Abstract

Nonlinear optical α-Ca(HCOO)2 crystals were synthesized by the solution evaporation growth method. The crystals with good transparency in the visible light region were grown with a maximum size of 7 mm × 6 mm × 4 mm and were studied using single crystal X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), and FTIR-Raman spectroscopy. The crystals are orthorhombic with a space group of Pbca having unit-cell dimensions a = 10.238(4) Å, b = 6.305(2) Å, c = 13.456(5) Å, α = β = γ = 90°, V = 868.6(5) Å3, and Z = 8. The as-grown crystals exhibit polyhedral morphology consisting of {210}, {111}, and {100} facets. The nonlinear absorption property of the crystals was explored by open-aperture Z-scan measurements under the excitation of femtosecond laser pulses at the wavelength of 800 nm. The α-Ca(HCOO)2 crystals exhibit saturable absorption. The effective nonlinear absorption coefficient under the low-intensity approximation is discovered to be β = −5.09 cm/GW.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear optical properties of Ca5(BO3)3F crystal

Ke Xu, Pascal Loiseau, Gerard Aka, Regine Maillard, Alain Maillard, and Takunori Taira
Opt. Express 16(22) 17735-17744 (2008)

Configurationally locked, phenolic polyene organic crystal 2-{3-(4-hydroxystyryl)-5,5-dimethylcyclohex-2-enylidene}malononitrile: linear and nonlinear optical properties

Christoph Hunziker, Seong-Ji Kwon, Harry Figi, Flurin Juvalta, O-Pil Kwon, Mojca Jazbinsek, and Peter Günter
J. Opt. Soc. Am. B 25(10) 1678-1683 (2008)

Nonlinear-optical, optical, and crystallographic properties of N-(4-nitro-2-pyridinyl)-phenylalaninol

