Abstract

Ho: LuAG, Yb, Ho: LuAG and Yb, Ho, Pr: LuAG laser crystals with high optical quality were successfully grown by the Czochralski method. Compared with Ho: LuAG and Yb, Ho: LuAG crystals, Yb, Ho, Pr: LuAG crystal not only shows a better absorption characteristic but also exhibits weaker ~2 μm emission, as well as superior mid-infrared (MIR) at ~3 μm emission. The ~3 μm MIR emission intensities of Yb, Ho, Pr: LuAG under excitation of a common 970 nm laser diode (LD) is almost nine times that of the Ho: LuAG crystal and twice as much as that of the Yb, Ho: LuAG crystal. The crystal growth, absorption spectra, J-O parameters, emission spectra, fluorescence lifetimes and the energy transfer mechanism in Yb, Ho, Pr: LuAG crystal were studied in this work. The energy transition efficiency from the lower laser level of Ho3+: 5I7 to Pr3+: 3F2 level is as high as 66.6%, indicating that the Pr3+ ion is an effective deactivation ion for Ho3+ ion in Lu3Al5O12 crystal. All these results show that Yb, Ho, Pr: LuAG crystal may become a promising material for developing solid state lasers at around 3 μm under a conventional 970 nm LD pump.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Activation and deactivation effects to Ho3+ at ~2.8 μm MIR emission by Yb3+ and Pr3+ ions in YAG crystal

J. Q. Hong, L. H. Zhang, M. Xu, and Y. Hang
Opt. Mater. Express 6(5) 1444-1450 (2016)

Enhanced 2.7 μm mid-infrared emissions of Er3+ via Pr3+ deactivation and Yb3+ sensitization in LiNbO3 crystal

Peixiong Zhang, Zhenqiang Chen, Yin Hang, Zhen Li, Hao Yin, Siqi Zhu, Shenhe Fu, and Anming Li
Opt. Express 24(22) 25202-25210 (2016)

Co-effects of Yb3+ sensitization and Pr3+ deactivation to enhance 2.7 μm mid-infrared emission of Er3+ in CaLaGa3O7 crystal

