Abstract

In this work, we have shown the capability to produce Fabry-Pérot (FP) cavities based on photopolymerizable resins sandwiched between two single-mode fibers. The process allows easy control of the length of the cavity and an enhancement on the fringe visibility when compared with standard droplet based FP sensors. The method will be employed for the fabrication of four sensors composed of different photopolymerizable resins. Their performance regarding humidity, temperature, pressure and refractive index will be under analysis, revealing that in some cases it is possible to reach better sensitivities than the ones reported in literature.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fiber-optic Fabry–Perot pressure sensor based on sapphire direct bonding for high-temperature applications

Wangwang Li, Ting Liang, Pinggang Jia, Cheng Lei, Yingping Hong, Yongwei Li, Zong Yao, Wenyi Liu, and Jijun Xiong
Appl. Opt. 58(7) 1662-1666 (2019)

Highly versatile fiber-based optical Fabry-Pérot gas sensor

Jing Liu, Yuze Sun, and Xudong Fan
Opt. Express 17(4) 2731-2738 (2009)

Temperature-independent fiber salinity sensor based on Fabry-Perot interference

Xinpu Zhang and Wei Peng
Opt. Express 23(8) 10353-10358 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Y.-J. Rao, Z.-L. Ran, and Y. Gong, Fibre-Optic Fabry-Perot Sensors: An Introduction (Taylor & Francis, 2017).
  2. P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araújo, and O. Frazão, “Intrinsic Fabry-Pérot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
    [Crossref]
  3. R. M. André, S. C. Warren-Smith, M. Becker, J. Dellith, M. Rothhardt, M. I. Zibaii, H. Latifi, M. B. Marques, H. Bartelt, and O. Frazão, “Simultaneous measurement of temperature and refractive index using focused ion beam milled Fabry-Perot cavities in optical fiber micro-tips,” Opt. Express 24(13), 14053–14065 (2016).
    [Crossref] [PubMed]
  4. H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
    [Crossref] [PubMed]
  5. Y. Yang and C. Lee, “Airgap Fiber Fabry-Pérot Interferometer using a hollow core fiber coated with a layer of photopolymer for measurement of relative humidity and temperature,” in 5th International Symposium on Next-Generation Electronics (IEEE, 2016).
    [Crossref]
  6. G. Zhang, M. Yang, and M. Wang, “Large temperature sensitivity of fiber-optic extrinsic Fabry–Perot interferometer based on polymer-filled glass capillary,” Opt. Fiber Technol. 19(6), 618–622 (2013).
    [Crossref]
  7. X. Tan, X. Li, Y. Geng, Z. Yin, L. Wang, W. Wang, and Y. Deng, “Polymer Microbubble-Based Fabry-Perot Fiber Interferometer and Sensing Applications,” IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015).
    [Crossref]
  8. S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
    [Crossref] [PubMed]
  9. C. R. Liao, T. Y. Hu, and D. N. Wang, “Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing,” Opt. Express 20(20), 22813–22818 (2012).
    [Crossref] [PubMed]
  10. T. Wieduwilt, J. Dellith, F. Talkenberg, H. Bartelt, and M. A. Schmidt, “Reflectivity enhanced refractive index sensor based on a fiber-integrated Fabry-Perot microresonator,” Opt. Express 22(21), 25333–25346 (2014).
    [Crossref] [PubMed]
  11. N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 216 (2016).
    [Crossref]
  12. C. Lee, Y. You, J. Dai, J. Hsu, and J. Horng, “Hygroscopic polymer microcavity fiber Fizeau interferometer incorporating a fiber Bragg grating for simultaneously sensing humidity and temperature,” Sens. Actuators B Chem. 222, 339–346 (2016).
    [Crossref]
  13. V. R. Macavaram, R. A. Badcock, and G. F. Fernando, “F2-laser ablation of Fabry-Perot cavities in optical fibres: Chemical sensors,” J. Opt. 14, 3 (2012).
  14. Y. Zhao, R. Q. Lv, Y. Ying, and Q. Wang, “Hollow-core photonic crystal fiber FabryPerot sensor for magnetic field measurement based on magnetic fluid,” Opt. Laser Technol. 44(4), 899–902 (2012).
    [Crossref]
  15. C. L. Lee, K. W. Liu, S. H. Luo, M. S. Wu, and C. T. Ma, “A hot-polymer fiber Fabry-Perot interferometer anemometer for sensing airflow,” Sensors (Basel) 17(9), 9 (2017).
    [Crossref] [PubMed]
  16. T. Fu, Y. Yang, J. Lin, T. Yeh, and P. Han, “A Polymer-Coated Hollow Core Fiber Fabry-Pérot Interferometer for Sensing Liquid Level,” in 21st OptoElectronics and Communications Conference held jointly with 2016 International Conference on Photonics in Switching (IEEE, 2016), pp. WA2–65.
  17. FISO Technologies Inc, “ http://fiso.com/index.php
  18. M. R. Islam, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review,” Sensors (Basel) 14(4), 7451–7488 (2014).
    [Crossref] [PubMed]
  19. L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors (Basel) 12(9), 12184–12207 (2012).
    [Crossref] [PubMed]
  20. W. P. Chen, D. N. Wang, B. Xu, C. L. Zhao, and H. F. Chen, “Multimode fiber tip Fabry-Perot cavity for highly sensitive pressure measurement,” Sci. Rep. 7(1), 368 (2017).
    [Crossref] [PubMed]
  21. B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, J. Tang, S. Liu, Z. Li, and Y. Liu, “Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet,” Opt. Express 23(3), 1906–1911 (2015).
    [Crossref] [PubMed]
  22. C.-T. Ma, Y.-W. Chang, Y.-J. Yang, and C.-L. Lee, “A dual-polymer fiber fizeau interferometer for simultaneous measurement of relative humidity and temperature,” Sensors (Basel) 17(11), 2659 (2017).
    [Crossref] [PubMed]
  23. C.-L. Lee, L.-H. Lee, H.-E. Hwang, and J.-M. Hsu, “Highly sensitive air-gap fiber Fabry–Pérot interferometers based on polymer-filled hollow core fibers,” IEEE Photonics Technol. Lett. 24(2), 149–151 (2012).
    [Crossref]
  24. J. Liu, Y. Sun, and X. Fan, “Highly versatile fiber-based optical Fabry-Pérot gas sensor,” Opt. Express 17(4), 2731–2738 (2009).
    [Crossref] [PubMed]
  25. X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic Fabry-Perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 7800208 (2014).
    [Crossref]
  26. C. Wang, G. Yan, Z. Lian, X. Chen, S. Wu, and S. He, “Hybrid-cavity fabry-perot interferometer for multi-point relative humidity and temperature sensing,” Sens. Actuators B Chem. 255, 1937–1944 (2018).
    [Crossref]
  27. “Adhesive index selector guide (Norland Products).” https://www.norlandprod.com/adhesiveindex2.html ., (accessed: 29-Jun-2018).
  28. E. Adhesives, “The Adhesive Sourcebook,” https://www.ellsworth.com/globalassets/literature-library/manufacturer/henkel-loctite/henkel-loctite-adhesive-sourcebook-2015.pdf , (accessed: 29-Jun-2018).
  29. W. Zhang, D. J. Webb, and G.-D. Peng, “Investigation into time response of polymer fiber Bragg grating based humidity sensors,” J. Lightwave Technol. 30(8), 1090–1096 (2012).
    [Crossref]
  30. A. M. Thomas, “Moisture permeability, diffusion and sorption in organic film-forming materials,” J. Appl. Chem. 1(4), 141–158 (1951).
    [Crossref]
  31. W. L. Chen, K. R. Shull, T. Papatheodorou, D. A. Styrkas, and J. L. Keddie, “Equilibrium swelling of hydrophilic polyacrylates in humid environments,” Macromolecules 32(1), 136–144 (1999).
    [Crossref]
  32. J. A. Barrie and B. Platt, “The diffusion and clustering of water vapour in polymers,” Polymer (Guildf.) 4 (1963), 303–313 (1963).
    [Crossref]
  33. W. Zhang, D. Webb, and G. Peng, “Polymer optical fiber Bragg grating acting as an intrinsic biochemical concentration sensor,” Opt. Lett. 37(8), 1370–1372 (2012).
    [Crossref] [PubMed]

