Abstract

For developing an ideal efficient and low-threshold medium for fiber lasers operated at 4 μm wavebands, 0.05 wt.% to 0.5 wt.% Dy3+ ions doped Ga0.8As39.2S60 chalcogenide glasses were investigated and a 4.2 μm fiber laser was theoretically studied based on the rate and propagation equations. It was shown that the Ga0.8As39.2S60 glass shows a desirable large Dy3+ ion solubility, which has been increased by an order of magnitude compared to As2S3 glass. Dy-rich nanocrystallines were found when the Dy3+ ions’ concentration is more than 0.3wt.% (i.e. 3000 ppmw), and the concentration quenching was found based on spectral analysis; however, no rapid decreases in lifetimes were observed. 0.3wt.% Dy3+ doped Ga0.8As39.2S60 glass possesses relatively large laser quality factor σemi × τmea = 1.70 × 10−23 cm2·s and excellent thermal stability (ΔT = 182°C), which can be successfully drawn into fibers indicating good potential for mid-infrared fiber laser.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Host dependence of spectroscopic properties of Dy3+- doped and Dy3+, Tm3+-codped Ge-Ga-S-CdI2 chalcohalide glasses

Haitao Guo, Lei Liu, Yongqian Wang, Chaoqi Hou, Weinan Li, Min Lu, Kuaisheng Zou, and Bo Peng
Opt. Express 17(17) 15350-15358 (2009)

Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass

Zhuoqi Tang, David Furniss, Michael Fay, Hesham Sakr, Lukasz Sójka, Nigel Neate, Nicola Weston, Slawomir Sujecki, Trevor M. Benson, and Angela B. Seddon
Opt. Mater. Express 5(4) 870-886 (2015)

Mid-infrared emission properties of Pr3+-doped Ge-Sb-Se-Ga-I chalcogenide glasses

Mingming Li, Yinsheng Xu, Xiaomeng Jia, Lei Yang, Nengbing Long, Zijun Liu, and Shixun Dai
Opt. Mater. Express 8(4) 992-1000 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. H. Jiang, R. J. Berry, H. W. Siesler, and Y. Ozaki, “Wavelength interval selection in multicomponent spectral analysis by moving window partial least-squares regression with applications to mid-infrared and near-infrared spectroscopic data,” Anal. Chem. 74(14), 3555–3565 (2002).
    [Crossref] [PubMed]
  2. S. Zlantanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
    [Crossref]
  3. J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
    [Crossref]
  4. M. Vasquez, F. Schreier, S. G. Garcia, D. Kitzmann, B. Patzer, H. Rauer, and T. Trautmann, “Infrared radiative transfer in atmospheres of Earth-like planets around F, G, K, and M stars I. Clear-sky thermal emission spectra and weighting functions,” Astron. Astrophys. A26, 549 (2013).
  5. U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
    [Crossref]
  6. B. Ronald, W. Waynant, and I. K. Ilev, “Mid-infrared laser applications in medicine and biology,” Philosophical Transactions of the Royal Society 44, 699–710 (2006).
  7. G. Zhu, L. Geng, X. Zhu, L. Li, Q. Chen, R. A. Norwood, T. Manzur, and N. Peyghambarian, “Towards ten-watt-level 3-5 µm Raman lasers using tellurite fiber,” Opt. Express 23(6), 7559–7573 (2015).
    [Crossref] [PubMed]
  8. W. Ye, C. Li, C. Zheng, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, L. Dong, R. J. Griffin, and F. K. Tittel, “Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser,” Opt. Express 24(15), 16973–16985 (2016).
    [Crossref] [PubMed]
  9. D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasicontinuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79(7), 907–913 (2004).
    [Crossref]
  10. Y. I. Baranov and W. J. Lafferty, “The water-vapor continuum and selective absorption in the 3-5μm spectral region at temperatures from 311 to 363K,” J. Quant. Spectrosc. Radiat. Transf. 112(8), 1304–1313 (2011).
    [Crossref]
  11. A. Tokura, O. Tadanaga, and M. Asobe, “4.6μm-band light source for greenhouse gas detection,” NTT Tech. Rev. 10, 6 (2012).
  12. C. Freed and R. G. O’Donnell, “Advances in CO2 laser stabilization using the 4.3μm fluorescence technique,” Metrologia 13(3), 151–156 (1977).
    [Crossref]
  13. D. W. Chen and K. Masters, “Continuous-wave 4.3-mum intracavity difference frequency generation in an optical parametric oscillator,” Opt. Lett. 26(1), 25–27 (2001).
    [Crossref] [PubMed]
  14. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
    [Crossref]
  15. J. J. Adams, C. Bibeau, R. H. Page, D. M. Krol, L. H. Furu, and S. A. Payne, “4.0-4.5-mum lasing of Fe:ZnSe below 180 K, a new mid-infrared laser material,” Opt. Lett. 24(23), 1720–1722 (1999).
    [Crossref] [PubMed]
  16. R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy3+ chalcogenide glass fiber laser with efficient output at 4.5 μm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
    [Crossref]
  17. S. Sujecki, L. Sójka, E. Bereś-Pawlik, Z. Tang, D. Ffuniss, A. B. Seddon, and T. M. Benson, “Modelling of a simple Dy3+ doped chalcogenide glass fibre laser for mid-infrared light generation,” Opt. Quantum Electron. 42(2), 69–79 (2010).
    [Crossref]
  18. M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
    [Crossref]
  19. X. S. Xiao, Y. T. Xu, H. T. Guo, P. F. Wang, X. X. Cui, M. Lu, Y. S. Wang, and B. Peng, “Theoretical modeling of 4.3 μm mid-infrared lasing in Dy3+-doped chalcogenide fiber lasers,” IEEE Photonics J. 10(2), 1 (2018).
    [Crossref]
  20. J. Heo, “Optical characteristics of rare-earth-doped sulphide glasses,” J. Mater. Sci. Lett. 14(14), 1014–1016 (1995).
    [Crossref]
  21. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  22. M. R. Majewski, R. I. Woodward, J. Y. Carreé, S. Poulain, M. Poulain, and S. D. Jackson, “Emission beyond 4 μm and mid-infrared lasing in a dysprosium-doped indium fluoride (InF3) fiber,” Opt. Lett. 43(8), 1926–1929 (2018).
    [Crossref] [PubMed]
  23. M. S. Iovu, S. D. Shutov, A. M. Andriesh, E. I. Kamitsos, C. P. E. Varsamis, D. Furniss, A. B. Seddon, and M. Popescu, “Spectroscopic studies of bulk As2S3 glasses and amorphous films doped with Dy, Sm and Mn,” J. Optoelectron. Adv. Mater. 3(2), 443–454 (2001).
  24. M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326-327, 301–305 (2003).
    [Crossref]
  25. T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3-microm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21(19), 1594–1596 (1996).
    [Crossref] [PubMed]
  26. J. D. Shephard, R. I. Kangley, R. J. Hand, D. Furniss, M. O’Donnell, C. A. Miller, and A. B. Seddon, “The effect of GaSe on Ga-La-S glasses,” J. Non-Cryst. Solids 326, 439–445 (2003).
    [Crossref]
  27. M. J. Zhang, A. P. Yang, Y. F. Peng, B. Zhang, H. Ren, W. Guo, Y. Yang, C. C. Zhai, Y. W. Wang, Z. Y. Yang, and D. Y. Tang, “Dy3+-doped Ga-Sb-S chalcogenide glasses for mid-infrared lasers,” Mater. Res. Bull. 70, 55–59 (2015).
    [Crossref]
  28. J. Heo and Y. B. Shin, “Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge-As(or Ga)-S glasses,” J. Non-Cryst. Solids 196, 162–167 (1996).
    [Crossref]
  29. Y. G. Choi, J. H. Song, Y. B. Shin, and J. Heo, “Chemical characteristics of Dy-S bonds in Ge-As-S glass,” J. Non-Cryst. Solids 353(16-17), 1665–1669 (2007).
    [Crossref]
  30. Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallization behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11-13), 2453–2462 (2011).
    [Crossref]
  31. Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of Dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
    [Crossref]
  32. K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel., “Spectroscopy of Dy3+ in Ge-Ga-S glass and its suitability for 1.3-µm fiber-optical amplifier applications,” Opt. Lett. 19(12), 904–906 (1994).
    [Crossref] [PubMed]
  33. Y. B. Shin and J. Heo, “Mid-infrared emissions and energy transfer in Ge-Ga-S glasses doped with Dy3+,” J. Non-Cryst. Solids 256-257, 260–265 (1999).
    [Crossref]
  34. F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
    [Crossref]
  35. F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sensor. Actuat. Biol. Chem. 207, 518–525 (2015).
  36. Z. X. Wang, X. S. Xiao, Y. T. Xu, H. T. Guo, X. X. Cui, M. Lu, B. Peng, A. P. Yang, Z. Y. Yang, and S. X. Gu, “Synthesis and spectroscopy of high concentration dysprosium doped GeS2-Ga2S3-CdI2 chalcohalide glasses and fiber fabrication,” J. Alloys Compd. 692, 1010–1017 (2017).
    [Crossref]
  37. G. M. Tao, H. T. Guo, L. Feng, M. Lu, W. Wei, and B. Peng, “Formation and properties of a novel heavy-Metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92(10), 2226–2229 (2009).
    [Crossref]
  38. V. Q. Nguyen, J. S. Sanghera, B. Cole, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic sulfide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(8), 2056–2058 (2002).
    [Crossref]
  39. K. X. Wei, “Synthesis and characterization of rare earth doped chalcogenide glasses,” Dissertation, Rutgers University (1994).
  40. B. G. Aitken, C. W. Ponader, and R. S. Quimby, “Clustering of rare earths in GeAs sulfide glass,” C. R. Chim. 5(12), 865–872 (2002).
    [Crossref]
  41. Z. J. Liu, J. Y. Bian, Y. Huang, T. F. Xu, X. S. Wang, and S. X. Dai, “Fabrication and characterization of mid-infrared emission of Pr3+ doped selenide chalcogenide glasses and fibres,” RSC Advances 7(66), 41520–41526 (2017).
    [Crossref]
  42. A. Galstyan, S. H. Messaddeq, V. Fortin, I. Skripachev, R. Vallee, T. Galstian, and Y. Messaddeq, “Tm3+ doped Ga–As–S chalcogenide glasses and fibers,” Opt. Mater. 47, 518–523 (2015).
    [Crossref]
  43. X. S. Xiao, H. T. Guo, Z. J. Yan, H. S. Wang, Y. T. Xu, M. Lu, Y. S. Wang, and B. Peng, “3W narrow-linewidth ultra-short wavelength operation near 1707 nm in thulium-doped silica fiber laser with bidirectional pumping,” Appl. Phys. B 123(4), 135 (2017).
    [Crossref]
  44. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
    [Crossref]
  45. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
    [Crossref]
  46. H. Guo, Y. Xu, Y. Chen, X. He, X. Cui, P. Wang, M. Lu, W. Li, C. Hou, and B. Peng, “Near-and mid-infrared emissions of Dy3+ doped and Dy3+/Tm3+ co-doped lead cesium iodide modified chalcohalide glasses,” J. Lumin. 148, 10–17 (2014).
    [Crossref]
  47. C. Klein, C. S. Hurlbut, and J. D. Dana, Manual of mineralogy (Wiley, 1993).
  48. L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
    [Crossref]