Yunyun Liu, Zhenyu You, Houping Xia, Yan Wang, Zhaojie Zhu, Jianfu Li, and Chaoyang Tu
Opt. Mater. Express 7(7) 2411-2423 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. C. Nuss, R. L. Fabian, R. Sarkar, and C. A. Puliafito, “Infrared laser bone ablation,” Lasers Surg. Med. 8(4), 381–391 (1988).
    [Crossref] [PubMed]
  2. B. M. Walsh, H. R. Lee, and N. P. Barnes, “Mid infrared lasers for remote sensing applications,” J. Lumin. 169, 400–405 (2016).
    [Crossref]
  3. K. L. Vodopyanov, F. Ganikhanov, J. P. Maffetone, I. Zwieback, and W. Ruderman, “ZnGeP2 optical parametric oscillator with 3.8-12.4-mum tunability,” Opt. Lett. 25(11), 841–843 (2000).
    [Crossref] [PubMed]
  4. D.-W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, and R. A. Fields, “Diode-pumped 1-W continuous-wave Er:YAG 3-mum laser,” Opt. Lett. 24(6), 385–387 (1999).
    [Crossref] [PubMed]
  5. J. Liu, J. Liu, and Y. Tang, “Performance of a diode end-pumped Cr, Er: YSGG laser at 2.79 μm,” Laser Phys. 18(10), 1124–1127 (2008).
    [Crossref]
  6. P. Zhang, Z. Chen, Y. Hang, Z. Li, H. Yin, S. Zhu, S. Fu, and A. Li, “Enhanced 2.7 μm mid-infrared emissions of Er3+ via Pr3+ deactivation and Yb3+ sensitization in LiNbO3 crystal,” Opt. Express 24(22), 25202–25210 (2016).
    [Crossref] [PubMed]
  7. W. Rabinovich, S. Bowman, B. Feldman, and M. Winings, “Tunable laser pumped 3 μm Ho: YAlO3 laser,” IEEE J. Quantum Electron. 27(4), 895–897 (1991).
    [Crossref]
  8. S. A. Payne, L. K. Smith, and W. F. Krupke, “Cross sections and quantum yields of the 3 μm emission for Er3+ and Ho3+ dopants in crystals,” J. Appl. Phys. 77(9), 4274–4279 (1995).
    [Crossref]
  9. M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
    [Crossref]
  10. S. Bowman, W. Rabinovich, A. Bowman, B. Feldman, and G. Rosenblatt, “3 μm laser performance of Ho: YAlO3 and Nd, Ho: YAlO3,” IEEE J. Quantum Electron. 26(3), 403–406 (1990).
    [Crossref]
  11. P. Zhang, Y. Hang, Z. Li, Z. Chen, H. Yin, S. Zhu, S. Fu, S. Li, and M. Xu, “Sensitization and deactivation effects of Nd3+on the Ho3+ : 3.9 μm emission in a PbF2 crystal,” Opt. Lett. 42(13), 2559–2562 (2017).
    [Crossref] [PubMed]
  12. A. Diening and S. Kück, “Spectroscopy and diode-pumped laser oscillation of Yb3+, Ho3+-doped yttrium scandium gallium garnet,” J. Appl. Phys. 87(9), 4063–4068 (2000).
    [Crossref]
  13. H. Chen, F. Chen, T. Wei, Q. Liu, R. Shen, and Y. Tian, “Ho3+ doped fluorophosphate glasses sensitized by Yb3+ for efficient 2μm laser applications,” Opt. Commun. 321, 183–188 (2014).
    [Crossref]
  14. Y. Wang, J. Li, Z. Zhu, Z. You, J. Xu, and C. Tu, “Activation effect of Ho3+ at 2.84 μm MIR luminescence by Yb3+ ions in GGG crystal,” Opt. Lett. 38(20), 3988–3990 (2013).
    [Crossref] [PubMed]
  15. T. Hu, D. D. Hudson, and S. D. Jackson, “Actively Q-switched 2.9 μm Ho3+Pr3+-doped fluoride fiber laser,” Opt. Lett. 37(11), 2145–2147 (2012).
    [Crossref] [PubMed]
  16. P. Zhang, Y. Hang, and L. Zhang, “Deactivation effects of the lowest excited state of Ho3+ at 2.9 μm emission introduced by Pr3+ ions in LiLuF4 crystal,” Opt. Lett. 37(24), 5241–5243 (2012).
    [Crossref] [PubMed]
  17. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm,” Opt. Lett. 31(6), 754–756 (2006).
    [Crossref] [PubMed]
  18. Y. E. Young, S. D. Setzler, K. J. Snell, P. A. Budni, T. M. Pollak, and E. P. Chicklis, “Efficient 1645-nm Er:YAG laser,” Opt. Lett. 29(10), 1075–1077 (2004).
    [Crossref] [PubMed]
  19. D. W. Hart, M. Jani, and N. P. Barnes, “Room-temperature lasing of end-pumped Ho:Lu3Al5O12,” Opt. Lett. 21(10), 728–730 (1996).
    [Crossref] [PubMed]
  20. R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
    [Crossref]
  21. Q. Cui, Z. Zhou, X. Guan, B. Xu, Z. Lin, H. Xu, Z. Cai, X. Xu, D. Li, and J. Xu, “Diode-pumped continuous-wave and passively Q-switched Nd: LuAG crystal lasers at 1.1 μm,” Opt. Laser Technol. 96, 190–195 (2017).
    [Crossref]
  22. B. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
    [Crossref]
  23. G. Ofelt, “Intensities of crystal spectra of rare‐earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
    [Crossref]
  24. C. Jayasankar and E. Rukmini, “Optical properties of Sm3+ ions in zinc and alkali zinc borosulphate glasses,” Opt. Mater. 8(3), 193–205 (1997).
    [Crossref]
  25. B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83(5), 2772–2787 (1998).
    [Crossref]
  26. C. K. Jørgensen and R. Reisfeld, “Judd-Ofelt parameters and chemical bonding,” J. Less Common Met. 93(1), 107–112 (1983).
    [Crossref]
  27. M. Wang, L. Yi, Y. Chen, C. Yu, G. Wang, L. Hu, and J. Zhang, “Effect of Al(PO3)3 content on physical, chemical and optical properties of fluorophosphate glasses for 2μm application,” Mater. Chem. Phys. 114(1), 295–299 (2009).
    [Crossref]
  28. B. Aull and H. Jenssen, “Vibronic interactions in Nd: YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
    [Crossref]
  29. L. Feng, J. Wang, Q. Tang, L. Liang, H. Liang, and Q. Su, “Optical properties of Ho3+-doped novel oxyfluoride glasses,” J. Lumin. 124(2), 187–194 (2007).
    [Crossref]
  30. W. Carnall, P. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
    [Crossref]

