M. Bagmanci, M. Karaaslan, E. Unal, O. Akgol, and C. Sabah, “Extremely-broad band metamaterial absorber for solar energy harvesting based on star shaped resonator,” Opt. Quant. Electron. 49(7), 257 (2017)
A. Ansari and M. J. Akhtar, “Co/graphite based light weight microwave absorber for electromagnetic shielding and stealth applications,” Mater. Res. Express 4, 1 (2017)
M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Experimental demonstration of water based tunable metasurface,” Appl. Phys. Lett. 109(1), 011901 (2016).
[Crossref]
A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, “Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials,” Sci. Rep. 5(1), 13535 (2015).
[Crossref]
[PubMed]
A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]
[PubMed]
A. Ansari and M. J. Akhtar, “Co/graphite based light weight microwave absorber for electromagnetic shielding and stealth applications,” Mater. Res. Express 4, 1 (2017)
R. E. Jacobsen, A. V. Lavrinenko, and S. Arslanagic, “Water-based metasurfaces for effective switching of microwaves,” IEEE Antennas Wirel. Propag. Lett. 17(4), 571–574 (2018).
[Crossref]
R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]
M. Bagmanci, M. Karaaslan, E. Unal, O. Akgol, and C. Sabah, “Extremely-broad band metamaterial absorber for solar energy harvesting based on star shaped resonator,” Opt. Quant. Electron. 49(7), 257 (2017)
I. V. Stenishchev and A. A. Basharin, “Toroidal response in all-dielectric metamaterials based on water,” Sci. Rep. 7(1), 9468 (2017).
[Crossref]
[PubMed]
M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Experimental demonstration of water based tunable metasurface,” Appl. Phys. Lett. 109(1), 011901 (2016).
[Crossref]
D. J. Gogoi and N. S. Bhattacharyya, “Embedded dielectric water “atom” array for broadband microwave absorber based on Mie resonance,” J. Appl. Phys. 122(17), 175106 (2017).
[Crossref]
Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref]
[PubMed]
Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, and H. Cai, “Water-resonator-based metasurface: An ultrabroadband and near-Unity absorption,” Adv. Opt. Mater. 5, 8 (2017).
[Crossref]
X. Cai, S. Zhao, M. Hu, J. Xiao, N. Zhang, and J. Yang, “Water based fluidic radio frequency metamaterials,” J. Appl. Phys. 122(18), 184101 (2017).
[Crossref]
S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, T. Liu, Y. J. Zheng, C. Zhang, and G. Zheng, “Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber,” Appl. Phys. Lett. 106(18), 181103 (2015).
[Crossref]
D. Wu, C. Liu, Z. H. Xua, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]
P. Li, B. Liu, Y. Ni, K. K. Liew, J. Sze, S. Chen, and S. Shen, “Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion,” Adv. Mater. 27(31), 4585–4591 (2015).
[Crossref]
[PubMed]
G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D Appl. Phys. 45(20), 205102 (2012).
[Crossref]
C. Hu, X. Li, Q. Feng, X. Chen, and X. Luo, “Investigation on the role of the dielectric loss in metamaterial absorber,” Opt. Express 18(7), 6598–6603 (2010).
[Crossref]
[PubMed]
G. D. Wang, M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, “Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses,” Chinese Phys. B 23, 1 (2014)
G. D. Wang, M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, “Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses,” Chinese Phys. B 23, 1 (2014)
Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Y. Zhou, Z. Xu, T. J. Cui, and S. Qu, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 110(10), 104103 (2017).
[Crossref]
Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, and H. Cai, “Water-resonator-based metasurface: An ultrabroadband and near-Unity absorption,” Adv. Opt. Mater. 5, 8 (2017).
[Crossref]
Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Y. Zhou, Z. Xu, T. J. Cui, and S. Qu, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 110(10), 104103 (2017).
[Crossref]
J. Grant, I. Escorcia‐Carranza, C. Li, I. J. McCrindle, J. Gough, and D. R. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]
M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]
W. Ellison, “Permittivity of pure water at standard atmospheric pressure, over the frequency range 0–25 THz and the temperature range 0–100 °C,” J. Phys. Chem. Ref. Data 36(1), 1–18 (2007).