2018 (2)

X. S. Xiao, Y. T. Xu, H. T. Guo, P. F. Wang, X. X. Cui, M. Lu, Y. S. Wang, and B. Peng, “Theoretical modeling of 4.3 μm mid-infrared lasing in Dy3+-doped chalcogenide fiber lasers,” IEEE Photonics J. 10(2), 1 (2018).
[Crossref]

M. R. Majewski, R. I. Woodward, J. Y. Carreé, S. Poulain, M. Poulain, and S. D. Jackson, “Emission beyond 4 μm and mid-infrared lasing in a dysprosium-doped indium fluoride (InF3) fiber,” Opt. Lett. 43(8), 1926–1929 (2018).
[Crossref] [PubMed]

2017 (3)

Z. X. Wang, X. S. Xiao, Y. T. Xu, H. T. Guo, X. X. Cui, M. Lu, B. Peng, A. P. Yang, Z. Y. Yang, and S. X. Gu, “Synthesis and spectroscopy of high concentration dysprosium doped GeS2-Ga2S3-CdI2 chalcohalide glasses and fiber fabrication,” J. Alloys Compd. 692, 1010–1017 (2017).
[Crossref]

Z. J. Liu, J. Y. Bian, Y. Huang, T. F. Xu, X. S. Wang, and S. X. Dai, “Fabrication and characterization of mid-infrared emission of Pr3+ doped selenide chalcogenide glasses and fibres,” RSC Advances 7(66), 41520–41526 (2017).
[Crossref]

X. S. Xiao, H. T. Guo, Z. J. Yan, H. S. Wang, Y. T. Xu, M. Lu, Y. S. Wang, and B. Peng, “3W narrow-linewidth ultra-short wavelength operation near 1707 nm in thulium-doped silica fiber laser with bidirectional pumping,” Appl. Phys. B 123(4), 135 (2017).
[Crossref]

2016 (2)

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

W. Ye, C. Li, C. Zheng, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, L. Dong, R. J. Griffin, and F. K. Tittel, “Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser,” Opt. Express 24(15), 16973–16985 (2016).
[Crossref] [PubMed]

2015 (4)

G. Zhu, L. Geng, X. Zhu, L. Li, Q. Chen, R. A. Norwood, T. Manzur, and N. Peyghambarian, “Towards ten-watt-level 3-5 µm Raman lasers using tellurite fiber,” Opt. Express 23(6), 7559–7573 (2015).
[Crossref] [PubMed]

M. J. Zhang, A. P. Yang, Y. F. Peng, B. Zhang, H. Ren, W. Guo, Y. Yang, C. C. Zhai, Y. W. Wang, Z. Y. Yang, and D. Y. Tang, “Dy3+-doped Ga-Sb-S chalcogenide glasses for mid-infrared lasers,” Mater. Res. Bull. 70, 55–59 (2015).
[Crossref]

F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sensor. Actuat. Biol. Chem. 207, 518–525 (2015).

A. Galstyan, S. H. Messaddeq, V. Fortin, I. Skripachev, R. Vallee, T. Galstian, and Y. Messaddeq, “Tm3+ doped Ga–As–S chalcogenide glasses and fibers,” Opt. Mater. 47, 518–523 (2015).
[Crossref]

2014 (1)

H. Guo, Y. Xu, Y. Chen, X. He, X. Cui, P. Wang, M. Lu, W. Li, C. Hou, and B. Peng, “Near-and mid-infrared emissions of Dy3+ doped and Dy3+/Tm3+ co-doped lead cesium iodide modified chalcohalide glasses,” J. Lumin. 148, 10–17 (2014).
[Crossref]

2013 (3)

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

M. Vasquez, F. Schreier, S. G. Garcia, D. Kitzmann, B. Patzer, H. Rauer, and T. Trautmann, “Infrared radiative transfer in atmospheres of Earth-like planets around F, G, K, and M stars I. Clear-sky thermal emission spectra and weighting functions,” Astron. Astrophys. A26, 549 (2013).

2012 (4)

A. Tokura, O. Tadanaga, and M. Asobe, “4.6μm-band light source for greenhouse gas detection,” NTT Tech. Rev. 10, 6 (2012).

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of Dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
[Crossref]

2011 (2)

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallization behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11-13), 2453–2462 (2011).
[Crossref]

Y. I. Baranov and W. J. Lafferty, “The water-vapor continuum and selective absorption in the 3-5μm spectral region at temperatures from 311 to 363K,” J. Quant. Spectrosc. Radiat. Transf. 112(8), 1304–1313 (2011).
[Crossref]

2010 (2)

S. Zlantanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

S. Sujecki, L. Sójka, E. Bereś-Pawlik, Z. Tang, D. Ffuniss, A. B. Seddon, and T. M. Benson, “Modelling of a simple Dy3+ doped chalcogenide glass fibre laser for mid-infrared light generation,” Opt. Quantum Electron. 42(2), 69–79 (2010).
[Crossref]

2009 (1)

G. M. Tao, H. T. Guo, L. Feng, M. Lu, W. Wei, and B. Peng, “Formation and properties of a novel heavy-Metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92(10), 2226–2229 (2009).
[Crossref]

2008 (1)

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy3+ chalcogenide glass fiber laser with efficient output at 4.5 μm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
[Crossref]

2007 (1)

Y. G. Choi, J. H. Song, Y. B. Shin, and J. Heo, “Chemical characteristics of Dy-S bonds in Ge-As-S glass,” J. Non-Cryst. Solids 353(16-17), 1665–1669 (2007).
[Crossref]

2006 (2)

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

B. Ronald, W. Waynant, and I. K. Ilev, “Mid-infrared laser applications in medicine and biology,” Philosophical Transactions of the Royal Society 44, 699–710 (2006).

2004 (1)

D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasicontinuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79(7), 907–913 (2004).
[Crossref]

2003 (2)

J. D. Shephard, R. I. Kangley, R. J. Hand, D. Furniss, M. O’Donnell, C. A. Miller, and A. B. Seddon, “The effect of GaSe on Ga-La-S glasses,” J. Non-Cryst. Solids 326, 439–445 (2003).
[Crossref]

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326-327, 301–305 (2003).
[Crossref]

2002 (3)

J. H. Jiang, R. J. Berry, H. W. Siesler, and Y. Ozaki, “Wavelength interval selection in multicomponent spectral analysis by moving window partial least-squares regression with applications to mid-infrared and near-infrared spectroscopic data,” Anal. Chem. 74(14), 3555–3565 (2002).
[Crossref] [PubMed]

V. Q. Nguyen, J. S. Sanghera, B. Cole, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic sulfide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(8), 2056–2058 (2002).
[Crossref]

B. G. Aitken, C. W. Ponader, and R. S. Quimby, “Clustering of rare earths in GeAs sulfide glass,” C. R. Chim. 5(12), 865–872 (2002).
[Crossref]

2001 (3)

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

D. W. Chen and K. Masters, “Continuous-wave 4.3-mum intracavity difference frequency generation in an optical parametric oscillator,” Opt. Lett. 26(1), 25–27 (2001).
[Crossref] [PubMed]

M. S. Iovu, S. D. Shutov, A. M. Andriesh, E. I. Kamitsos, C. P. E. Varsamis, D. Furniss, A. B. Seddon, and M. Popescu, “Spectroscopic studies of bulk As2S3 glasses and amorphous films doped with Dy, Sm and Mn,” J. Optoelectron. Adv. Mater. 3(2), 443–454 (2001).

1999 (2)

J. J. Adams, C. Bibeau, R. H. Page, D. M. Krol, L. H. Furu, and S. A. Payne, “4.0-4.5-mum lasing of Fe:ZnSe below 180 K, a new mid-infrared laser material,” Opt. Lett. 24(23), 1720–1722 (1999).
[Crossref] [PubMed]

Y. B. Shin and J. Heo, “Mid-infrared emissions and energy transfer in Ge-Ga-S glasses doped with Dy3+,” J. Non-Cryst. Solids 256-257, 260–265 (1999).
[Crossref]

1996 (2)

1995 (1)

J. Heo, “Optical characteristics of rare-earth-doped sulphide glasses,” J. Mater. Sci. Lett. 14(14), 1014–1016 (1995).
[Crossref]

1994 (1)

1977 (1)

C. Freed and R. G. O’Donnell, “Advances in CO2 laser stabilization using the 4.3μm fluorescence technique,” Metrologia 13(3), 151–156 (1977).
[Crossref]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

Adams, J. J.

