Abstract

We report novel results on the fabrication of near-infrared waveguides inside lithium niobate (LiNbO3) crystals with different three-dimensional beam-splitting architectures, comparing the effects that each type of architecture has on the propagation losses and mode evolutions. Optimized waveguides are then studied in detail to obtain the refractive index profiles within the femtosecond-laser-written claddings with sub-micron resolution. This knowledge is currently impossible to obtain with experimental techniques and allows for the proper understanding of the laser-writing process, as well as to design novel waveguides and photonic circuits with optimized properties.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides

Huu-Dat Nguyen, Airán Ródenas, Javier R. Vázquez de Aldana, Javier Martínez, Feng Chen, Magdalena Aguiló, Maria Cinta Pujol, and Francesc Díaz
Opt. Express 24(7) 7777-7791 (2016)

Low-loss 3D-laser-written mid-infrared LiNbO3 depressed-index cladding waveguides for both TE and TM polarizations

Huu-Dat Nguyen, Airán Ródenas, Javier R. Vázquez de Aldana, Guillermo Martín, Javier Martínez, Magdalena Aguiló, Maria Cinta Pujol, and Francesc Díaz
Opt. Express 25(4) 3722-3736 (2017)

Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal

Jinman Lv, Yazhou Cheng, Weihao Yuan, Xiaotao Hao, and Feng Chen
Opt. Mater. Express 5(6) 1274-1280 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express 20(4), 3832–3843 (2012).
    [Crossref] [PubMed]
  2. F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [Crossref]
  3. Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-μm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).
  4. H. D. Nguyen, A. Ródenas, J. R. Vázquez de Aldana, J. Martínez, F. Chen, M. Aguiló, M. C. Pujol, and F. Díaz, “Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides,” Opt. Express 24(7), 7777–7791 (2016).
    [Crossref] [PubMed]
  5. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
    [Crossref]
  6. J. Ajates, C. Romero, G. Castillo, F. Chen, and J. R. Vázquez de Aldana, “Y-junctions based on circular depressed-cladding waveguides fabricated with femtosecond pulses in Nd:YAG crystal: A route to integrate complex photonic circuits in crystals,” Opt. Mater. 72, 220–225 (2017).
    [Crossref]
  7. E. Kifle, X. Mateos, J. R. de Aldana, A. Ródenas, P. Loiko, S. Y. Choi, F. Rotermund, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Femtosecond-laser-written Tm:KLu(WO4) 2 waveguide lasers,” Opt. Lett. 42(6), 1169–1172 (2017).
    [Crossref] [PubMed]
  8. Y. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-Laser-Inscribed BiB3O6 Nonlinear Cladding Waveguide for Second-Harmonic Generation,” Appl. Phys. Express 5(7), 072701 (2012).
    [Crossref]
  9. R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Springer Science & Business Media, 2012).
  10. D. Choudhury, J. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
    [Crossref]
  11. Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser,” Opt. Lett. 33(19), 2281–2283 (2008).
    [Crossref] [PubMed]
  12. A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, and R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” Opt. Lett. 37(3), 392–394 (2012).
    [Crossref] [PubMed]
  13. Y. Okamura, S. Yoshinaka, and S. Yamamoto, “Measuring mode propagation losses of integrated optical waveguides: a simple method,” Appl. Opt. 22(23), 3892–3894 (1983).
    [Crossref] [PubMed]
  14. A. Ródenas, J. A. Sanz Garcia, D. Jaque, G. A. Torchia, C. Mendez, I. Arias, L. Roso, and F. Agullo-Rueda, “Optical investigations of femtosecond laser induced microstress in neodymium doped lithium niobate crystals,” J. Appl. Phys. 100(3), 033521 (2006).
    [Crossref]
  15. A. Ródenas, L. M. Maestro, M. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106(1), 013110 (2009).
    [Crossref]
  16. H.-D. Nguyen, A. Ródenas, J. R. Vázquez de Aldana, G. Martín, J. Martínez, M. Aguiló, M. C. Pujol, and F. Díaz, “Low-loss 3D-laser-written mid-infrared depressed-index cladding waveguides for both TE and TM polarizations,” Opt. Express 25(4), 3722–3736 (2017).
    [Crossref] [PubMed]
  17. T. Calmano, C. Kränkel, and G. Huber, “Laser oscillation in Yb:YAG waveguide beam-splitters with variable splitting ratio,” Opt. Lett. 40(8), 1753–1756 (2015).
    [Crossref] [PubMed]
  18. J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
    [Crossref]