[Crossref]
J. Grant, I. Escorcia‐Carranza, C. Li, I. J. McCrindle, J. Gough, and D. R. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]
A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]
[PubMed]
R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]
S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, T. Liu, Y. J. Zheng, C. Zhang, and G. Zheng, “Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber,” Appl. Phys. Lett. 106(18), 181103 (2015).
[Crossref]
J. Xie, W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, R. Jin, and M. Premaratne, “Water metamaterial for ultra-broadband and wide-angle absorption,” Opt. Express 26(4), 5052–5059 (2018).
[Crossref]
[PubMed]
W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Opt. Express 25(14), 15737–15745 (2017).
[Crossref]
[PubMed]
J. M. Gildemeister, A. T. Lee, and P. L. Richards, “Monolithic arrays of absorber-coupled voltage-biased superconducting bolometers,” Appl. Phys. Lett. 77(24), 4040–4042 (2000).
[Crossref]
D. J. Gogoi and N. S. Bhattacharyya, “Embedded dielectric water “atom” array for broadband microwave absorber based on Mie resonance,” J. Appl. Phys. 122(17), 175106 (2017).
[Crossref]
J. Grant, I. Escorcia‐Carranza, C. Li, I. J. McCrindle, J. Gough, and D. R. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]
J. Grant, I. Escorcia‐Carranza, C. Li, I. J. McCrindle, J. Gough, and D. R. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]
J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref]
[PubMed]
H. Xiaojun, Y. Helin, S. Zhaoyang, C. Jiao, L. Hail, and Y. Zetai, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 385304 (2017).
[Crossref]
J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref]
[PubMed]
Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, and H. Cai, “Water-resonator-based metasurface: An ultrabroadband and near-Unity absorption,” Adv. Opt. Mater. 5, 8 (2017).
[Crossref]
J. Xie, W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, R. Jin, and M. Premaratne, “Water metamaterial for ultra-broadband and wide-angle absorption,” Opt. Express 26(4), 5052–5059 (2018).
[Crossref]
[PubMed]
W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Opt. Express 25(14), 15737–15745 (2017).
[Crossref]
[PubMed]
H. Xiaojun, Y. Helin, S. Zhaoyang, C. Jiao, L. Hail, and Y. Zetai, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 385304 (2017).
[Crossref]
X. Cai, S. Zhao, M. Hu, J. Xiao, N. Zhang, and J. Yang, “Water based fluidic radio frequency metamaterials,” J. Appl. Phys. 122(18), 184101 (2017).
[Crossref]
G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D Appl. Phys. 45(20), 205102 (2012).
[Crossref]
G. D. Wang, M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, “Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses,” Chinese Phys. B 23, 1 (2014)
C. Hua and Z. Shen, “Shunt-excited sea-water monopole antenna of high efficiency,” IEEE Trans. Antenn. Propag. 63(11), 5185–5190 (2015).
[Crossref]
G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D Appl. Phys. 45(20), 205102 (2012).
[Crossref]
Z. Shen, H. Yang, X. Huang, and Z. Yu, “Design of negative refractive index metamaterial with water droplets using 3D-printing,” J. Opt. 19(11), 115101 (2017).
[Crossref]
R. E. Jacobsen, A. V. Lavrinenko, and S. Arslanagic, “Water-based metasurfaces for effective switching of microwaves,” IEEE Antennas Wirel. Propag. Lett. 17(4), 571–574 (2018).
[Crossref]
S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]
G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D Appl. Phys. 45(20), 205102 (2012).
[Crossref]
H. Xiaojun, Y. Helin, S. Zhaoyang, C. Jiao, L. Hail, and Y. Zetai, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 385304 (2017).
[Crossref]
J. Xie, W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, R. Jin, and M. Premaratne, “Water metamaterial for ultra-broadband and wide-angle absorption,” Opt. Express 26(4), 5052–5059 (2018).