Aellen, T.

D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasicontinuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79(7), 907–913 (2004).
[Crossref]

Aggarwal, I. D.

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy3+ chalcogenide glass fiber laser with efficient output at 4.5 μm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
[Crossref]

V. Q. Nguyen, J. S. Sanghera, B. Cole, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic sulfide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(8), 2056–2058 (2002).
[Crossref]

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Aitken, B. G.

B. G. Aitken, C. W. Ponader, and R. S. Quimby, “Clustering of rare earths in GeAs sulfide glass,” C. R. Chim. 5(12), 865–872 (2002).
[Crossref]

Alic, N.

S. Zlantanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Andriesh, A. M.

M. S. Iovu, S. D. Shutov, A. M. Andriesh, E. I. Kamitsos, C. P. E. Varsamis, D. Furniss, A. B. Seddon, and M. Popescu, “Spectroscopic studies of bulk As2S3 glasses and amorphous films doped with Dy, Sm and Mn,” J. Optoelectron. Adv. Mater. 3(2), 443–454 (2001).

Asobe, M.

A. Tokura, O. Tadanaga, and M. Asobe, “4.6μm-band light source for greenhouse gas detection,” NTT Tech. Rev. 10, 6 (2012).

Baranov, Y. I.

Y. I. Baranov and W. J. Lafferty, “The water-vapor continuum and selective absorption in the 3-5μm spectral region at temperatures from 311 to 363K,” J. Quant. Spectrosc. Radiat. Transf. 112(8), 1304–1313 (2011).
[Crossref]

Beck, M.

D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasicontinuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79(7), 907–913 (2004).
[Crossref]

Belin, S.

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Benson, T. M.

Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of Dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
[Crossref]

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallization behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11-13), 2453–2462 (2011).
[Crossref]

S. Sujecki, L. Sójka, E. Bereś-Pawlik, Z. Tang, D. Ffuniss, A. B. Seddon, and T. M. Benson, “Modelling of a simple Dy3+ doped chalcogenide glass fibre laser for mid-infrared light generation,” Opt. Quantum Electron. 42(2), 69–79 (2010).
[Crossref]

Beres-Pawlik, E.

S. Sujecki, L. Sójka, E. Bereś-Pawlik, Z. Tang, D. Ffuniss, A. B. Seddon, and T. M. Benson, “Modelling of a simple Dy3+ doped chalcogenide glass fibre laser for mid-infrared light generation,” Opt. Quantum Electron. 42(2), 69–79 (2010).
[Crossref]

Berry, R. J.

J. H. Jiang, R. J. Berry, H. W. Siesler, and Y. Ozaki, “Wavelength interval selection in multicomponent spectral analysis by moving window partial least-squares regression with applications to mid-infrared and near-infrared spectroscopic data,” Anal. Chem. 74(14), 3555–3565 (2002).
[Crossref] [PubMed]

Bian, J. Y.

Z. J. Liu, J. Y. Bian, Y. Huang, T. F. Xu, X. S. Wang, and S. X. Dai, “Fabrication and characterization of mid-infrared emission of Pr3+ doped selenide chalcogenide glasses and fibres,” RSC Advances 7(66), 41520–41526 (2017).
[Crossref]

Bibeau, C.

Blaser, S.

D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasicontinuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79(7), 907–913 (2004).
[Crossref]

Boggio, J. M. C.

S. Zlantanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Braud, A.

F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sensor. Actuat. Biol. Chem. 207, 518–525 (2015).

Bureau, B.

F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sensor. Actuat. Biol. Chem. 207, 518–525 (2015).

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Camy, P.

F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sensor. Actuat. Biol. Chem. 207, 518–525 (2015).

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Carreé, J. Y.

Chahal, R.

F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sensor. Actuat. Biol. Chem. 207, 518–525 (2015).

Charpentier, F.

F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sensor. Actuat. Biol. Chem. 207, 518–525 (2015).

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Chen, D. W.

Chen, Q.

Chen, Y.

H. Guo, Y. Xu, Y. Chen, X. He, X. Cui, P. Wang, M. Lu, W. Li, C. Hou, and B. Peng, “Near-and mid-infrared emissions of Dy3+ doped and Dy3+/Tm3+ co-doped lead cesium iodide modified chalcohalide glasses,” J. Lumin. 148, 10–17 (2014).
[Crossref]

Cheng, Y.

Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of Dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
[Crossref]

Choi, Y. G.

Y. G. Choi, J. H. Song, Y. B. Shin, and J. Heo, “Chemical characteristics of Dy-S bonds in Ge-As-S glass,” J. Non-Cryst. Solids 353(16-17), 1665–1669 (2007).
[Crossref]

Churbanov, M. F.

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326-327, 301–305 (2003).
[Crossref]

Cole, B.

V. Q. Nguyen, J. S. Sanghera, B. Cole, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic sulfide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(8), 2056–2058 (2002).
[Crossref]

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Cui, X.

H. Guo, Y. Xu, Y. Chen, X. He, X. Cui, P. Wang, M. Lu, W. Li, C. Hou, and B. Peng, “Near-and mid-infrared emissions of Dy3+ doped and Dy3+/Tm3+ co-doped lead cesium iodide modified chalcohalide glasses,” J. Lumin. 148, 10–17 (2014).
[Crossref]

Cui, X. X.

X. S. Xiao, Y. T. Xu, H. T. Guo, P. F. Wang, X. X. Cui, M. Lu, Y. S. Wang, and B. Peng, “Theoretical modeling of 4.3 μm mid-infrared lasing in Dy3+-doped chalcogenide fiber lasers,” IEEE Photonics J. 10(2), 1 (2018).
[Crossref]

Z. X. Wang, X. S. Xiao, Y. T. Xu, H. T. Guo, X. X. Cui, M. Lu, B. Peng, A. P. Yang, Z. Y. Yang, and S. X. Gu, “Synthesis and spectroscopy of high concentration dysprosium doped GeS2-Ga2S3-CdI2 chalcohalide glasses and fiber fabrication,” J. Alloys Compd. 692, 1010–1017 (2017).
[Crossref]

Dai, S. X.

Z. J. Liu, J. Y. Bian, Y. Huang, T. F. Xu, X. S. Wang, and S. X. Dai, “Fabrication and characterization of mid-infrared emission of Pr3+ doped selenide chalcogenide glasses and fibres,” RSC Advances 7(66), 41520–41526 (2017).
[Crossref]

Divliansky, I. B.

S. Zlantanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Dong, L.

Doualan, J. L.

F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sensor. Actuat. Biol. Chem. 207, 518–525 (2015).

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Faist, J.

D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasicontinuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79(7), 907–913 (2004).
[Crossref]

Falconi, M. C.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

Feng, L.

G. M. Tao, H. T. Guo, L. Feng, M. Lu, W. Wei, and B. Peng, “Formation and properties of a novel heavy-Metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92(10), 2226–2229 (2009).
[Crossref]

Ferrari, M.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

Ffuniss, D.

S. Sujecki, L. Sójka, E. Bereś-Pawlik, Z. Tang, D. Ffuniss, A. B. Seddon, and T. M. Benson, “Modelling of a simple Dy3+ doped chalcogenide glass fibre laser for mid-infrared light generation,” Opt. Quantum Electron. 42(2), 69–79 (2010).
[Crossref]

Fortin, V.

A. Galstyan, S. H. Messaddeq, V. Fortin, I. Skripachev, R. Vallee, T. Galstian, and Y. Messaddeq, “Tm3+ doped Ga–As–S chalcogenide glasses and fibers,” Opt. Mater. 47, 518–523 (2015).
[Crossref]

Freed, C.

C. Freed and R. G. O’Donnell, “Advances in CO2 laser stabilization using the 4.3μm fluorescence technique,” Metrologia 13(3), 151–156 (1977).
[Crossref]

Furniss, D.

Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of Dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
[Crossref]

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallization behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11-13), 2453–2462 (2011).
[Crossref]

J. D. Shephard, R. I. Kangley, R. J. Hand, D. Furniss, M. O’Donnell, C. A. Miller, and A. B. Seddon, “The effect of GaSe on Ga-La-S glasses,” J. Non-Cryst. Solids 326, 439–445 (2003).
[Crossref]

M. S. Iovu, S. D. Shutov, A. M. Andriesh, E. I. Kamitsos, C. P. E. Varsamis, D. Furniss, A. B. Seddon, and M. Popescu, “Spectroscopic studies of bulk As2S3 glasses and amorphous films doped with Dy, Sm and Mn,” J. Optoelectron. Adv. Mater. 3(2), 443–454 (2001).

Furu, L. H.

Galagan, B. I.

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326-327, 301–305 (2003).
[Crossref]

Galstian, T.

A. Galstyan, S. H. Messaddeq, V. Fortin, I. Skripachev, R. Vallee, T. Galstian, and Y. Messaddeq, “Tm3+ doped Ga–As–S chalcogenide glasses and fibers,” Opt. Mater. 47, 518–523 (2015).
[Crossref]

Galstyan, A.

A. Galstyan, S. H. Messaddeq, V. Fortin, I. Skripachev, R. Vallee, T. Galstian, and Y. Messaddeq, “Tm3+ doped Ga–As–S chalcogenide glasses and fibers,” Opt. Mater. 47, 518–523 (2015).
[Crossref]

Garcia, S. G.

M. Vasquez, F. Schreier, S. G. Garcia, D. Kitzmann, B. Patzer, H. Rauer, and T. Trautmann, “Infrared radiative transfer in atmospheres of Earth-like planets around F, G, K, and M stars I. Clear-sky thermal emission spectra and weighting functions,” Astron. Astrophys. A26, 549 (2013).

