P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. V. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Mater. Sci. Eng. Rep. 123, 1–55 (2018).
[Crossref]
M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]
J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008).
[Crossref]
[PubMed]
J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref]
[PubMed]
A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref]
[PubMed]
A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold,” Sci. Rep. 6(1), 38647 (2016).
[Crossref]
[PubMed]
G. Zou, M. Jain, H. Zhou, H. Luo, S. A. Baily, L. Civale, E. Bauer, T. M. McCleskey, A. K. Burrell, and Q. Jia, “Ultrathin epitaxial superconducting niobium nitride films grown by a chemical solution technique,” Chem. Commun. (Camb.) 44(45), 6022–6024 (2008).
[Crossref]
[PubMed]
J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[Crossref]
A. Banerjee, L. J. Baker, A. Doye, M. Nord, R. M. Heath, K. Erotokritou, D. Bosworth, Z. H. Barber, I. MacLaren, and R. H. Hadfield, “Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires,” Supercond. Sci. Technol. 30(8), 084010 (2017).
[Crossref]
J. Li, R. A. Kirkwood, L. J. Baker, D. Bosworth, K. Erotokritou, A. Banerjee, R. M. Heath, C. M. Natarajan, Z. H. Barber, M. Sorel, and R. H. Hadfield, “Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires,” Opt. Express 24(13), 13931–13938 (2016).
[Crossref]
[PubMed]
A. Banerjee, L. J. Baker, A. Doye, M. Nord, R. M. Heath, K. Erotokritou, D. Bosworth, Z. H. Barber, I. MacLaren, and R. H. Hadfield, “Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires,” Supercond. Sci. Technol. 30(8), 084010 (2017).
[Crossref]
J. Li, R. A. Kirkwood, L. J. Baker, D. Bosworth, K. Erotokritou, A. Banerjee, R. M. Heath, C. M. Natarajan, Z. H. Barber, M. Sorel, and R. H. Hadfield, “Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires,” Opt. Express 24(13), 13931–13938 (2016).
[Crossref]
[PubMed]
A. Banerjee, L. J. Baker, A. Doye, M. Nord, R. M. Heath, K. Erotokritou, D. Bosworth, Z. H. Barber, I. MacLaren, and R. H. Hadfield, “Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires,” Supercond. Sci. Technol. 30(8), 084010 (2017).
[Crossref]
J. Li, R. A. Kirkwood, L. J. Baker, D. Bosworth, K. Erotokritou, A. Banerjee, R. M. Heath, C. M. Natarajan, Z. H. Barber, M. Sorel, and R. H. Hadfield, “Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires,” Opt. Express 24(13), 13931–13938 (2016).
[Crossref]
[PubMed]
D. Bosworth, S.-L. Sahonta, R. H. Hadfield, and Z. H. Barber, “Amorphous molybdenum silicon superconducting thin films,” AIP Adv. 5(8), 087106 (2015).
[Crossref]
J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Phys. Rev. 108(5), 1175–1204 (1957).
[Crossref]
G. Zou, M. Jain, H. Zhou, H. Luo, S. A. Baily, L. Civale, E. Bauer, T. M. McCleskey, A. K. Burrell, and Q. Jia, “Ultrathin epitaxial superconducting niobium nitride films grown by a chemical solution technique,” Chem. Commun. (Camb.) 44(45), 6022–6024 (2008).
[Crossref]
[PubMed]
P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. V. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Mater. Sci. Eng. Rep. 123, 1–55 (2018).
[Crossref]
F. Marsili, D. Bitauld, A. Fiore, A. Gaggero, F. Mattioli, R. Leoni, M. Benkahoul, and F. Lévy, “High efficiency NbN nanowire superconducting single photon detectors fabricated on MgO substrates from a low temperature process,” Opt. Express 16(5), 3191–3196 (2008).
[Crossref]
[PubMed]
M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]
F. Marsili, D. Bitauld, A. Fiore, A. Gaggero, F. Mattioli, R. Leoni, M. Benkahoul, and F. Lévy, “High efficiency NbN nanowire superconducting single photon detectors fabricated on MgO substrates from a low temperature process,” Opt. Express 16(5), 3191–3196 (2008).
[Crossref]
[PubMed]
J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]
D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical properties of plasmonic ultrathin TiN Films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]
W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]
[PubMed]
A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref]
[PubMed]
A. Banerjee, L. J. Baker, A. Doye, M. Nord, R. M. Heath, K. Erotokritou, D. Bosworth, Z. H. Barber, I. MacLaren, and R. H. Hadfield, “Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires,” Supercond. Sci. Technol. 30(8), 084010 (2017).
