Abstract

An electromagnetic absorber is realized based on the plasma metamaterial and lumped resistors. For a TE wave, the tunable absorption spectra can be obtained, and the properties of absorption can be improved by exciting the different plasma resonance structures. The proposed absorber can work in S, L and C bands, which is covered at 1.6115-4.0798 GHz (absorption rate is larger than 0.9), and its relative bandwidth is 86.7%. However, for a TM wave, the reflection coefficient is near to 1. The proposed electromagnetic absorber not only can realize the ultra-broadband absorption for the TE wave, but also can act as a reflector for the TM wave. A polarization splitter can be realized by such an absorber.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design and analysis of lumped resistor loaded metamaterial absorber with transmission band

Xi Chen, Youquan Li, Yunqi Fu, and Naichang Yuan
Opt. Express 20(27) 28347-28352 (2012)

Water metamaterial for ultra-broadband and wide-angle absorption

Jianwen Xie, Weiren Zhu, Ivan D. Rukhlenko, Fajun Xiao, Chong He, Junping Geng, Xianling Liang, Ronghong Jin, and Malin Premaratne
Opt. Express 26(4) 5052-5059 (2018)

Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial

Lei Lei, Shun Li, Haixuan Huang, Keyu Tao, and Ping Xu
Opt. Express 26(5) 5686-5693 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. B. K. Teo, E. Minoux, L. Hudanski, F. Peauger, J. P. Schnell, L. Gangloff, P. Legagneux, D. Dieumegard, G. A. Amaratunga, and W. I. Milne, “Microwave devices: carbon nanotubes as cold cathodes,” Nature 437(7061), 968 (2005).
    [Crossref] [PubMed]
  2. D. Micheli, R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, and V. M. Primiani, “Broadband electromagnetic absorbers using carbon nanostructure-based composites,” IEEE Trans. Microw. Theory Tech. 59(10), 2633–2646 (2011).
    [Crossref]
  3. Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An onmidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
    [Crossref]
  4. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref] [PubMed]
  5. K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
    [Crossref] [PubMed]
  6. Y. Zhao, X. Y. Cao, J. Gao, and W. Q. Li, “Broadband radar absorbing material based on orthogonal arrangement of CSRR etched artificial magnetic conductor,” Microw. Opt. Technol. Lett. 56(1), 158–161 (2014).
    [Crossref]
  7. J. Shao, G. Fang, J. Fan, Y. C. Ji, and H. J. Yin, “TEM horn antenna loaded with absorbing material for GPR applications,” IEEE Antennas Wirel. Propag. Lett. 13(5), 523–527 (2014).
    [Crossref]
  8. J. R. Liu, M. Itoh, T. Horikawa, K. Machida, S. Sugimoto, and T. Maeda, “Gigahertz range electromagnetic wave absorbers made of amorphous-carbon-based magnetic nanocomposites,” J. Appl. Phys. 98(5), 054305 (2005).
    [Crossref]
  9. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  10. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
    [Crossref]
  11. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
    [Crossref] [PubMed]
  12. B. Kearney, F. Alves, D. Grbovic, and G. Karunasiri, “Terahertz metamaterial absorbers with an embedded resistive layer,” Opt. Mater. Express 3(8), 1020–1025 (2013).
    [Crossref]
  13. B. Zhu, Y. Feng, J. Zhao, C. Huang, Z. Wang, and T. Jiang, “Polarization modulation by tunable electromagnetic metamaterial reflector/absorber,” Opt. Express 18(22), 23196–23203 (2010).
    [Crossref] [PubMed]
  14. W. Yuan and Y. Cheng, “Low-frequency and broadband metamaterial absorber based on lumped elements: design, characterization and experiment,” Appl. Phys., A Mater. Sci. Process. 117(4), 1915–1921 (2014).
    [Crossref]
  15. C. Zhang, Q. Zhang, and M. Hu, “Frequency Selective Surface absorber loaded with lumped-element,” in International Symposium on Electromagnetic Compatibility. IEEE: 539–542, (2008).
  16. S. J. Li, X. Y. Cao, J. Gao, T. Liu, Y. J. Zheng, and Z. Zhang, “Analysis and Design of Three-Layer Perfect Metamaterial- Inspired Absorber Based on Double Split-Serration-Rings Structure,” IEEE Trans. Antenn. Propag. 63(11), 5155–5160 (2015).
    [Crossref]
  17. Y. Wen, W. Ma, J. Bailey, G. Matmon, X. Yu, and G. Aeppli, “Planar broadband and high absorption metamaterial using single nested resonator at terahertz frequencies,” Opt. Lett. 39(6), 1589–1592 (2014).
    [Crossref] [PubMed]
  18. Y. K. Pozhela, R. B. Tolutis, and Z. K. Yankauskas, “Gaussian helicon-wave excitation in a magnetized solid-state plasma,” Radiophys. Quantum Electron. 27(6), 552–558 (1984).
    [Crossref]
  19. A. A. Vedenov, “Solid state plasma,” Sov. Phys. Usp. 7(6), 809–822 (1965).
    [Crossref]
  20. V. A. Manasson, L. S. Sadovnik, A. Moussessian, and D. B. Rutledge, “Millimeter-wave diffraction by a photo-induced plasma grating,” Microwave Theory and Techniques, IEEE Transactions on 43(9), 2288–2290 (1995).
    [Crossref]