K. Sutter, G. Knöpfle, N. Saupper, J. Hulliger, P. Günter, and W. Petter
J. Opt. Soc. Am. B 8(7) 1483-1490 (1991)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Daniel and P. Ramasamy, “Studies on semi-organic non linear optical single crystal: Lithium formate monohydrate (HCO2Li H2O),” Opt. Mater. 36(5), 971–976 (2014).
    [Crossref]
  2. R. Hanumantharao and S. Kalainathan, “Studies on structural, thermal and optical properties of novel NLO crystal bis L-glutamine sodium nitrate,” Mater. Lett. 74, 74–77 (2012).
    [Crossref]
  3. S. A. M. B. Dhas and S. Natarajan, “Growth and characterization of Lithium hydrogen oxalate monohydrate, a new semiorganic NLO material,” Mater. Lett. 62(6-7), 1136–1138 (2008).
    [Crossref]
  4. M. Lazoul, A. Boudrioua, L. M. Simohamed, L. H. Peng, and L. H. Peng, “Multi-resonant optical parametric oscillator based on 2D-PPLT nonlinear photonic crystal,” Opt. Lett. 40(8), 1861–1864 (2015).
    [Crossref] [PubMed]
  5. L. Bohatý, L. Bayarjargal, and P. Becker, “Linear and nonlinear optical properties of yttrium formate dihydrate, Y(HCOO)3·2H2O,” Appl. Phys. B 86(3), 523–527 (2007).
    [Crossref]
  6. M. Danilczuk, H. Gustafsson, M. D. Sastry, and E. Lund, “Development of nickel-doped lithium formate as potential EPR dosimeter for low dose determination,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(5), 1370–1373 (2007).
    [Crossref] [PubMed]
  7. S. Haussühl, H. A. Karapetyan, R. P. Sukiasyan, and A. M. Petrosyan, “Structure and Properties of Orthorhombic l-Arginine Formate,” Cryst. Growth Des. 6(9), 2041–2046 (2006).
    [Crossref]
  8. S. Singh, W. A. Bonner, J. R. Potopowicz, and L. G. V. Uitert, “Nonlinear optical susceptibility of lithium formate monohydrate,” Appl. Phys. Lett. 17(7), 292–294 (1970).
    [Crossref]
  9. C. Y. Mang, K. Wu, C. S. Lin, R. J. Sa, P. Liu, and B. T. Zhuang, “A theoretical study on the second-order nonlinear optical susceptibilities of lithium formate monohydrate crystal, HCO2Li·H2O,” Opt. Mater. 22(4), 353–359 (2003).
    [Crossref]
  10. D. J. Daniel and P. Ramasamy, “Studies on semi-organic non linear optical single crystal: Lithium formate monohydrate (HCO2Li·H2O),” Opt. Mater. 36(5), 971–976 (2014).
    [Crossref]
  11. E. Adolfsson, M. Karlsson, G. Alm Carlsson, A. Carlsson Tedgren, E. Lund, S. Olsson, and H. Gustafsson, “Investigation of signal fading in lithium formate EPR dosimeters using a new sensitive method,” Phys. Med. Biol. 57(8), 2209–2217 (2012).
    [Crossref] [PubMed]
  12. P. S. Bechthold and S. Haussuhl, “Nonlinear optical properties of orthorhombic barium formate and magnesium barium fluoride,” Appl. Phys. (Berl.) 14(4), 403–410 (1977).
    [Crossref]
  13. M. Matsui, T. Watanabé, N. Kamijo, R. L. Lapp, and R. A. Jacobson, “The structures of calcium formate β-Ca(HCOO)2 and δ-Ca(HCOO)2, and the tetragonal mixed crystals Ca(HCOO)2-Sr(HCOO)2,” Acta Crystallogr. B 36(5), 1081–1086 (1980).
    [Crossref]
  14. A. A. Kaminskii, E. Haussühl, S. Haussühl, H. J. Eichler, and H. Rhee, “Orthorhombic α-Ca(HCOO)2 and monoclinic LiH2C6H4SO3 H2O crystals - new materials for Raman lasers with large frequency shifts,” Phys. Status Solidi., A Appl. Mater. Sci. 203, 15–17 (2006).
    [Crossref]
  15. B. F. Mentzen and C. Comel, “Comparative study of the polymorphic species of strontium and calcium formates II. X-ray diffraction,” J. Solid State Chem. 9(3), 214–223 (1974).
    [Crossref]
  16. R. S. Krishnan and P. S. Ramanujam, “Raman spectrum of calcium formate,” J. Raman Spectrosc. 1(6), 533–538 (1973).
    [Crossref]
  17. J. Liu, Y. Wang, G. Lan, and J. Zheng, “Vibrational spectra of barium formate crystal,” J. Raman Spectrosc. 32(12), 1000–1003 (2001).
    [Crossref]
  18. S. Abraham and G. Aruldhas, “Infrared and polarized Raman spectra of Cd (HCOO)2·2H2O,” Phys. Status Solidi 144(2), 485–491 (1994).
    [Crossref]
  19. J. M. Ménard, M. Betz, I. Sigal, and H. M. van Driel, “Single-beam differential z-scan technique,” Appl. Opt. 46(11), 2119–2122 (2007).
    [Crossref] [PubMed]
  20. G. Vinitha and A. Ramalingam, “Single-beam Z-scan measurement of the third-order optical nonlinearities of triarylmethane dyes,” Laser Phys. 18(10), 1176–1182 (2008).
    [Crossref]
  21. B. Gu, J. Chen, Y. X. Fan, J. Ding, and H. T. Wang, “Theory of Gaussian beam Z scan with simultaneous third- and fifth-order nonlinear refraction based on a Gaussian decomposition method,” J. Opt. Soc. Am. B 22(12), 2651–2659 (2005).
    [Crossref]
  22. B. Gu, J. Wang, J. Chen, Y. X. Fan, J. Ding, and H. T. Wang, “Z-scan theory for material with two- and three-photon absorption,” Opt. Express 13(23), 9230–9234 (2005).
    [Crossref] [PubMed]
  23. B. Gu, Y. X. Fan, J. Wang, J. Chen, J. Ding, H. T. Wang, and B. Guo, “Characterization of saturable absorbers using an open-aperture Gaussian-beam Z scan,” Phys. Rev. A 73(6), 065803 (2006).
    [Crossref]
  24. G. Adomian, “A review of the decomposition method in applied mathematics,” J. Math. Anal. Appl. 135(2), 501–544 (1988).
    [Crossref]

2015 (1)

2014 (2)

D. J. Daniel and P. Ramasamy, “Studies on semi-organic non linear optical single crystal: Lithium formate monohydrate (HCO2Li H2O),” Opt. Mater. 36(5), 971–976 (2014).
[Crossref]

D. J. Daniel and P. Ramasamy, “Studies on semi-organic non linear optical single crystal: Lithium formate monohydrate (HCO2Li·H2O),” Opt. Mater. 36(5), 971–976 (2014).
[Crossref]

2012 (2)

E. Adolfsson, M. Karlsson, G. Alm Carlsson, A. Carlsson Tedgren, E. Lund, S. Olsson, and H. Gustafsson, “Investigation of signal fading in lithium formate EPR dosimeters using a new sensitive method,” Phys. Med. Biol. 57(8), 2209–2217 (2012).
[Crossref] [PubMed]

R. Hanumantharao and S. Kalainathan, “Studies on structural, thermal and optical properties of novel NLO crystal bis L-glutamine sodium nitrate,” Mater. Lett. 74, 74–77 (2012).
[Crossref]

2008 (2)

S. A. M. B. Dhas and S. Natarajan, “Growth and characterization of Lithium hydrogen oxalate monohydrate, a new semiorganic NLO material,” Mater. Lett. 62(6-7), 1136–1138 (2008).
[Crossref]

G. Vinitha and A. Ramalingam, “Single-beam Z-scan measurement of the third-order optical nonlinearities of triarylmethane dyes,” Laser Phys. 18(10), 1176–1182 (2008).
[Crossref]

2007 (3)

L. Bohatý, L. Bayarjargal, and P. Becker, “Linear and nonlinear optical properties of yttrium formate dihydrate, Y(HCOO)3·2H2O,” Appl. Phys. B 86(3), 523–527 (2007).
[Crossref]