[Crossref]
J. Li, R. A. Kirkwood, L. J. Baker, D. Bosworth, K. Erotokritou, A. Banerjee, R. M. Heath, C. M. Natarajan, Z. H. Barber, M. Sorel, and R. H. Hadfield, “Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires,” Opt. Express 24(13), 13931–13938 (2016).
[Crossref]
[PubMed]
D. Bosworth, S.-L. Sahonta, R. H. Hadfield, and Z. H. Barber, “Amorphous molybdenum silicon superconducting thin films,” AIP Adv. 5(8), 087106 (2015).
[Crossref]
J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]
G. Zou, M. Jain, H. Zhou, H. Luo, S. A. Baily, L. Civale, E. Bauer, T. M. McCleskey, A. K. Burrell, and Q. Jia, “Ultrathin epitaxial superconducting niobium nitride films grown by a chemical solution technique,” Chem. Commun. (Camb.) 44(45), 6022–6024 (2008).
[Crossref]
[PubMed]
J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008).
[Crossref]
[PubMed]
W. Spengler, R. Kaiser, A. N. Christensen, and G. Müller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN,” Phys. Rev. B 17(3), 1095–1101 (1978).
[Crossref]
J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]
G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]
G. Zou, M. Jain, H. Zhou, H. Luo, S. A. Baily, L. Civale, E. Bauer, T. M. McCleskey, A. K. Burrell, and Q. Jia, “Ultrathin epitaxial superconducting niobium nitride films grown by a chemical solution technique,” Chem. Commun. (Camb.) 44(45), 6022–6024 (2008).
[Crossref]
[PubMed]
J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[Crossref]
J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Phys. Rev. 108(5), 1175–1204 (1957).
[Crossref]
I. G. D ’yakov and A. D. Shvets, “Investigation of superconducting properties of molybdenum,” Sov. Phys. 22(49), 1091–1093 (1966).
Y. Gutiérrez, R. A. de la Osa, D. Ortiz, J. Saiz, F. González, and F. Moreno, “Plasmonics in the ultraviolet with aluminum, gallium, magnesium and rhodium,” Appl. Sci. 8(2), 64 (2018).
[Crossref]
C. Della Giovampaola and N. Engheta, “Plasmonics without negative dielectrics,” Phys. Rev. B 93(19), 195152 (2016).
[Crossref]
R. R. Pawar and V. T. Deshpande, “The anisotropy of the thermal expansion of α-titanium,” Acta Crystallogr. A 24(2), 316–317 (1968).
[Crossref]
J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]
Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]
J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]
Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]
A. Banerjee, L. J. Baker, A. Doye, M. Nord, R. M. Heath, K. Erotokritou, D. Bosworth, Z. H. Barber, I. MacLaren, and R. H. Hadfield, “Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires,” Supercond. Sci. Technol. 30(8), 084010 (2017).
[Crossref]
R. M. Heath, M. G. Tanner, T. D. Drysdale, S. Miki, V. Giannini, S. A. Maier, and R. H. Hadfield, “Nanoantenna enhancement for telecom-wavelength superconducting single photon detectors,” Nano Lett. 15(2), 819–822 (2015).
[Crossref]
[PubMed]
G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]
C. Della Giovampaola and N. Engheta, “Plasmonics without negative dielectrics,” Phys. Rev. B 93(19), 195152 (2016).
[Crossref]
A. Banerjee, L. J. Baker, A. Doye, M. Nord, R. M. Heath, K. Erotokritou, D. Bosworth, Z. H. Barber, I. MacLaren, and R. H. Hadfield, “Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires,” Supercond. Sci. Technol. 30(8), 084010 (2017).
[Crossref]
J. Li, R. A. Kirkwood, L. J. Baker, D. Bosworth, K. Erotokritou, A. Banerjee, R. M. Heath, C. M. Natarajan, Z. H. Barber, M. Sorel, and R. H. Hadfield, “Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires,” Opt. Express 24(13), 13931–13938 (2016).
[Crossref]
[PubMed]
P. Ettmayer, R. Kieffer, and F. Hattinger, “Determination of melting points of metal nitrides under nitrogen pressure,” Metall 28(12), 1151–1156 (1974).
F. Marsili, D. Bitauld, A. Fiore, A. Gaggero, F. Mattioli, R. Leoni, M. Benkahoul, and F. Lévy, “High efficiency NbN nanowire superconducting single photon detectors fabricated on MgO substrates from a low temperature process,” Opt. Express 16(5), 3191–3196 (2008).
[Crossref]
[PubMed]
C. M. Perlov and C. Y. Fong, “Calculation of the superconducting transition temperature in niobium,” Phys. Rev. B 29(3), 1243–1249 (1984).