2015 (1)

S. J. Li, X. Y. Cao, J. Gao, T. Liu, Y. J. Zheng, and Z. Zhang, “Analysis and Design of Three-Layer Perfect Metamaterial- Inspired Absorber Based on Double Split-Serration-Rings Structure,” IEEE Trans. Antenn. Propag. 63(11), 5155–5160 (2015).
[Crossref]

2014 (4)

Y. Wen, W. Ma, J. Bailey, G. Matmon, X. Yu, and G. Aeppli, “Planar broadband and high absorption metamaterial using single nested resonator at terahertz frequencies,” Opt. Lett. 39(6), 1589–1592 (2014).
[Crossref] [PubMed]

Y. Zhao, X. Y. Cao, J. Gao, and W. Q. Li, “Broadband radar absorbing material based on orthogonal arrangement of CSRR etched artificial magnetic conductor,” Microw. Opt. Technol. Lett. 56(1), 158–161 (2014).
[Crossref]

J. Shao, G. Fang, J. Fan, Y. C. Ji, and H. J. Yin, “TEM horn antenna loaded with absorbing material for GPR applications,” IEEE Antennas Wirel. Propag. Lett. 13(5), 523–527 (2014).
[Crossref]

W. Yuan and Y. Cheng, “Low-frequency and broadband metamaterial absorber based on lumped elements: design, characterization and experiment,” Appl. Phys., A Mater. Sci. Process. 117(4), 1915–1921 (2014).
[Crossref]

2013 (1)

2012 (1)

2011 (2)

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

D. Micheli, R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, and V. M. Primiani, “Broadband electromagnetic absorbers using carbon nanostructure-based composites,” IEEE Trans. Microw. Theory Tech. 59(10), 2633–2646 (2011).
[Crossref]

2010 (2)

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An onmidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[Crossref]

B. Zhu, Y. Feng, J. Zhao, C. Huang, Z. Wang, and T. Jiang, “Polarization modulation by tunable electromagnetic metamaterial reflector/absorber,” Opt. Express 18(22), 23196–23203 (2010).
[Crossref] [PubMed]

2009 (1)

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2005 (2)

K. B. K. Teo, E. Minoux, L. Hudanski, F. Peauger, J. P. Schnell, L. Gangloff, P. Legagneux, D. Dieumegard, G. A. Amaratunga, and W. I. Milne, “Microwave devices: carbon nanotubes as cold cathodes,” Nature 437(7061), 968 (2005).
[Crossref] [PubMed]