2018 (1)

C. Wang, G. Yan, Z. Lian, X. Chen, S. Wu, and S. He, “Hybrid-cavity fabry-perot interferometer for multi-point relative humidity and temperature sensing,” Sens. Actuators B Chem. 255, 1937–1944 (2018).
[Crossref]

2017 (3)

C. L. Lee, K. W. Liu, S. H. Luo, M. S. Wu, and C. T. Ma, “A hot-polymer fiber Fabry-Perot interferometer anemometer for sensing airflow,” Sensors (Basel) 17(9), 9 (2017).
[Crossref] [PubMed]

W. P. Chen, D. N. Wang, B. Xu, C. L. Zhao, and H. F. Chen, “Multimode fiber tip Fabry-Perot cavity for highly sensitive pressure measurement,” Sci. Rep. 7(1), 368 (2017).
[Crossref] [PubMed]

C.-T. Ma, Y.-W. Chang, Y.-J. Yang, and C.-L. Lee, “A dual-polymer fiber fizeau interferometer for simultaneous measurement of relative humidity and temperature,” Sensors (Basel) 17(11), 2659 (2017).
[Crossref] [PubMed]

2016 (3)

R. M. André, S. C. Warren-Smith, M. Becker, J. Dellith, M. Rothhardt, M. I. Zibaii, H. Latifi, M. B. Marques, H. Bartelt, and O. Frazão, “Simultaneous measurement of temperature and refractive index using focused ion beam milled Fabry-Perot cavities in optical fiber micro-tips,” Opt. Express 24(13), 14053–14065 (2016).
[Crossref] [PubMed]

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 216 (2016).
[Crossref]

C. Lee, Y. You, J. Dai, J. Hsu, and J. Horng, “Hygroscopic polymer microcavity fiber Fizeau interferometer incorporating a fiber Bragg grating for simultaneously sensing humidity and temperature,” Sens. Actuators B Chem. 222, 339–346 (2016).
[Crossref]

2015 (3)

B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, J. Tang, S. Liu, Z. Li, and Y. Liu, “Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet,” Opt. Express 23(3), 1906–1911 (2015).
[Crossref] [PubMed]

X. Tan, X. Li, Y. Geng, Z. Yin, L. Wang, W. Wang, and Y. Deng, “Polymer Microbubble-Based Fabry-Perot Fiber Interferometer and Sensing Applications,” IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015).
[Crossref]

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

2014 (3)

M. R. Islam, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review,” Sensors (Basel) 14(4), 7451–7488 (2014).
[Crossref] [PubMed]