Geiser, P.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

Geng, L.

Gluszek, A. K.

Gmachl, C. F.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Griffin, R. J.

Gu, S. X.

Z. X. Wang, X. S. Xiao, Y. T. Xu, H. T. Guo, X. X. Cui, M. Lu, B. Peng, A. P. Yang, Z. Y. Yang, and S. X. Gu, “Synthesis and spectroscopy of high concentration dysprosium doped GeS2-Ga2S3-CdI2 chalcohalide glasses and fiber fabrication,” J. Alloys Compd. 692, 1010–1017 (2017).
[Crossref]

Guo, H.

H. Guo, Y. Xu, Y. Chen, X. He, X. Cui, P. Wang, M. Lu, W. Li, C. Hou, and B. Peng, “Near-and mid-infrared emissions of Dy3+ doped and Dy3+/Tm3+ co-doped lead cesium iodide modified chalcohalide glasses,” J. Lumin. 148, 10–17 (2014).
[Crossref]

Guo, H. T.

X. S. Xiao, Y. T. Xu, H. T. Guo, P. F. Wang, X. X. Cui, M. Lu, Y. S. Wang, and B. Peng, “Theoretical modeling of 4.3 μm mid-infrared lasing in Dy3+-doped chalcogenide fiber lasers,” IEEE Photonics J. 10(2), 1 (2018).
[Crossref]

X. S. Xiao, H. T. Guo, Z. J. Yan, H. S. Wang, Y. T. Xu, M. Lu, Y. S. Wang, and B. Peng, “3W narrow-linewidth ultra-short wavelength operation near 1707 nm in thulium-doped silica fiber laser with bidirectional pumping,” Appl. Phys. B 123(4), 135 (2017).
[Crossref]

Z. X. Wang, X. S. Xiao, Y. T. Xu, H. T. Guo, X. X. Cui, M. Lu, B. Peng, A. P. Yang, Z. Y. Yang, and S. X. Gu, “Synthesis and spectroscopy of high concentration dysprosium doped GeS2-Ga2S3-CdI2 chalcohalide glasses and fiber fabrication,” J. Alloys Compd. 692, 1010–1017 (2017).
[Crossref]

G. M. Tao, H. T. Guo, L. Feng, M. Lu, W. Wei, and B. Peng, “Formation and properties of a novel heavy-Metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92(10), 2226–2229 (2009).
[Crossref]

Guo, W.

M. J. Zhang, A. P. Yang, Y. F. Peng, B. Zhang, H. Ren, W. Guo, Y. Yang, C. C. Zhai, Y. W. Wang, Z. Y. Yang, and D. Y. Tang, “Dy3+-doped Ga-Sb-S chalcogenide glasses for mid-infrared lasers,” Mater. Res. Bull. 70, 55–59 (2015).
[Crossref]

Hand, R. J.

J. D. Shephard, R. I. Kangley, R. J. Hand, D. Furniss, M. O’Donnell, C. A. Miller, and A. B. Seddon, “The effect of GaSe on Ga-La-S glasses,” J. Non-Cryst. Solids 326, 439–445 (2003).
[Crossref]

He, X.

H. Guo, Y. Xu, Y. Chen, X. He, X. Cui, P. Wang, M. Lu, W. Li, C. Hou, and B. Peng, “Near-and mid-infrared emissions of Dy3+ doped and Dy3+/Tm3+ co-doped lead cesium iodide modified chalcohalide glasses,” J. Lumin. 148, 10–17 (2014).
[Crossref]

Heo, J.

Y. G. Choi, J. H. Song, Y. B. Shin, and J. Heo, “Chemical characteristics of Dy-S bonds in Ge-As-S glass,” J. Non-Cryst. Solids 353(16-17), 1665–1669 (2007).
[Crossref]

Y. B. Shin and J. Heo, “Mid-infrared emissions and energy transfer in Ge-Ga-S glasses doped with Dy3+,” J. Non-Cryst. Solids 256-257, 260–265 (1999).
[Crossref]

J. Heo and Y. B. Shin, “Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge-As(or Ga)-S glasses,” J. Non-Cryst. Solids 196, 162–167 (1996).
[Crossref]

J. Heo, “Optical characteristics of rare-earth-doped sulphide glasses,” J. Mater. Sci. Lett. 14(14), 1014–1016 (1995).
[Crossref]

Hewak, D. W.

Hodgkinson, J.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Hofstetter, D.

D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasicontinuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79(7), 907–913 (2004).
[Crossref]

Hou, C.

H. Guo, Y. Xu, Y. Chen, X. He, X. Cui, P. Wang, M. Lu, W. Li, C. Hou, and B. Peng, “Near-and mid-infrared emissions of Dy3+ doped and Dy3+/Tm3+ co-doped lead cesium iodide modified chalcohalide glasses,” J. Lumin. 148, 10–17 (2014).
[Crossref]

Huang, Y.

Z. J. Liu, J. Y. Bian, Y. Huang, T. F. Xu, X. S. Wang, and S. X. Dai, “Fabrication and characterization of mid-infrared emission of Pr3+ doped selenide chalcogenide glasses and fibres,” RSC Advances 7(66), 41520–41526 (2017).
[Crossref]

Hudzikowski, A. J.

Ilev, I. K.

B. Ronald, W. Waynant, and I. K. Ilev, “Mid-infrared laser applications in medicine and biology,” Philosophical Transactions of the Royal Society 44, 699–710 (2006).

Iovu, M. S.

M. S. Iovu, S. D. Shutov, A. M. Andriesh, E. I. Kamitsos, C. P. E. Varsamis, D. Furniss, A. B. Seddon, and M. Popescu, “Spectroscopic studies of bulk As2S3 glasses and amorphous films doped with Dy, Sm and Mn,” J. Optoelectron. Adv. Mater. 3(2), 443–454 (2001).

Jackson, S. D.

Jiang, J. H.

J. H. Jiang, R. J. Berry, H. W. Siesler, and Y. Ozaki, “Wavelength interval selection in multicomponent spectral analysis by moving window partial least-squares regression with applications to mid-infrared and near-infrared spectroscopic data,” Anal. Chem. 74(14), 3555–3565 (2002).
[Crossref] [PubMed]

Jóvári, P.

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Kamitsos, E. I.

M. S. Iovu, S. D. Shutov, A. M. Andriesh, E. I. Kamitsos, C. P. E. Varsamis, D. Furniss, A. B. Seddon, and M. Popescu, “Spectroscopic studies of bulk As2S3 glasses and amorphous films doped with Dy, Sm and Mn,” J. Optoelectron. Adv. Mater. 3(2), 443–454 (2001).

Kangley, R. I.

J. D. Shephard, R. I. Kangley, R. J. Hand, D. Furniss, M. O’Donnell, C. A. Miller, and A. B. Seddon, “The effect of GaSe on Ga-La-S glasses,” J. Non-Cryst. Solids 326, 439–445 (2003).
[Crossref]

Khorsandi, A.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

Kitzmann, D.

M. Vasquez, F. Schreier, S. G. Garcia, D. Kitzmann, B. Patzer, H. Rauer, and T. Trautmann, “Infrared radiative transfer in atmospheres of Earth-like planets around F, G, K, and M stars I. Clear-sky thermal emission spectra and weighting functions,” Astron. Astrophys. A26, 549 (2013).

Krol, D. M.

Kryukova, E. B.

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326-327, 301–305 (2003).
[Crossref]

Kung, F. H.

V. Q. Nguyen, J. S. Sanghera, B. Cole, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic sulfide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(8), 2056–2058 (2002).
[Crossref]

Lafferty, W. J.

Y. I. Baranov and W. J. Lafferty, “The water-vapor continuum and selective absorption in the 3-5μm spectral region at temperatures from 311 to 363K,” J. Quant. Spectrosc. Radiat. Transf. 112(8), 1304–1313 (2011).
[Crossref]

Li, C.

Li, L.

Li, W.

H. Guo, Y. Xu, Y. Chen, X. He, X. Cui, P. Wang, M. Lu, W. Li, C. Hou, and B. Peng, “Near-and mid-infrared emissions of Dy3+ doped and Dy3+/Tm3+ co-doped lead cesium iodide modified chalcohalide glasses,” J. Lumin. 148, 10–17 (2014).
[Crossref]

Liu, Z. J.

Z. J. Liu, J. Y. Bian, Y. Huang, T. F. Xu, X. S. Wang, and S. X. Dai, “Fabrication and characterization of mid-infrared emission of Pr3+ doped selenide chalcogenide glasses and fibres,” RSC Advances 7(66), 41520–41526 (2017).
[Crossref]

Lu, M.

X. S. Xiao, Y. T. Xu, H. T. Guo, P. F. Wang, X. X. Cui, M. Lu, Y. S. Wang, and B. Peng, “Theoretical modeling of 4.3 μm mid-infrared lasing in Dy3+-doped chalcogenide fiber lasers,” IEEE Photonics J. 10(2), 1 (2018).
[Crossref]

Z. X. Wang, X. S. Xiao, Y. T. Xu, H. T. Guo, X. X. Cui, M. Lu, B. Peng, A. P. Yang, Z. Y. Yang, and S. X. Gu, “Synthesis and spectroscopy of high concentration dysprosium doped GeS2-Ga2S3-CdI2 chalcohalide glasses and fiber fabrication,” J. Alloys Compd. 692, 1010–1017 (2017).
[Crossref]

X. S. Xiao, H. T. Guo, Z. J. Yan, H. S. Wang, Y. T. Xu, M. Lu, Y. S. Wang, and B. Peng, “3W narrow-linewidth ultra-short wavelength operation near 1707 nm in thulium-doped silica fiber laser with bidirectional pumping,” Appl. Phys. B 123(4), 135 (2017).
[Crossref]

H. Guo, Y. Xu, Y. Chen, X. He, X. Cui, P. Wang, M. Lu, W. Li, C. Hou, and B. Peng, “Near-and mid-infrared emissions of Dy3+ doped and Dy3+/Tm3+ co-doped lead cesium iodide modified chalcohalide glasses,” J. Lumin. 148, 10–17 (2014).
[Crossref]

G. M. Tao, H. T. Guo, L. Feng, M. Lu, W. Wei, and B. Peng, “Formation and properties of a novel heavy-Metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92(10), 2226–2229 (2009).
[Crossref]

Machewirth, D. P.