J. R. Liu, M. Itoh, T. Horikawa, K. Machida, S. Sugimoto, and T. Maeda, “Gigahertz range electromagnetic wave absorbers made of amorphous-carbon-based magnetic nanocomposites,” J. Appl. Phys. 98(5), 054305 (2005).
[Crossref]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

1995 (1)

V. A. Manasson, L. S. Sadovnik, A. Moussessian, and D. B. Rutledge, “Millimeter-wave diffraction by a photo-induced plasma grating,” Microwave Theory and Techniques, IEEE Transactions on 43(9), 2288–2290 (1995).
[Crossref]

1984 (1)

Y. K. Pozhela, R. B. Tolutis, and Z. K. Yankauskas, “Gaussian helicon-wave excitation in a magnetized solid-state plasma,” Radiophys. Quantum Electron. 27(6), 552–558 (1984).
[Crossref]

1965 (1)

A. A. Vedenov, “Solid state plasma,” Sov. Phys. Usp. 7(6), 809–822 (1965).
[Crossref]

Aeppli, G.

Alves, F.

Amaratunga, G. A.

K. B. K. Teo, E. Minoux, L. Hudanski, F. Peauger, J. P. Schnell, L. Gangloff, P. Legagneux, D. Dieumegard, G. A. Amaratunga, and W. I. Milne, “Microwave devices: carbon nanotubes as cold cathodes,” Nature 437(7061), 968 (2005).
[Crossref] [PubMed]

Apollo, C.

D. Micheli, R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, and V. M. Primiani, “Broadband electromagnetic absorbers using carbon nanostructure-based composites,” IEEE Trans. Microw. Theory Tech. 59(10), 2633–2646 (2011).
[Crossref]

Averitt, R. D.

Bailey, J.

Bingham, C. M.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Cai, B. G.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An onmidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[Crossref]

Cao, X. Y.

S. J. Li, X. Y. Cao, J. Gao, T. Liu, Y. J. Zheng, and Z. Zhang, “Analysis and Design of Three-Layer Perfect Metamaterial- Inspired Absorber Based on Double Split-Serration-Rings Structure,” IEEE Trans. Antenn. Propag. 63(11), 5155–5160 (2015).
[Crossref]

Y. Zhao, X. Y. Cao, J. Gao, and W. Q. Li, “Broadband radar absorbing material based on orthogonal arrangement of CSRR etched artificial magnetic conductor,” Microw. Opt. Technol. Lett. 56(1), 158–161 (2014).
[Crossref]

Cheng, Q.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An onmidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[Crossref]

Cheng, Y.

W. Yuan and Y. Cheng, “Low-frequency and broadband metamaterial absorber based on lumped elements: design, characterization and experiment,” Appl. Phys., A Mater. Sci. Process. 117(4), 1915–1921 (2014).
[Crossref]

Cui, T. J.

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An onmidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[Crossref]

Dieumegard, D.

K. B. K. Teo, E. Minoux, L. Hudanski, F. Peauger, J. P. Schnell, L. Gangloff, P. Legagneux, D. Dieumegard, G. A. Amaratunga, and W. I. Milne, “Microwave devices: carbon nanotubes as cold cathodes,” Nature 437(7061), 968 (2005).
[Crossref] [PubMed]

Fan, J.

J. Shao, G. Fang, J. Fan, Y. C. Ji, and H. J. Yin, “TEM horn antenna loaded with absorbing material for GPR applications,” IEEE Antennas Wirel. Propag. Lett. 13(5), 523–527 (2014).
[Crossref]

Fan, K.

Fang, G.

J. Shao, G. Fang, J. Fan, Y. C. Ji, and H. J. Yin, “TEM horn antenna loaded with absorbing material for GPR applications,” IEEE Antennas Wirel. Propag. Lett. 13(5), 523–527 (2014).
[Crossref]

Feng, Y.

Gangloff, L.