M. Danilczuk, H. Gustafsson, M. D. Sastry, and E. Lund, “Development of nickel-doped lithium formate as potential EPR dosimeter for low dose determination,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(5), 1370–1373 (2007).
[Crossref] [PubMed]

J. M. Ménard, M. Betz, I. Sigal, and H. M. van Driel, “Single-beam differential z-scan technique,” Appl. Opt. 46(11), 2119–2122 (2007).
[Crossref] [PubMed]

2006 (3)

B. Gu, Y. X. Fan, J. Wang, J. Chen, J. Ding, H. T. Wang, and B. Guo, “Characterization of saturable absorbers using an open-aperture Gaussian-beam Z scan,” Phys. Rev. A 73(6), 065803 (2006).
[Crossref]

S. Haussühl, H. A. Karapetyan, R. P. Sukiasyan, and A. M. Petrosyan, “Structure and Properties of Orthorhombic l-Arginine Formate,” Cryst. Growth Des. 6(9), 2041–2046 (2006).
[Crossref]

A. A. Kaminskii, E. Haussühl, S. Haussühl, H. J. Eichler, and H. Rhee, “Orthorhombic α-Ca(HCOO)2 and monoclinic LiH2C6H4SO3 H2O crystals - new materials for Raman lasers with large frequency shifts,” Phys. Status Solidi., A Appl. Mater. Sci. 203, 15–17 (2006).
[Crossref]

2005 (2)

2003 (1)

C. Y. Mang, K. Wu, C. S. Lin, R. J. Sa, P. Liu, and B. T. Zhuang, “A theoretical study on the second-order nonlinear optical susceptibilities of lithium formate monohydrate crystal, HCO2Li·H2O,” Opt. Mater. 22(4), 353–359 (2003).
[Crossref]

2001 (1)

J. Liu, Y. Wang, G. Lan, and J. Zheng, “Vibrational spectra of barium formate crystal,” J. Raman Spectrosc. 32(12), 1000–1003 (2001).
[Crossref]

1994 (1)

S. Abraham and G. Aruldhas, “Infrared and polarized Raman spectra of Cd (HCOO)2·2H2O,” Phys. Status Solidi 144(2), 485–491 (1994).
[Crossref]

1988 (1)

G. Adomian, “A review of the decomposition method in applied mathematics,” J. Math. Anal. Appl. 135(2), 501–544 (1988).
[Crossref]

1980 (1)

M. Matsui, T. Watanabé, N. Kamijo, R. L. Lapp, and R. A. Jacobson, “The structures of calcium formate β-Ca(HCOO)2 and δ-Ca(HCOO)2, and the tetragonal mixed crystals Ca(HCOO)2-Sr(HCOO)2,” Acta Crystallogr. B 36(5), 1081–1086 (1980).
[Crossref]

1977 (1)

P. S. Bechthold and S. Haussuhl, “Nonlinear optical properties of orthorhombic barium formate and magnesium barium fluoride,” Appl. Phys. (Berl.) 14(4), 403–410 (1977).
[Crossref]

1974 (1)

B. F. Mentzen and C. Comel, “Comparative study of the polymorphic species of strontium and calcium formates II. X-ray diffraction,” J. Solid State Chem. 9(3), 214–223 (1974).
[Crossref]

1973 (1)

R. S. Krishnan and P. S. Ramanujam, “Raman spectrum of calcium formate,” J. Raman Spectrosc. 1(6), 533–538 (1973).
[Crossref]

1970 (1)

S. Singh, W. A. Bonner, J. R. Potopowicz, and L. G. V. Uitert, “Nonlinear optical susceptibility of lithium formate monohydrate,” Appl. Phys. Lett. 17(7), 292–294 (1970).
[Crossref]

Abraham, S.

S. Abraham and G. Aruldhas, “Infrared and polarized Raman spectra of Cd (HCOO)2·2H2O,” Phys. Status Solidi 144(2), 485–491 (1994).
[Crossref]

Adolfsson, E.

E. Adolfsson, M. Karlsson, G. Alm Carlsson, A. Carlsson Tedgren, E. Lund, S. Olsson, and H. Gustafsson, “Investigation of signal fading in lithium formate EPR dosimeters using a new sensitive method,” Phys. Med. Biol. 57(8), 2209–2217 (2012).
[Crossref] [PubMed]

Adomian, G.

G. Adomian, “A review of the decomposition method in applied mathematics,” J. Math. Anal. Appl. 135(2), 501–544 (1988).
[Crossref]

Alm Carlsson, G.

E. Adolfsson, M. Karlsson, G. Alm Carlsson, A. Carlsson Tedgren, E. Lund, S. Olsson, and H. Gustafsson, “Investigation of signal fading in lithium formate EPR dosimeters using a new sensitive method,” Phys. Med. Biol. 57(8), 2209–2217 (2012).
[Crossref] [PubMed]

Aruldhas, G.