Majewski, M. R.

Manzur, T.

Masters, K.

Messaddeq, S. H.

A. Galstyan, S. H. Messaddeq, V. Fortin, I. Skripachev, R. Vallee, T. Galstian, and Y. Messaddeq, “Tm3+ doped Ga–As–S chalcogenide glasses and fibers,” Opt. Mater. 47, 518–523 (2015).
[Crossref]

Messaddeq, Y.

A. Galstyan, S. H. Messaddeq, V. Fortin, I. Skripachev, R. Vallee, T. Galstian, and Y. Messaddeq, “Tm3+ doped Ga–As–S chalcogenide glasses and fibers,” Opt. Mater. 47, 518–523 (2015).
[Crossref]

Michel, K.

F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sensor. Actuat. Biol. Chem. 207, 518–525 (2015).

Miller, C. A.

J. D. Shephard, R. I. Kangley, R. J. Hand, D. Furniss, M. O’Donnell, C. A. Miller, and A. B. Seddon, “The effect of GaSe on Ga-La-S glasses,” J. Non-Cryst. Solids 326, 439–445 (2003).
[Crossref]

Moizan, V.

F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sensor. Actuat. Biol. Chem. 207, 518–525 (2015).

Mookherjea, S.

S. Zlantanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Moro, S.

S. Zlantanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Nazabal, V.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sensor. Actuat. Biol. Chem. 207, 518–525 (2015).

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Neate, N. C.

Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of Dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
[Crossref]

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallization behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11-13), 2453–2462 (2011).
[Crossref]

Nguyen, V. Q.

V. Q. Nguyen, J. S. Sanghera, B. Cole, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic sulfide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(8), 2056–2058 (2002).
[Crossref]

Norwood, R. A.

O’Donnell, M.

J. D. Shephard, R. I. Kangley, R. J. Hand, D. Furniss, M. O’Donnell, C. A. Miller, and A. B. Seddon, “The effect of GaSe on Ga-La-S glasses,” J. Non-Cryst. Solids 326, 439–445 (2003).
[Crossref]

O’Donnell, R. G.

C. Freed and R. G. O’Donnell, “Advances in CO2 laser stabilization using the 4.3μm fluorescence technique,” Metrologia 13(3), 151–156 (1977).
[Crossref]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

Ozaki, Y.

J. H. Jiang, R. J. Berry, H. W. Siesler, and Y. Ozaki, “Wavelength interval selection in multicomponent spectral analysis by moving window partial least-squares regression with applications to mid-infrared and near-infrared spectroscopic data,” Anal. Chem. 74(14), 3555–3565 (2002).
[Crossref] [PubMed]

Page, R. H.

Palma, G.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

Park, J. S.

S. Zlantanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Patzer, B.

M. Vasquez, F. Schreier, S. G. Garcia, D. Kitzmann, B. Patzer, H. Rauer, and T. Trautmann, “Infrared radiative transfer in atmospheres of Earth-like planets around F, G, K, and M stars I. Clear-sky thermal emission spectra and weighting functions,” Astron. Astrophys. A26, 549 (2013).

Payne, D. N.

Payne, S. A.

Peng, B.

X. S. Xiao, Y. T. Xu, H. T. Guo, P. F. Wang, X. X. Cui, M. Lu, Y. S. Wang, and B. Peng, “Theoretical modeling of 4.3 μm mid-infrared lasing in Dy3+-doped chalcogenide fiber lasers,” IEEE Photonics J. 10(2), 1 (2018).
[Crossref]

X. S. Xiao, H. T. Guo, Z. J. Yan, H. S. Wang, Y. T. Xu, M. Lu, Y. S. Wang, and B. Peng, “3W narrow-linewidth ultra-short wavelength operation near 1707 nm in thulium-doped silica fiber laser with bidirectional pumping,” Appl. Phys. B 123(4), 135 (2017).
[Crossref]

Z. X. Wang, X. S. Xiao, Y. T. Xu, H. T. Guo, X. X. Cui, M. Lu, B. Peng, A. P. Yang, Z. Y. Yang, and S. X. Gu, “Synthesis and spectroscopy of high concentration dysprosium doped GeS2-Ga2S3-CdI2 chalcohalide glasses and fiber fabrication,” J. Alloys Compd. 692, 1010–1017 (2017).
[Crossref]

H. Guo, Y. Xu, Y. Chen, X. He, X. Cui, P. Wang, M. Lu, W. Li, C. Hou, and B. Peng, “Near-and mid-infrared emissions of Dy3+ doped and Dy3+/Tm3+ co-doped lead cesium iodide modified chalcohalide glasses,” J. Lumin. 148, 10–17 (2014).
[Crossref]

G. M. Tao, H. T. Guo, L. Feng, M. Lu, W. Wei, and B. Peng, “Formation and properties of a novel heavy-Metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92(10), 2226–2229 (2009).
[Crossref]

Peng, Y. F.

M. J. Zhang, A. P. Yang, Y. F. Peng, B. Zhang, H. Ren, W. Guo, Y. Yang, C. C. Zhai, Y. W. Wang, Z. Y. Yang, and D. Y. Tang, “Dy3+-doped Ga-Sb-S chalcogenide glasses for mid-infrared lasers,” Mater. Res. Bull. 70, 55–59 (2015).
[Crossref]

Peyghambarian, N.

Plotnichenko, V. G.

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326-327, 301–305 (2003).
[Crossref]

Ponader, C. W.

B. G. Aitken, C. W. Ponader, and R. S. Quimby, “Clustering of rare earths in GeAs sulfide glass,” C. R. Chim. 5(12), 865–872 (2002).
[Crossref]

Popescu, M.

M. S. Iovu, S. D. Shutov, A. M. Andriesh, E. I. Kamitsos, C. P. E. Varsamis, D. Furniss, A. B. Seddon, and M. Popescu, “Spectroscopic studies of bulk As2S3 glasses and amorphous films doped with Dy, Sm and Mn,” J. Optoelectron. Adv. Mater. 3(2), 443–454 (2001).

Poulain, M.

Poulain, S.

Prudenzano, F.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

Pureza, P.

V. Q. Nguyen, J. S. Sanghera, B. Cole, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic sulfide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(8), 2056–2058 (2002).
[Crossref]

Pyrkov, Y. N.

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326-327, 301–305 (2003).
[Crossref]

Quetel, L.

F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sensor. Actuat. Biol. Chem. 207, 518–525 (2015).

Quimby, R. S.

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy3+ chalcogenide glass fiber laser with efficient output at 4.5 μm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
[Crossref]

B. G. Aitken, C. W. Ponader, and R. S. Quimby, “Clustering of rare earths in GeAs sulfide glass,” C. R. Chim. 5(12), 865–872 (2002).
[Crossref]

Radic, S.

S. Zlantanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Rauer, H.

M. Vasquez, F. Schreier, S. G. Garcia, D. Kitzmann, B. Patzer, H. Rauer, and T. Trautmann, “Infrared radiative transfer in atmospheres of Earth-like planets around F, G, K, and M stars I. Clear-sky thermal emission spectra and weighting functions,” Astron. Astrophys. A26, 549 (2013).

Ren, H.

M. J. Zhang, A. P. Yang, Y. F. Peng, B. Zhang, H. Ren, W. Guo, Y. Yang, C. C. Zhai, Y. W. Wang, Z. Y. Yang, and D. Y. Tang, “Dy3+-doped Ga-Sb-S chalcogenide glasses for mid-infrared lasers,” Mater. Res. Bull. 70, 55–59 (2015).
[Crossref]

Ronald, B.

B. Ronald, W. Waynant, and I. K. Ilev, “Mid-infrared laser applications in medicine and biology,” Philosophical Transactions of the Royal Society 44, 699–710 (2006).

Samson, B. N.

Sanchez, N. P.

Sanghera, J. S.

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy3+ chalcogenide glass fiber laser with efficient output at 4.5 μm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
[Crossref]

V. Q. Nguyen, J. S. Sanghera, B. Cole, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic sulfide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(8), 2056–2058 (2002).
[Crossref]

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Saraji, M.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

Schade, W.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

Schreier, F.

M. Vasquez, F. Schreier, S. G. Garcia, D. Kitzmann, B. Patzer, H. Rauer, and T. Trautmann, “Infrared radiative transfer in atmospheres of Earth-like planets around F, G, K, and M stars I. Clear-sky thermal emission spectra and weighting functions,” Astron. Astrophys. A26, 549 (2013).

Schweizer, T.

Scripachev, I. V.

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326-327, 301–305 (2003).
[Crossref]

Seddon, A. B.

Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of Dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
[Crossref]

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallization behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11-13), 2453–2462 (2011).
[Crossref]

S. Sujecki, L. Sójka, E. Bereś-Pawlik, Z. Tang, D. Ffuniss, A. B. Seddon, and T. M. Benson, “Modelling of a simple Dy3+ doped chalcogenide glass fibre laser for mid-infrared light generation,” Opt. Quantum Electron. 42(2), 69–79 (2010).
[Crossref]

J. D. Shephard, R. I. Kangley, R. J. Hand, D. Furniss, M. O’Donnell, C. A. Miller, and A. B. Seddon, “The effect of GaSe on Ga-La-S glasses,” J. Non-Cryst. Solids 326, 439–445 (2003).
[Crossref]

M. S. Iovu, S. D. Shutov, A. M. Andriesh, E. I. Kamitsos, C. P. E. Varsamis, D. Furniss, A. B. Seddon, and M. Popescu, “Spectroscopic studies of bulk As2S3 glasses and amorphous films doped with Dy, Sm and Mn,” J. Optoelectron. Adv. Mater. 3(2), 443–454 (2001).