K. B. K. Teo, E. Minoux, L. Hudanski, F. Peauger, J. P. Schnell, L. Gangloff, P. Legagneux, D. Dieumegard, G. A. Amaratunga, and W. I. Milne, “Microwave devices: carbon nanotubes as cold cathodes,” Nature 437(7061), 968 (2005).
[Crossref] [PubMed]

Gao, J.

S. J. Li, X. Y. Cao, J. Gao, T. Liu, Y. J. Zheng, and Z. Zhang, “Analysis and Design of Three-Layer Perfect Metamaterial- Inspired Absorber Based on Double Split-Serration-Rings Structure,” IEEE Trans. Antenn. Propag. 63(11), 5155–5160 (2015).
[Crossref]

Y. Zhao, X. Y. Cao, J. Gao, and W. Q. Li, “Broadband radar absorbing material based on orthogonal arrangement of CSRR etched artificial magnetic conductor,” Microw. Opt. Technol. Lett. 56(1), 158–161 (2014).
[Crossref]

Gradoni, G.

D. Micheli, R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, and V. M. Primiani, “Broadband electromagnetic absorbers using carbon nanostructure-based composites,” IEEE Trans. Microw. Theory Tech. 59(10), 2633–2646 (2011).
[Crossref]

Grbovic, D.

Horikawa, T.

J. R. Liu, M. Itoh, T. Horikawa, K. Machida, S. Sugimoto, and T. Maeda, “Gigahertz range electromagnetic wave absorbers made of amorphous-carbon-based magnetic nanocomposites,” J. Appl. Phys. 98(5), 054305 (2005).
[Crossref]

Hu, M.

C. Zhang, Q. Zhang, and M. Hu, “Frequency Selective Surface absorber loaded with lumped-element,” in International Symposium on Electromagnetic Compatibility. IEEE: 539–542, (2008).

Huang, C.

Hudanski, L.

K. B. K. Teo, E. Minoux, L. Hudanski, F. Peauger, J. P. Schnell, L. Gangloff, P. Legagneux, D. Dieumegard, G. A. Amaratunga, and W. I. Milne, “Microwave devices: carbon nanotubes as cold cathodes,” Nature 437(7061), 968 (2005).
[Crossref] [PubMed]

Itoh, M.

J. R. Liu, M. Itoh, T. Horikawa, K. Machida, S. Sugimoto, and T. Maeda, “Gigahertz range electromagnetic wave absorbers made of amorphous-carbon-based magnetic nanocomposites,” J. Appl. Phys. 98(5), 054305 (2005).
[Crossref]

Iwaszczuk, K.

Jepsen, P. U.

Ji, Y. C.

J. Shao, G. Fang, J. Fan, Y. C. Ji, and H. J. Yin, “TEM horn antenna loaded with absorbing material for GPR applications,” IEEE Antennas Wirel. Propag. Lett. 13(5), 523–527 (2014).
[Crossref]

Jiang, T.

Jiang, W. X.

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An onmidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[Crossref]

Jokerst, N.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Karunasiri, G.

Kearney, B.

Landy, N. I.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Legagneux, P.

K. B. K. Teo, E. Minoux, L. Hudanski, F. Peauger, J. P. Schnell, L. Gangloff, P. Legagneux, D. Dieumegard, G. A. Amaratunga, and W. I. Milne, “Microwave devices: carbon nanotubes as cold cathodes,” Nature 437(7061), 968 (2005).
[Crossref] [PubMed]

Li, H.

Li, S. J.

S. J. Li, X. Y. Cao, J. Gao, T. Liu, Y. J. Zheng, and Z. Zhang, “Analysis and Design of Three-Layer Perfect Metamaterial- Inspired Absorber Based on Double Split-Serration-Rings Structure,” IEEE Trans. Antenn. Propag. 63(11), 5155–5160 (2015).
[Crossref]

Li, W. Q.