[Crossref]
F. Marsili, D. Bitauld, A. Fiore, A. Gaggero, F. Mattioli, R. Leoni, M. Benkahoul, and F. Lévy, “High efficiency NbN nanowire superconducting single photon detectors fabricated on MgO substrates from a low temperature process,” Opt. Express 16(5), 3191–3196 (2008).
[Crossref]
[PubMed]
M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]
R. M. Heath, M. G. Tanner, T. D. Drysdale, S. Miki, V. Giannini, S. A. Maier, and R. H. Hadfield, “Nanoantenna enhancement for telecom-wavelength superconducting single photon detectors,” Nano Lett. 15(2), 819–822 (2015).
[Crossref]
[PubMed]
J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008).
[Crossref]
[PubMed]
J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]
G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]
J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]
Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]
Y. Gutiérrez, R. A. de la Osa, D. Ortiz, J. Saiz, F. González, and F. Moreno, “Plasmonics in the ultraviolet with aluminum, gallium, magnesium and rhodium,” Appl. Sci. 8(2), 64 (2018).
[Crossref]
W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]
[PubMed]
W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]
[PubMed]
Y. Gutiérrez, R. A. de la Osa, D. Ortiz, J. Saiz, F. González, and F. Moreno, “Plasmonics in the ultraviolet with aluminum, gallium, magnesium and rhodium,” Appl. Sci. 8(2), 64 (2018).
[Crossref]
A. Banerjee, L. J. Baker, A. Doye, M. Nord, R. M. Heath, K. Erotokritou, D. Bosworth, Z. H. Barber, I. MacLaren, and R. H. Hadfield, “Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires,” Supercond. Sci. Technol. 30(8), 084010 (2017).
[Crossref]
J. Li, R. A. Kirkwood, L. J. Baker, D. Bosworth, K. Erotokritou, A. Banerjee, R. M. Heath, C. M. Natarajan, Z. H. Barber, M. Sorel, and R. H. Hadfield, “Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires,” Opt. Express 24(13), 13931–13938 (2016).
[Crossref]
[PubMed]
D. Bosworth, S.-L. Sahonta, R. H. Hadfield, and Z. H. Barber, “Amorphous molybdenum silicon superconducting thin films,” AIP Adv. 5(8), 087106 (2015).
[Crossref]
R. M. Heath, M. G. Tanner, T. D. Drysdale, S. Miki, V. Giannini, S. A. Maier, and R. H. Hadfield, “Nanoantenna enhancement for telecom-wavelength superconducting single photon detectors,” Nano Lett. 15(2), 819–822 (2015).
[Crossref]
[PubMed]
C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012).
[Crossref]
J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008).
[Crossref]
[PubMed]
R. H. Hadfield, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors,” J. Appl. Phys. 101(10), 103104 (2007).
[Crossref]
J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref]
[PubMed]
P. Ettmayer, R. Kieffer, and F. Hattinger, “Determination of melting points of metal nitrides under nitrogen pressure,” Metall 28(12), 1151–1156 (1974).
A. Banerjee, L. J. Baker, A. Doye, M. Nord, R. M. Heath, K. Erotokritou, D. Bosworth, Z. H. Barber, I. MacLaren, and R. H. Hadfield, “Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires,” Supercond. Sci. Technol. 30(8), 084010 (2017).
[Crossref]
J. Li, R. A. Kirkwood, L. J. Baker, D. Bosworth, K. Erotokritou, A. Banerjee, R. M. Heath, C. M. Natarajan, Z. H. Barber, M. Sorel, and R. H. Hadfield, “Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires,” Opt. Express 24(13), 13931–13938 (2016).
[Crossref]
[PubMed]
R. M. Heath, M. G. Tanner, T. D. Drysdale, S. Miki, V. Giannini, S. A. Maier, and R. H. Hadfield, “Nanoantenna enhancement for telecom-wavelength superconducting single photon detectors,” Nano Lett. 15(2), 819–822 (2015).
[Crossref]
[PubMed]
M. C. Steele and R. A. Hein, “Superconductivity of Titanium,” Phys. Rev. 92(2), 243–247 (1953).
[Crossref]
J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[Crossref]
M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]
R. G. Ross and W. Hume-Rothery, “High temperature X-ray metallography: I. A new debye-scherrer camera for use at very high temperatures II. A new parafocusing camera III. Applications to the study of chromium, hafnium, molybdenum, rhodium, ruthenium and tungsten,” J. Less Common Met. 5(3), 258–270 (1963).
