. R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, and et al.,“Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light. Sci. & Appl. 6, e17124 (2017).
  12. G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: An inherently light-coupled microscopic platform for micro-and nanotechnologies,” Adv. Mater. 26, 3798–3820 (2014).
  13. Y. Lin, J. Guo, and R. G. Lindquist, “Demonstration of an ultra-wideband optical fiber inline polarizer with metal nano-grid on the fiber tip,” Opt. Express 17, 17849–17854 (2009).
  14. S. Feng, S. Darmawi, T. Henning, P. J. Klar, and X. Zhang, “A miniaturized sensor consisting of concentric metallic nanorings on the end facet of an optical fiber,” Small 8, 1937–1944 (2012).
  15. Y. Lin, Y. Zou, Y. Mo, J. Guo, and R. G. Lindquist, “E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing,” Sensors 10, 9397–9406 (2010).
  16. Y. Lin, Y. Zou, and R. G. Lindquist, “A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing,” Biomed. Opt. Express 2, 478–484 (2011).
  17. M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced lspr fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosens. Bioelectron. 61, 95–101 (2014).
  18. J. Wei, Z. Zeng, and Y. Lin, “Localized surface plasmon resonance (lspr)-coupled fiber-optic nanoprobe for the detection of protein biomarkers,” Biosens. Biodetection: Methods Protoc. Opt. Detect. 1, pp. 1–14 (2017).
  19. C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723 (2007).
  20. H. Sakata and A. Imada, “Lensed plastic optical fiber employing concave end filled with high-index resin,” J. Light. Technol.  20, 638 (2002).
  21. D. J. Lipomi, R. V. Martinez, M. A. Kats, S. H. Kang, P. Kim, J. Aizenberg, F. Capasso, and G. M. Whitesides, “Patterning the tips of optical fibers with metallic nanostructures using nanoskiving,” Nano Lett. 11, 632–636 (2010).
  22. V. Guieu, P. Garrigue, F. Lagugné-Labarthet, L. Servant, N. Sojic, and D. Talaga, “Remote surface enhanced raman spectroscopy imaging via a nanostructured optical fiber bundle,” Opt. Express 17, 24030–24035 (2009).
  23. N. Wang, M. Zeisberger, U. Huebner, and M. A. Schmidt, “Surface lattice resonance assisted hybrid modes in gold trimer arrays,” Sci. Reports (submitted) (2018).
  24. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
  25. V. Kravets, F. Schedin, and A. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
  26. S. R. K. Rodriguez, A. Abass, B. Maes, O. T. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. x 1, 021019 (2011).
  27. A. Abass, S.R.-K. Rodriguez, J. Gomez Rivas, and B. Maes, “Tailoring dispersion and eigenfield profiles of plasmonic surface lattice resonances,” ACS Photonics 1, 61–68 (2013).
  28. L. Michaeli, S. Keren-Zur, O. Avayu, H. Suchowski, and T. Ellenbogen, “Nonlinear surface lattice resonance in plasmonic nanoparticle arrays,” Phys. Rev. Lett. 118, 243904 (2017).
  29. A. W. Snyder and J. Love, Optical Waveguide Theory(Springer Science & Business Media, 2012).
  30. U. Huebner, M. Falkner, U. D. Zeitner, M. Banasch, K. Dietrich, and E.-B. Kley, “Multi-stencil character projection e-beam lithography: a fast and flexible way for high quality optical metamaterials,” in 30th European Mask and Lithography Conference,, vol. 9231 (International Society for Optics and Photonics, 2014), p. 92310E.
  31. J. Alegret, T. Rindzevicius, T. Pakizeh, Y. Alaverdyan, L. Gunnarsson, and M. Kall, “Plasmonic properties of silver trimers with trigonal symmetry fabricated by electron-beam lithography,” The J. Phys. Chem. C 112, 14313–14317 (2008).

2017 (5)

A. Tuniz, M. Chemnitz, J. Dellith, S. Weidlich, and M. A. Schmidt, “Hybrid-mode-assisted long-distance excitation of short-range surface plasmons in a nanotip-enhanced step-index fiber,” Nano Lett. 17, 631–637 (2017).

B. Doherty, A. Csáki, M. Thiele, M. Zeisberger, A. Schwuchow, J. Kobelke, W. Fritzsche, and M. A. Schmidt, “Nanoparticle functionalised small-core suspended-core fibre–a novel platform for efficient sensing,” Biomed. Opt. Express 8, 790–799 (2017).