Y. Zhao, X. Y. Cao, J. Gao, and W. Q. Li, “Broadband radar absorbing material based on orthogonal arrangement of CSRR etched artificial magnetic conductor,” Microw. Opt. Technol. Lett. 56(1), 158–161 (2014).
[Crossref]

Liu, J. R.

J. R. Liu, M. Itoh, T. Horikawa, K. Machida, S. Sugimoto, and T. Maeda, “Gigahertz range electromagnetic wave absorbers made of amorphous-carbon-based magnetic nanocomposites,” J. Appl. Phys. 98(5), 054305 (2005).
[Crossref]

Liu, T.

S. J. Li, X. Y. Cao, J. Gao, T. Liu, Y. J. Zheng, and Z. Zhang, “Analysis and Design of Three-Layer Perfect Metamaterial- Inspired Absorber Based on Double Split-Serration-Rings Structure,” IEEE Trans. Antenn. Propag. 63(11), 5155–5160 (2015).
[Crossref]

Ma, H. F.

Ma, W.

Machida, K.

J. R. Liu, M. Itoh, T. Horikawa, K. Machida, S. Sugimoto, and T. Maeda, “Gigahertz range electromagnetic wave absorbers made of amorphous-carbon-based magnetic nanocomposites,” J. Appl. Phys. 98(5), 054305 (2005).
[Crossref]

Maeda, T.

J. R. Liu, M. Itoh, T. Horikawa, K. Machida, S. Sugimoto, and T. Maeda, “Gigahertz range electromagnetic wave absorbers made of amorphous-carbon-based magnetic nanocomposites,” J. Appl. Phys. 98(5), 054305 (2005).
[Crossref]

Manasson, V. A.

V. A. Manasson, L. S. Sadovnik, A. Moussessian, and D. B. Rutledge, “Millimeter-wave diffraction by a photo-induced plasma grating,” Microwave Theory and Techniques, IEEE Transactions on 43(9), 2288–2290 (1995).
[Crossref]

Marchetti, M.

D. Micheli, R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, and V. M. Primiani, “Broadband electromagnetic absorbers using carbon nanostructure-based composites,” IEEE Trans. Microw. Theory Tech. 59(10), 2633–2646 (2011).
[Crossref]

Matmon, G.

Micheli, D.

D. Micheli, R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, and V. M. Primiani, “Broadband electromagnetic absorbers using carbon nanostructure-based composites,” IEEE Trans. Microw. Theory Tech. 59(10), 2633–2646 (2011).
[Crossref]

Milne, W. I.

K. B. K. Teo, E. Minoux, L. Hudanski, F. Peauger, J. P. Schnell, L. Gangloff, P. Legagneux, D. Dieumegard, G. A. Amaratunga, and W. I. Milne, “Microwave devices: carbon nanotubes as cold cathodes,” Nature 437(7061), 968 (2005).
[Crossref] [PubMed]

Minoux, E.

K. B. K. Teo, E. Minoux, L. Hudanski, F. Peauger, J. P. Schnell, L. Gangloff, P. Legagneux, D. Dieumegard, G. A. Amaratunga, and W. I. Milne, “Microwave devices: carbon nanotubes as cold cathodes,” Nature 437(7061), 968 (2005).
[Crossref] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Moussessian, A.

V. A. Manasson, L. S. Sadovnik, A. Moussessian, and D. B. Rutledge, “Millimeter-wave diffraction by a photo-induced plasma grating,” Microwave Theory and Techniques, IEEE Transactions on 43(9), 2288–2290 (1995).
[Crossref]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Padilla, W. J.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Pastore, R.

D. Micheli, R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, and V. M. Primiani, “Broadband electromagnetic absorbers using carbon nanostructure-based composites,” IEEE Trans. Microw. Theory Tech. 59(10), 2633–2646 (2011).
[Crossref]

Peauger, F.

K. B. K. Teo, E. Minoux, L. Hudanski, F. Peauger, J. P. Schnell, L. Gangloff, P. Legagneux, D. Dieumegard, G. A. Amaratunga, and W. I. Milne, “Microwave devices: carbon nanotubes as cold cathodes,” Nature 437(7061), 968 (2005).
[Crossref] [PubMed]

Pozhela, Y. K.