[Crossref]
[PubMed]
W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Opt. Express 25(14), 15737–15745 (2017).
[Crossref]
[PubMed]
Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref]
[PubMed]
Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref]
[PubMed]
R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]
M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Experimental demonstration of water based tunable metasurface,” Appl. Phys. Lett. 109(1), 011901 (2016).
[Crossref]
M. Bagmanci, M. Karaaslan, E. Unal, O. Akgol, and C. Sabah, “Extremely-broad band metamaterial absorber for solar energy harvesting based on star shaped resonator,” Opt. Quant. Electron. 49(7), 257 (2017)
G. S. Kell, “Thermal expansivity, and compressibility of liquid water from 0° to 150°: Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale,” J. Chem. Eng. Data 20(1), 97–105 (1975).
[Crossref]
J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref]
[PubMed]
Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref]
[PubMed]
A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, “Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials,” Sci. Rep. 5(1), 13535 (2015).
[Crossref]
[PubMed]
G. D. Wang, M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, “Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses,” Chinese Phys. B 23, 1 (2014)
M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]
A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, “Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials,” Sci. Rep. 5(1), 13535 (2015).
[Crossref]
[PubMed]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]
[PubMed]
R. E. Jacobsen, A. V. Lavrinenko, and S. Arslanagic, “Water-based metasurfaces for effective switching of microwaves,” IEEE Antennas Wirel. Propag. Lett. 17(4), 571–574 (2018).
[Crossref]
M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Experimental demonstration of water based tunable metasurface,” Appl. Phys. Lett. 109(1), 011901 (2016).
[Crossref]
A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, “Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials,” Sci. Rep. 5(1), 13535 (2015).
[Crossref]
[PubMed]
J. M. Gildemeister, A. T. Lee, and P. L. Richards, “Monolithic arrays of absorber-coupled voltage-biased superconducting bolometers,” Appl. Phys. Lett. 77(24), 4040–4042 (2000).
[Crossref]
Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref]
[PubMed]
J. Grant, I. Escorcia‐Carranza, C. Li, I. J. McCrindle, J. Gough, and D. R. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]
G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D Appl. Phys. 45(20), 205102 (2012).
[Crossref]
G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D Appl. Phys. 45(20), 205102 (2012).
[Crossref]
P. Li, B. Liu, Y. Ni, K. K. Liew, J. Sze, S. Chen, and S. Shen, “Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion,” Adv. Mater. 27(31), 4585–4591 (2015).
[Crossref]
[PubMed]
D. Wu, C. Liu, Z. H. Xua, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]
S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, T. Liu, Y. J. Zheng, C. Zhang, and G. Zheng, “Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber,” Appl. Phys. Lett. 106(18), 181103 (2015).
[Crossref]
Y. Pang, Y. Shen, Y. Li, J. Wang, Z. Xu, and S. Qu, “Water-based metamaterial absorbers for optical transparency and broadband microwave absorption,” J. Appl. Phys. 123(15), 155106 (2018).
[Crossref]
Y. Li and K.-M. Luk, “A water dense dielectric patch antenna,” IEEE Access 3, 274–280 (2015).
[Crossref]
Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, and H. Cai, “Water-resonator-based metasurface: An ultrabroadband and near-Unity absorption,” Adv. Opt. Mater. 5, 8 (2017).
[Crossref]
J. Xie, W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, R. Jin, and M. Premaratne, “Water metamaterial for ultra-broadband and wide-angle absorption,” Opt. Express 26(4), 5052–5059 (2018).
[Crossref]
[PubMed]
W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Opt. Express 25(14), 15737–15745 (2017).
[Crossref]
[PubMed]
P. Li, B. Liu, Y. Ni, K. K. Liew, J. Sze, S. Chen, and S. Shen, “Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion,” Adv. Mater. 27(31), 4585–4591 (2015).
[Crossref]
[PubMed]
Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref]
[PubMed]
P. Li, B. Liu, Y. Ni, K. K. Liew, J. Sze, S. Chen, and S. Shen, “Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion,” Adv. Mater. 27(31), 4585–4591 (2015).