2017 (2)

Q. Cui, Z. Zhou, X. Guan, B. Xu, Z. Lin, H. Xu, Z. Cai, X. Xu, D. Li, and J. Xu, “Diode-pumped continuous-wave and passively Q-switched Nd: LuAG crystal lasers at 1.1 μm,” Opt. Laser Technol. 96, 190–195 (2017).
[Crossref]

P. Zhang, Y. Hang, Z. Li, Z. Chen, H. Yin, S. Zhu, S. Fu, S. Li, and M. Xu, “Sensitization and deactivation effects of Nd3+on the Ho3+ : 3.9 μm emission in a PbF2 crystal,” Opt. Lett. 42(13), 2559–2562 (2017).
[Crossref] [PubMed]

2016 (2)

2014 (1)

H. Chen, F. Chen, T. Wei, Q. Liu, R. Shen, and Y. Tian, “Ho3+ doped fluorophosphate glasses sensitized by Yb3+ for efficient 2μm laser applications,” Opt. Commun. 321, 183–188 (2014).
[Crossref]

2013 (1)

2012 (2)

2009 (1)

M. Wang, L. Yi, Y. Chen, C. Yu, G. Wang, L. Hu, and J. Zhang, “Effect of Al(PO3)3 content on physical, chemical and optical properties of fluorophosphate glasses for 2μm application,” Mater. Chem. Phys. 114(1), 295–299 (2009).
[Crossref]

2008 (2)

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
[Crossref]

J. Liu, J. Liu, and Y. Tang, “Performance of a diode end-pumped Cr, Er: YSGG laser at 2.79 μm,” Laser Phys. 18(10), 1124–1127 (2008).
[Crossref]

2007 (1)

L. Feng, J. Wang, Q. Tang, L. Liang, H. Liang, and Q. Su, “Optical properties of Ho3+-doped novel oxyfluoride glasses,” J. Lumin. 124(2), 187–194 (2007).
[Crossref]

2006 (1)

2004 (1)

2003 (1)

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[Crossref]

2000 (2)

A. Diening and S. Kück, “Spectroscopy and diode-pumped laser oscillation of Yb3+, Ho3+-doped yttrium scandium gallium garnet,” J. Appl. Phys. 87(9), 4063–4068 (2000).
[Crossref]

K. L. Vodopyanov, F. Ganikhanov, J. P. Maffetone, I. Zwieback, and W. Ruderman, “ZnGeP2 optical parametric oscillator with 3.8-12.4-mum tunability,” Opt. Lett. 25(11), 841–843 (2000).
[Crossref] [PubMed]

1999 (1)

1998 (1)

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83(5), 2772–2787 (1998).
[Crossref]

1997 (1)

C. Jayasankar and E. Rukmini, “Optical properties of Sm3+ ions in zinc and alkali zinc borosulphate glasses,” Opt. Mater. 8(3), 193–205 (1997).
[Crossref]

1996 (1)

1995 (1)

S. A. Payne, L. K. Smith, and W. F. Krupke, “Cross sections and quantum yields of the 3 μm emission for Er3+ and Ho3+ dopants in crystals,” J. Appl. Phys. 77(9), 4274–4279 (1995).
[Crossref]

1991 (1)

W. Rabinovich, S. Bowman, B. Feldman, and M. Winings, “Tunable laser pumped 3 μm Ho: YAlO3 laser,” IEEE J. Quantum Electron. 27(4), 895–897 (1991).
[Crossref]

1990 (1)

S. Bowman, W. Rabinovich, A. Bowman, B. Feldman, and G. Rosenblatt, “3 μm laser performance of Ho: YAlO3 and Nd, Ho: YAlO3,” IEEE J. Quantum Electron. 26(3), 403–406 (1990).
[Crossref]

1988 (1)