Y. K. Pozhela, R. B. Tolutis, and Z. K. Yankauskas, “Gaussian helicon-wave excitation in a magnetized solid-state plasma,” Radiophys. Quantum Electron. 27(6), 552–558 (1984).
[Crossref]

Primiani, V. M.

D. Micheli, R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, and V. M. Primiani, “Broadband electromagnetic absorbers using carbon nanostructure-based composites,” IEEE Trans. Microw. Theory Tech. 59(10), 2633–2646 (2011).
[Crossref]

Rutledge, D. B.

V. A. Manasson, L. S. Sadovnik, A. Moussessian, and D. B. Rutledge, “Millimeter-wave diffraction by a photo-induced plasma grating,” Microwave Theory and Techniques, IEEE Transactions on 43(9), 2288–2290 (1995).
[Crossref]

Sadovnik, L. S.

V. A. Manasson, L. S. Sadovnik, A. Moussessian, and D. B. Rutledge, “Millimeter-wave diffraction by a photo-induced plasma grating,” Microwave Theory and Techniques, IEEE Transactions on 43(9), 2288–2290 (1995).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Schnell, J. P.

K. B. K. Teo, E. Minoux, L. Hudanski, F. Peauger, J. P. Schnell, L. Gangloff, P. Legagneux, D. Dieumegard, G. A. Amaratunga, and W. I. Milne, “Microwave devices: carbon nanotubes as cold cathodes,” Nature 437(7061), 968 (2005).
[Crossref] [PubMed]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Shao, J.

J. Shao, G. Fang, J. Fan, Y. C. Ji, and H. J. Yin, “TEM horn antenna loaded with absorbing material for GPR applications,” IEEE Antennas Wirel. Propag. Lett. 13(5), 523–527 (2014).
[Crossref]

Shen, X.

Smith, D. R.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Strikwerda, A. C.

Sugimoto, S.

J. R. Liu, M. Itoh, T. Horikawa, K. Machida, S. Sugimoto, and T. Maeda, “Gigahertz range electromagnetic wave absorbers made of amorphous-carbon-based magnetic nanocomposites,” J. Appl. Phys. 98(5), 054305 (2005).
[Crossref]

Teo, K. B. K.

K. B. K. Teo, E. Minoux, L. Hudanski, F. Peauger, J. P. Schnell, L. Gangloff, P. Legagneux, D. Dieumegard, G. A. Amaratunga, and W. I. Milne, “Microwave devices: carbon nanotubes as cold cathodes,” Nature 437(7061), 968 (2005).
[Crossref] [PubMed]

Tolutis, R. B.

Y. K. Pozhela, R. B. Tolutis, and Z. K. Yankauskas, “Gaussian helicon-wave excitation in a magnetized solid-state plasma,” Radiophys. Quantum Electron. 27(6), 552–558 (1984).
[Crossref]

Tyler, T.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Vedenov, A. A.

A. A. Vedenov, “Solid state plasma,” Sov. Phys. Usp. 7(6), 809–822 (1965).
[Crossref]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Wang, Z.

Wen, Y.

Yankauskas, Z. K.

Y. K. Pozhela, R. B. Tolutis, and Z. K. Yankauskas, “Gaussian helicon-wave excitation in a magnetized solid-state plasma,” Radiophys. Quantum Electron. 27(6), 552–558 (1984).
[Crossref]

Yin, H. J.

J. Shao, G. Fang, J. Fan, Y. C. Ji, and H. J. Yin, “TEM horn antenna loaded with absorbing material for GPR applications,” IEEE Antennas Wirel. Propag. Lett. 13(5), 523–527 (2014).
[Crossref]

Yu, X.

Yuan, W.