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, and et al.,“Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light. Sci. & Appl. 6, e17124 (2017).

J. Wei, Z. Zeng, and Y. Lin, “Localized surface plasmon resonance (lspr)-coupled fiber-optic nanoprobe for the detection of protein biomarkers,” Biosens. Biodetection: Methods Protoc. Opt. Detect. 1, pp. 1–14 (2017).

L. Michaeli, S. Keren-Zur, O. Avayu, H. Suchowski, and T. Ellenbogen, “Nonlinear surface lattice resonance in plasmonic nanoparticle arrays,” Phys. Rev. Lett. 118, 243904 (2017).

2015 (1)

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).

2014 (3)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater.  13, 139 (2014).

G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: An inherently light-coupled microscopic platform for micro-and nanotechnologies,” Adv. Mater. 26, 3798–3820 (2014).

M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced lspr fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosens. Bioelectron. 61, 95–101 (2014).

2013 (2)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).

A. Abass, S.R.-K. Rodriguez, J. Gomez Rivas, and B. Maes, “Tailoring dispersion and eigenfield profiles of plasmonic surface lattice resonances,” ACS Photonics 1, 61–68 (2013).

2012 (3)

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle–microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun.  3, 1108 (2012).

S. Feng, S. Darmawi, T. Henning, P. J. Klar, and X. Zhang, “A miniaturized sensor consisting of concentric metallic nanorings on the end facet of an optical fiber,” Small 8, 1937–1944 (2012).

2011 (2)

Y. Lin, Y. Zou, and R. G. Lindquist, “A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing,” Biomed. Opt. Express 2, 478–484 (2011).

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. x 1, 021019 (2011).

2010 (4)

D. J. Lipomi, R. V. Martinez, M. A. Kats, S. H. Kang, P. Kim, J. Aizenberg, F. Capasso, and G. M. Whitesides, “Patterning the tips of optical fibers with metallic nanostructures using nanoskiving,” Nano Lett. 11, 632–636 (2010).

Y. Lin, Y. Zou, Y. Mo, J. Guo, and R. G. Lindquist, “E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing,” Sensors 10, 9397–9406 (2010).

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.  9, 193 (2010).

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.  9, 707 (2010).

2009 (2)

2008 (3)

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).

V. Kravets, F. Schedin, and A. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).

J. Alegret, T. Rindzevicius, T. Pakizeh, Y. Alaverdyan, L. Gunnarsson, and M. Kall, “Plasmonic properties of silver trimers with trigonal symmetry fabricated by electron-beam lithography,” The J. Phys. Chem. C 112, 14313–14317 (2008).

2007 (1)

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723 (2007).

2002 (1)

H. Sakata and A. Imada, “Lensed plastic optical fiber employing concave end filled with high-index resin,” J. Light. Technol.  20, 638 (2002).

Abass, A.

A. Abass, S.R.-K. Rodriguez, J. Gomez Rivas, and B. Maes, “Tailoring dispersion and eigenfield profiles of plasmonic surface lattice resonances,” ACS Photonics 1, 61–68 (2013).

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. x 1, 021019 (2011).

Aieta, F.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).

Aizenberg, J.

D. J. Lipomi, R. V. Martinez, M. A. Kats, S. H. Kang, P. Kim, J. Aizenberg, F. Capasso, and G. M. Whitesides, “Patterning the tips of optical fibers with metallic nanostructures using nanoskiving,” Nano Lett. 11, 632–636 (2010).

Alaverdyan, Y.

J. Alegret, T. Rindzevicius, T. Pakizeh, Y. Alaverdyan, L. Gunnarsson, and M. Kall, “Plasmonic properties of silver trimers with trigonal symmetry fabricated by electron-beam lithography,” The J. Phys. Chem. C 112, 14313–14317 (2008).

Alegret, J.

J. Alegret, T. Rindzevicius, T. Pakizeh, Y. Alaverdyan, L. Gunnarsson, and M. Kall, “Plasmonic properties of silver trimers with trigonal symmetry fabricated by electron-beam lithography,” The J. Phys. Chem. C 112, 14313–14317 (2008).

Arbabi, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).

Auguié, B.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).

Avayu, O.

L. Michaeli, S. Keren-Zur, O. Avayu, H. Suchowski, and T. Ellenbogen, “Nonlinear surface lattice resonance in plasmonic nanoparticle arrays,” Phys. Rev. Lett. 118, 243904 (2017).

Bagheri, M.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).