T. Wieduwilt, J. Dellith, F. Talkenberg, H. Bartelt, and M. A. Schmidt, “Reflectivity enhanced refractive index sensor based on a fiber-integrated Fabry-Perot microresonator,” Opt. Express 22(21), 25333–25346 (2014).
[Crossref] [PubMed]

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic Fabry-Perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 7800208 (2014).
[Crossref]

2013 (1)

G. Zhang, M. Yang, and M. Wang, “Large temperature sensitivity of fiber-optic extrinsic Fabry–Perot interferometer based on polymer-filled glass capillary,” Opt. Fiber Technol. 19(6), 618–622 (2013).
[Crossref]

2012 (8)

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araújo, and O. Frazão, “Intrinsic Fabry-Pérot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

V. R. Macavaram, R. A. Badcock, and G. F. Fernando, “F2-laser ablation of Fabry-Perot cavities in optical fibres: Chemical sensors,” J. Opt. 14, 3 (2012).

Y. Zhao, R. Q. Lv, Y. Ying, and Q. Wang, “Hollow-core photonic crystal fiber FabryPerot sensor for magnetic field measurement based on magnetic fluid,” Opt. Laser Technol. 44(4), 899–902 (2012).
[Crossref]

L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors (Basel) 12(9), 12184–12207 (2012).
[Crossref] [PubMed]

C. R. Liao, T. Y. Hu, and D. N. Wang, “Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing,” Opt. Express 20(20), 22813–22818 (2012).
[Crossref] [PubMed]

C.-L. Lee, L.-H. Lee, H.-E. Hwang, and J.-M. Hsu, “Highly sensitive air-gap fiber Fabry–Pérot interferometers based on polymer-filled hollow core fibers,” IEEE Photonics Technol. Lett. 24(2), 149–151 (2012).
[Crossref]

W. Zhang, D. J. Webb, and G.-D. Peng, “Investigation into time response of polymer fiber Bragg grating based humidity sensors,” J. Lightwave Technol. 30(8), 1090–1096 (2012).
[Crossref]

W. Zhang, D. Webb, and G. Peng, “Polymer optical fiber Bragg grating acting as an intrinsic biochemical concentration sensor,” Opt. Lett. 37(8), 1370–1372 (2012).
[Crossref] [PubMed]

2009 (1)

2008 (1)

1999 (1)

W. L. Chen, K. R. Shull, T. Papatheodorou, D. A. Styrkas, and J. L. Keddie, “Equilibrium swelling of hydrophilic polyacrylates in humid environments,” Macromolecules 32(1), 136–144 (1999).
[Crossref]

1963 (1)

J. A. Barrie and B. Platt, “The diffusion and clustering of water vapour in polymers,” Polymer (Guildf.) 4 (1963), 303–313 (1963).
[Crossref]

1951 (1)

A. M. Thomas, “Moisture permeability, diffusion and sorption in organic film-forming materials,” J. Appl. Chem. 1(4), 141–158 (1951).
[Crossref]

Ahmad, H.

M. R. Islam, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review,” Sensors (Basel) 14(4), 7451–7488 (2014).
[Crossref] [PubMed]

Alberto, N.

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 216 (2016).
[Crossref]

L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors (Basel) 12(9), 12184–12207 (2012).
[Crossref] [PubMed]

Ali, M. M.

M. R. Islam, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review,” Sensors (Basel) 14(4), 7451–7488 (2014).
[Crossref] [PubMed]

André, P. S.

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 216 (2016).
[Crossref]

André, R. M.

Antunes, P.

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 216 (2016).
[Crossref]

Araújo, F. M.

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araújo, and O. Frazão, “Intrinsic Fabry-Pérot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

Badcock, R. A.

V. R. Macavaram, R. A. Badcock, and G. F. Fernando, “F2-laser ablation of Fabry-Perot cavities in optical fibres: Chemical sensors,” J. Opt. 14, 3 (2012).

Barrie, J. A.

J. A. Barrie and B. Platt, “The diffusion and clustering of water vapour in polymers,” Polymer (Guildf.) 4 (1963), 303–313 (1963).
[Crossref]

Bartelt, H.

Becker, M.

Bilro, L.

L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors (Basel) 12(9), 12184–12207 (2012).
[Crossref] [PubMed]

Chang, Y.-W.

C.-T. Ma, Y.-W. Chang, Y.-J. Yang, and C.-L. Lee, “A dual-polymer fiber fizeau interferometer for simultaneous measurement of relative humidity and temperature,” Sensors (Basel) 17(11), 2659 (2017).
[Crossref] [PubMed]

Chen, H. F.

W. P. Chen, D. N. Wang, B. Xu, C. L. Zhao, and H. F. Chen, “Multimode fiber tip Fabry-Perot cavity for highly sensitive pressure measurement,” Sci. Rep. 7(1), 368 (2017).
[Crossref] [PubMed]

Chen, W. L.

W. L. Chen, K. R. Shull, T. Papatheodorou, D. A. Styrkas, and J. L. Keddie, “Equilibrium swelling of hydrophilic polyacrylates in humid environments,” Macromolecules 32(1), 136–144 (1999).
[Crossref]

Chen, W. P.

W. P. Chen, D. N. Wang, B. Xu, C. L. Zhao, and H. F. Chen, “Multimode fiber tip Fabry-Perot cavity for highly sensitive pressure measurement,” Sci. Rep. 7(1), 368 (2017).
[Crossref] [PubMed]

Chen, X.