W. Yuan and Y. Cheng, “Low-frequency and broadband metamaterial absorber based on lumped elements: design, characterization and experiment,” Appl. Phys., A Mater. Sci. Process. 117(4), 1915–1921 (2014).
[Crossref]

Zhang, C.

C. Zhang, Q. Zhang, and M. Hu, “Frequency Selective Surface absorber loaded with lumped-element,” in International Symposium on Electromagnetic Compatibility. IEEE: 539–542, (2008).

Zhang, Q.

C. Zhang, Q. Zhang, and M. Hu, “Frequency Selective Surface absorber loaded with lumped-element,” in International Symposium on Electromagnetic Compatibility. IEEE: 539–542, (2008).

Zhang, X.

Zhang, Z.

S. J. Li, X. Y. Cao, J. Gao, T. Liu, Y. J. Zheng, and Z. Zhang, “Analysis and Design of Three-Layer Perfect Metamaterial- Inspired Absorber Based on Double Split-Serration-Rings Structure,” IEEE Trans. Antenn. Propag. 63(11), 5155–5160 (2015).
[Crossref]

Zhao, J.

Zhao, Y.

Y. Zhao, X. Y. Cao, J. Gao, and W. Q. Li, “Broadband radar absorbing material based on orthogonal arrangement of CSRR etched artificial magnetic conductor,” Microw. Opt. Technol. Lett. 56(1), 158–161 (2014).
[Crossref]

Zheng, Y. J.

S. J. Li, X. Y. Cao, J. Gao, T. Liu, Y. J. Zheng, and Z. Zhang, “Analysis and Design of Three-Layer Perfect Metamaterial- Inspired Absorber Based on Double Split-Serration-Rings Structure,” IEEE Trans. Antenn. Propag. 63(11), 5155–5160 (2015).
[Crossref]

Zhu, B.

Appl. Phys., A Mater. Sci. Process. (1)

W. Yuan and Y. Cheng, “Low-frequency and broadband metamaterial absorber based on lumped elements: design, characterization and experiment,” Appl. Phys., A Mater. Sci. Process. 117(4), 1915–1921 (2014).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (1)

J. Shao, G. Fang, J. Fan, Y. C. Ji, and H. J. Yin, “TEM horn antenna loaded with absorbing material for GPR applications,” IEEE Antennas Wirel. Propag. Lett. 13(5), 523–527 (2014).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

S. J. Li, X. Y. Cao, J. Gao, T. Liu, Y. J. Zheng, and Z. Zhang, “Analysis and Design of Three-Layer Perfect Metamaterial- Inspired Absorber Based on Double Split-Serration-Rings Structure,” IEEE Trans. Antenn. Propag. 63(11), 5155–5160 (2015).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

D. Micheli, R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, and V. M. Primiani, “Broadband electromagnetic absorbers using carbon nanostructure-based composites,” IEEE Trans. Microw. Theory Tech. 59(10), 2633–2646 (2011).
[Crossref]

J. Appl. Phys. (1)

J. R. Liu, M. Itoh, T. Horikawa, K. Machida, S. Sugimoto, and T. Maeda, “Gigahertz range electromagnetic wave absorbers made of amorphous-carbon-based magnetic nanocomposites,” J. Appl. Phys. 98(5), 054305 (2005).
[Crossref]

Microw. Opt. Technol. Lett. (1)

Y. Zhao, X. Y. Cao, J. Gao, and W. Q. Li, “Broadband radar absorbing material based on orthogonal arrangement of CSRR etched artificial magnetic conductor,” Microw. Opt. Technol. Lett. 56(1), 158–161 (2014).
[Crossref]

Microwave Theory and Techniques, IEEE Transactions on (1)

V. A. Manasson, L. S. Sadovnik, A. Moussessian, and D. B. Rutledge, “Millimeter-wave diffraction by a photo-induced plasma grating,” Microwave Theory and Techniques, IEEE Transactions on 43(9), 2288–2290 (1995).
[Crossref]

Nature (1)