[Crossref]
[PubMed]
D. Wu, C. Liu, Z. H. Xua, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]
G. D. Wang, M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, “Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses,” Chinese Phys. B 23, 1 (2014)
T. Liu and J. Takahara, “Ultrabroadband absorber based on single-sized embedded metal-dielectric-metal structures and application of radiative cooling,” Opt. Express 25(12), A612–A627 (2017).
[Crossref]
[PubMed]
S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, T. Liu, Y. J. Zheng, C. Zhang, and G. Zheng, “Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber,” Appl. Phys. Lett. 106(18), 181103 (2015).
[Crossref]
D. Wu, C. Liu, Z. H. Xua, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]
G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D Appl. Phys. 45(20), 205102 (2012).
[Crossref]
J. Sun and K.-M. Luk, “A wideband low cost and optically transparent water patch antenna with omnidirectional conical beam radiation patterns,” IEEE Trans. Antenn. Propag. 65(9), 4478–4485 (2017).
[Crossref]
Y. Li and K.-M. Luk, “A water dense dielectric patch antenna,” IEEE Access 3, 274–280 (2015).
[Crossref]
D. Wu, C. Liu, Z. H. Xua, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]
S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]
J. Grant, I. Escorcia‐Carranza, C. Li, I. J. McCrindle, J. Gough, and D. R. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]
[PubMed]
R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]
R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]
G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D Appl. Phys. 45(20), 205102 (2012).
[Crossref]
P. Li, B. Liu, Y. Ni, K. K. Liew, J. Sze, S. Chen, and S. Shen, “Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion,” Adv. Mater. 27(31), 4585–4591 (2015).
[Crossref]
[PubMed]
M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Experimental demonstration of water based tunable metasurface,” Appl. Phys. Lett. 109(1), 011901 (2016).
[Crossref]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]
[PubMed]
M. Zou, Z. Shen, and J. Pan, “Frequency-reconfigurable water antenna of circular polarization,” Appl. Phys. Lett. 108(1), 014102 (2016).
[Crossref]
Y. Pang, Y. Shen, Y. Li, J. Wang, Z. Xu, and S. Qu, “Water-based metamaterial absorbers for optical transparency and broadband microwave absorption,” J. Appl. Phys. 123(15), 155106 (2018).
[Crossref]
Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Y. Zhou, Z. Xu, T. J. Cui, and S. Qu, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 110(10), 104103 (2017).
[Crossref]
Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref]
[PubMed]
J. Xie, W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, R. Jin, and M. Premaratne, “Water metamaterial for ultra-broadband and wide-angle absorption,” Opt. Express 26(4), 5052–5059 (2018).
[Crossref]
[PubMed]
W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Opt. Express 25(14), 15737–15745 (2017).
[Crossref]
[PubMed]
Y. Pang, Y. Shen, Y. Li, J. Wang, Z. Xu, and S. Qu, “Water-based metamaterial absorbers for optical transparency and broadband microwave absorption,” J. Appl. Phys. 123(15), 155106 (2018).
[Crossref]
Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Y. Zhou, Z. Xu, T. J. Cui, and S. Qu, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 110(10), 104103 (2017).
[Crossref]
A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]
[PubMed]
A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]
[PubMed]
Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref]
[PubMed]
J. M. Gildemeister, A. T. Lee, and P. L. Richards, “Monolithic arrays of absorber-coupled voltage-biased superconducting bolometers,” Appl. Phys. Lett. 77(24), 4040–4042 (2000).
[Crossref]
J. Xie, W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, R. Jin, and M. Premaratne, “Water metamaterial for ultra-broadband and wide-angle absorption,” Opt. Express 26(4), 5052–5059 (2018).
[Crossref]
[PubMed]
W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Opt. Express 25(14), 15737–15745 (2017).
[Crossref]
[PubMed]
M. Bagmanci, M. Karaaslan, E. Unal, O. Akgol, and C. Sabah, “Extremely-broad band metamaterial absorber for solar energy harvesting based on star shaped resonator,” Opt. Quant. Electron. 49(7), 257 (2017)
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]
[PubMed]
H. Severin, “Nonreflecting absorbers for microwave radiation,” IRE Trans. Antennas Propag. 4(3), 385–392 (1956).
[Crossref]
G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D Appl. Phys. 45(20), 205102 (2012).