C. Wang, G. Yan, Z. Lian, X. Chen, S. Wu, and S. He, “Hybrid-cavity fabry-perot interferometer for multi-point relative humidity and temperature sensing,” Sens. Actuators B Chem. 255, 1937–1944 (2018).
[Crossref]

Choi, E. S.

Choi, H. Y.

Correia, S. F. H.

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 216 (2016).
[Crossref]

Dai, J.

C. Lee, Y. You, J. Dai, J. Hsu, and J. Horng, “Hygroscopic polymer microcavity fiber Fizeau interferometer incorporating a fiber Bragg grating for simultaneously sensing humidity and temperature,” Sens. Actuators B Chem. 222, 339–346 (2016).
[Crossref]

Dellith, J.

Deng, Y.

X. Tan, X. Li, Y. Geng, Z. Yin, L. Wang, W. Wang, and Y. Deng, “Polymer Microbubble-Based Fabry-Perot Fiber Interferometer and Sensing Applications,” IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015).
[Crossref]

Deng, Y. L.

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic Fabry-Perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 7800208 (2014).
[Crossref]

Domingues, M. F.

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 216 (2016).
[Crossref]

Fan, X.

Fernando, G. F.

V. R. Macavaram, R. A. Badcock, and G. F. Fernando, “F2-laser ablation of Fabry-Perot cavities in optical fibres: Chemical sensors,” J. Opt. 14, 3 (2012).

Ferreira, R. A. S.

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 216 (2016).
[Crossref]

Frazão, O.

R. M. André, S. C. Warren-Smith, M. Becker, J. Dellith, M. Rothhardt, M. I. Zibaii, H. Latifi, M. B. Marques, H. Bartelt, and O. Frazão, “Simultaneous measurement of temperature and refractive index using focused ion beam milled Fabry-Perot cavities in optical fiber micro-tips,” Opt. Express 24(13), 14053–14065 (2016).
[Crossref] [PubMed]

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araújo, and O. Frazão, “Intrinsic Fabry-Pérot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

Gao, R.

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic Fabry-Perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 7800208 (2014).
[Crossref]

Geng, Y.

X. Tan, X. Li, Y. Geng, Z. Yin, L. Wang, W. Wang, and Y. Deng, “Polymer Microbubble-Based Fabry-Perot Fiber Interferometer and Sensing Applications,” IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015).
[Crossref]

Geng, Y. F.

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic Fabry-Perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 7800208 (2014).
[Crossref]

He, J.

B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, J. Tang, S. Liu, Z. Li, and Y. Liu, “Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet,” Opt. Express 23(3), 1906–1911 (2015).
[Crossref] [PubMed]

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

He, S.

C. Wang, G. Yan, Z. Lian, X. Chen, S. Wu, and S. He, “Hybrid-cavity fabry-perot interferometer for multi-point relative humidity and temperature sensing,” Sens. Actuators B Chem. 255, 1937–1944 (2018).
[Crossref]

Horng, J.

C. Lee, Y. You, J. Dai, J. Hsu, and J. Horng, “Hygroscopic polymer microcavity fiber Fizeau interferometer incorporating a fiber Bragg grating for simultaneously sensing humidity and temperature,” Sens. Actuators B Chem. 222, 339–346 (2016).
[Crossref]

Hsu, J.

C. Lee, Y. You, J. Dai, J. Hsu, and J. Horng, “Hygroscopic polymer microcavity fiber Fizeau interferometer incorporating a fiber Bragg grating for simultaneously sensing humidity and temperature,” Sens. Actuators B Chem. 222, 339–346 (2016).
[Crossref]

Hsu, J.-M.

C.-L. Lee, L.-H. Lee, H.-E. Hwang, and J.-M. Hsu, “Highly sensitive air-gap fiber Fabry–Pérot interferometers based on polymer-filled hollow core fibers,” IEEE Photonics Technol. Lett. 24(2), 149–151 (2012).
[Crossref]

Hu, T. Y.

Hwang, H.-E.

C.-L. Lee, L.-H. Lee, H.-E. Hwang, and J.-M. Hsu, “Highly sensitive air-gap fiber Fabry–Pérot interferometers based on polymer-filled hollow core fibers,” IEEE Photonics Technol. Lett. 24(2), 149–151 (2012).
[Crossref]

Islam, M. R.

M. R. Islam, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review,” Sensors (Basel) 14(4), 7451–7488 (2014).
[Crossref] [PubMed]

Jorge, P. A. S.

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araújo, and O. Frazão, “Intrinsic Fabry-Pérot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

Keddie, J. L.

W. L. Chen, K. R. Shull, T. Papatheodorou, D. A. Styrkas, and J. L. Keddie, “Equilibrium swelling of hydrophilic polyacrylates in humid environments,” Macromolecules 32(1), 136–144 (1999).
[Crossref]

Lai, M. H.

M. R. Islam, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review,” Sensors (Basel) 14(4), 7451–7488 (2014).
[Crossref] [PubMed]

Latifi, H.

Lee, B. H.

Lee, C.

C. Lee, Y. You, J. Dai, J. Hsu, and J. Horng, “Hygroscopic polymer microcavity fiber Fizeau interferometer incorporating a fiber Bragg grating for simultaneously sensing humidity and temperature,” Sens. Actuators B Chem. 222, 339–346 (2016).
[Crossref]

Y. Yang and C. Lee, “Airgap Fiber Fabry-Pérot Interferometer using a hollow core fiber coated with a layer of photopolymer for measurement of relative humidity and temperature,” in 5th International Symposium on Next-Generation Electronics (IEEE, 2016).
[Crossref]

Lee, C. L.