S. Abraham and G. Aruldhas, “Infrared and polarized Raman spectra of Cd (HCOO)2·2H2O,” Phys. Status Solidi 144(2), 485–491 (1994).
[Crossref]

Bayarjargal, L.

L. Bohatý, L. Bayarjargal, and P. Becker, “Linear and nonlinear optical properties of yttrium formate dihydrate, Y(HCOO)3·2H2O,” Appl. Phys. B 86(3), 523–527 (2007).
[Crossref]

Bechthold, P. S.

P. S. Bechthold and S. Haussuhl, “Nonlinear optical properties of orthorhombic barium formate and magnesium barium fluoride,” Appl. Phys. (Berl.) 14(4), 403–410 (1977).
[Crossref]

Becker, P.

L. Bohatý, L. Bayarjargal, and P. Becker, “Linear and nonlinear optical properties of yttrium formate dihydrate, Y(HCOO)3·2H2O,” Appl. Phys. B 86(3), 523–527 (2007).
[Crossref]

Betz, M.

Bohatý, L.

L. Bohatý, L. Bayarjargal, and P. Becker, “Linear and nonlinear optical properties of yttrium formate dihydrate, Y(HCOO)3·2H2O,” Appl. Phys. B 86(3), 523–527 (2007).
[Crossref]

Bonner, W. A.

S. Singh, W. A. Bonner, J. R. Potopowicz, and L. G. V. Uitert, “Nonlinear optical susceptibility of lithium formate monohydrate,” Appl. Phys. Lett. 17(7), 292–294 (1970).
[Crossref]

Boudrioua, A.

Carlsson Tedgren, A.

E. Adolfsson, M. Karlsson, G. Alm Carlsson, A. Carlsson Tedgren, E. Lund, S. Olsson, and H. Gustafsson, “Investigation of signal fading in lithium formate EPR dosimeters using a new sensitive method,” Phys. Med. Biol. 57(8), 2209–2217 (2012).
[Crossref] [PubMed]

Chen, J.

Comel, C.

B. F. Mentzen and C. Comel, “Comparative study of the polymorphic species of strontium and calcium formates II. X-ray diffraction,” J. Solid State Chem. 9(3), 214–223 (1974).
[Crossref]

Daniel, D. J.

D. J. Daniel and P. Ramasamy, “Studies on semi-organic non linear optical single crystal: Lithium formate monohydrate (HCO2Li H2O),” Opt. Mater. 36(5), 971–976 (2014).
[Crossref]

D. J. Daniel and P. Ramasamy, “Studies on semi-organic non linear optical single crystal: Lithium formate monohydrate (HCO2Li·H2O),” Opt. Mater. 36(5), 971–976 (2014).
[Crossref]

Danilczuk, M.

M. Danilczuk, H. Gustafsson, M. D. Sastry, and E. Lund, “Development of nickel-doped lithium formate as potential EPR dosimeter for low dose determination,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(5), 1370–1373 (2007).
[Crossref] [PubMed]

Dhas, S. A. M. B.

S. A. M. B. Dhas and S. Natarajan, “Growth and characterization of Lithium hydrogen oxalate monohydrate, a new semiorganic NLO material,” Mater. Lett. 62(6-7), 1136–1138 (2008).
[Crossref]

Ding, J.

Eichler, H. J.

A. A. Kaminskii, E. Haussühl, S. Haussühl, H. J. Eichler, and H. Rhee, “Orthorhombic α-Ca(HCOO)2 and monoclinic LiH2C6H4SO3 H2O crystals - new materials for Raman lasers with large frequency shifts,” Phys. Status Solidi., A Appl. Mater. Sci. 203, 15–17 (2006).
[Crossref]

Fan, Y. X.

Gu, B.

Guo, B.

B. Gu, Y. X. Fan, J. Wang, J. Chen, J. Ding, H. T. Wang, and B. Guo, “Characterization of saturable absorbers using an open-aperture Gaussian-beam Z scan,” Phys. Rev. A 73(6), 065803 (2006).
[Crossref]

Gustafsson, H.

E. Adolfsson, M. Karlsson, G. Alm Carlsson, A. Carlsson Tedgren, E. Lund, S. Olsson, and H. Gustafsson, “Investigation of signal fading in lithium formate EPR dosimeters using a new sensitive method,” Phys. Med. Biol. 57(8), 2209–2217 (2012).
[Crossref] [PubMed]

M. Danilczuk, H. Gustafsson, M. D. Sastry, and E. Lund, “Development of nickel-doped lithium formate as potential EPR dosimeter for low dose determination,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(5), 1370–1373 (2007).
[Crossref] [PubMed]

Hanumantharao, R.

R. Hanumantharao and S. Kalainathan, “Studies on structural, thermal and optical properties of novel NLO crystal bis L-glutamine sodium nitrate,” Mater. Lett. 74, 74–77 (2012).
[Crossref]

Haussuhl, S.

P. S. Bechthold and S. Haussuhl, “Nonlinear optical properties of orthorhombic barium formate and magnesium barium fluoride,” Appl. Phys. (Berl.) 14(4), 403–410 (1977).
[Crossref]

Haussühl, E.