Banasch, M.

U. Huebner, M. Falkner, U. D. Zeitner, M. Banasch, K. Dietrich, and E.-B. Kley, “Multi-stencil character projection e-beam lithography: a fast and flexible way for high quality optical metamaterials,” in 30th European Mask and Lithography Conference,, vol. 9231 (International Society for Optics and Photonics, 2014), p. 92310E.

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.  9, 193 (2010).

Barnes, W. L.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).

Bierlich, J.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, and et al.,“Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light. Sci. & Appl. 6, e17124 (2017).

Blanchard, R.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).

Bono, T.

M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced lspr fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosens. Bioelectron. 61, 95–101 (2014).

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).

Bragheri, F.

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723 (2007).

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.  9, 193 (2010).

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.  9, 193 (2010).

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater.  13, 139 (2014).

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).

D. J. Lipomi, R. V. Martinez, M. A. Kats, S. H. Kang, P. Kim, J. Aizenberg, F. Capasso, and G. M. Whitesides, “Patterning the tips of optical fibers with metallic nanostructures using nanoskiving,” Nano Lett. 11, 632–636 (2010).

Chemnitz, M.

A. Tuniz, M. Chemnitz, J. Dellith, S. Weidlich, and M. A. Schmidt, “Hybrid-mode-assisted long-distance excitation of short-range surface plasmons in a nanotip-enhanced step-index fiber,” Nano Lett. 17, 631–637 (2017).

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.  9, 707 (2010).

Cristiani, I.

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723 (2007).

Csáki, A.

Darmawi, S.

S. Feng, S. Darmawi, T. Henning, P. J. Klar, and X. Zhang, “A miniaturized sensor consisting of concentric metallic nanorings on the end facet of an optical fiber,” Small 8, 1937–1944 (2012).

De Angelis, F.

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723 (2007).

Dellith, J.

A. Tuniz, M. Chemnitz, J. Dellith, S. Weidlich, and M. A. Schmidt, “Hybrid-mode-assisted long-distance excitation of short-range surface plasmons in a nanotip-enhanced step-index fiber,” Nano Lett. 17, 631–637 (2017).

Di Fabrizio, E.

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723 (2007).

Dietrich, K.

U. Huebner, M. Falkner, U. D. Zeitner, M. Banasch, K. Dietrich, and E.-B. Kley, “Multi-stencil character projection e-beam lithography: a fast and flexible way for high quality optical metamaterials,” in 30th European Mask and Lithography Conference,, vol. 9231 (International Society for Optics and Photonics, 2014), p. 92310E.

Doherty, B.

Ellenbogen, T.

L. Michaeli, S. Keren-Zur, O. Avayu, H. Suchowski, and T. Ellenbogen, “Nonlinear surface lattice resonance in plasmonic nanoparticle arrays,” Phys. Rev. Lett. 118, 243904 (2017).

Falkner, M.

U. Huebner, M. Falkner, U. D. Zeitner, M. Banasch, K. Dietrich, and E.-B. Kley, “Multi-stencil character projection e-beam lithography: a fast and flexible way for high quality optical metamaterials,” in 30th European Mask and Lithography Conference,, vol. 9231 (International Society for Optics and Photonics, 2014), p. 92310E.

Faraon, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).

Feng, S.

S. Feng, S. Darmawi, T. Henning, P. J. Klar, and X. Zhang, “A miniaturized sensor consisting of concentric metallic nanorings on the end facet of an optical fiber,” Small 8, 1937–1944 (2012).

Fritzsche, W.

Gaburro, Z.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).

Garrigue, P.

Genevet, P.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.  9, 707 (2010).

Gomez Rivas, J.

A. Abass, S.R.-K. Rodriguez, J. Gomez Rivas, and B. Maes, “Tailoring dispersion and eigenfield profiles of plasmonic surface lattice resonances,” ACS Photonics 1, 61–68 (2013).

Grigorenko, A.

V. Kravets, F. Schedin, and A. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).

Grigorova, T.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, and et al.,“Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light. Sci. & Appl. 6, e17124 (2017).

Guieu, V.

Gunnarsson, L.

J. Alegret, T. Rindzevicius, T. Pakizeh, Y. Alaverdyan, L. Gunnarsson, and M. Kall, “Plasmonic properties of silver trimers with trigonal symmetry fabricated by electron-beam lithography,” The J. Phys. Chem. C 112, 14313–14317 (2008).

Guo, J.