C. L. Lee, K. W. Liu, S. H. Luo, M. S. Wu, and C. T. Ma, “A hot-polymer fiber Fabry-Perot interferometer anemometer for sensing airflow,” Sensors (Basel) 17(9), 9 (2017).
[Crossref] [PubMed]

Lee, C.-L.

C.-T. Ma, Y.-W. Chang, Y.-J. Yang, and C.-L. Lee, “A dual-polymer fiber fizeau interferometer for simultaneous measurement of relative humidity and temperature,” Sensors (Basel) 17(11), 2659 (2017).
[Crossref] [PubMed]

C.-L. Lee, L.-H. Lee, H.-E. Hwang, and J.-M. Hsu, “Highly sensitive air-gap fiber Fabry–Pérot interferometers based on polymer-filled hollow core fibers,” IEEE Photonics Technol. Lett. 24(2), 149–151 (2012).
[Crossref]

Lee, L.-H.

C.-L. Lee, L.-H. Lee, H.-E. Hwang, and J.-M. Hsu, “Highly sensitive air-gap fiber Fabry–Pérot interferometers based on polymer-filled hollow core fibers,” IEEE Photonics Technol. Lett. 24(2), 149–151 (2012).
[Crossref]

Li, X.

X. Tan, X. Li, Y. Geng, Z. Yin, L. Wang, W. Wang, and Y. Deng, “Polymer Microbubble-Based Fabry-Perot Fiber Interferometer and Sensing Applications,” IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015).
[Crossref]

Li, X. J.

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic Fabry-Perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 7800208 (2014).
[Crossref]

Li, Z.

B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, J. Tang, S. Liu, Z. Li, and Y. Liu, “Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet,” Opt. Express 23(3), 1906–1911 (2015).
[Crossref] [PubMed]

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Lian, Z.

C. Wang, G. Yan, Z. Lian, X. Chen, S. Wu, and S. He, “Hybrid-cavity fabry-perot interferometer for multi-point relative humidity and temperature sensing,” Sens. Actuators B Chem. 255, 1937–1944 (2018).
[Crossref]

Liao, C.

B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, J. Tang, S. Liu, Z. Li, and Y. Liu, “Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet,” Opt. Express 23(3), 1906–1911 (2015).
[Crossref] [PubMed]

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Liao, C. R.

Lim, K. S.

M. R. Islam, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review,” Sensors (Basel) 14(4), 7451–7488 (2014).
[Crossref] [PubMed]

Liu, J.

Liu, K. W.

C. L. Lee, K. W. Liu, S. H. Luo, M. S. Wu, and C. T. Ma, “A hot-polymer fiber Fabry-Perot interferometer anemometer for sensing airflow,” Sensors (Basel) 17(9), 9 (2017).
[Crossref] [PubMed]

Liu, S.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, J. Tang, S. Liu, Z. Li, and Y. Liu, “Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet,” Opt. Express 23(3), 1906–1911 (2015).
[Crossref] [PubMed]

Liu, Y.

Luo, S. H.

C. L. Lee, K. W. Liu, S. H. Luo, M. S. Wu, and C. T. Ma, “A hot-polymer fiber Fabry-Perot interferometer anemometer for sensing airflow,” Sensors (Basel) 17(9), 9 (2017).
[Crossref] [PubMed]

Lv, R. Q.

Y. Zhao, R. Q. Lv, Y. Ying, and Q. Wang, “Hollow-core photonic crystal fiber FabryPerot sensor for magnetic field measurement based on magnetic fluid,” Opt. Laser Technol. 44(4), 899–902 (2012).
[Crossref]

Ma, C. T.

C. L. Lee, K. W. Liu, S. H. Luo, M. S. Wu, and C. T. Ma, “A hot-polymer fiber Fabry-Perot interferometer anemometer for sensing airflow,” Sensors (Basel) 17(9), 9 (2017).
[Crossref] [PubMed]

Ma, C.-T.

C.-T. Ma, Y.-W. Chang, Y.-J. Yang, and C.-L. Lee, “A dual-polymer fiber fizeau interferometer for simultaneous measurement of relative humidity and temperature,” Sensors (Basel) 17(11), 2659 (2017).
[Crossref] [PubMed]

Macavaram, V. R.

V. R. Macavaram, R. A. Badcock, and G. F. Fernando, “F2-laser ablation of Fabry-Perot cavities in optical fibres: Chemical sensors,” J. Opt. 14, 3 (2012).

Marques, C.

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 216 (2016).
[Crossref]

Marques, M. B.

Nogueira, R.

L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors (Basel) 12(9), 12184–12207 (2012).
[Crossref] [PubMed]

Paek, U. C.

Papatheodorou, T.

W. L. Chen, K. R. Shull, T. Papatheodorou, D. A. Styrkas, and J. L. Keddie, “Equilibrium swelling of hydrophilic polyacrylates in humid environments,” Macromolecules 32(1), 136–144 (1999).
[Crossref]

Park, K. S.

Park, S. J.

Peng, G.

Peng, G.-D.

Pinto, J. L.

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 216 (2016).
[Crossref]

L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors (Basel) 12(9), 12184–12207 (2012).
[Crossref] [PubMed]

Platt, B.

J. A. Barrie and B. Platt, “The diffusion and clustering of water vapour in polymers,” Polymer (Guildf.) 4 (1963), 303–313 (1963).
[Crossref]

Qu, J.