A. A. Kaminskii, E. Haussühl, S. Haussühl, H. J. Eichler, and H. Rhee, “Orthorhombic α-Ca(HCOO)2 and monoclinic LiH2C6H4SO3 H2O crystals - new materials for Raman lasers with large frequency shifts,” Phys. Status Solidi., A Appl. Mater. Sci. 203, 15–17 (2006).
[Crossref]

Haussühl, S.

A. A. Kaminskii, E. Haussühl, S. Haussühl, H. J. Eichler, and H. Rhee, “Orthorhombic α-Ca(HCOO)2 and monoclinic LiH2C6H4SO3 H2O crystals - new materials for Raman lasers with large frequency shifts,” Phys. Status Solidi., A Appl. Mater. Sci. 203, 15–17 (2006).
[Crossref]

S. Haussühl, H. A. Karapetyan, R. P. Sukiasyan, and A. M. Petrosyan, “Structure and Properties of Orthorhombic l-Arginine Formate,” Cryst. Growth Des. 6(9), 2041–2046 (2006).
[Crossref]

Jacobson, R. A.

M. Matsui, T. Watanabé, N. Kamijo, R. L. Lapp, and R. A. Jacobson, “The structures of calcium formate β-Ca(HCOO)2 and δ-Ca(HCOO)2, and the tetragonal mixed crystals Ca(HCOO)2-Sr(HCOO)2,” Acta Crystallogr. B 36(5), 1081–1086 (1980).
[Crossref]

Kalainathan, S.

R. Hanumantharao and S. Kalainathan, “Studies on structural, thermal and optical properties of novel NLO crystal bis L-glutamine sodium nitrate,” Mater. Lett. 74, 74–77 (2012).
[Crossref]

Kamijo, N.

M. Matsui, T. Watanabé, N. Kamijo, R. L. Lapp, and R. A. Jacobson, “The structures of calcium formate β-Ca(HCOO)2 and δ-Ca(HCOO)2, and the tetragonal mixed crystals Ca(HCOO)2-Sr(HCOO)2,” Acta Crystallogr. B 36(5), 1081–1086 (1980).
[Crossref]

Kaminskii, A. A.

A. A. Kaminskii, E. Haussühl, S. Haussühl, H. J. Eichler, and H. Rhee, “Orthorhombic α-Ca(HCOO)2 and monoclinic LiH2C6H4SO3 H2O crystals - new materials for Raman lasers with large frequency shifts,” Phys. Status Solidi., A Appl. Mater. Sci. 203, 15–17 (2006).
[Crossref]

Karapetyan, H. A.

S. Haussühl, H. A. Karapetyan, R. P. Sukiasyan, and A. M. Petrosyan, “Structure and Properties of Orthorhombic l-Arginine Formate,” Cryst. Growth Des. 6(9), 2041–2046 (2006).
[Crossref]

Karlsson, M.

E. Adolfsson, M. Karlsson, G. Alm Carlsson, A. Carlsson Tedgren, E. Lund, S. Olsson, and H. Gustafsson, “Investigation of signal fading in lithium formate EPR dosimeters using a new sensitive method,” Phys. Med. Biol. 57(8), 2209–2217 (2012).
[Crossref] [PubMed]

Krishnan, R. S.

R. S. Krishnan and P. S. Ramanujam, “Raman spectrum of calcium formate,” J. Raman Spectrosc. 1(6), 533–538 (1973).
[Crossref]

Lan, G.

J. Liu, Y. Wang, G. Lan, and J. Zheng, “Vibrational spectra of barium formate crystal,” J. Raman Spectrosc. 32(12), 1000–1003 (2001).
[Crossref]

Lapp, R. L.

M. Matsui, T. Watanabé, N. Kamijo, R. L. Lapp, and R. A. Jacobson, “The structures of calcium formate β-Ca(HCOO)2 and δ-Ca(HCOO)2, and the tetragonal mixed crystals Ca(HCOO)2-Sr(HCOO)2,” Acta Crystallogr. B 36(5), 1081–1086 (1980).
[Crossref]

Lazoul, M.

Lin, C. S.

C. Y. Mang, K. Wu, C. S. Lin, R. J. Sa, P. Liu, and B. T. Zhuang, “A theoretical study on the second-order nonlinear optical susceptibilities of lithium formate monohydrate crystal, HCO2Li·H2O,” Opt. Mater. 22(4), 353–359 (2003).
[Crossref]

Liu, J.

J. Liu, Y. Wang, G. Lan, and J. Zheng, “Vibrational spectra of barium formate crystal,” J. Raman Spectrosc. 32(12), 1000–1003 (2001).
[Crossref]

Liu, P.

C. Y. Mang, K. Wu, C. S. Lin, R. J. Sa, P. Liu, and B. T. Zhuang, “A theoretical study on the second-order nonlinear optical susceptibilities of lithium formate monohydrate crystal, HCO2Li·H2O,” Opt. Mater. 22(4), 353–359 (2003).
[Crossref]

Lund, E.