Y. Lin, Y. Zou, Y. Mo, J. Guo, and R. G. Lindquist, “E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing,” Sensors 10, 9397–9406 (2010).

Y. Lin, J. Guo, and R. G. Lindquist, “Demonstration of an ultra-wideband optical fiber inline polarizer with metal nano-grid on the fiber tip,” Opt. Express 17, 17849–17854 (2009).

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.  9, 707 (2010).

Hartung, A.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, and et al.,“Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light. Sci. & Appl. 6, e17124 (2017).

Henning, T.

S. Feng, S. Darmawi, T. Henning, P. J. Klar, and X. Zhang, “A miniaturized sensor consisting of concentric metallic nanorings on the end facet of an optical fiber,” Small 8, 1937–1944 (2012).

Hoffmann, A.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, and et al.,“Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light. Sci. & Appl. 6, e17124 (2017).

Horie, Y.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).

Huebner, U.

N. Wang, M. Zeisberger, U. Huebner, and M. A. Schmidt, “Surface lattice resonance assisted hybrid modes in gold trimer arrays,” Sci. Reports (submitted) (2018).

U. Huebner, M. Falkner, U. D. Zeitner, M. Banasch, K. Dietrich, and E.-B. Kley, “Multi-stencil character projection e-beam lithography: a fast and flexible way for high quality optical metamaterials,” in 30th European Mask and Lithography Conference,, vol. 9231 (International Society for Optics and Photonics, 2014), p. 92310E.

Imada, A.

H. Sakata and A. Imada, “Lensed plastic optical fiber employing concave end filled with high-index resin,” J. Light. Technol.  20, 638 (2002).

Janssen, O. T.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. x 1, 021019 (2011).

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.  9, 193 (2010).

Kall, M.

J. Alegret, T. Rindzevicius, T. Pakizeh, Y. Alaverdyan, L. Gunnarsson, and M. Kall, “Plasmonic properties of silver trimers with trigonal symmetry fabricated by electron-beam lithography,” The J. Phys. Chem. C 112, 14313–14317 (2008).

Kang, S. H.

D. J. Lipomi, R. V. Martinez, M. A. Kats, S. H. Kang, P. Kim, J. Aizenberg, F. Capasso, and G. M. Whitesides, “Patterning the tips of optical fibers with metallic nanostructures using nanoskiving,” Nano Lett. 11, 632–636 (2010).

Kartashov, D.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, and et al.,“Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light. Sci. & Appl. 6, e17124 (2017).

Kats, M. A.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).

D. J. Lipomi, R. V. Martinez, M. A. Kats, S. H. Kang, P. Kim, J. Aizenberg, F. Capasso, and G. M. Whitesides, “Patterning the tips of optical fibers with metallic nanostructures using nanoskiving,” Nano Lett. 11, 632–636 (2010).

Keren-Zur, S.

L. Michaeli, S. Keren-Zur, O. Avayu, H. Suchowski, and T. Ellenbogen, “Nonlinear surface lattice resonance in plasmonic nanoparticle arrays,” Phys. Rev. Lett. 118, 243904 (2017).

Kim, P.

D. J. Lipomi, R. V. Martinez, M. A. Kats, S. H. Kang, P. Kim, J. Aizenberg, F. Capasso, and G. M. Whitesides, “Patterning the tips of optical fibers with metallic nanostructures using nanoskiving,” Nano Lett. 11, 632–636 (2010).

Klar, P. J.

S. Feng, S. Darmawi, T. Henning, P. J. Klar, and X. Zhang, “A miniaturized sensor consisting of concentric metallic nanorings on the end facet of an optical fiber,” Small 8, 1937–1944 (2012).

Kley, E.-B.

U. Huebner, M. Falkner, U. D. Zeitner, M. Banasch, K. Dietrich, and E.-B. Kley, “Multi-stencil character projection e-beam lithography: a fast and flexible way for high quality optical metamaterials,” in 30th European Mask and Lithography Conference,, vol. 9231 (International Society for Optics and Photonics, 2014), p. 92310E.

Kobelke, J.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, and et al.,“Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light. Sci. & Appl. 6, e17124 (2017).

B. Doherty, A. Csáki, M. Thiele, M. Zeisberger, A. Schwuchow, J. Kobelke, W. Fritzsche, and M. A. Schmidt, “Nanoparticle functionalised small-core suspended-core fibre–a novel platform for efficient sensing,” Biomed. Opt. Express 8, 790–799 (2017).

Kostovski, G.