B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, J. Tang, S. Liu, Z. Li, and Y. Liu, “Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet,” Opt. Express 23(3), 1906–1911 (2015).
[Crossref] [PubMed]

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Rothhardt, M.

Santos, J. L.

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araújo, and O. Frazão, “Intrinsic Fabry-Pérot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

Schmidt, M. A.

Shull, K. R.

W. L. Chen, K. R. Shull, T. Papatheodorou, D. A. Styrkas, and J. L. Keddie, “Equilibrium swelling of hydrophilic polyacrylates in humid environments,” Macromolecules 32(1), 136–144 (1999).
[Crossref]

Styrkas, D. A.

W. L. Chen, K. R. Shull, T. Papatheodorou, D. A. Styrkas, and J. L. Keddie, “Equilibrium swelling of hydrophilic polyacrylates in humid environments,” Macromolecules 32(1), 136–144 (1999).
[Crossref]

Sun, B.

B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, J. Tang, S. Liu, Z. Li, and Y. Liu, “Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet,” Opt. Express 23(3), 1906–1911 (2015).
[Crossref] [PubMed]

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Sun, Y.

Tafulo, P. A. R.

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araújo, and O. Frazão, “Intrinsic Fabry-Pérot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

Talkenberg, F.

Tan, X.

X. Tan, X. Li, Y. Geng, Z. Yin, L. Wang, W. Wang, and Y. Deng, “Polymer Microbubble-Based Fabry-Perot Fiber Interferometer and Sensing Applications,” IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015).
[Crossref]

Tan, X. L.

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic Fabry-Perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 7800208 (2014).
[Crossref]

Tang, J.

B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, J. Tang, S. Liu, Z. Li, and Y. Liu, “Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet,” Opt. Express 23(3), 1906–1911 (2015).
[Crossref] [PubMed]

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Tavares, C.

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 216 (2016).
[Crossref]

Thomas, A. M.

A. M. Thomas, “Moisture permeability, diffusion and sorption in organic film-forming materials,” J. Appl. Chem. 1(4), 141–158 (1951).
[Crossref]

Wang, C.

C. Wang, G. Yan, Z. Lian, X. Chen, S. Wu, and S. He, “Hybrid-cavity fabry-perot interferometer for multi-point relative humidity and temperature sensing,” Sens. Actuators B Chem. 255, 1937–1944 (2018).
[Crossref]

Wang, D. N.

Wang, G.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Wang, L.

X. Tan, X. Li, Y. Geng, Z. Yin, L. Wang, W. Wang, and Y. Deng, “Polymer Microbubble-Based Fabry-Perot Fiber Interferometer and Sensing Applications,” IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015).
[Crossref]

Wang, M.

G. Zhang, M. Yang, and M. Wang, “Large temperature sensitivity of fiber-optic extrinsic Fabry–Perot interferometer based on polymer-filled glass capillary,” Opt. Fiber Technol. 19(6), 618–622 (2013).
[Crossref]

Wang, Q.

Y. Zhao, R. Q. Lv, Y. Ying, and Q. Wang, “Hollow-core photonic crystal fiber FabryPerot sensor for magnetic field measurement based on magnetic fluid,” Opt. Laser Technol. 44(4), 899–902 (2012).
[Crossref]

Wang, W.

X. Tan, X. Li, Y. Geng, Z. Yin, L. Wang, W. Wang, and Y. Deng, “Polymer Microbubble-Based Fabry-Perot Fiber Interferometer and Sensing Applications,” IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015).
[Crossref]

Wang, Y.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, J. Tang, S. Liu, Z. Li, and Y. Liu, “Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet,” Opt. Express 23(3), 1906–1911 (2015).
[Crossref] [PubMed]

Warren-Smith, S. C.

Webb, D.

Webb, D. J.

Wieduwilt, T.

Wu, M. S.

C. L. Lee, K. W. Liu, S. H. Luo, M. S. Wu, and C. T. Ma, “A hot-polymer fiber Fabry-Perot interferometer anemometer for sensing airflow,” Sensors (Basel) 17(9), 9 (2017).
[Crossref] [PubMed]

Wu, S.

C. Wang, G. Yan, Z. Lian, X. Chen, S. Wu, and S. He, “Hybrid-cavity fabry-perot interferometer for multi-point relative humidity and temperature sensing,” Sens. Actuators B Chem. 255, 1937–1944 (2018).
[Crossref]

Xu, B.

W. P. Chen, D. N. Wang, B. Xu, C. L. Zhao, and H. F. Chen, “Multimode fiber tip Fabry-Perot cavity for highly sensitive pressure measurement,” Sci. Rep. 7(1), 368 (2017).
[Crossref] [PubMed]

Yan, G.

C. Wang, G. Yan, Z. Lian, X. Chen, S. Wu, and S. He, “Hybrid-cavity fabry-perot interferometer for multi-point relative humidity and temperature sensing,” Sens. Actuators B Chem. 255, 1937–1944 (2018).
[Crossref]

Yang, K.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Yang, M.

G. Zhang, M. Yang, and M. Wang, “Large temperature sensitivity of fiber-optic extrinsic Fabry–Perot interferometer based on polymer-filled glass capillary,” Opt. Fiber Technol. 19(6), 618–622 (2013).
[Crossref]

Yang, Y.

Y. Yang and C. Lee, “Airgap Fiber Fabry-Pérot Interferometer using a hollow core fiber coated with a layer of photopolymer for measurement of relative humidity and temperature,” in 5th International Symposium on Next-Generation Electronics (IEEE, 2016).
[Crossref]

Yang, Y.-J.