[Crossref]
P. Li, B. Liu, Y. Ni, K. K. Liew, J. Sze, S. Chen, and S. Shen, “Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion,” Adv. Mater. 27(31), 4585–4591 (2015).
[Crossref]
[PubMed]
Y. Pang, Y. Shen, Y. Li, J. Wang, Z. Xu, and S. Qu, “Water-based metamaterial absorbers for optical transparency and broadband microwave absorption,” J. Appl. Phys. 123(15), 155106 (2018).
[Crossref]
Z. Shen, H. Yang, X. Huang, and Z. Yu, “Design of negative refractive index metamaterial with water droplets using 3D-printing,” J. Opt. 19(11), 115101 (2017).
[Crossref]
M. Zou, Z. Shen, and J. Pan, “Frequency-reconfigurable water antenna of circular polarization,” Appl. Phys. Lett. 108(1), 014102 (2016).
[Crossref]
C. Hua and Z. Shen, “Shunt-excited sea-water monopole antenna of high efficiency,” IEEE Trans. Antenn. Propag. 63(11), 5185–5190 (2015).
[Crossref]
Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, and H. Cai, “Water-resonator-based metasurface: An ultrabroadband and near-Unity absorption,” Adv. Opt. Mater. 5, 8 (2017).
[Crossref]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]
[PubMed]
Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, and H. Cai, “Water-resonator-based metasurface: An ultrabroadband and near-Unity absorption,” Adv. Opt. Mater. 5, 8 (2017).
[Crossref]
M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]
I. V. Stenishchev and A. A. Basharin, “Toroidal response in all-dielectric metamaterials based on water,” Sci. Rep. 7(1), 9468 (2017).
[Crossref]
[PubMed]
J. Sun and K.-M. Luk, “A wideband low cost and optically transparent water patch antenna with omnidirectional conical beam radiation patterns,” IEEE Trans. Antenn. Propag. 65(9), 4478–4485 (2017).
[Crossref]
P. Li, B. Liu, Y. Ni, K. K. Liew, J. Sze, S. Chen, and S. Shen, “Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion,” Adv. Mater. 27(31), 4585–4591 (2015).
[Crossref]
[PubMed]
M. Bagmanci, M. Karaaslan, E. Unal, O. Akgol, and C. Sabah, “Extremely-broad band metamaterial absorber for solar energy harvesting based on star shaped resonator,” Opt. Quant. Electron. 49(7), 257 (2017)
G. D. Wang, M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, “Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses,” Chinese Phys. B 23, 1 (2014)
H. Wang, Y. Yang, and L. P. Wang, “Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer,” Appl. Phys. Lett. 105(7), 071907 (2014).
[Crossref]
Y. Pang, Y. Shen, Y. Li, J. Wang, Z. Xu, and S. Qu, “Water-based metamaterial absorbers for optical transparency and broadband microwave absorption,” J. Appl. Phys. 123(15), 155106 (2018).
[Crossref]
Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Y. Zhou, Z. Xu, T. J. Cui, and S. Qu, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 110(10), 104103 (2017).
[Crossref]
H. Wang, Y. Yang, and L. P. Wang, “Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer,” Appl. Phys. Lett. 105(7), 071907 (2014).
[Crossref]
D. Wu, C. Liu, Z. H. Xua, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]
Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, and H. Cai, “Water-resonator-based metasurface: An ultrabroadband and near-Unity absorption,” Adv. Opt. Mater. 5, 8 (2017).
[Crossref]
Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Y. Zhou, Z. Xu, T. J. Cui, and S. Qu, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 110(10), 104103 (2017).
[Crossref]
J. Xie, W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, R. Jin, and M. Premaratne, “Water metamaterial for ultra-broadband and wide-angle absorption,” Opt. Express 26(4), 5052–5059 (2018).