Shaw, L. B.

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy3+ chalcogenide glass fiber laser with efficient output at 4.5 μm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
[Crossref]

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Shephard, J. D.

J. D. Shephard, R. I. Kangley, R. J. Hand, D. Furniss, M. O’Donnell, C. A. Miller, and A. B. Seddon, “The effect of GaSe on Ga-La-S glasses,” J. Non-Cryst. Solids 326, 439–445 (2003).
[Crossref]

Shin, Y. B.

Y. G. Choi, J. H. Song, Y. B. Shin, and J. Heo, “Chemical characteristics of Dy-S bonds in Ge-As-S glass,” J. Non-Cryst. Solids 353(16-17), 1665–1669 (2007).
[Crossref]

Y. B. Shin and J. Heo, “Mid-infrared emissions and energy transfer in Ge-Ga-S glasses doped with Dy3+,” J. Non-Cryst. Solids 256-257, 260–265 (1999).
[Crossref]

J. Heo and Y. B. Shin, “Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge-As(or Ga)-S glasses,” J. Non-Cryst. Solids 196, 162–167 (1996).
[Crossref]

Shiryaev, V. S.

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326-327, 301–305 (2003).
[Crossref]

Shutov, S. D.

M. S. Iovu, S. D. Shutov, A. M. Andriesh, E. I. Kamitsos, C. P. E. Varsamis, D. Furniss, A. B. Seddon, and M. Popescu, “Spectroscopic studies of bulk As2S3 glasses and amorphous films doped with Dy, Sm and Mn,” J. Optoelectron. Adv. Mater. 3(2), 443–454 (2001).

Siesler, H. W.

J. H. Jiang, R. J. Berry, H. W. Siesler, and Y. Ozaki, “Wavelength interval selection in multicomponent spectral analysis by moving window partial least-squares regression with applications to mid-infrared and near-infrared spectroscopic data,” Anal. Chem. 74(14), 3555–3565 (2002).
[Crossref] [PubMed]

Sigel, G. H.

Skripachev, I.

A. Galstyan, S. H. Messaddeq, V. Fortin, I. Skripachev, R. Vallee, T. Galstian, and Y. Messaddeq, “Tm3+ doped Ga–As–S chalcogenide glasses and fibers,” Opt. Mater. 47, 518–523 (2015).
[Crossref]

Smetanin, S. V.

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326-327, 301–305 (2003).
[Crossref]

Snitzer, E.

Sójka, L.

S. Sujecki, L. Sójka, E. Bereś-Pawlik, Z. Tang, D. Ffuniss, A. B. Seddon, and T. M. Benson, “Modelling of a simple Dy3+ doped chalcogenide glass fibre laser for mid-infrared light generation,” Opt. Quantum Electron. 42(2), 69–79 (2010).
[Crossref]

Song, J. H.

Y. G. Choi, J. H. Song, Y. B. Shin, and J. Heo, “Chemical characteristics of Dy-S bonds in Ge-As-S glass,” J. Non-Cryst. Solids 353(16-17), 1665–1669 (2007).
[Crossref]

Starecki, F.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sensor. Actuat. Biol. Chem. 207, 518–525 (2015).

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Sujecki, S.

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallization behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11-13), 2453–2462 (2011).
[Crossref]

S. Sujecki, L. Sójka, E. Bereś-Pawlik, Z. Tang, D. Ffuniss, A. B. Seddon, and T. M. Benson, “Modelling of a simple Dy3+ doped chalcogenide glass fibre laser for mid-infrared light generation,” Opt. Quantum Electron. 42(2), 69–79 (2010).
[Crossref]

Taccheo, S.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

Tadanaga, O.

A. Tokura, O. Tadanaga, and M. Asobe, “4.6μm-band light source for greenhouse gas detection,” NTT Tech. Rev. 10, 6 (2012).

Tang, D. Y.

M. J. Zhang, A. P. Yang, Y. F. Peng, B. Zhang, H. Ren, W. Guo, Y. Yang, C. C. Zhai, Y. W. Wang, Z. Y. Yang, and D. Y. Tang, “Dy3+-doped Ga-Sb-S chalcogenide glasses for mid-infrared lasers,” Mater. Res. Bull. 70, 55–59 (2015).
[Crossref]

Tang, Z.

Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of Dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
[Crossref]

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallization behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11-13), 2453–2462 (2011).
[Crossref]

S. Sujecki, L. Sójka, E. Bereś-Pawlik, Z. Tang, D. Ffuniss, A. B. Seddon, and T. M. Benson, “Modelling of a simple Dy3+ doped chalcogenide glass fibre laser for mid-infrared light generation,” Opt. Quantum Electron. 42(2), 69–79 (2010).
[Crossref]

Tao, G. M.

G. M. Tao, H. T. Guo, L. Feng, M. Lu, W. Wei, and B. Peng, “Formation and properties of a novel heavy-Metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92(10), 2226–2229 (2009).
[Crossref]

Tatam, R. P.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Thielen, P. A.

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Tittel, F. K.

W. Ye, C. Li, C. Zheng, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, L. Dong, R. J. Griffin, and F. K. Tittel, “Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser,” Opt. Express 24(15), 16973–16985 (2016).
[Crossref] [PubMed]

D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasicontinuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79(7), 907–913 (2004).
[Crossref]

Tokura, A.

A. Tokura, O. Tadanaga, and M. Asobe, “4.6μm-band light source for greenhouse gas detection,” NTT Tech. Rev. 10, 6 (2012).

Trautmann, T.

M. Vasquez, F. Schreier, S. G. Garcia, D. Kitzmann, B. Patzer, H. Rauer, and T. Trautmann, “Infrared radiative transfer in atmospheres of Earth-like planets around F, G, K, and M stars I. Clear-sky thermal emission spectra and weighting functions,” Astron. Astrophys. A26, 549 (2013).

Troles, J.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sensor. Actuat. Biol. Chem. 207, 518–525 (2015).

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Vallee, R.

A. Galstyan, S. H. Messaddeq, V. Fortin, I. Skripachev, R. Vallee, T. Galstian, and Y. Messaddeq, “Tm3+ doped Ga–As–S chalcogenide glasses and fibers,” Opt. Mater. 47, 518–523 (2015).
[Crossref]

Varsamis, C. P. E.

M. S. Iovu, S. D. Shutov, A. M. Andriesh, E. I. Kamitsos, C. P. E. Varsamis, D. Furniss, A. B. Seddon, and M. Popescu, “Spectroscopic studies of bulk As2S3 glasses and amorphous films doped with Dy, Sm and Mn,” J. Optoelectron. Adv. Mater. 3(2), 443–454 (2001).

Vasquez, M.

M. Vasquez, F. Schreier, S. G. Garcia, D. Kitzmann, B. Patzer, H. Rauer, and T. Trautmann, “Infrared radiative transfer in atmospheres of Earth-like planets around F, G, K, and M stars I. Clear-sky thermal emission spectra and weighting functions,” Astron. Astrophys. A26, 549 (2013).

Wang, H. S.

X. S. Xiao, H. T. Guo, Z. J. Yan, H. S. Wang, Y. T. Xu, M. Lu, Y. S. Wang, and B. Peng, “3W narrow-linewidth ultra-short wavelength operation near 1707 nm in thulium-doped silica fiber laser with bidirectional pumping,” Appl. Phys. B 123(4), 135 (2017).
[Crossref]

Wang, P.

H. Guo, Y. Xu, Y. Chen, X. He, X. Cui, P. Wang, M. Lu, W. Li, C. Hou, and B. Peng, “Near-and mid-infrared emissions of Dy3+ doped and Dy3+/Tm3+ co-doped lead cesium iodide modified chalcohalide glasses,” J. Lumin. 148, 10–17 (2014).
[Crossref]

Wang, P. F.

X. S. Xiao, Y. T. Xu, H. T. Guo, P. F. Wang, X. X. Cui, M. Lu, Y. S. Wang, and B. Peng, “Theoretical modeling of 4.3 μm mid-infrared lasing in Dy3+-doped chalcogenide fiber lasers,” IEEE Photonics J. 10(2), 1 (2018).
[Crossref]

Wang, X. S.

Z. J. Liu, J. Y. Bian, Y. Huang, T. F. Xu, X. S. Wang, and S. X. Dai, “Fabrication and characterization of mid-infrared emission of Pr3+ doped selenide chalcogenide glasses and fibres,” RSC Advances 7(66), 41520–41526 (2017).
[Crossref]

Wang, Y. S.

X. S. Xiao, Y. T. Xu, H. T. Guo, P. F. Wang, X. X. Cui, M. Lu, Y. S. Wang, and B. Peng, “Theoretical modeling of 4.3 μm mid-infrared lasing in Dy3+-doped chalcogenide fiber lasers,” IEEE Photonics J. 10(2), 1 (2018).
[Crossref]

X. S. Xiao, H. T. Guo, Z. J. Yan, H. S. Wang, Y. T. Xu, M. Lu, Y. S. Wang, and B. Peng, “3W narrow-linewidth ultra-short wavelength operation near 1707 nm in thulium-doped silica fiber laser with bidirectional pumping,” Appl. Phys. B 123(4), 135 (2017).
[Crossref]

Wang, Y. W.