[Crossref]
G. Zou, M. Jain, H. Zhou, H. Luo, S. A. Baily, L. Civale, E. Bauer, T. M. McCleskey, A. K. Burrell, and Q. Jia, “Ultrathin epitaxial superconducting niobium nitride films grown by a chemical solution technique,” Chem. Commun. (Camb.) 44(45), 6022–6024 (2008).
[Crossref]
[PubMed]
G. Zou, M. Jain, H. Zhou, H. Luo, S. A. Baily, L. Civale, E. Bauer, T. M. McCleskey, A. K. Burrell, and Q. Jia, “Ultrathin epitaxial superconducting niobium nitride films grown by a chemical solution technique,” Chem. Commun. (Camb.) 44(45), 6022–6024 (2008).
[Crossref]
[PubMed]
W. Spengler, R. Kaiser, A. N. Christensen, and G. Müller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN,” Phys. Rev. B 17(3), 1095–1101 (1978).
[Crossref]
P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. V. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Mater. Sci. Eng. Rep. 123, 1–55 (2018).
[Crossref]
P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(12), 3128–3154 (2015).
[Crossref]
P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. V. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Mater. Sci. Eng. Rep. 123, 1–55 (2018).
[Crossref]
P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(12), 3128–3154 (2015).
[Crossref]
P. Ettmayer, R. Kieffer, and F. Hattinger, “Determination of melting points of metal nitrides under nitrogen pressure,” Metall 28(12), 1151–1156 (1974).
W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]
[PubMed]
D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical properties of plasmonic ultrathin TiN Films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]
W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]
[PubMed]
J. Li, R. A. Kirkwood, L. J. Baker, D. Bosworth, K. Erotokritou, A. Banerjee, R. M. Heath, C. M. Natarajan, Z. H. Barber, M. Sorel, and R. H. Hadfield, “Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires,” Opt. Express 24(13), 13931–13938 (2016).
[Crossref]
[PubMed]
J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]
Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]
Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]
J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]
H. Van Bui, A. Y. Kovalgin, and R. A. M. Wolters, “On the difference between optically and electrically determined resistivity of ultra-thin titanium nitride films,” Appl. Surf. Sci. 269, 45–49 (2013).
[Crossref]
J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008).
[Crossref]
[PubMed]
M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]
A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold,” Sci. Rep. 6(1), 38647 (2016).
[Crossref]
[PubMed]
J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008).
[Crossref]
[PubMed]
J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]
P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. V. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Mater. Sci. Eng. Rep. 123, 1–55 (2018).
[Crossref]
F. Marsili, D. Bitauld, A. Fiore, A. Gaggero, F. Mattioli, R. Leoni, M. Benkahoul, and F. Lévy, “High efficiency NbN nanowire superconducting single photon detectors fabricated on MgO substrates from a low temperature process,” Opt. Express 16(5), 3191–3196 (2008).
[Crossref]
[PubMed]
M. Leskela and M. Ritalä, “Atomic layer deposition (ALD) : from precursors to thin film structures,” Thin Solid Films 409(1), 138–146 (2002).
[Crossref]
F. Marsili, D. Bitauld, A. Fiore, A. Gaggero, F. Mattioli, R. Leoni, M. Benkahoul, and F. Lévy, “High efficiency NbN nanowire superconducting single photon detectors fabricated on MgO substrates from a low temperature process,” Opt. Express 16(5), 3191–3196 (2008).
[Crossref]
[PubMed]
J. Li, R. A. Kirkwood, L. J. Baker, D. Bosworth, K. Erotokritou, A. Banerjee, R. M. Heath, C. M. Natarajan, Z. H. Barber, M. Sorel, and R. H. Hadfield, “Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires,” Opt. Express 24(13), 13931–13938 (2016).
[Crossref]
[PubMed]
W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]
[PubMed]
P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. V. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Mater. Sci. Eng. Rep. 123, 1–55 (2018).
[Crossref]
G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]
M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]
J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]
G. Zou, M. Jain, H. Zhou, H. Luo, S. A. Baily, L. Civale, E. Bauer, T. M. McCleskey, A. K. Burrell, and Q. Jia, “Ultrathin epitaxial superconducting niobium nitride films grown by a chemical solution technique,” Chem. Commun. (Camb.) 44(45), 6022–6024 (2008).
[Crossref]
[PubMed]
J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref]
[PubMed]
A. Banerjee, L. J. Baker, A. Doye, M. Nord, R. M. Heath, K. Erotokritou, D. Bosworth, Z. H. Barber, I. MacLaren, and R. H. Hadfield, “Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires,” Supercond. Sci. Technol. 30(8), 084010 (2017).
[Crossref]
R. M. Heath, M. G. Tanner, T. D. Drysdale, S. Miki, V. Giannini, S. A. Maier, and R. H. Hadfield, “Nanoantenna enhancement for telecom-wavelength superconducting single photon detectors,” Nano Lett. 15(2), 819–822 (2015).