[Crossref]
[PubMed]
W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Opt. Express 25(14), 15737–15745 (2017).
[Crossref]
[PubMed]
X. Cai, S. Zhao, M. Hu, J. Xiao, N. Zhang, and J. Yang, “Water based fluidic radio frequency metamaterials,” J. Appl. Phys. 122(18), 184101 (2017).
[Crossref]
H. Xiaojun, Y. Helin, S. Zhaoyang, C. Jiao, L. Hail, and Y. Zetai, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 385304 (2017).
[Crossref]
J. Xie, W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, R. Jin, and M. Premaratne, “Water metamaterial for ultra-broadband and wide-angle absorption,” Opt. Express 26(4), 5052–5059 (2018).
[Crossref]
[PubMed]
S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]
S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]
Y. Pang, Y. Shen, Y. Li, J. Wang, Z. Xu, and S. Qu, “Water-based metamaterial absorbers for optical transparency and broadband microwave absorption,” J. Appl. Phys. 123(15), 155106 (2018).
[Crossref]
Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Y. Zhou, Z. Xu, T. J. Cui, and S. Qu, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 110(10), 104103 (2017).
[Crossref]
D. Wu, C. Liu, Z. H. Xua, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]
Z. Shen, H. Yang, X. Huang, and Z. Yu, “Design of negative refractive index metamaterial with water droplets using 3D-printing,” J. Opt. 19(11), 115101 (2017).
[Crossref]
X. Cai, S. Zhao, M. Hu, J. Xiao, N. Zhang, and J. Yang, “Water based fluidic radio frequency metamaterials,” J. Appl. Phys. 122(18), 184101 (2017).
[Crossref]
H. Wang, Y. Yang, and L. P. Wang, “Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer,” Appl. Phys. Lett. 105(7), 071907 (2014).
[Crossref]
Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, and H. Cai, “Water-resonator-based metasurface: An ultrabroadband and near-Unity absorption,” Adv. Opt. Mater. 5, 8 (2017).
[Crossref]
D. Wu, C. Liu, Z. H. Xua, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]
S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]
S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]
S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]
Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref]
[PubMed]
D. Wu, C. Liu, Z. H. Xua, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]
Z. Shen, H. Yang, X. Huang, and Z. Yu, “Design of negative refractive index metamaterial with water droplets using 3D-printing,” J. Opt. 19(11), 115101 (2017).
[Crossref]
D. Wu, C. Liu, Z. H. Xua, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]
S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]
H. Xiaojun, Y. Helin, S. Zhaoyang, C. Jiao, L. Hail, and Y. Zetai, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 385304 (2017).
[Crossref]
S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, T. Liu, Y. J. Zheng, C. Zhang, and G. Zheng, “Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber,” Appl. Phys. Lett. 106(18), 181103 (2015).
[Crossref]
X. Cai, S. Zhao, M. Hu, J. Xiao, N. Zhang, and J. Yang, “Water based fluidic radio frequency metamaterials,” J. Appl. Phys. 122(18), 184101 (2017).
[Crossref]
Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, and H. Cai, “Water-resonator-based metasurface: An ultrabroadband and near-Unity absorption,” Adv. Opt. Mater. 5, 8 (2017).
[Crossref]
S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, T. Liu, Y. J. Zheng, C. Zhang, and G. Zheng, “Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber,” Appl. Phys. Lett. 106(18), 181103 (2015).
[Crossref]
X. Cai, S. Zhao, M. Hu, J. Xiao, N. Zhang, and J. Yang, “Water based fluidic radio frequency metamaterials,” J. Appl. Phys. 122(18), 184101 (2017).
[Crossref]
H. Xiaojun, Y. Helin, S. Zhaoyang, C. Jiao, L. Hail, and Y. Zetai, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 385304 (2017).
[Crossref]
S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, T. Liu, Y. J. Zheng, C. Zhang, and G. Zheng, “Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber,” Appl. Phys. Lett. 106(18), 181103 (2015).
[Crossref]
S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, T. Liu, Y. J. Zheng, C. Zhang, and G. Zheng, “Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber,” Appl. Phys. Lett. 106(18), 181103 (2015).