K. B. K. Teo, E. Minoux, L. Hudanski, F. Peauger, J. P. Schnell, L. Gangloff, P. Legagneux, D. Dieumegard, G. A. Amaratunga, and W. I. Milne, “Microwave devices: carbon nanotubes as cold cathodes,” Nature 437(7061), 968 (2005).
[Crossref] [PubMed]

New J. Phys. (1)

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An onmidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. B (1)

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Phys. Rev. Lett. (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Radiophys. Quantum Electron. (1)

Y. K. Pozhela, R. B. Tolutis, and Z. K. Yankauskas, “Gaussian helicon-wave excitation in a magnetized solid-state plasma,” Radiophys. Quantum Electron. 27(6), 552–558 (1984).
[Crossref]

Sov. Phys. Usp. (1)

A. A. Vedenov, “Solid state plasma,” Sov. Phys. Usp. 7(6), 809–822 (1965).
[Crossref]

Other (1)

C. Zhang, Q. Zhang, and M. Hu, “Frequency Selective Surface absorber loaded with lumped-element,” in International Symposium on Electromagnetic Compatibility. IEEE: 539–542, (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Structure schematic views of the unit cell for the proposed absorber: (a) the front view of unit cell; (b) the schematic of resonance cell; (c) the side view of unit cell
Fig. 2
Fig. 2 Absorption and reflection spectra of the proposed absorber: (a) the resonance unit 1 is excited but the resistance elements do not exist; (b) the resonance unit 1 is excited and the resistance element R1 is loaded; (c) The absorption spectrum of TE wave when all of the resonators are excited and the resistance elements R1 and R2 are loaded; (d) The reflection spectrum of TM wave when all of the resonators are excited and the resistance elements R1 and R2 are loaded.
Fig. 3
Fig. 3 The electric field distributions of the absorber surface and the surface current distributions at different frequencies: (a) the electric field distribution of the absorber surface at f = 1.903 GHz; (b) the electric field distribution of the absorber surface at f = 3.9215 GHz; (c) the surface current distribution of the bottom copper plate at f = 1.903 GHz; (d) the surface current distribution of the bottom copper plate at f = 3.9215 GHz.
Fig. 4
Fig. 4 (a) The power loss density of the surface of absorber when f = 1.903 GHz;(b) the power loss density of the surface of absorber surface when f = 3.9215 GHz; (c) the power loss density of the inside dielectric substrate when f = 1.903 GHz; (d) the power loss density of the inside dielectric substrate when f = 3.9215 GHz
Fig. 5
Fig. 5 The relationships between structural parameters a, q and absorption and reflection spectra of TE and TM waves: (a) the absorption spectra of TE wave for a = 14,15,16 mm; (b) the absorption spectra of TE wave for q = −15°, 0°, 15°; (c) the reflection spectra of TM wave for a = 14,15,16 mm; (d) the reflection spectra of TM wave for q = −15°, 0°, 15°.
Fig. 6
Fig. 6 The relationships between parameters R1, R2 and absorption and reflection spectra of TE and TM waves: (a) the absorption spectra of TE wave for R1 = 140, 190, 240 Ω; (b) the absorption spectra of TE wave for R2 = 400, 500, 600, 700 Ω; (c) the reflection spectra of TM wave for R1 = 140,190,240 Ω; (d) the reflection spectra of TM wave for R2 = 400, 500, 600, 700 Ω.
Fig. 7
Fig. 7 The relationships between parameters h, w and absorption and reflection spectra of TE and TM waves: (a) the absorption spectra of TE wave for h = 13.1, 13.6, 14.1 mm; (b) the absorption spectra of TE wave for w = 0.05, 0.1, 0.15mm; (c) the reflection spectra of TM wave for h = 13.1, 13.6, 14.1 mm; (d) the reflection spectra of TM wave for w = 0.05, 0.1, 0.15mm.

Tables (1)

Tables Icon

Table 1 The parameters of the proposed absorber

Metrics