2017 (3)

2016 (1)

2015 (2)

T. Calmano, C. Kränkel, and G. Huber, “Laser oscillation in Yb:YAG waveguide beam-splitters with variable splitting ratio,” Opt. Lett. 40(8), 1753–1756 (2015).
[Crossref] [PubMed]

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-μm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

2014 (2)

D. Choudhury, J. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

2012 (3)

2009 (2)

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

A. Ródenas, L. M. Maestro, M. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106(1), 013110 (2009).
[Crossref]

2008 (1)

2006 (2)

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

A. Ródenas, J. A. Sanz Garcia, D. Jaque, G. A. Torchia, C. Mendez, I. Arias, L. Roso, and F. Agullo-Rueda, “Optical investigations of femtosecond laser induced microstress in neodymium doped lithium niobate crystals,” J. Appl. Phys. 100(3), 033521 (2006).
[Crossref]

1983 (1)

Aguiló, M.

Agullo-Rueda, F.

A. Ródenas, J. A. Sanz Garcia, D. Jaque, G. A. Torchia, C. Mendez, I. Arias, L. Roso, and F. Agullo-Rueda, “Optical investigations of femtosecond laser induced microstress in neodymium doped lithium niobate crystals,” J. Appl. Phys. 100(3), 033521 (2006).
[Crossref]

Ajates, J.

J. Ajates, C. Romero, G. Castillo, F. Chen, and J. R. Vázquez de Aldana, “Y-junctions based on circular depressed-cladding waveguides fabricated with femtosecond pulses in Nd:YAG crystal: A route to integrate complex photonic circuits in crystals,” Opt. Mater. 72, 220–225 (2017).
[Crossref]

Arezki, B.

Arias, I.

A. Ródenas, J. A. Sanz Garcia, D. Jaque, G. A. Torchia, C. Mendez, I. Arias, L. Roso, and F. Agullo-Rueda, “Optical investigations of femtosecond laser induced microstress in neodymium doped lithium niobate crystals,” J. Appl. Phys. 100(3), 033521 (2006).
[Crossref]

Bennion, I.

Brown, G.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-μm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

Burghoff, J.

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Calmano, T.

Cantelar, E.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Castillo, G.

J. Ajates, C. Romero, G. Castillo, F. Chen, and J. R. Vázquez de Aldana, “Y-junctions based on circular depressed-cladding waveguides fabricated with femtosecond pulses in Nd:YAG crystal: A route to integrate complex photonic circuits in crystals,” Opt. Mater. 72, 220–225 (2017).
[Crossref]

Chen, F.

J. Ajates, C. Romero, G. Castillo, F. Chen, and J. R. Vázquez de Aldana, “Y-junctions based on circular depressed-cladding waveguides fabricated with femtosecond pulses in Nd:YAG crystal: A route to integrate complex photonic circuits in crystals,” Opt. Mater. 72, 220–225 (2017).
[Crossref]

H. D. Nguyen, A. Ródenas, J. R. Vázquez de Aldana, J. Martínez, F. Chen, M. Aguiló, M. C. Pujol, and F. Díaz, “Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides,” Opt. Express 24(7), 7777–7791 (2016).
[Crossref] [PubMed]

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-μm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Y. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-Laser-Inscribed BiB3O6 Nonlinear Cladding Waveguide for Second-Harmonic Generation,” Appl. Phys. Express 5(7), 072701 (2012).
[Crossref]

A. Ródenas, L. M. Maestro, M. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106(1), 013110 (2009).
[Crossref]

Cheng, Y.