C.-T. Ma, Y.-W. Chang, Y.-J. Yang, and C.-L. Lee, “A dual-polymer fiber fizeau interferometer for simultaneous measurement of relative humidity and temperature,” Sensors (Basel) 17(11), 2659 (2017).
[Crossref] [PubMed]

Yin, G.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, J. Tang, S. Liu, Z. Li, and Y. Liu, “Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet,” Opt. Express 23(3), 1906–1911 (2015).
[Crossref] [PubMed]

Yin, Z.

X. Tan, X. Li, Y. Geng, Z. Yin, L. Wang, W. Wang, and Y. Deng, “Polymer Microbubble-Based Fabry-Perot Fiber Interferometer and Sensing Applications,” IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015).
[Crossref]

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic Fabry-Perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 7800208 (2014).
[Crossref]

Ying, Y.

Y. Zhao, R. Q. Lv, Y. Ying, and Q. Wang, “Hollow-core photonic crystal fiber FabryPerot sensor for magnetic field measurement based on magnetic fluid,” Opt. Laser Technol. 44(4), 899–902 (2012).
[Crossref]

You, Y.

C. Lee, Y. You, J. Dai, J. Hsu, and J. Horng, “Hygroscopic polymer microcavity fiber Fizeau interferometer incorporating a fiber Bragg grating for simultaneously sensing humidity and temperature,” Sens. Actuators B Chem. 222, 339–346 (2016).
[Crossref]

Zhang, G.

G. Zhang, M. Yang, and M. Wang, “Large temperature sensitivity of fiber-optic extrinsic Fabry–Perot interferometer based on polymer-filled glass capillary,” Opt. Fiber Technol. 19(6), 618–622 (2013).
[Crossref]

Zhang, W.

Zhao, C. L.

W. P. Chen, D. N. Wang, B. Xu, C. L. Zhao, and H. F. Chen, “Multimode fiber tip Fabry-Perot cavity for highly sensitive pressure measurement,” Sci. Rep. 7(1), 368 (2017).
[Crossref] [PubMed]

Zhao, J.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhao, R. Q. Lv, Y. Ying, and Q. Wang, “Hollow-core photonic crystal fiber FabryPerot sensor for magnetic field measurement based on magnetic fluid,” Opt. Laser Technol. 44(4), 899–902 (2012).
[Crossref]

Zhou, J.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, J. Tang, S. Liu, Z. Li, and Y. Liu, “Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet,” Opt. Express 23(3), 1906–1911 (2015).
[Crossref] [PubMed]

Zibaii, M. I.

IEEE Photonics J. (1)

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic Fabry-Perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 7800208 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (2)

X. Tan, X. Li, Y. Geng, Z. Yin, L. Wang, W. Wang, and Y. Deng, “Polymer Microbubble-Based Fabry-Perot Fiber Interferometer and Sensing Applications,” IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015).
[Crossref]

C.-L. Lee, L.-H. Lee, H.-E. Hwang, and J.-M. Hsu, “Highly sensitive air-gap fiber Fabry–Pérot interferometers based on polymer-filled hollow core fibers,” IEEE Photonics Technol. Lett. 24(2), 149–151 (2012).
[Crossref]

IEEE Sens. J. (1)

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araújo, and O. Frazão, “Intrinsic Fabry-Pérot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

J. Appl. Chem. (1)

A. M. Thomas, “Moisture permeability, diffusion and sorption in organic film-forming materials,” J. Appl. Chem. 1(4), 141–158 (1951).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

V. R. Macavaram, R. A. Badcock, and G. F. Fernando, “F2-laser ablation of Fabry-Perot cavities in optical fibres: Chemical sensors,” J. Opt. 14, 3 (2012).

Macromolecules (1)

W. L. Chen, K. R. Shull, T. Papatheodorou, D. A. Styrkas, and J. L. Keddie, “Equilibrium swelling of hydrophilic polyacrylates in humid environments,” Macromolecules 32(1), 136–144 (1999).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (1)

G. Zhang, M. Yang, and M. Wang, “Large temperature sensitivity of fiber-optic extrinsic Fabry–Perot interferometer based on polymer-filled glass capillary,” Opt. Fiber Technol. 19(6), 618–622 (2013).
[Crossref]

Opt. Laser Technol. (1)

Y. Zhao, R. Q. Lv, Y. Ying, and Q. Wang, “Hollow-core photonic crystal fiber FabryPerot sensor for magnetic field measurement based on magnetic fluid,” Opt. Laser Technol. 44(4), 899–902 (2012).
[Crossref]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 216 (2016).
[Crossref]

Polymer (Guildf.) (1)

J. A. Barrie and B. Platt, “The diffusion and clustering of water vapour in polymers,” Polymer (Guildf.) 4 (1963), 303–313 (1963).
[Crossref]

Sci. Rep. (2)

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

W. P. Chen, D. N. Wang, B. Xu, C. L. Zhao, and H. F. Chen, “Multimode fiber tip Fabry-Perot cavity for highly sensitive pressure measurement,” Sci. Rep. 7(1), 368 (2017).
[Crossref] [PubMed]

Sens. Actuators B Chem. (2)

C. Lee, Y. You, J. Dai, J. Hsu, and J. Horng, “Hygroscopic polymer microcavity fiber Fizeau interferometer incorporating a fiber Bragg grating for simultaneously sensing humidity and temperature,” Sens. Actuators B Chem. 222, 339–346 (2016).
[Crossref]