[Crossref]
[PubMed]
J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]
Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]
M. Marlo and V. Milman, “Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals,” Phys. Rev. B 62(4), 2899–2907 (2000).
[Crossref]
M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]
F. Marsili, D. Bitauld, A. Fiore, A. Gaggero, F. Mattioli, R. Leoni, M. Benkahoul, and F. Lévy, “High efficiency NbN nanowire superconducting single photon detectors fabricated on MgO substrates from a low temperature process,” Opt. Express 16(5), 3191–3196 (2008).
[Crossref]
[PubMed]
F. Marsili, D. Bitauld, A. Fiore, A. Gaggero, F. Mattioli, R. Leoni, M. Benkahoul, and F. Lévy, “High efficiency NbN nanowire superconducting single photon detectors fabricated on MgO substrates from a low temperature process,” Opt. Express 16(5), 3191–3196 (2008).
[Crossref]
[PubMed]
G. Zou, M. Jain, H. Zhou, H. Luo, S. A. Baily, L. Civale, E. Bauer, T. M. McCleskey, A. K. Burrell, and Q. Jia, “Ultrathin epitaxial superconducting niobium nitride films grown by a chemical solution technique,” Chem. Commun. (Camb.) 44(45), 6022–6024 (2008).
[Crossref]
[PubMed]
J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008).
[Crossref]
[PubMed]
J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]
Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]
R. M. Heath, M. G. Tanner, T. D. Drysdale, S. Miki, V. Giannini, S. A. Maier, and R. H. Hadfield, “Nanoantenna enhancement for telecom-wavelength superconducting single photon detectors,” Nano Lett. 15(2), 819–822 (2015).
[Crossref]
[PubMed]
S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[Crossref]
[PubMed]
M. Marlo and V. Milman, “Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals,” Phys. Rev. B 62(4), 2899–2907 (2000).
[Crossref]
M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]
R. H. Hadfield, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors,” J. Appl. Phys. 101(10), 103104 (2007).
[Crossref]
A. Misra, J. J. Petrovic, and T. E. Mitchell, “Microstructures and mechanical properties of a Mo3Si-Mo5Si3 composite,” Scr. Mater. 40(2), 191–196 (1998).
[Crossref]
A. Misra, J. J. Petrovic, and T. E. Mitchell, “Microstructures and mechanical properties of a Mo3Si-Mo5Si3 composite,” Scr. Mater. 40(2), 191–196 (1998).
[Crossref]
Y. Gutiérrez, R. A. de la Osa, D. Ortiz, J. Saiz, F. González, and F. Moreno, “Plasmonics in the ultraviolet with aluminum, gallium, magnesium and rhodium,” Appl. Sci. 8(2), 64 (2018).
[Crossref]
W. Spengler, R. Kaiser, A. N. Christensen, and G. Müller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN,” Phys. Rev. B 17(3), 1095–1101 (1978).
[Crossref]
M. E. Packer and M. J. Murray, “A floating zone furnace for melting refractory metals and metal-like compounds,” J. Phys. Educ. 5(3), 246 (1972).
J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]
W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]
[PubMed]
M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]
J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008).
[Crossref]
[PubMed]
R. H. Hadfield, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors,” J. Appl. Phys. 101(10), 103104 (2007).
[Crossref]
J. Li, R. A. Kirkwood, L. J. Baker, D. Bosworth, K. Erotokritou, A. Banerjee, R. M. Heath, C. M. Natarajan, Z. H. Barber, M. Sorel, and R. H. Hadfield, “Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires,” Opt. Express 24(13), 13931–13938 (2016).
[Crossref]
[PubMed]
C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012).
[Crossref]
A. Banerjee, L. J. Baker, A. Doye, M. Nord, R. M. Heath, K. Erotokritou, D. Bosworth, Z. H. Barber, I. MacLaren, and R. H. Hadfield, “Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires,” Supercond. Sci. Technol. 30(8), 084010 (2017).
[Crossref]
D. M. O’Carroll, “Nanophotonics and plasmonics for solar energy harvesting and conversion,” J. Photonics Energy 5(1), 057001 (2015).
[Crossref]
J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]
G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]
Y. Gutiérrez, R. A. de la Osa, D. Ortiz, J. Saiz, F. González, and F. Moreno, “Plasmonics in the ultraviolet with aluminum, gallium, magnesium and rhodium,” Appl. Sci. 8(2), 64 (2018).
[Crossref]
M. E. Packer and M. J. Murray, “A floating zone furnace for melting refractory metals and metal-like compounds,” J. Phys. Educ. 5(3), 246 (1972).