G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: An inherently light-coupled microscopic platform for micro-and nanotechnologies,” Adv. Mater. 26, 3798–3820 (2014).

Kravets, V.

V. Kravets, F. Schedin, and A. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).

Lagugné-Labarthet, F.

Lei, D. Y.

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle–microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun.  3, 1108 (2012).

Liberale, C.

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723 (2007).

Lin, Y.

J. Wei, Z. Zeng, and Y. Lin, “Localized surface plasmon resonance (lspr)-coupled fiber-optic nanoprobe for the detection of protein biomarkers,” Biosens. Biodetection: Methods Protoc. Opt. Detect. 1, pp. 1–14 (2017).

M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced lspr fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosens. Bioelectron. 61, 95–101 (2014).

Y. Lin, Y. Zou, and R. G. Lindquist, “A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing,” Biomed. Opt. Express 2, 478–484 (2011).

Y. Lin, Y. Zou, Y. Mo, J. Guo, and R. G. Lindquist, “E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing,” Sensors 10, 9397–9406 (2010).

Y. Lin, J. Guo, and R. G. Lindquist, “Demonstration of an ultra-wideband optical fiber inline polarizer with metal nano-grid on the fiber tip,” Opt. Express 17, 17849–17854 (2009).

Lindquist, R. G.

M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced lspr fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosens. Bioelectron. 61, 95–101 (2014).

Y. Lin, Y. Zou, and R. G. Lindquist, “A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing,” Biomed. Opt. Express 2, 478–484 (2011).

Y. Lin, Y. Zou, Y. Mo, J. Guo, and R. G. Lindquist, “E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing,” Sensors 10, 9397–9406 (2010).

Y. Lin, J. Guo, and R. G. Lindquist, “Demonstration of an ultra-wideband optical fiber inline polarizer with metal nano-grid on the fiber tip,” Opt. Express 17, 17849–17854 (2009).

Lipomi, D. J.

D. J. Lipomi, R. V. Martinez, M. A. Kats, S. H. Kang, P. Kim, J. Aizenberg, F. Capasso, and G. M. Whitesides, “Patterning the tips of optical fibers with metallic nanostructures using nanoskiving,” Nano Lett. 11, 632–636 (2010).

Love, J.

A. W. Snyder and J. Love, Optical Waveguide Theory(Springer Science & Business Media, 2012).

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.  9, 707 (2010).

Maes, B.

A. Abass, S.R.-K. Rodriguez, J. Gomez Rivas, and B. Maes, “Tailoring dispersion and eigenfield profiles of plasmonic surface lattice resonances,” ACS Photonics 1, 61–68 (2013).

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. x 1, 021019 (2011).

Maier, S. A.

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle–microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun.  3, 1108 (2012).

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.  9, 707 (2010).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).

Martinez, R. V.

D. J. Lipomi, R. V. Martinez, M. A. Kats, S. H. Kang, P. Kim, J. Aizenberg, F. Capasso, and G. M. Whitesides, “Patterning the tips of optical fibers with metallic nanostructures using nanoskiving,” Nano Lett. 11, 632–636 (2010).

Michaeli, L.

L. Michaeli, S. Keren-Zur, O. Avayu, H. Suchowski, and T. Ellenbogen, “Nonlinear surface lattice resonance in plasmonic nanoparticle arrays,” Phys. Rev. Lett. 118, 243904 (2017).

Minzioni, P.

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723 (2007).

Mitchell, A.

G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: An inherently light-coupled microscopic platform for micro-and nanotechnologies,” Adv. Mater. 26, 3798–3820 (2014).

Mo, Y.

Y. Lin, Y. Zou, Y. Mo, J. Guo, and R. G. Lindquist, “E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing,” Sensors 10, 9397–9406 (2010).

Nazabal, V.

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle–microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun.  3, 1108 (2012).

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.  9, 707 (2010).

Pakizeh, T.

J. Alegret, T. Rindzevicius, T. Pakizeh, Y. Alaverdyan, L. Gunnarsson, and M. Kall, “Plasmonic properties of silver trimers with trigonal symmetry fabricated by electron-beam lithography,” The J. Phys. Chem. C 112, 14313–14317 (2008).

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).

Rindzevicius, T.

J. Alegret, T. Rindzevicius, T. Pakizeh, Y. Alaverdyan, L. Gunnarsson, and M. Kall, “Plasmonic properties of silver trimers with trigonal symmetry fabricated by electron-beam lithography,” The J. Phys. Chem. C 112, 14313–14317 (2008).