[Crossref]
Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Y. Zhou, Z. Xu, T. J. Cui, and S. Qu, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 110(10), 104103 (2017).
[Crossref]
S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]
A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]
[PubMed]
J. Xie, W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, R. Jin, and M. Premaratne, “Water metamaterial for ultra-broadband and wide-angle absorption,” Opt. Express 26(4), 5052–5059 (2018).
[Crossref]
[PubMed]
W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Opt. Express 25(14), 15737–15745 (2017).
[Crossref]
[PubMed]
Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, and H. Cai, “Water-resonator-based metasurface: An ultrabroadband and near-Unity absorption,” Adv. Opt. Mater. 5, 8 (2017).
[Crossref]
A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, “Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials,” Sci. Rep. 5(1), 13535 (2015).
[Crossref]
[PubMed]
M. Zou, Z. Shen, and J. Pan, “Frequency-reconfigurable water antenna of circular polarization,” Appl. Phys. Lett. 108(1), 014102 (2016).
[Crossref]
P. Li, B. Liu, Y. Ni, K. K. Liew, J. Sze, S. Chen, and S. Shen, “Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion,” Adv. Mater. 27(31), 4585–4591 (2015).
[Crossref]
[PubMed]
Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, and H. Cai, “Water-resonator-based metasurface: An ultrabroadband and near-Unity absorption,” Adv. Opt. Mater. 5, 8 (2017).
[Crossref]
S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, T. Liu, Y. J. Zheng, C. Zhang, and G. Zheng, “Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber,” Appl. Phys. Lett. 106(18), 181103 (2015).
[Crossref]
Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Y. Zhou, Z. Xu, T. J. Cui, and S. Qu, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 110(10), 104103 (2017).
[Crossref]
M. Zou, Z. Shen, and J. Pan, “Frequency-reconfigurable water antenna of circular polarization,” Appl. Phys. Lett. 108(1), 014102 (2016).
[Crossref]
M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Experimental demonstration of water based tunable metasurface,” Appl. Phys. Lett. 109(1), 011901 (2016).
[Crossref]
H. Wang, Y. Yang, and L. P. Wang, “Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer,” Appl. Phys. Lett. 105(7), 071907 (2014).
[Crossref]
J. M. Gildemeister, A. T. Lee, and P. L. Richards, “Monolithic arrays of absorber-coupled voltage-biased superconducting bolometers,” Appl. Phys. Lett. 77(24), 4040–4042 (2000).
[Crossref]
S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]
G. D. Wang, M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, “Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses,” Chinese Phys. B 23, 1 (2014)
Y. Li and K.-M. Luk, “A water dense dielectric patch antenna,” IEEE Access 3, 274–280 (2015).
[Crossref]
R. E. Jacobsen, A. V. Lavrinenko, and S. Arslanagic, “Water-based metasurfaces for effective switching of microwaves,” IEEE Antennas Wirel. Propag. Lett. 17(4), 571–574 (2018).
[Crossref]
J. Sun and K.-M. Luk, “A wideband low cost and optically transparent water patch antenna with omnidirectional conical beam radiation patterns,” IEEE Trans. Antenn. Propag. 65(9), 4478–4485 (2017).
[Crossref]
C. Hua and Z. Shen, “Shunt-excited sea-water monopole antenna of high efficiency,” IEEE Trans. Antenn. Propag. 63(11), 5185–5190 (2015).
[Crossref]
H. Severin, “Nonreflecting absorbers for microwave radiation,” IRE Trans. Antennas Propag. 4(3), 385–392 (1956).
[Crossref]
X. Cai, S. Zhao, M. Hu, J. Xiao, N. Zhang, and J. Yang, “Water based fluidic radio frequency metamaterials,” J. Appl. Phys. 122(18), 184101 (2017).
[Crossref]
D. J. Gogoi and N. S. Bhattacharyya, “Embedded dielectric water “atom” array for broadband microwave absorber based on Mie resonance,” J. Appl. Phys. 122(17), 175106 (2017).