R. C. Nuss, R. L. Fabian, R. Sarkar, and C. A. Puliafito, “Infrared laser bone ablation,” Lasers Surg. Med. 8(4), 381–391 (1988).
[Crossref] [PubMed]

1983 (1)

C. K. Jørgensen and R. Reisfeld, “Judd-Ofelt parameters and chemical bonding,” J. Less Common Met. 93(1), 107–112 (1983).
[Crossref]

1982 (1)

B. Aull and H. Jenssen, “Vibronic interactions in Nd: YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

1968 (1)

W. Carnall, P. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
[Crossref]

1962 (2)

B. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

G. Ofelt, “Intensities of crystal spectra of rare‐earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

Aull, B.

B. Aull and H. Jenssen, “Vibronic interactions in Nd: YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

Barnes, N. P.

B. M. Walsh, H. R. Lee, and N. P. Barnes, “Mid infrared lasers for remote sensing applications,” J. Lumin. 169, 400–405 (2016).
[Crossref]

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83(5), 2772–2787 (1998).
[Crossref]

D. W. Hart, M. Jani, and N. P. Barnes, “Room-temperature lasing of end-pumped Ho:Lu3Al5O12,” Opt. Lett. 21(10), 728–730 (1996).
[Crossref] [PubMed]

Bowman, A.

S. Bowman, W. Rabinovich, A. Bowman, B. Feldman, and G. Rosenblatt, “3 μm laser performance of Ho: YAlO3 and Nd, Ho: YAlO3,” IEEE J. Quantum Electron. 26(3), 403–406 (1990).
[Crossref]

Bowman, S.

W. Rabinovich, S. Bowman, B. Feldman, and M. Winings, “Tunable laser pumped 3 μm Ho: YAlO3 laser,” IEEE J. Quantum Electron. 27(4), 895–897 (1991).
[Crossref]

S. Bowman, W. Rabinovich, A. Bowman, B. Feldman, and G. Rosenblatt, “3 μm laser performance of Ho: YAlO3 and Nd, Ho: YAlO3,” IEEE J. Quantum Electron. 26(3), 403–406 (1990).
[Crossref]

Budni, P. A.

Cai, Z.

Q. Cui, Z. Zhou, X. Guan, B. Xu, Z. Lin, H. Xu, Z. Cai, X. Xu, D. Li, and J. Xu, “Diode-pumped continuous-wave and passively Q-switched Nd: LuAG crystal lasers at 1.1 μm,” Opt. Laser Technol. 96, 190–195 (2017).
[Crossref]

Carnall, W.

W. Carnall, P. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
[Crossref]

Chen, D.-W.

Chen, F.

H. Chen, F. Chen, T. Wei, Q. Liu, R. Shen, and Y. Tian, “Ho3+ doped fluorophosphate glasses sensitized by Yb3+ for efficient 2μm laser applications,” Opt. Commun. 321, 183–188 (2014).
[Crossref]

Chen, H.

H. Chen, F. Chen, T. Wei, Q. Liu, R. Shen, and Y. Tian, “Ho3+ doped fluorophosphate glasses sensitized by Yb3+ for efficient 2μm laser applications,” Opt. Commun. 321, 183–188 (2014).
[Crossref]

Chen, Y.

M. Wang, L. Yi, Y. Chen, C. Yu, G. Wang, L. Hu, and J. Zhang, “Effect of Al(PO3)3 content on physical, chemical and optical properties of fluorophosphate glasses for 2μm application,” Mater. Chem. Phys. 114(1), 295–299 (2009).
[Crossref]

Chen, Z.

Chicklis, E. P.

Clarkson, W. A.

Cui, Q.

Q. Cui, Z. Zhou, X. Guan, B. Xu, Z. Lin, H. Xu, Z. Cai, X. Xu, D. Li, and J. Xu, “Diode-pumped continuous-wave and passively Q-switched Nd: LuAG crystal lasers at 1.1 μm,” Opt. Laser Technol. 96, 190–195 (2017).
[Crossref]

Di Bartolo, B.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83(5), 2772–2787 (1998).
[Crossref]

Diening, A.

A. Diening and S. Kück, “Spectroscopy and diode-pumped laser oscillation of Yb3+, Ho3+-doped yttrium scandium gallium garnet,” J. Appl. Phys. 87(9), 4063–4068 (2000).
[Crossref]

Eichhorn, M.