Rivas, J. G.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. x 1, 021019 (2011).

Rodriguez, S. R. K.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. x 1, 021019 (2011).

Rodriguez, S.R.-K.

A. Abass, S.R.-K. Rodriguez, J. Gomez Rivas, and B. Maes, “Tailoring dispersion and eigenfield profiles of plasmonic surface lattice resonances,” ACS Photonics 1, 61–68 (2013).

Sakata, H.

H. Sakata and A. Imada, “Lensed plastic optical fiber employing concave end filled with high-index resin,” J. Light. Technol.  20, 638 (2002).

Sanders, M.

M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced lspr fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosens. Bioelectron. 61, 95–101 (2014).

Sauer, G.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, and et al.,“Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light. Sci. & Appl. 6, e17124 (2017).

Schedin, F.

V. Kravets, F. Schedin, and A. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).

Schmidt, M. A.

B. Doherty, A. Csáki, M. Thiele, M. Zeisberger, A. Schwuchow, J. Kobelke, W. Fritzsche, and M. A. Schmidt, “Nanoparticle functionalised small-core suspended-core fibre–a novel platform for efficient sensing,” Biomed. Opt. Express 8, 790–799 (2017).

A. Tuniz, M. Chemnitz, J. Dellith, S. Weidlich, and M. A. Schmidt, “Hybrid-mode-assisted long-distance excitation of short-range surface plasmons in a nanotip-enhanced step-index fiber,” Nano Lett. 17, 631–637 (2017).

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle–microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun.  3, 1108 (2012).

N. Wang, M. Zeisberger, U. Huebner, and M. A. Schmidt, “Surface lattice resonance assisted hybrid modes in gold trimer arrays,” Sci. Reports (submitted) (2018).

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.  9, 193 (2010).

Schwuchow, A.

B. Doherty, A. Csáki, M. Thiele, M. Zeisberger, A. Schwuchow, J. Kobelke, W. Fritzsche, and M. A. Schmidt, “Nanoparticle functionalised small-core suspended-core fibre–a novel platform for efficient sensing,” Biomed. Opt. Express 8, 790–799 (2017).

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, and et al.,“Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light. Sci. & Appl. 6, e17124 (2017).

Servant, L.

Snyder, A. W.

A. W. Snyder and J. Love, Optical Waveguide Theory(Springer Science & Business Media, 2012).

Sojic, N.

Sollapur, R.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, and et al.,“Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light. Sci. & Appl. 6, e17124 (2017).

Stoddart, P. R.

G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: An inherently light-coupled microscopic platform for micro-and nanotechnologies,” Adv. Mater. 26, 3798–3820 (2014).

Suchowski, H.

L. Michaeli, S. Keren-Zur, O. Avayu, H. Suchowski, and T. Ellenbogen, “Nonlinear surface lattice resonance in plasmonic nanoparticle arrays,” Phys. Rev. Lett. 118, 243904 (2017).

Talaga, D.

Thiele, M.

Tuniz, A.

A. Tuniz, M. Chemnitz, J. Dellith, S. Weidlich, and M. A. Schmidt, “Hybrid-mode-assisted long-distance excitation of short-range surface plasmons in a nanotip-enhanced step-index fiber,” Nano Lett. 17, 631–637 (2017).

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).

Vecchi, G.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. x 1, 021019 (2011).

Wang, N.

N. Wang, M. Zeisberger, U. Huebner, and M. A. Schmidt, “Surface lattice resonance assisted hybrid modes in gold trimer arrays,” Sci. Reports (submitted) (2018).

Wei, J.

J. Wei, Z. Zeng, and Y. Lin, “Localized surface plasmon resonance (lspr)-coupled fiber-optic nanoprobe for the detection of protein biomarkers,” Biosens. Biodetection: Methods Protoc. Opt. Detect. 1, pp. 1–14 (2017).

M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced lspr fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosens. Bioelectron. 61, 95–101 (2014).

Weidlich, S.

A. Tuniz, M. Chemnitz, J. Dellith, S. Weidlich, and M. A. Schmidt, “Hybrid-mode-assisted long-distance excitation of short-range surface plasmons in a nanotip-enhanced step-index fiber,” Nano Lett. 17, 631–637 (2017).

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.  9, 193 (2010).

Whitesides, G. M.

D. J. Lipomi, R. V. Martinez, M. A. Kats, S. H. Kang, P. Kim, J. Aizenberg, F. Capasso, and G. M. Whitesides, “Patterning the tips of optical fibers with metallic nanostructures using nanoskiving,” Nano Lett. 11, 632–636 (2010).