E. Adolfsson, M. Karlsson, G. Alm Carlsson, A. Carlsson Tedgren, E. Lund, S. Olsson, and H. Gustafsson, “Investigation of signal fading in lithium formate EPR dosimeters using a new sensitive method,” Phys. Med. Biol. 57(8), 2209–2217 (2012).
[Crossref] [PubMed]

M. Danilczuk, H. Gustafsson, M. D. Sastry, and E. Lund, “Development of nickel-doped lithium formate as potential EPR dosimeter for low dose determination,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(5), 1370–1373 (2007).
[Crossref] [PubMed]

Mang, C. Y.

C. Y. Mang, K. Wu, C. S. Lin, R. J. Sa, P. Liu, and B. T. Zhuang, “A theoretical study on the second-order nonlinear optical susceptibilities of lithium formate monohydrate crystal, HCO2Li·H2O,” Opt. Mater. 22(4), 353–359 (2003).
[Crossref]

Matsui, M.

M. Matsui, T. Watanabé, N. Kamijo, R. L. Lapp, and R. A. Jacobson, “The structures of calcium formate β-Ca(HCOO)2 and δ-Ca(HCOO)2, and the tetragonal mixed crystals Ca(HCOO)2-Sr(HCOO)2,” Acta Crystallogr. B 36(5), 1081–1086 (1980).
[Crossref]

Ménard, J. M.

Mentzen, B. F.

B. F. Mentzen and C. Comel, “Comparative study of the polymorphic species of strontium and calcium formates II. X-ray diffraction,” J. Solid State Chem. 9(3), 214–223 (1974).
[Crossref]

Natarajan, S.

S. A. M. B. Dhas and S. Natarajan, “Growth and characterization of Lithium hydrogen oxalate monohydrate, a new semiorganic NLO material,” Mater. Lett. 62(6-7), 1136–1138 (2008).
[Crossref]

Olsson, S.

E. Adolfsson, M. Karlsson, G. Alm Carlsson, A. Carlsson Tedgren, E. Lund, S. Olsson, and H. Gustafsson, “Investigation of signal fading in lithium formate EPR dosimeters using a new sensitive method,” Phys. Med. Biol. 57(8), 2209–2217 (2012).
[Crossref] [PubMed]

Peng, L. H.

Petrosyan, A. M.

S. Haussühl, H. A. Karapetyan, R. P. Sukiasyan, and A. M. Petrosyan, “Structure and Properties of Orthorhombic l-Arginine Formate,” Cryst. Growth Des. 6(9), 2041–2046 (2006).
[Crossref]

Potopowicz, J. R.

S. Singh, W. A. Bonner, J. R. Potopowicz, and L. G. V. Uitert, “Nonlinear optical susceptibility of lithium formate monohydrate,” Appl. Phys. Lett. 17(7), 292–294 (1970).
[Crossref]

Ramalingam, A.

G. Vinitha and A. Ramalingam, “Single-beam Z-scan measurement of the third-order optical nonlinearities of triarylmethane dyes,” Laser Phys. 18(10), 1176–1182 (2008).
[Crossref]

Ramanujam, P. S.

R. S. Krishnan and P. S. Ramanujam, “Raman spectrum of calcium formate,” J. Raman Spectrosc. 1(6), 533–538 (1973).
[Crossref]

Ramasamy, P.

D. J. Daniel and P. Ramasamy, “Studies on semi-organic non linear optical single crystal: Lithium formate monohydrate (HCO2Li·H2O),” Opt. Mater. 36(5), 971–976 (2014).
[Crossref]

D. J. Daniel and P. Ramasamy, “Studies on semi-organic non linear optical single crystal: Lithium formate monohydrate (HCO2Li H2O),” Opt. Mater. 36(5), 971–976 (2014).
[Crossref]

Rhee, H.

A. A. Kaminskii, E. Haussühl, S. Haussühl, H. J. Eichler, and H. Rhee, “Orthorhombic α-Ca(HCOO)2 and monoclinic LiH2C6H4SO3 H2O crystals - new materials for Raman lasers with large frequency shifts,” Phys. Status Solidi., A Appl. Mater. Sci. 203, 15–17 (2006).
[Crossref]

Sa, R. J.

C. Y. Mang, K. Wu, C. S. Lin, R. J. Sa, P. Liu, and B. T. Zhuang, “A theoretical study on the second-order nonlinear optical susceptibilities of lithium formate monohydrate crystal, HCO2Li·H2O,” Opt. Mater. 22(4), 353–359 (2003).
[Crossref]

Sastry, M. D.

M. Danilczuk, H. Gustafsson, M. D. Sastry, and E. Lund, “Development of nickel-doped lithium formate as potential EPR dosimeter for low dose determination,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(5), 1370–1373 (2007).
[Crossref] [PubMed]

Sigal, I.

Simohamed, L. M.

Singh, S.