P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. V. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Mater. Sci. Eng. Rep. 123, 1–55 (2018).
[Crossref]
P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(12), 3128–3154 (2015).
[Crossref]
R. R. Pawar and V. T. Deshpande, “The anisotropy of the thermal expansion of α-titanium,” Acta Crystallogr. A 24(2), 316–317 (1968).
[Crossref]
J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]
C. M. Perlov and C. Y. Fong, “Calculation of the superconducting transition temperature in niobium,” Phys. Rev. B 29(3), 1243–1249 (1984).
[Crossref]
Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]
J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]
A. Misra, J. J. Petrovic, and T. E. Mitchell, “Microstructures and mechanical properties of a Mo3Si-Mo5Si3 composite,” Scr. Mater. 40(2), 191–196 (1998).
[Crossref]
A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold,” Sci. Rep. 6(1), 38647 (2016).
[Crossref]
[PubMed]
D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical properties of plasmonic ultrathin TiN Films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]
M. Leskela and M. Ritalä, “Atomic layer deposition (ALD) : from precursors to thin film structures,” Thin Solid Films 409(1), 138–146 (2002).
[Crossref]
R. G. Ross and W. Hume-Rothery, “High temperature X-ray metallography: I. A new debye-scherrer camera for use at very high temperatures II. A new parafocusing camera III. Applications to the study of chromium, hafnium, molybdenum, rhodium, ruthenium and tungsten,” J. Less Common Met. 5(3), 258–270 (1963).
[Crossref]
J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]
D. Bosworth, S.-L. Sahonta, R. H. Hadfield, and Z. H. Barber, “Amorphous molybdenum silicon superconducting thin films,” AIP Adv. 5(8), 087106 (2015).
[Crossref]
Y. Gutiérrez, R. A. de la Osa, D. Ortiz, J. Saiz, F. González, and F. Moreno, “Plasmonics in the ultraviolet with aluminum, gallium, magnesium and rhodium,” Appl. Sci. 8(2), 64 (2018).
[Crossref]
J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Phys. Rev. 108(5), 1175–1204 (1957).
[Crossref]
G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]
D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical properties of plasmonic ultrathin TiN Films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]
J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref]
[PubMed]
D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical properties of plasmonic ultrathin TiN Films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]
W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]
[PubMed]
M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]
I. G. D ’yakov and A. D. Shvets, “Investigation of superconducting properties of molybdenum,” Sov. Phys. 22(49), 1091–1093 (1966).
J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[Crossref]
Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]
J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]
J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]
G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]
Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]
J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[Crossref]
J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]
G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]
J. Li, R. A. Kirkwood, L. J. Baker, D. Bosworth, K. Erotokritou, A. Banerjee, R. M. Heath, C. M. Natarajan, Z. H. Barber, M. Sorel, and R. H. Hadfield, “Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires,” Opt. Express 24(13), 13931–13938 (2016).
[Crossref]
[PubMed]
W. Spengler, R. Kaiser, A. N. Christensen, and G. Müller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN,” Phys. Rev. B 17(3), 1095–1101 (1978).
[Crossref]
M. C. Steele and R. A. Hein, “Superconductivity of Titanium,” Phys. Rev. 92(2), 243–247 (1953).
[Crossref]
M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]
R. H. Hadfield, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors,” J. Appl. Phys. 101(10), 103104 (2007).
[Crossref]
M. E. Straumanis and S. Zyszczynski, “Lattice parameters, thermal expansion coefficients and densities of Nb, and of solid solutions Nb–O and Nb–N–O and their defect structure,” J. Appl. Cryst. 3(1), 1–6 (1970).
[Crossref]
R. M. Heath, M. G. Tanner, T. D. Drysdale, S. Miki, V. Giannini, S. A. Maier, and R. H. Hadfield, “Nanoantenna enhancement for telecom-wavelength superconducting single photon detectors,” Nano Lett. 15(2), 819–822 (2015).
[Crossref]
[PubMed]
C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012).
[Crossref]
A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold,” Sci. Rep. 6(1), 38647 (2016).
[Crossref]
[PubMed]
J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[Crossref]
J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[Crossref]
J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]
Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]
H. Van Bui, A. Y. Kovalgin, and R. A. M. Wolters, “On the difference between optically and electrically determined resistivity of ultra-thin titanium nitride films,” Appl. Surf. Sci. 269, 45–49 (2013).
[Crossref]
J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref]
[PubMed]
J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]
M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]
J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]
G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]
G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]
J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]
H. Van Bui, A. Y. Kovalgin, and R. A. M. Wolters, “On the difference between optically and electrically determined resistivity of ultra-thin titanium nitride films,” Appl. Surf. Sci. 269, 45–49 (2013).