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
[Crossref]

Fabian, R. L.

R. C. Nuss, R. L. Fabian, R. Sarkar, and C. A. Puliafito, “Infrared laser bone ablation,” Lasers Surg. Med. 8(4), 381–391 (1988).
[Crossref] [PubMed]

Feldman, B.

W. Rabinovich, S. Bowman, B. Feldman, and M. Winings, “Tunable laser pumped 3 μm Ho: YAlO3 laser,” IEEE J. Quantum Electron. 27(4), 895–897 (1991).
[Crossref]

S. Bowman, W. Rabinovich, A. Bowman, B. Feldman, and G. Rosenblatt, “3 μm laser performance of Ho: YAlO3 and Nd, Ho: YAlO3,” IEEE J. Quantum Electron. 26(3), 403–406 (1990).
[Crossref]

Feng, L.

L. Feng, J. Wang, Q. Tang, L. Liang, H. Liang, and Q. Su, “Optical properties of Ho3+-doped novel oxyfluoride glasses,” J. Lumin. 124(2), 187–194 (2007).
[Crossref]

Fields, P.

W. Carnall, P. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
[Crossref]

Fields, R. A.

Fincher, C. L.

Fournier, D.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[Crossref]

Fu, S.

Ganikhanov, F.

Gaumé, R.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[Crossref]

Guan, X.

Q. Cui, Z. Zhou, X. Guan, B. Xu, Z. Lin, H. Xu, Z. Cai, X. Xu, D. Li, and J. Xu, “Diode-pumped continuous-wave and passively Q-switched Nd: LuAG crystal lasers at 1.1 μm,” Opt. Laser Technol. 96, 190–195 (2017).
[Crossref]

Hang, Y.

Hart, D. W.

Hu, L.

M. Wang, L. Yi, Y. Chen, C. Yu, G. Wang, L. Hu, and J. Zhang, “Effect of Al(PO3)3 content on physical, chemical and optical properties of fluorophosphate glasses for 2μm application,” Mater. Chem. Phys. 114(1), 295–299 (2009).
[Crossref]

Hu, T.

Hudson, D. D.

Jackson, S. D.

Jani, M.

Jayasankar, C.

C. Jayasankar and E. Rukmini, “Optical properties of Sm3+ ions in zinc and alkali zinc borosulphate glasses,” Opt. Mater. 8(3), 193–205 (1997).
[Crossref]

Jenssen, H.

B. Aull and H. Jenssen, “Vibronic interactions in Nd: YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

Jørgensen, C. K.

C. K. Jørgensen and R. Reisfeld, “Judd-Ofelt parameters and chemical bonding,” J. Less Common Met. 93(1), 107–112 (1983).
[Crossref]

Judd, B.

B. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Krupke, W. F.

S. A. Payne, L. K. Smith, and W. F. Krupke, “Cross sections and quantum yields of the 3 μm emission for Er3+ and Ho3+ dopants in crystals,” J. Appl. Phys. 77(9), 4274–4279 (1995).
[Crossref]

Kück, S.

A. Diening and S. Kück, “Spectroscopy and diode-pumped laser oscillation of Yb3+, Ho3+-doped yttrium scandium gallium garnet,” J. Appl. Phys. 87(9), 4063–4068 (2000).
[Crossref]

Lee, H. R.

B. M. Walsh, H. R. Lee, and N. P. Barnes, “Mid infrared lasers for remote sensing applications,” J. Lumin. 169, 400–405 (2016).
[Crossref]

Li, A.

Li, D.

Q. Cui, Z. Zhou, X. Guan, B. Xu, Z. Lin, H. Xu, Z. Cai, X. Xu, D. Li, and J. Xu, “Diode-pumped continuous-wave and passively Q-switched Nd: LuAG crystal lasers at 1.1 μm,” Opt. Laser Technol. 96, 190–195 (2017).
[Crossref]

Li, J.

Li, S.

Li, Z.

Liang, H.

L. Feng, J. Wang, Q. Tang, L. Liang, H. Liang, and Q. Su, “Optical properties of Ho3+-doped novel oxyfluoride glasses,” J. Lumin. 124(2), 187–194 (2007).
[Crossref]

Liang, L.