M. J. Zhang, A. P. Yang, Y. F. Peng, B. Zhang, H. Ren, W. Guo, Y. Yang, C. C. Zhai, Y. W. Wang, Z. Y. Yang, and D. Y. Tang, “Dy3+-doped Ga-Sb-S chalcogenide glasses for mid-infrared lasers,” Mater. Res. Bull. 70, 55–59 (2015).
[Crossref]

Wang, Z. X.

Z. X. Wang, X. S. Xiao, Y. T. Xu, H. T. Guo, X. X. Cui, M. Lu, B. Peng, A. P. Yang, Z. Y. Yang, and S. X. Gu, “Synthesis and spectroscopy of high concentration dysprosium doped GeS2-Ga2S3-CdI2 chalcohalide glasses and fiber fabrication,” J. Alloys Compd. 692, 1010–1017 (2017).
[Crossref]

Waynant, W.

B. Ronald, W. Waynant, and I. K. Ilev, “Mid-infrared laser applications in medicine and biology,” Philosophical Transactions of the Royal Society 44, 699–710 (2006).

Wei, K.

Wei, W.

G. M. Tao, H. T. Guo, L. Feng, M. Lu, W. Wei, and B. Peng, “Formation and properties of a novel heavy-Metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92(10), 2226–2229 (2009).
[Crossref]

Weidmann, D.

D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasicontinuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79(7), 907–913 (2004).
[Crossref]

Wenzel, J.

Willer, U.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

Woodward, R. I.

Xiao, X. S.

X. S. Xiao, Y. T. Xu, H. T. Guo, P. F. Wang, X. X. Cui, M. Lu, Y. S. Wang, and B. Peng, “Theoretical modeling of 4.3 μm mid-infrared lasing in Dy3+-doped chalcogenide fiber lasers,” IEEE Photonics J. 10(2), 1 (2018).
[Crossref]

Z. X. Wang, X. S. Xiao, Y. T. Xu, H. T. Guo, X. X. Cui, M. Lu, B. Peng, A. P. Yang, Z. Y. Yang, and S. X. Gu, “Synthesis and spectroscopy of high concentration dysprosium doped GeS2-Ga2S3-CdI2 chalcohalide glasses and fiber fabrication,” J. Alloys Compd. 692, 1010–1017 (2017).
[Crossref]

X. S. Xiao, H. T. Guo, Z. J. Yan, H. S. Wang, Y. T. Xu, M. Lu, Y. S. Wang, and B. Peng, “3W narrow-linewidth ultra-short wavelength operation near 1707 nm in thulium-doped silica fiber laser with bidirectional pumping,” Appl. Phys. B 123(4), 135 (2017).
[Crossref]

Xu, T. F.

Z. J. Liu, J. Y. Bian, Y. Huang, T. F. Xu, X. S. Wang, and S. X. Dai, “Fabrication and characterization of mid-infrared emission of Pr3+ doped selenide chalcogenide glasses and fibres,” RSC Advances 7(66), 41520–41526 (2017).
[Crossref]

Xu, Y.

H. Guo, Y. Xu, Y. Chen, X. He, X. Cui, P. Wang, M. Lu, W. Li, C. Hou, and B. Peng, “Near-and mid-infrared emissions of Dy3+ doped and Dy3+/Tm3+ co-doped lead cesium iodide modified chalcohalide glasses,” J. Lumin. 148, 10–17 (2014).
[Crossref]

Xu, Y. T.

X. S. Xiao, Y. T. Xu, H. T. Guo, P. F. Wang, X. X. Cui, M. Lu, Y. S. Wang, and B. Peng, “Theoretical modeling of 4.3 μm mid-infrared lasing in Dy3+-doped chalcogenide fiber lasers,” IEEE Photonics J. 10(2), 1 (2018).
[Crossref]

Z. X. Wang, X. S. Xiao, Y. T. Xu, H. T. Guo, X. X. Cui, M. Lu, B. Peng, A. P. Yang, Z. Y. Yang, and S. X. Gu, “Synthesis and spectroscopy of high concentration dysprosium doped GeS2-Ga2S3-CdI2 chalcohalide glasses and fiber fabrication,” J. Alloys Compd. 692, 1010–1017 (2017).
[Crossref]

X. S. Xiao, H. T. Guo, Z. J. Yan, H. S. Wang, Y. T. Xu, M. Lu, Y. S. Wang, and B. Peng, “3W narrow-linewidth ultra-short wavelength operation near 1707 nm in thulium-doped silica fiber laser with bidirectional pumping,” Appl. Phys. B 123(4), 135 (2017).
[Crossref]

Yan, Z. J.

X. S. Xiao, H. T. Guo, Z. J. Yan, H. S. Wang, Y. T. Xu, M. Lu, Y. S. Wang, and B. Peng, “3W narrow-linewidth ultra-short wavelength operation near 1707 nm in thulium-doped silica fiber laser with bidirectional pumping,” Appl. Phys. B 123(4), 135 (2017).
[Crossref]

Yang, A. P.

Z. X. Wang, X. S. Xiao, Y. T. Xu, H. T. Guo, X. X. Cui, M. Lu, B. Peng, A. P. Yang, Z. Y. Yang, and S. X. Gu, “Synthesis and spectroscopy of high concentration dysprosium doped GeS2-Ga2S3-CdI2 chalcohalide glasses and fiber fabrication,” J. Alloys Compd. 692, 1010–1017 (2017).
[Crossref]

M. J. Zhang, A. P. Yang, Y. F. Peng, B. Zhang, H. Ren, W. Guo, Y. Yang, C. C. Zhai, Y. W. Wang, Z. Y. Yang, and D. Y. Tang, “Dy3+-doped Ga-Sb-S chalcogenide glasses for mid-infrared lasers,” Mater. Res. Bull. 70, 55–59 (2015).
[Crossref]

Yang, Y.

M. J. Zhang, A. P. Yang, Y. F. Peng, B. Zhang, H. Ren, W. Guo, Y. Yang, C. C. Zhai, Y. W. Wang, Z. Y. Yang, and D. Y. Tang, “Dy3+-doped Ga-Sb-S chalcogenide glasses for mid-infrared lasers,” Mater. Res. Bull. 70, 55–59 (2015).
[Crossref]

Yang, Z. Y.

Z. X. Wang, X. S. Xiao, Y. T. Xu, H. T. Guo, X. X. Cui, M. Lu, B. Peng, A. P. Yang, Z. Y. Yang, and S. X. Gu, “Synthesis and spectroscopy of high concentration dysprosium doped GeS2-Ga2S3-CdI2 chalcohalide glasses and fiber fabrication,” J. Alloys Compd. 692, 1010–1017 (2017).
[Crossref]

M. J. Zhang, A. P. Yang, Y. F. Peng, B. Zhang, H. Ren, W. Guo, Y. Yang, C. C. Zhai, Y. W. Wang, Z. Y. Yang, and D. Y. Tang, “Dy3+-doped Ga-Sb-S chalcogenide glasses for mid-infrared lasers,” Mater. Res. Bull. 70, 55–59 (2015).
[Crossref]

Yao, Y.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Ye, W.

Zhai, C. C.

M. J. Zhang, A. P. Yang, Y. F. Peng, B. Zhang, H. Ren, W. Guo, Y. Yang, C. C. Zhai, Y. W. Wang, Z. Y. Yang, and D. Y. Tang, “Dy3+-doped Ga-Sb-S chalcogenide glasses for mid-infrared lasers,” Mater. Res. Bull. 70, 55–59 (2015).
[Crossref]

Zhang, B.

M. J. Zhang, A. P. Yang, Y. F. Peng, B. Zhang, H. Ren, W. Guo, Y. Yang, C. C. Zhai, Y. W. Wang, Z. Y. Yang, and D. Y. Tang, “Dy3+-doped Ga-Sb-S chalcogenide glasses for mid-infrared lasers,” Mater. Res. Bull. 70, 55–59 (2015).
[Crossref]

Zhang, M. J.

M. J. Zhang, A. P. Yang, Y. F. Peng, B. Zhang, H. Ren, W. Guo, Y. Yang, C. C. Zhai, Y. W. Wang, Z. Y. Yang, and D. Y. Tang, “Dy3+-doped Ga-Sb-S chalcogenide glasses for mid-infrared lasers,” Mater. Res. Bull. 70, 55–59 (2015).
[Crossref]

Zheng, C.

Zhu, G.

Zhu, X.

Zlantanovic, S.

S. Zlantanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Anal. Chem. (1)

J. H. Jiang, R. J. Berry, H. W. Siesler, and Y. Ozaki, “Wavelength interval selection in multicomponent spectral analysis by moving window partial least-squares regression with applications to mid-infrared and near-infrared spectroscopic data,” Anal. Chem. 74(14), 3555–3565 (2002).
[Crossref] [PubMed]

Appl. Phys. B (2)

D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasicontinuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79(7), 907–913 (2004).
[Crossref]

X. S. Xiao, H. T. Guo, Z. J. Yan, H. S. Wang, Y. T. Xu, M. Lu, Y. S. Wang, and B. Peng, “3W narrow-linewidth ultra-short wavelength operation near 1707 nm in thulium-doped silica fiber laser with bidirectional pumping,” Appl. Phys. B 123(4), 135 (2017).
[Crossref]

Astron. Astrophys. (1)

M. Vasquez, F. Schreier, S. G. Garcia, D. Kitzmann, B. Patzer, H. Rauer, and T. Trautmann, “Infrared radiative transfer in atmospheres of Earth-like planets around F, G, K, and M stars I. Clear-sky thermal emission spectra and weighting functions,” Astron. Astrophys. A26, 549 (2013).