[Crossref]
J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]
J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref]
[PubMed]
J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]
G. Zou, M. Jain, H. Zhou, H. Luo, S. A. Baily, L. Civale, E. Bauer, T. M. McCleskey, A. K. Burrell, and Q. Jia, “Ultrathin epitaxial superconducting niobium nitride films grown by a chemical solution technique,” Chem. Commun. (Camb.) 44(45), 6022–6024 (2008).
[Crossref]
[PubMed]
G. Zou, M. Jain, H. Zhou, H. Luo, S. A. Baily, L. Civale, E. Bauer, T. M. McCleskey, A. K. Burrell, and Q. Jia, “Ultrathin epitaxial superconducting niobium nitride films grown by a chemical solution technique,” Chem. Commun. (Camb.) 44(45), 6022–6024 (2008).
[Crossref]
[PubMed]
M. E. Straumanis and S. Zyszczynski, “Lattice parameters, thermal expansion coefficients and densities of Nb, and of solid solutions Nb–O and Nb–N–O and their defect structure,” J. Appl. Cryst. 3(1), 1–6 (1970).
[Crossref]
R. R. Pawar and V. T. Deshpande, “The anisotropy of the thermal expansion of α-titanium,” Acta Crystallogr. A 24(2), 316–317 (1968).
[Crossref]
W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]
[PubMed]
D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical properties of plasmonic ultrathin TiN Films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]
D. Bosworth, S.-L. Sahonta, R. H. Hadfield, and Z. H. Barber, “Amorphous molybdenum silicon superconducting thin films,” AIP Adv. 5(8), 087106 (2015).
[Crossref]
J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]
G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]
M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]
Y. Gutiérrez, R. A. de la Osa, D. Ortiz, J. Saiz, F. González, and F. Moreno, “Plasmonics in the ultraviolet with aluminum, gallium, magnesium and rhodium,” Appl. Sci. 8(2), 64 (2018).
[Crossref]
H. Van Bui, A. Y. Kovalgin, and R. A. M. Wolters, “On the difference between optically and electrically determined resistivity of ultra-thin titanium nitride films,” Appl. Surf. Sci. 269, 45–49 (2013).
[Crossref]
G. Zou, M. Jain, H. Zhou, H. Luo, S. A. Baily, L. Civale, E. Bauer, T. M. McCleskey, A. K. Burrell, and Q. Jia, “Ultrathin epitaxial superconducting niobium nitride films grown by a chemical solution technique,” Chem. Commun. (Camb.) 44(45), 6022–6024 (2008).
[Crossref]
[PubMed]
J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]
M. E. Straumanis and S. Zyszczynski, “Lattice parameters, thermal expansion coefficients and densities of Nb, and of solid solutions Nb–O and Nb–N–O and their defect structure,” J. Appl. Cryst. 3(1), 1–6 (1970).
[Crossref]
R. H. Hadfield, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors,” J. Appl. Phys. 101(10), 103104 (2007).
[Crossref]
R. G. Ross and W. Hume-Rothery, “High temperature X-ray metallography: I. A new debye-scherrer camera for use at very high temperatures II. A new parafocusing camera III. Applications to the study of chromium, hafnium, molybdenum, rhodium, ruthenium and tungsten,” J. Less Common Met. 5(3), 258–270 (1963).
[Crossref]
D. M. O’Carroll, “Nanophotonics and plasmonics for solar energy harvesting and conversion,” J. Photonics Energy 5(1), 057001 (2015).
[Crossref]
M. E. Packer and M. J. Murray, “A floating zone furnace for melting refractory metals and metal-like compounds,” J. Phys. Educ. 5(3), 246 (1972).
P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. V. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Mater. Sci. Eng. Rep. 123, 1–55 (2018).
[Crossref]
P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(12), 3128–3154 (2015).
[Crossref]
P. Ettmayer, R. Kieffer, and F. Hattinger, “Determination of melting points of metal nitrides under nitrogen pressure,” Metall 28(12), 1151–1156 (1974).
R. M. Heath, M. G. Tanner, T. D. Drysdale, S. Miki, V. Giannini, S. A. Maier, and R. H. Hadfield, “Nanoantenna enhancement for telecom-wavelength superconducting single photon detectors,” Nano Lett. 15(2), 819–822 (2015).
[Crossref]
[PubMed]
J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref]
[PubMed]
J. Li, R. A. Kirkwood, L. J. Baker, D. Bosworth, K. Erotokritou, A. Banerjee, R. M. Heath, C. M. Natarajan, Z. H. Barber, M. Sorel, and R. H. Hadfield, “Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires,” Opt. Express 24(13), 13931–13938 (2016).