C. Wang, G. Yan, Z. Lian, X. Chen, S. Wu, and S. He, “Hybrid-cavity fabry-perot interferometer for multi-point relative humidity and temperature sensing,” Sens. Actuators B Chem. 255, 1937–1944 (2018).
[Crossref]

Sensors (Basel) (4)

M. R. Islam, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review,” Sensors (Basel) 14(4), 7451–7488 (2014).
[Crossref] [PubMed]

L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors (Basel) 12(9), 12184–12207 (2012).
[Crossref] [PubMed]

C. L. Lee, K. W. Liu, S. H. Luo, M. S. Wu, and C. T. Ma, “A hot-polymer fiber Fabry-Perot interferometer anemometer for sensing airflow,” Sensors (Basel) 17(9), 9 (2017).
[Crossref] [PubMed]

C.-T. Ma, Y.-W. Chang, Y.-J. Yang, and C.-L. Lee, “A dual-polymer fiber fizeau interferometer for simultaneous measurement of relative humidity and temperature,” Sensors (Basel) 17(11), 2659 (2017).
[Crossref] [PubMed]

Other (6)

Y. Yang and C. Lee, “Airgap Fiber Fabry-Pérot Interferometer using a hollow core fiber coated with a layer of photopolymer for measurement of relative humidity and temperature,” in 5th International Symposium on Next-Generation Electronics (IEEE, 2016).
[Crossref]

Y.-J. Rao, Z.-L. Ran, and Y. Gong, Fibre-Optic Fabry-Perot Sensors: An Introduction (Taylor & Francis, 2017).

T. Fu, Y. Yang, J. Lin, T. Yeh, and P. Han, “A Polymer-Coated Hollow Core Fiber Fabry-Pérot Interferometer for Sensing Liquid Level,” in 21st OptoElectronics and Communications Conference held jointly with 2016 International Conference on Photonics in Switching (IEEE, 2016), pp. WA2–65.

FISO Technologies Inc, “ http://fiso.com/index.php

“Adhesive index selector guide (Norland Products).” https://www.norlandprod.com/adhesiveindex2.html ., (accessed: 29-Jun-2018).

E. Adhesives, “The Adhesive Sourcebook,” https://www.ellsworth.com/globalassets/literature-library/manufacturer/henkel-loctite/henkel-loctite-adhesive-sourcebook-2015.pdf , (accessed: 29-Jun-2018).

Supplementary Material (1)

NameDescription
» Visualization 1       Fabrication process of a Fabry-Pérot cavity based on photopolymerizable resin sandwiched between two single-mode-fibers.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic of the FP sensor composed by a photopolymerizable resin sandwiched between two SMFs.
Fig. 2
Fig. 2 (a) Picture of the setup used for the FP cavity fabrication, composed by a xyz translation stage that align the fibers with help of two side cameras. (b) FP cavity during the fabrication process (UV side illumination). (c) Microscope image of the final FP sensor, composed by photopolymerizable resin sandwiched between two SMFs.
Fig. 3
Fig. 3 Reflection spectra of the fabricated FP sensors, respectively for the: (a) NOA78; (b) NOA3525; (c) NOA86H and (d) NOA85.
Fig. 4
Fig. 4 Pictures of the setups used for: (a), (b) humidity and temperature characterization, by placing the FP sensors in a climatic chamber; (b) hydrostatic pressure by introducing each FP sensor in the pipe that is connected to the oil pump; (c) refractive-index characterization by placing the FP sensors in different salt-water solutions (the black lines and red dots were drawn for clarity purposes).
Fig. 5
Fig. 5 Normalized wavelength shift evolution for different resin based FPIs, considering constant temperature of 25 °C and a step humidity increase from 30 to 45%RH (a); and a step humidity decrease from 45 to 30%RH (b).
Fig. 6
Fig. 6 Reflection spectra obtained at 25°C for different humidity conditions, considering the FP sensors based on: (a) NOA78; (b) Loctite3525; (c) NOA86H and (d) NOA85.
Fig. 7
Fig. 7 Reflection spectra obtained at 30%RH for different temperature conditions, obtained for the FP sensors based on (a) NOA78; (b) Loctite3525; (c) NOA86H and (d) NOA85.
Fig. 8
Fig. 8 Reflection spectra obtained for the pressure tests, for the FP sensors based on (a) NOA78; (b) Loctite3525; (c) NOA86H and (d) NOA85.
Fig. 9
Fig. 9 Reflection spectra obtained for different refractive index solutions,, obtained for the FP sensors composed of (a) NOA78; (b) Loctite3525; (c) NOA86H and (d) NOA85.
Fig. 10
Fig. 10 Sensitivities obtained for the four sensors developed, concerning the characterizations to: (a) humidity, (b) temperature; (c) pressure and (d) refractive index.

Tables (2)

Tables Icon

Table 1 Fitting parameters of FP cavities based on different UV resins, concerning the humidity tests

Tables Icon

Table 2 Fitting parameters of FP cavities based on different UV resins, concerning the refractive index characterizations

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

φ= 2π λ OPD
I(λ)= I 1 + I 2 +2 I 1 I 2 cos(φ)
λ m = 2nL m
Δ λ FSR = λ 2 2nL
V= ( I max I min ) ( I max + I min )
Δλ=( Δn n + ΔL L ) λ m =( Δn n + ε z ) λ m
Δλ= α 1 R H 2 + β 1 RH+ γ 1
( Δn n + ΔL L ) 1 ΔT =ξ+α
Δ λ 2 = α 2 R I 2 + β 2 RI+ γ 2

Metrics