[Crossref]
Y. Pang, Y. Shen, Y. Li, J. Wang, Z. Xu, and S. Qu, “Water-based metamaterial absorbers for optical transparency and broadband microwave absorption,” J. Appl. Phys. 123(15), 155106 (2018).
[Crossref]
G. S. Kell, “Thermal expansivity, and compressibility of liquid water from 0° to 150°: Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale,” J. Chem. Eng. Data 20(1), 97–105 (1975).
[Crossref]
Z. Shen, H. Yang, X. Huang, and Z. Yu, “Design of negative refractive index metamaterial with water droplets using 3D-printing,” J. Opt. 19(11), 115101 (2017).
[Crossref]
W. Ellison, “Permittivity of pure water at standard atmospheric pressure, over the frequency range 0–25 THz and the temperature range 0–100 °C,” J. Phys. Chem. Ref. Data 36(1), 1–18 (2007).
[Crossref]
H. Xiaojun, Y. Helin, S. Zhaoyang, C. Jiao, L. Hail, and Y. Zetai, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 385304 (2017).
[Crossref]
G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D Appl. Phys. 45(20), 205102 (2012).
[Crossref]
J. Grant, I. Escorcia‐Carranza, C. Li, I. J. McCrindle, J. Gough, and D. R. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]
D. Wu, C. Liu, Z. H. Xua, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]
A. Ansari and M. J. Akhtar, “Co/graphite based light weight microwave absorber for electromagnetic shielding and stealth applications,” Mater. Res. Express 4, 1 (2017)
R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]
A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]
[PubMed]
C. Hu, X. Li, Q. Feng, X. Chen, and X. Luo, “Investigation on the role of the dielectric loss in metamaterial absorber,” Opt. Express 18(7), 6598–6603 (2010).
[Crossref]
[PubMed]
X. Y. Peng, B. Wang, S. Lai, D. H. Zhang, and J. H. Teng, “Ultrathin multi-band planar metamaterial absorber based on standing wave resonances,” Opt. Express 20(25), 27756–27765 (2012).
[Crossref]
[PubMed]
G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
[Crossref]
[PubMed]
L. La Spada and L. Vegni, “Metamaterial-based wideband electromagnetic wave absorber,” Opt. Express 24(6), 5763–5772 (2016).
[Crossref]
[PubMed]
T. Liu and J. Takahara, “Ultrabroadband absorber based on single-sized embedded metal-dielectric-metal structures and application of radiative cooling,” Opt. Express 25(12), A612–A627 (2017).
[Crossref]
[PubMed]
W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Opt. Express 25(14), 15737–15745 (2017).
[Crossref]
[PubMed]
J. Xie, W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, R. Jin, and M. Premaratne, “Water metamaterial for ultra-broadband and wide-angle absorption,” Opt. Express 26(4), 5052–5059 (2018).
[Crossref]
[PubMed]
J. Zhao, S. Wei, C. Wang, K. Chen, B. Zhu, T. Jiang, and Y. Feng, “Broadband microwave absorption utilizing water-based metamaterial structures,” Opt. Express 26(7), 8522–8531 (2018).
[Crossref]
[PubMed]
M. Bagmanci, M. Karaaslan, E. Unal, O. Akgol, and C. Sabah, “Extremely-broad band metamaterial absorber for solar energy harvesting based on star shaped resonator,” Opt. Quant. Electron. 49(7), 257 (2017)
M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]
[PubMed]
J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref]
[PubMed]
Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref]
[PubMed]
A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, “Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials,” Sci. Rep. 5(1), 13535 (2015).
[Crossref]
[PubMed]
I. V. Stenishchev and A. A. Basharin, “Toroidal response in all-dielectric metamaterials based on water,” Sci. Rep. 7(1), 9468 (2017).
[Crossref]
[PubMed]
C. R. Paul, Introduction to Electromagnetic Compatibility (John Wiley & Sons, 2006).
B. A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley Online Library, 2000).
E. F. Knott, J. Shaeffer, and M. Tuley, Radar Cross Section (SciTech Publishing, 2004).