[Crossref]
[PubMed]
S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[Crossref]
[PubMed]
F. Marsili, D. Bitauld, A. Fiore, A. Gaggero, F. Mattioli, R. Leoni, M. Benkahoul, and F. Lévy, “High efficiency NbN nanowire superconducting single photon detectors fabricated on MgO substrates from a low temperature process,” Opt. Express 16(5), 3191–3196 (2008).
[Crossref]
[PubMed]
M. C. Steele and R. A. Hein, “Superconductivity of Titanium,” Phys. Rev. 92(2), 243–247 (1953).
[Crossref]
J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Phys. Rev. 108(5), 1175–1204 (1957).
[Crossref]
C. M. Perlov and C. Y. Fong, “Calculation of the superconducting transition temperature in niobium,” Phys. Rev. B 29(3), 1243–1249 (1984).
[Crossref]
M. Marlo and V. Milman, “Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals,” Phys. Rev. B 62(4), 2899–2907 (2000).
[Crossref]
W. Spengler, R. Kaiser, A. N. Christensen, and G. Müller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN,” Phys. Rev. B 17(3), 1095–1101 (1978).
[Crossref]
C. Della Giovampaola and N. Engheta, “Plasmonics without negative dielectrics,” Phys. Rev. B 93(19), 195152 (2016).
[Crossref]
J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008).
[Crossref]
[PubMed]
A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold,” Sci. Rep. 6(1), 38647 (2016).
[Crossref]
[PubMed]
A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref]
[PubMed]
A. Misra, J. J. Petrovic, and T. E. Mitchell, “Microstructures and mechanical properties of a Mo3Si-Mo5Si3 composite,” Scr. Mater. 40(2), 191–196 (1998).
[Crossref]
I. G. D ’yakov and A. D. Shvets, “Investigation of superconducting properties of molybdenum,” Sov. Phys. 22(49), 1091–1093 (1966).
C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012).
[Crossref]
A. Banerjee, L. J. Baker, A. Doye, M. Nord, R. M. Heath, K. Erotokritou, D. Bosworth, Z. H. Barber, I. MacLaren, and R. H. Hadfield, “Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires,” Supercond. Sci. Technol. 30(8), 084010 (2017).
[Crossref]
Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]
J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[Crossref]
M. Leskela and M. Ritalä, “Atomic layer deposition (ALD) : from precursors to thin film structures,” Thin Solid Films 409(1), 138–146 (2002).
[Crossref]
E. Alfonso, J. Olaya, and G. Cubillos, “Thin film growth through sputtering technique and its applications,” in Crystallization - Science and Technology (InTech, 2012).
S. A. Maier, Plasmonics : Fundamentals and Applications (Springer, 2007).
V. Anant, “Engineering the optical properties of subwavelength devices and materials,” Massachusetts Institute of Technology (2007).
H. O. Pierson, Handbook of Refractory Carbides and Nitrides : Properties, Characteristics, Processing, and Applications (Noyes Publications, 1996).
A. Banerjee, “Optimisation of superconducting thin film growth for next generation superconducting detector applications,” University of Glasgow (2017).
O. Madelung, U. Rössler, and M. Schulz, eds., “Silicon (Si), lattice parameter, thermal expansion,” in Group IV Elements, IV–IV and III–V Compounds. Part B - Electronic, Transport, Optical and Other Properties (Springer Berlin Heidelberg, 2002), pp. 1–17.
A. E. Lita, V. B. Verma, R. D. Horansky, J. M. Shainline, R. P. Mirin, and S. Nam, “Materials Development for High Efficiency Superconducting Nanowire Single-Photon Detectors,” MRS Proc. 1807, 1–6 (2015).
[Crossref]
R. E. Smallwood, ASTM Committee B-10 on Reactive and Refractory Metals and Alloys, and L. Symposium on Refractory Metals and Their Industrial Applications, Refractory Metals and Their Industrial Applications: A Symposium (ASTM, 1984).
T. E. Tietz and J. W. Wilson, Behavior and Properties of Refractory Metals (Stanford University Press, 1965).
M. Bauccio, ASM Metals Reference Book (ASM International, 1993).
E. Lassner and W.-D. Schubert, Tungsten : Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds (Kluwer Academic/Plenum Publishers, 1999).
D. Cristea, I. Ghiuță, and D. Munteanu, “Tantalum based materials for implants and prosthesis applications,” Bull. Transilv. Univ. Braşov 857(2), (2015).
W. M. Haynes, CRC Handbook of Chemistry and Physics : A Ready-Reference Book of Chemical and Physical Data, 92nd ed. (CRC Press, 2011).