Choi, S. Y.

Choudhury, D.

D. Choudhury, J. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

de Aldana, J. R.

Demetriou, G.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-μm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

Díaz, F.

Ferrari, A. C.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-μm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

Grebing, C.

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Griebner, U.

He, F.

Huber, G.

Jaque, D.

A. Ródenas, L. M. Maestro, M. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106(1), 013110 (2009).
[Crossref]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

A. Ródenas, J. A. Sanz Garcia, D. Jaque, G. A. Torchia, C. Mendez, I. Arias, L. Roso, and F. Agullo-Rueda, “Optical investigations of femtosecond laser induced microstress in neodymium doped lithium niobate crystals,” J. Appl. Phys. 100(3), 033521 (2006).
[Crossref]

Jaque, F.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Jha, A.

Jia, Y.

Y. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-Laser-Inscribed BiB3O6 Nonlinear Cladding Waveguide for Second-Harmonic Generation,” Appl. Phys. Express 5(7), 072701 (2012).
[Crossref]

Jose, G.

Kar, A.

Kar, A. K.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-μm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

D. Choudhury, J. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Kern, P.

Kifle, E.

Kränkel, C.

Labadie, L.

Lamela, J.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Liao, Y.

Lifante, G.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Loiko, P.

Lu, Q.

Y. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-Laser-Inscribed BiB3O6 Nonlinear Cladding Waveguide for Second-Harmonic Generation,” Appl. Phys. Express 5(7), 072701 (2012).
[Crossref]

Macdonald, J.

D. Choudhury, J. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Maestro, L. M.

A. Ródenas, L. M. Maestro, M. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106(1), 013110 (2009).
[Crossref]

Martin, G.

Martín, G.

Martínez, J.

Mary, R.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-μm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

Mateos, X.

Mendez, C.

A. Ródenas, J. A. Sanz Garcia, D. Jaque, G. A. Torchia, C. Mendez, I. Arias, L. Roso, and F. Agullo-Rueda, “Optical investigations of femtosecond laser induced microstress in neodymium doped lithium niobate crystals,” J. Appl. Phys. 100(3), 033521 (2006).
[Crossref]

Mezentsev, V.

Midorikawa, K.

Nguyen, H. D.

Nguyen, H.-D.

Nolte, S.

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Okamura, Y.

Okhrimchuk, A.

Petrov, V.

Popa, D.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-μm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

Psaila, N.

Pujol, M. C.

Ramirez, M.

A. Ródenas, L. M. Maestro, M. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106(1), 013110 (2009).
[Crossref]

Ren, Y.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-μm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

Y. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-Laser-Inscribed BiB3O6 Nonlinear Cladding Waveguide for Second-Harmonic Generation,” Appl. Phys. Express 5(7), 072701 (2012).
[Crossref]

Ródenas, A.

H.-D. Nguyen, A. Ródenas, J. R. Vázquez de Aldana, G. Martín, J. Martínez, M. Aguiló, M. C. Pujol, and F. Díaz, “Low-loss 3D-laser-written mid-infrared depressed-index cladding waveguides for both TE and TM polarizations,” Opt. Express 25(4), 3722–3736 (2017).
[Crossref] [PubMed]

E. Kifle, X. Mateos, J. R. de Aldana, A. Ródenas, P. Loiko, S. Y. Choi, F. Rotermund, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Femtosecond-laser-written Tm:KLu(WO4) 2 waveguide lasers,” Opt. Lett. 42(6), 1169–1172 (2017).
[Crossref] [PubMed]

H. D. Nguyen, A. Ródenas, J. R. Vázquez de Aldana, J. Martínez, F. Chen, M. Aguiló, M. C. Pujol, and F. Díaz, “Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides,” Opt. Express 24(7), 7777–7791 (2016).
[Crossref] [PubMed]

A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, and R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” Opt. Lett. 37(3), 392–394 (2012).
[Crossref] [PubMed]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

A. Ródenas, L. M. Maestro, M. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106(1), 013110 (2009).
[Crossref]

A. Ródenas, J. A. Sanz Garcia, D. Jaque, G. A. Torchia, C. Mendez, I. Arias, L. Roso, and F. Agullo-Rueda, “Optical investigations of femtosecond laser induced microstress in neodymium doped lithium niobate crystals,” J. Appl. Phys. 100(3), 033521 (2006).
[Crossref]

Romero, C.