C. R. Chim. (1)

B. G. Aitken, C. W. Ponader, and R. S. Quimby, “Clustering of rare earths in GeAs sulfide glass,” C. R. Chim. 5(12), 865–872 (2002).
[Crossref]

IEEE J. Quantum Electron. (1)

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

IEEE Photonics J. (1)

X. S. Xiao, Y. T. Xu, H. T. Guo, P. F. Wang, X. X. Cui, M. Lu, Y. S. Wang, and B. Peng, “Theoretical modeling of 4.3 μm mid-infrared lasing in Dy3+-doped chalcogenide fiber lasers,” IEEE Photonics J. 10(2), 1 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (2)

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy3+ chalcogenide glass fiber laser with efficient output at 4.5 μm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
[Crossref]

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

J. Alloys Compd. (1)

Z. X. Wang, X. S. Xiao, Y. T. Xu, H. T. Guo, X. X. Cui, M. Lu, B. Peng, A. P. Yang, Z. Y. Yang, and S. X. Gu, “Synthesis and spectroscopy of high concentration dysprosium doped GeS2-Ga2S3-CdI2 chalcohalide glasses and fiber fabrication,” J. Alloys Compd. 692, 1010–1017 (2017).
[Crossref]

J. Am. Ceram. Soc. (3)

G. M. Tao, H. T. Guo, L. Feng, M. Lu, W. Wei, and B. Peng, “Formation and properties of a novel heavy-Metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92(10), 2226–2229 (2009).
[Crossref]

V. Q. Nguyen, J. S. Sanghera, B. Cole, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic sulfide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(8), 2056–2058 (2002).
[Crossref]

Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of Dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
[Crossref]

J. Chem. Phys. (1)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

J. Lumin. (1)

H. Guo, Y. Xu, Y. Chen, X. He, X. Cui, P. Wang, M. Lu, W. Li, C. Hou, and B. Peng, “Near-and mid-infrared emissions of Dy3+ doped and Dy3+/Tm3+ co-doped lead cesium iodide modified chalcohalide glasses,” J. Lumin. 148, 10–17 (2014).
[Crossref]

J. Mater. Sci. Lett. (1)

J. Heo, “Optical characteristics of rare-earth-doped sulphide glasses,” J. Mater. Sci. Lett. 14(14), 1014–1016 (1995).
[Crossref]

J. Non-Cryst. Solids (6)

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326-327, 301–305 (2003).
[Crossref]

J. D. Shephard, R. I. Kangley, R. J. Hand, D. Furniss, M. O’Donnell, C. A. Miller, and A. B. Seddon, “The effect of GaSe on Ga-La-S glasses,” J. Non-Cryst. Solids 326, 439–445 (2003).
[Crossref]

J. Heo and Y. B. Shin, “Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge-As(or Ga)-S glasses,” J. Non-Cryst. Solids 196, 162–167 (1996).
[Crossref]

Y. G. Choi, J. H. Song, Y. B. Shin, and J. Heo, “Chemical characteristics of Dy-S bonds in Ge-As-S glass,” J. Non-Cryst. Solids 353(16-17), 1665–1669 (2007).
[Crossref]

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallization behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11-13), 2453–2462 (2011).
[Crossref]

Y. B. Shin and J. Heo, “Mid-infrared emissions and energy transfer in Ge-Ga-S glasses doped with Dy3+,” J. Non-Cryst. Solids 256-257, 260–265 (1999).
[Crossref]

J. Optoelectron. Adv. Mater. (1)

M. S. Iovu, S. D. Shutov, A. M. Andriesh, E. I. Kamitsos, C. P. E. Varsamis, D. Furniss, A. B. Seddon, and M. Popescu, “Spectroscopic studies of bulk As2S3 glasses and amorphous films doped with Dy, Sm and Mn,” J. Optoelectron. Adv. Mater. 3(2), 443–454 (2001).

J. Quant. Spectrosc. Radiat. Transf. (1)

Y. I. Baranov and W. J. Lafferty, “The water-vapor continuum and selective absorption in the 3-5μm spectral region at temperatures from 311 to 363K,” J. Quant. Spectrosc. Radiat. Transf. 112(8), 1304–1313 (2011).
[Crossref]

Mater. Lett. (1)

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Mater. Res. Bull. (1)

M. J. Zhang, A. P. Yang, Y. F. Peng, B. Zhang, H. Ren, W. Guo, Y. Yang, C. C. Zhai, Y. W. Wang, Z. Y. Yang, and D. Y. Tang, “Dy3+-doped Ga-Sb-S chalcogenide glasses for mid-infrared lasers,” Mater. Res. Bull. 70, 55–59 (2015).
[Crossref]

Meas. Sci. Technol. (1)

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Metrologia (1)

C. Freed and R. G. O’Donnell, “Advances in CO2 laser stabilization using the 4.3μm fluorescence technique,” Metrologia 13(3), 151–156 (1977).
[Crossref]

Nat. Photonics (3)

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

S. Zlantanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

NTT Tech. Rev. (1)

A. Tokura, O. Tadanaga, and M. Asobe, “4.6μm-band light source for greenhouse gas detection,” NTT Tech. Rev. 10, 6 (2012).

Opt. Express (2)

Opt. Lasers Eng. (1)

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

Opt. Lett. (5)

Opt. Mater. (1)

A. Galstyan, S. H. Messaddeq, V. Fortin, I. Skripachev, R. Vallee, T. Galstian, and Y. Messaddeq, “Tm3+ doped Ga–As–S chalcogenide glasses and fibers,” Opt. Mater. 47, 518–523 (2015).
[Crossref]

Opt. Quantum Electron. (1)

S. Sujecki, L. Sójka, E. Bereś-Pawlik, Z. Tang, D. Ffuniss, A. B. Seddon, and T. M. Benson, “Modelling of a simple Dy3+ doped chalcogenide glass fibre laser for mid-infrared light generation,” Opt. Quantum Electron. 42(2), 69–79 (2010).
[Crossref]

Philosophical Transactions of the Royal Society (1)

B. Ronald, W. Waynant, and I. K. Ilev, “Mid-infrared laser applications in medicine and biology,” Philosophical Transactions of the Royal Society 44, 699–710 (2006).

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

RSC Advances (1)

Z. J. Liu, J. Y. Bian, Y. Huang, T. F. Xu, X. S. Wang, and S. X. Dai, “Fabrication and characterization of mid-infrared emission of Pr3+ doped selenide chalcogenide glasses and fibres,” RSC Advances 7(66), 41520–41526 (2017).
[Crossref]

Sensor. Actuat. Biol. Chem. (1)

F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sensor. Actuat. Biol. Chem. 207, 518–525 (2015).

Other (2)

C. Klein, C. S. Hurlbut, and J. D. Dana, Manual of mineralogy (Wiley, 1993).

K. X. Wei, “Synthesis and characterization of rare earth doped chalcogenide glasses,” Dissertation, Rutgers University (1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 XRD patterns of high concentration Dy3+ doped GAS samples investigated in this work.
Fig. 2
Fig. 2 Absorption spectra of Dy3+ doped GAS samples (5 mm in thickness) at room temperature, the insert is the energy level diagram of Dy3+ ion.
Fig. 3
Fig. 3 Variations of absorption coefficient at each peak wavelength with Dy3+ concentration in GAS samples.
Fig. 4
Fig. 4 (a) TEM image of GAS 0.3% (b)-(d) HR-TEM images of GAS 0.1%, GAS 0.3% and GAS 0.5% (e) The gathering of Dy3+ ions in the GAS 0.5% (EDS) (f) Local zoom of HR-image of GAS 0.5%.
Fig. 5
Fig. 5 Mid-infrared fluorescence spectra of Dy3+ ions doped GAS samples pumped at 1707 nm.
Fig. 6
Fig. 6 Fluorescence decay curves of 6H13/2 and 6H11/2 states in the GAS 0.3% glass.
Fig. 7
Fig. 7 The measured fluorescence lifetimes of two excited states for different Dy3+ concentrations in GAS samples.
Fig. 8
Fig. 8 The DSC curve of GAS 0.3% glass.
Fig. 9
Fig. 9 The TEM and HR-TEM images of GAS 0.3% fiber.
Fig. 10
Fig. 10 The mid-infrared fluorescence spectra of the GAS 0.3% of bulk glass and fiber, the insert is the sectional view of the fiber.
Fig. 11
Fig. 11 The basic concept of cascade lasing scheme.
Fig. 12
Fig. 12 The predicted output power of the GAS 0.3% fiber.

Tables (4)

Tables Icon

Table 1 Oscillator strength and Judd-Ofelt intensity parameters of Dy3+ doped GAS samples

Tables Icon

Table 2 The radiative parameters of Dy3+ doped GAS glasses

Tables Icon

Table 3 The laser quality factor of different Dy3+ doped GAS glasses

Tables Icon

Table 4 Dy3+ ions doped Ga0.8As39.2S60 chalcogenide fiber laser model parameters

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d N 3 dt = N 1 W a13 + N 2 W a23 N 3 ( W e31 + W 32 + W 31 + W e32 )
d N 2 dt = N 1 W a12 N 2 ( W 21 + W e21 + W a23 )+ N 3 ( W 32 +W e 32 )
N= N 1 + N 2 + N 3
± d P p ±(v,z) dz =( Γ p (v)( σ 13 (λ) N 1 (z) σ 31 (λ) N 3 (z)) α p ) P p ±(v,z)
± d P s ±(v,z) d z =( Γ s (v)( σ 23 (λ) N 2 (z) σ 32 (λ) N 3 (z)) α s ) P s ±(v,z)
± d P i ±(v,z) dz =( Γ i (v)( σ 12 (λ) N 1 (z) σ 21 (λ) N 2 (z)) α i ) P i ±(v,z)
W xij = P(v) σ ij (λ)Γ(v) /Ahv(where x = a or e)
P P+ = P p f P P = P p b P s+ (0)= R 1 P s (0) P s (L)= R 2 P s+ (L) P i+ (0)= R 3 P i (0) P i (L)= R 4 P i+ (L)

Metrics