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).

Wondraczek, L.

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle–microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun.  3, 1108 (2012).

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater.  13, 139 (2014).

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).

Zeisberger, M.

Zeitner, U. D.

U. Huebner, M. Falkner, U. D. Zeitner, M. Banasch, K. Dietrich, and E.-B. Kley, “Multi-stencil character projection e-beam lithography: a fast and flexible way for high quality optical metamaterials,” in 30th European Mask and Lithography Conference,, vol. 9231 (International Society for Optics and Photonics, 2014), p. 92310E.

Zeng, Z.

J. Wei, Z. Zeng, and Y. Lin, “Localized surface plasmon resonance (lspr)-coupled fiber-optic nanoprobe for the detection of protein biomarkers,” Biosens. Biodetection: Methods Protoc. Opt. Detect. 1, pp. 1–14 (2017).

Zhang, X.

S. Feng, S. Darmawi, T. Henning, P. J. Klar, and X. Zhang, “A miniaturized sensor consisting of concentric metallic nanorings on the end facet of an optical fiber,” Small 8, 1937–1944 (2012).

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.  9, 707 (2010).

Zou, Y.

Y. Lin, Y. Zou, and R. G. Lindquist, “A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing,” Biomed. Opt. Express 2, 478–484 (2011).

Y. Lin, Y. Zou, Y. Mo, J. Guo, and R. G. Lindquist, “E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing,” Sensors 10, 9397–9406 (2010).

Zürch, M.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, and et al.,“Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light. Sci. & Appl. 6, e17124 (2017).

ACS Photonics (1)

A. Abass, S.R.-K. Rodriguez, J. Gomez Rivas, and B. Maes, “Tailoring dispersion and eigenfield profiles of plasmonic surface lattice resonances,” ACS Photonics 1, 61–68 (2013).

Adv. Mater. (1)

G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: An inherently light-coupled microscopic platform for micro-and nanotechnologies,” Adv. Mater. 26, 3798–3820 (2014).

Biomed. Opt. Express (2)

Biosens. Biodetection: Methods Protoc. Opt. Detect. (1)

J. Wei, Z. Zeng, and Y. Lin, “Localized surface plasmon resonance (lspr)-coupled fiber-optic nanoprobe for the detection of protein biomarkers,” Biosens. Biodetection: Methods Protoc. Opt. Detect. 1, pp. 1–14 (2017).

Biosens. Bioelectron. (1)

M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced lspr fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosens. Bioelectron. 61, 95–101 (2014).

J. Light. Technol (1)

H. Sakata and A. Imada, “Lensed plastic optical fiber employing concave end filled with high-index resin,” J. Light. Technol.  20, 638 (2002).

Light. Sci. & Appl. (1)

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, and et al.,“Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light. Sci. & Appl. 6, e17124 (2017).

Nano Lett. (3)

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).

A. Tuniz, M. Chemnitz, J. Dellith, S. Weidlich, and M. A. Schmidt, “Hybrid-mode-assisted long-distance excitation of short-range surface plasmons in a nanotip-enhanced step-index fiber,” Nano Lett. 17, 631–637 (2017).

D. J. Lipomi, R. V. Martinez, M. A. Kats, S. H. Kang, P. Kim, J. Aizenberg, F. Capasso, and G. M. Whitesides, “Patterning the tips of optical fibers with metallic nanostructures using nanoskiving,” Nano Lett. 11, 632–636 (2010).

Nat. Commun (1)

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle–microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun.  3, 1108 (2012).

Nat. Mater (3)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater.  13, 139 (2014).

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.  9, 193 (2010).

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.  9, 707 (2010).

Nat. Nanotechnol. (1)

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).

Nat. Photonics (1)

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723 (2007).

Opt. Express (2)

Phys. Rev. Lett. (3)

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).

V. Kravets, F. Schedin, and A. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).

L. Michaeli, S. Keren-Zur, O. Avayu, H. Suchowski, and T. Ellenbogen, “Nonlinear surface lattice resonance in plasmonic nanoparticle arrays,” Phys. Rev. Lett. 118, 243904 (2017).

Phys. Rev. x (1)

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. x 1, 021019 (2011).

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).

Sensors (1)

Y. Lin, Y. Zou, Y. Mo, J. Guo, and R. G. Lindquist, “E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing,” Sensors 10, 9397–9406 (2010).