J. Ajates, C. Romero, G. Castillo, F. Chen, and J. R. Vázquez de Aldana, “Y-junctions based on circular depressed-cladding waveguides fabricated with femtosecond pulses in Nd:YAG crystal: A route to integrate complex photonic circuits in crystals,” Opt. Mater. 72, 220–225 (2017).
[Crossref]

Y. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-Laser-Inscribed BiB3O6 Nonlinear Cladding Waveguide for Second-Harmonic Generation,” Appl. Phys. Express 5(7), 072701 (2012).
[Crossref]

Roso, L.

A. Ródenas, L. M. Maestro, M. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106(1), 013110 (2009).
[Crossref]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

A. Ródenas, J. A. Sanz Garcia, D. Jaque, G. A. Torchia, C. Mendez, I. Arias, L. Roso, and F. Agullo-Rueda, “Optical investigations of femtosecond laser induced microstress in neodymium doped lithium niobate crystals,” J. Appl. Phys. 100(3), 033521 (2006).
[Crossref]

Rotermund, F.

Sanz Garcia, J. A.

A. Ródenas, J. A. Sanz Garcia, D. Jaque, G. A. Torchia, C. Mendez, I. Arias, L. Roso, and F. Agullo-Rueda, “Optical investigations of femtosecond laser induced microstress in neodymium doped lithium niobate crystals,” J. Appl. Phys. 100(3), 033521 (2006).
[Crossref]

Shestakov, A.

Song, J.

Sugioka, K.

Sun, H.

Thomson, R.

Torchia, G. A.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

A. Ródenas, L. M. Maestro, M. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106(1), 013110 (2009).
[Crossref]

A. Ródenas, J. A. Sanz Garcia, D. Jaque, G. A. Torchia, C. Mendez, I. Arias, L. Roso, and F. Agullo-Rueda, “Optical investigations of femtosecond laser induced microstress in neodymium doped lithium niobate crystals,” J. Appl. Phys. 100(3), 033521 (2006).
[Crossref]

Torrisi, F.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-μm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

Tünnermann, A.

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Vázquez de Aldana, J. R.

H.-D. Nguyen, A. Ródenas, J. R. Vázquez de Aldana, G. Martín, J. Martínez, M. Aguiló, M. C. Pujol, and F. Díaz, “Low-loss 3D-laser-written mid-infrared depressed-index cladding waveguides for both TE and TM polarizations,” Opt. Express 25(4), 3722–3736 (2017).
[Crossref] [PubMed]

J. Ajates, C. Romero, G. Castillo, F. Chen, and J. R. Vázquez de Aldana, “Y-junctions based on circular depressed-cladding waveguides fabricated with femtosecond pulses in Nd:YAG crystal: A route to integrate complex photonic circuits in crystals,” Opt. Mater. 72, 220–225 (2017).
[Crossref]

H. D. Nguyen, A. Ródenas, J. R. Vázquez de Aldana, J. Martínez, F. Chen, M. Aguiló, M. C. Pujol, and F. Díaz, “Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides,” Opt. Express 24(7), 7777–7791 (2016).
[Crossref] [PubMed]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Y. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-Laser-Inscribed BiB3O6 Nonlinear Cladding Waveguide for Second-Harmonic Generation,” Appl. Phys. Express 5(7), 072701 (2012).
[Crossref]

Wang, X.

Xu, J.

Xu, Z.

Yamamoto, S.

Yoshinaka, S.