S. Singh, W. A. Bonner, J. R. Potopowicz, and L. G. V. Uitert, “Nonlinear optical susceptibility of lithium formate monohydrate,” Appl. Phys. Lett. 17(7), 292–294 (1970).
[Crossref]

Sukiasyan, R. P.

S. Haussühl, H. A. Karapetyan, R. P. Sukiasyan, and A. M. Petrosyan, “Structure and Properties of Orthorhombic l-Arginine Formate,” Cryst. Growth Des. 6(9), 2041–2046 (2006).
[Crossref]

Uitert, L. G. V.

S. Singh, W. A. Bonner, J. R. Potopowicz, and L. G. V. Uitert, “Nonlinear optical susceptibility of lithium formate monohydrate,” Appl. Phys. Lett. 17(7), 292–294 (1970).
[Crossref]

van Driel, H. M.

Vinitha, G.

G. Vinitha and A. Ramalingam, “Single-beam Z-scan measurement of the third-order optical nonlinearities of triarylmethane dyes,” Laser Phys. 18(10), 1176–1182 (2008).
[Crossref]

Wang, H. T.

Wang, J.

B. Gu, Y. X. Fan, J. Wang, J. Chen, J. Ding, H. T. Wang, and B. Guo, “Characterization of saturable absorbers using an open-aperture Gaussian-beam Z scan,” Phys. Rev. A 73(6), 065803 (2006).
[Crossref]

B. Gu, J. Wang, J. Chen, Y. X. Fan, J. Ding, and H. T. Wang, “Z-scan theory for material with two- and three-photon absorption,” Opt. Express 13(23), 9230–9234 (2005).
[Crossref] [PubMed]

Wang, Y.

J. Liu, Y. Wang, G. Lan, and J. Zheng, “Vibrational spectra of barium formate crystal,” J. Raman Spectrosc. 32(12), 1000–1003 (2001).
[Crossref]

Watanabé, T.

M. Matsui, T. Watanabé, N. Kamijo, R. L. Lapp, and R. A. Jacobson, “The structures of calcium formate β-Ca(HCOO)2 and δ-Ca(HCOO)2, and the tetragonal mixed crystals Ca(HCOO)2-Sr(HCOO)2,” Acta Crystallogr. B 36(5), 1081–1086 (1980).
[Crossref]

Wu, K.

C. Y. Mang, K. Wu, C. S. Lin, R. J. Sa, P. Liu, and B. T. Zhuang, “A theoretical study on the second-order nonlinear optical susceptibilities of lithium formate monohydrate crystal, HCO2Li·H2O,” Opt. Mater. 22(4), 353–359 (2003).
[Crossref]

Zheng, J.

J. Liu, Y. Wang, G. Lan, and J. Zheng, “Vibrational spectra of barium formate crystal,” J. Raman Spectrosc. 32(12), 1000–1003 (2001).
[Crossref]

Zhuang, B. T.

C. Y. Mang, K. Wu, C. S. Lin, R. J. Sa, P. Liu, and B. T. Zhuang, “A theoretical study on the second-order nonlinear optical susceptibilities of lithium formate monohydrate crystal, HCO2Li·H2O,” Opt. Mater. 22(4), 353–359 (2003).
[Crossref]

Acta Crystallogr. B (1)

M. Matsui, T. Watanabé, N. Kamijo, R. L. Lapp, and R. A. Jacobson, “The structures of calcium formate β-Ca(HCOO)2 and δ-Ca(HCOO)2, and the tetragonal mixed crystals Ca(HCOO)2-Sr(HCOO)2,” Acta Crystallogr. B 36(5), 1081–1086 (1980).
[Crossref]

Appl. Opt. (1)

Appl. Phys. (Berl.) (1)

P. S. Bechthold and S. Haussuhl, “Nonlinear optical properties of orthorhombic barium formate and magnesium barium fluoride,” Appl. Phys. (Berl.) 14(4), 403–410 (1977).
[Crossref]

Appl. Phys. B (1)

L. Bohatý, L. Bayarjargal, and P. Becker, “Linear and nonlinear optical properties of yttrium formate dihydrate, Y(HCOO)3·2H2O,” Appl. Phys. B 86(3), 523–527 (2007).
[Crossref]

Appl. Phys. Lett. (1)

S. Singh, W. A. Bonner, J. R. Potopowicz, and L. G. V. Uitert, “Nonlinear optical susceptibility of lithium formate monohydrate,” Appl. Phys. Lett. 17(7), 292–294 (1970).
[Crossref]

Cryst. Growth Des. (1)

S. Haussühl, H. A. Karapetyan, R. P. Sukiasyan, and A. M. Petrosyan, “Structure and Properties of Orthorhombic l-Arginine Formate,” Cryst. Growth Des. 6(9), 2041–2046 (2006).
[Crossref]

J. Math. Anal. Appl. (1)

G. Adomian, “A review of the decomposition method in applied mathematics,” J. Math. Anal. Appl. 135(2), 501–544 (1988).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Raman Spectrosc. (2)

R. S. Krishnan and P. S. Ramanujam, “Raman spectrum of calcium formate,” J. Raman Spectrosc. 1(6), 533–538 (1973).
[Crossref]