Small (1)

S. Feng, S. Darmawi, T. Henning, P. J. Klar, and X. Zhang, “A miniaturized sensor consisting of concentric metallic nanorings on the end facet of an optical fiber,” Small 8, 1937–1944 (2012).

The J. Phys. Chem. C (1)

J. Alegret, T. Rindzevicius, T. Pakizeh, Y. Alaverdyan, L. Gunnarsson, and M. Kall, “Plasmonic properties of silver trimers with trigonal symmetry fabricated by electron-beam lithography,” The J. Phys. Chem. C 112, 14313–14317 (2008).

Other (4)

A. W. Snyder and J. Love, Optical Waveguide Theory(Springer Science & Business Media, 2012).

U. Huebner, M. Falkner, U. D. Zeitner, M. Banasch, K. Dietrich, and E.-B. Kley, “Multi-stencil character projection e-beam lithography: a fast and flexible way for high quality optical metamaterials,” in 30th European Mask and Lithography Conference,, vol. 9231 (International Society for Optics and Photonics, 2014), p. 92310E.

N. Wang, M. Zeisberger, U. Huebner, and M. A. Schmidt, “Surface lattice resonance assisted hybrid modes in gold trimer arrays,” Sci. Reports (submitted) (2018).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The concept of nanostructure-enhanced optical fibers. (a) Schematic showing a bent fiber with nanotrimer array at the endface of the fiber (dark grey: core, light gray: cladding). The dashed black square indicates a trimer unit consisting of three identical gold nanodisks. (b) Trimer geometry in square shape unit cell. The left sketch shows the trimer unit including the relevant parameters (D: nanodisk diameter, G: edge-to-edge inter-disk distance). The right scanning electron microscopy (SEM) image shows one example of a fabricated nano trimers array on a fiber end face. In this sample, D and G is around 375 nm and 75 nm respectively with a dot height (i.e., gold film thickness) of 40 nm. The periodical constant (pitch, Λ) is 1.1 µm.
Fig. 2
Fig. 2 Spectral distributions of the transmission of nanotrimer arrays located on planar silica substrates ((a) experiment, (b) simulations). The two curves in each plot correspond to the input polarizations along the main symmetry axes of the trimer array (directions defined in the lower inset of (a)). The insets in (a) and (b) show the corresponding transmission contrasts. (c) Simulated near-field patterns of one trimer unit of the array for the configuration labeled by the letters A and B in Fig. 2(b). The color distributions across the disks refer to the z-component (defined in Figure 1) of the electric field 1 nm above the trimer surface, whereas the arrows show the local polarization (i.e., local orientation of the electric at a fixed point of time) in the center plane of dot (height 40 nm)).
Fig. 3
Fig. 3 Electron beam lithography on the planarized sample that contains a bundle of seven standard single mode fibers. (a) Workflow of the nanostructure fabrication process. The planarized fiber end face goes through various steps including nanolayer deposition, e-beam lithography, ion-beam etching and resist removal. (b) Corresponding status of the sample for different fabrication steps.
Fig. 4
Fig. 4 Images of implemented nanostructures on the fiber end faces and of a fiber bundle. (a) Bundle inside the metal holder that contains six nanostructure-enhanced fibers and an unpatterned fiber (SMF-28). (b) Bright-field microscope image showing one nanotrimer array. The framed image at bottom of (b) shows the overview of fiber bundle after nanostructuring. (c) SEM image of four trimer units on the fiber facet. (d) Image of the output beam spot when white light is coupled into the unstructured part of the fiber. The nanotrimer array consists of 100×100 trimers units and thus overspans the fiber core.
Fig. 5
Fig. 5 Transmission contrast measurement setup and obtained results. (a) Experimental setup. The nanostructure-enhanced fiber is bent to eliminate cladding modes (Obj: objective, OSA: optical spectrum analyzer). (b) Spectral distributions of the transmission contrast of nanotrimer arrays on fiber endface (yellow) and planar substrate (orange) with a comparison to a blank fiber (green). The spectral positions of the main dips of fiber and planar samples match well, while the curve of blank fiber (green) shows hardly any features.
Fig. 6
Fig. 6 Spectral distribution of the transmission contrast for a fiber sample having the nanotrimer array exposed to air (dark green) and analyte refractive liquid (light green), with the red arrow indicating the spectral shift of the main dip.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ T c = T ( 0 ° ) T ( 90 ° ) T ( 0 ° ) + T ( 90 ° )

Metrics