L. Feng, J. Wang, Q. Tang, L. Liang, H. Liang, and Q. Su, “Optical properties of Ho3+-doped novel oxyfluoride glasses,” J. Lumin. 124(2), 187–194 (2007).
[Crossref]

Lin, Z.

Q. Cui, Z. Zhou, X. Guan, B. Xu, Z. Lin, H. Xu, Z. Cai, X. Xu, D. Li, and J. Xu, “Diode-pumped continuous-wave and passively Q-switched Nd: LuAG crystal lasers at 1.1 μm,” Opt. Laser Technol. 96, 190–195 (2017).
[Crossref]

Liu, J.

J. Liu, J. Liu, and Y. Tang, “Performance of a diode end-pumped Cr, Er: YSGG laser at 2.79 μm,” Laser Phys. 18(10), 1124–1127 (2008).
[Crossref]

J. Liu, J. Liu, and Y. Tang, “Performance of a diode end-pumped Cr, Er: YSGG laser at 2.79 μm,” Laser Phys. 18(10), 1124–1127 (2008).
[Crossref]

Liu, Q.

H. Chen, F. Chen, T. Wei, Q. Liu, R. Shen, and Y. Tian, “Ho3+ doped fluorophosphate glasses sensitized by Yb3+ for efficient 2μm laser applications,” Opt. Commun. 321, 183–188 (2014).
[Crossref]

Maffetone, J. P.

Nuss, R. C.

R. C. Nuss, R. L. Fabian, R. Sarkar, and C. A. Puliafito, “Infrared laser bone ablation,” Lasers Surg. Med. 8(4), 381–391 (1988).
[Crossref] [PubMed]

Ofelt, G.

G. Ofelt, “Intensities of crystal spectra of rare‐earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

Payne, S. A.

S. A. Payne, L. K. Smith, and W. F. Krupke, “Cross sections and quantum yields of the 3 μm emission for Er3+ and Ho3+ dopants in crystals,” J. Appl. Phys. 77(9), 4274–4279 (1995).
[Crossref]

Pollak, T. M.

Puliafito, C. A.

R. C. Nuss, R. L. Fabian, R. Sarkar, and C. A. Puliafito, “Infrared laser bone ablation,” Lasers Surg. Med. 8(4), 381–391 (1988).
[Crossref] [PubMed]

Rabinovich, W.

W. Rabinovich, S. Bowman, B. Feldman, and M. Winings, “Tunable laser pumped 3 μm Ho: YAlO3 laser,” IEEE J. Quantum Electron. 27(4), 895–897 (1991).
[Crossref]

S. Bowman, W. Rabinovich, A. Bowman, B. Feldman, and G. Rosenblatt, “3 μm laser performance of Ho: YAlO3 and Nd, Ho: YAlO3,” IEEE J. Quantum Electron. 26(3), 403–406 (1990).
[Crossref]

Rajnak, K.

W. Carnall, P. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
[Crossref]

Reisfeld, R.

C. K. Jørgensen and R. Reisfeld, “Judd-Ofelt parameters and chemical bonding,” J. Less Common Met. 93(1), 107–112 (1983).
[Crossref]

Roger, J.-P.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[Crossref]

Rose, T. S.

Rosenblatt, G.

S. Bowman, W. Rabinovich, A. Bowman, B. Feldman, and G. Rosenblatt, “3 μm laser performance of Ho: YAlO3 and Nd, Ho: YAlO3,” IEEE J. Quantum Electron. 26(3), 403–406 (1990).
[Crossref]

Ruderman, W.

Rukmini, E.

C. Jayasankar and E. Rukmini, “Optical properties of Sm3+ ions in zinc and alkali zinc borosulphate glasses,” Opt. Mater. 8(3), 193–205 (1997).
[Crossref]

Sahu, J. K.

Sarkar, R.

R. C. Nuss, R. L. Fabian, R. Sarkar, and C. A. Puliafito, “Infrared laser bone ablation,” Lasers Surg. Med. 8(4), 381–391 (1988).
[Crossref] [PubMed]

Setzler, S. D.

Shen, D. Y.

Shen, R.