Zhou, Z.

Appl. Opt. (1)

Appl. Phys. B (1)

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Appl. Phys. Express (1)

Y. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-Laser-Inscribed BiB3O6 Nonlinear Cladding Waveguide for Second-Harmonic Generation,” Appl. Phys. Express 5(7), 072701 (2012).
[Crossref]

Appl. Phys. Lett. (1)

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-μm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

J. Appl. Phys. (2)

A. Ródenas, J. A. Sanz Garcia, D. Jaque, G. A. Torchia, C. Mendez, I. Arias, L. Roso, and F. Agullo-Rueda, “Optical investigations of femtosecond laser induced microstress in neodymium doped lithium niobate crystals,” J. Appl. Phys. 100(3), 033521 (2006).
[Crossref]

A. Ródenas, L. M. Maestro, M. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106(1), 013110 (2009).
[Crossref]

Laser Photonics Rev. (2)

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

D. Choudhury, J. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Opt. Mater. (1)

J. Ajates, C. Romero, G. Castillo, F. Chen, and J. R. Vázquez de Aldana, “Y-junctions based on circular depressed-cladding waveguides fabricated with femtosecond pulses in Nd:YAG crystal: A route to integrate complex photonic circuits in crystals,” Opt. Mater. 72, 220–225 (2017).
[Crossref]

Other (1)

R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Springer Science & Business Media, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the studied planar and 3D structures.
Fig. 2
Fig. 2 (a) Optical microscope images of the fabricated waveguides WG1-WG3 (upper row) and (b, c) modal profiles of the WG1-R9 at 633 nm/850 nm. The polarization of the input light was perpendicular to the laser damage tracks (TE polarization). The polar plot (d) represents the normalized transmittance of WG1-R9 for all the polarization directions of the incident light.
Fig. 3
Fig. 3 Modal profiles of the output arms of Y-junctions (Y1-Y3) at 850 nm. The polarization of the input light was perpendicular to the laser damage tracks (TE polarization). The theoretical laser-written tracks cladding structure of WG1-R9 has also been superimposed over the output modes images for visualization of the relative spatial distribution of cladding and modes.
Fig. 4
Fig. 4 Modal profiles of the output arms of 3D Y-junctions (3D-Y1, 3D-Y2) at 850 nm. The polarization of the input light was perpendicular to the laser damage tracks (TE polarization). The theoretical laser-written tracks cladding structure of WG1-R9 has also been superimposed over the output modes images for visualization of the relative spatial distribution of cladding and modes.
Fig. 5
Fig. 5 Calculated horizontal MFDs at different intensity levels for different corresponding Δno values inside the cladding tracks. Horizontal red lines mark the experimentally measured values of the horizontal MFD of WG1-R9 at 850 nm and TE polarization.
Fig. 6
Fig. 6 Calculated vertical MFDs for different corresponding micro-stress values in the cladding waveguide WG1-R9.
Fig. 7
Fig. 7 (a) Optical microscope transmission picture of WG1-R9 cladding waveguide, (b) 2D-index profile obtained after modelling the waveguide properties for the FM, TE polarization at 850 nm wavelength, (c) and (d) experimental and simulated FM near-field intensity distributions, where the 1/e2 and FWHM intensity levels are shown to match. Differences between the circular shape between the two modes are expected to be due to micro-tracks position fluctuations which are not present in the ideal simulated case. The theoretical laser-written tracks cladding structure of WG1-R9 has also been superimposed over the output modes images for visualization of the relative spatial distribution of cladding and modes.

Tables (3)

Tables Icon

Table 1 Propagation losses for straight waveguides (dB/cm ± 0.3 dB/cm)

Tables Icon

Table 2 Additional losses for y-junctions and MZ (dB)

Tables Icon

Table 3 Additional losses for 3D and y-junctions (dB)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ ij = σ 0 + C ijkl :( ε kl ε 0 α kl θ ).
η=10 log 10 ( P Y a +P Y b P 0 )