J. Liu, Y. Wang, G. Lan, and J. Zheng, “Vibrational spectra of barium formate crystal,” J. Raman Spectrosc. 32(12), 1000–1003 (2001).
[Crossref]

J. Solid State Chem. (1)

B. F. Mentzen and C. Comel, “Comparative study of the polymorphic species of strontium and calcium formates II. X-ray diffraction,” J. Solid State Chem. 9(3), 214–223 (1974).
[Crossref]

Laser Phys. (1)

G. Vinitha and A. Ramalingam, “Single-beam Z-scan measurement of the third-order optical nonlinearities of triarylmethane dyes,” Laser Phys. 18(10), 1176–1182 (2008).
[Crossref]

Mater. Lett. (2)

R. Hanumantharao and S. Kalainathan, “Studies on structural, thermal and optical properties of novel NLO crystal bis L-glutamine sodium nitrate,” Mater. Lett. 74, 74–77 (2012).
[Crossref]

S. A. M. B. Dhas and S. Natarajan, “Growth and characterization of Lithium hydrogen oxalate monohydrate, a new semiorganic NLO material,” Mater. Lett. 62(6-7), 1136–1138 (2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (3)

D. J. Daniel and P. Ramasamy, “Studies on semi-organic non linear optical single crystal: Lithium formate monohydrate (HCO2Li H2O),” Opt. Mater. 36(5), 971–976 (2014).
[Crossref]

C. Y. Mang, K. Wu, C. S. Lin, R. J. Sa, P. Liu, and B. T. Zhuang, “A theoretical study on the second-order nonlinear optical susceptibilities of lithium formate monohydrate crystal, HCO2Li·H2O,” Opt. Mater. 22(4), 353–359 (2003).
[Crossref]

D. J. Daniel and P. Ramasamy, “Studies on semi-organic non linear optical single crystal: Lithium formate monohydrate (HCO2Li·H2O),” Opt. Mater. 36(5), 971–976 (2014).
[Crossref]

Phys. Med. Biol. (1)

E. Adolfsson, M. Karlsson, G. Alm Carlsson, A. Carlsson Tedgren, E. Lund, S. Olsson, and H. Gustafsson, “Investigation of signal fading in lithium formate EPR dosimeters using a new sensitive method,” Phys. Med. Biol. 57(8), 2209–2217 (2012).
[Crossref] [PubMed]

Phys. Rev. A (1)

B. Gu, Y. X. Fan, J. Wang, J. Chen, J. Ding, H. T. Wang, and B. Guo, “Characterization of saturable absorbers using an open-aperture Gaussian-beam Z scan,” Phys. Rev. A 73(6), 065803 (2006).
[Crossref]

Phys. Status Solidi (1)

S. Abraham and G. Aruldhas, “Infrared and polarized Raman spectra of Cd (HCOO)2·2H2O,” Phys. Status Solidi 144(2), 485–491 (1994).
[Crossref]

Phys. Status Solidi., A Appl. Mater. Sci. (1)

A. A. Kaminskii, E. Haussühl, S. Haussühl, H. J. Eichler, and H. Rhee, “Orthorhombic α-Ca(HCOO)2 and monoclinic LiH2C6H4SO3 H2O crystals - new materials for Raman lasers with large frequency shifts,” Phys. Status Solidi., A Appl. Mater. Sci. 203, 15–17 (2006).
[Crossref]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

M. Danilczuk, H. Gustafsson, M. D. Sastry, and E. Lund, “Development of nickel-doped lithium formate as potential EPR dosimeter for low dose determination,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(5), 1370–1373 (2007).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) X-ray diffraction patterns of α-Ca(HCOO)2 crystal and powder. (b) Crystal structure of α-Ca(HCOO)2. (c) Photograph of α-Ca(HCOO)2 single crystals.
Fig. 2
Fig. 2 (a) FTIR spectrogram of α-Ca(HCOO)2. (b) the FTIR-Raman spectrogram of α-Ca(HCOO)2.
Fig. 3
Fig. 3 The UV-Vis optical transmittance spectra of α-Ca(HCOO)2 sample through the {210} crystal face.
Fig. 4
Fig. 4 Input beam fit with a Gaussian function to obtain ω.
Fig. 5
Fig. 5 The open-aperture Z-scan trace of the sample α-Ca(HCOO)2 at I0 = 1.95 GW/cm2. The solid and dotted lines are the theoretical fittings for models I and II, respectively.

Tables (3)

Tables Icon

Table 1 Fractional coordinates for α-Ca(HCOO)2 at T = 296 K.

Tables Icon

Table 2 Structural parameters (space group, lattice parameters), and reliability factors obtained from the Rietveld refinement data for α-Ca(HCOO)2 at T = 296 K.

Tables Icon

Table 3 Selected Bond Lengths and Bond Angles of α-Ca(HCOO)2 at T = 293 K.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

dI dz' = α 0 1+I/ I S I,Model I
dI dz' = α 0 1+I/ I S I,Model II

Metrics