H. Chen, F. Chen, T. Wei, Q. Liu, R. Shen, and Y. Tian, “Ho3+ doped fluorophosphate glasses sensitized by Yb3+ for efficient 2μm laser applications,” Opt. Commun. 321, 183–188 (2014).
[Crossref]

Smith, L. K.

S. A. Payne, L. K. Smith, and W. F. Krupke, “Cross sections and quantum yields of the 3 μm emission for Er3+ and Ho3+ dopants in crystals,” J. Appl. Phys. 77(9), 4274–4279 (1995).
[Crossref]

Snell, K. J.

Su, Q.

L. Feng, J. Wang, Q. Tang, L. Liang, H. Liang, and Q. Su, “Optical properties of Ho3+-doped novel oxyfluoride glasses,” J. Lumin. 124(2), 187–194 (2007).
[Crossref]

Tang, Q.

L. Feng, J. Wang, Q. Tang, L. Liang, H. Liang, and Q. Su, “Optical properties of Ho3+-doped novel oxyfluoride glasses,” J. Lumin. 124(2), 187–194 (2007).
[Crossref]

Tang, Y.

J. Liu, J. Liu, and Y. Tang, “Performance of a diode end-pumped Cr, Er: YSGG laser at 2.79 μm,” Laser Phys. 18(10), 1124–1127 (2008).
[Crossref]

Tian, Y.

H. Chen, F. Chen, T. Wei, Q. Liu, R. Shen, and Y. Tian, “Ho3+ doped fluorophosphate glasses sensitized by Yb3+ for efficient 2μm laser applications,” Opt. Commun. 321, 183–188 (2014).
[Crossref]

Tu, C.

Vernon, F. L.

Viana, B.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[Crossref]

Vivien, D.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[Crossref]

Vodopyanov, K. L.

Walsh, B. M.

B. M. Walsh, H. R. Lee, and N. P. Barnes, “Mid infrared lasers for remote sensing applications,” J. Lumin. 169, 400–405 (2016).
[Crossref]

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83(5), 2772–2787 (1998).
[Crossref]

Wang, G.

M. Wang, L. Yi, Y. Chen, C. Yu, G. Wang, L. Hu, and J. Zhang, “Effect of Al(PO3)3 content on physical, chemical and optical properties of fluorophosphate glasses for 2μm application,” Mater. Chem. Phys. 114(1), 295–299 (2009).
[Crossref]

Wang, J.

L. Feng, J. Wang, Q. Tang, L. Liang, H. Liang, and Q. Su, “Optical properties of Ho3+-doped novel oxyfluoride glasses,” J. Lumin. 124(2), 187–194 (2007).
[Crossref]

Wang, M.

M. Wang, L. Yi, Y. Chen, C. Yu, G. Wang, L. Hu, and J. Zhang, “Effect of Al(PO3)3 content on physical, chemical and optical properties of fluorophosphate glasses for 2μm application,” Mater. Chem. Phys. 114(1), 295–299 (2009).
[Crossref]

Wang, Y.

Wei, T.

H. Chen, F. Chen, T. Wei, Q. Liu, R. Shen, and Y. Tian, “Ho3+ doped fluorophosphate glasses sensitized by Yb3+ for efficient 2μm laser applications,” Opt. Commun. 321, 183–188 (2014).
[Crossref]

Winings, M.

W. Rabinovich, S. Bowman, B. Feldman, and M. Winings, “Tunable laser pumped 3 μm Ho: YAlO3 laser,” IEEE J. Quantum Electron. 27(4), 895–897 (1991).
[Crossref]

Xu, B.

Q. Cui, Z. Zhou, X. Guan, B. Xu, Z. Lin, H. Xu, Z. Cai, X. Xu, D. Li, and J. Xu, “Diode-pumped continuous-wave and passively Q-switched Nd: LuAG crystal lasers at 1.1 μm,” Opt. Laser Technol. 96, 190–195 (2017).
[Crossref]

Xu, H.

Q. Cui, Z. Zhou, X. Guan, B. Xu, Z. Lin, H. Xu, Z. Cai, X. Xu, D. Li, and J. Xu, “Diode-pumped continuous-wave and passively Q-switched Nd: LuAG crystal lasers at 1.1 μm,” Opt. Laser Technol. 96, 190–195 (2017).
[Crossref]

Xu, J.

Q. Cui, Z. Zhou, X. Guan, B. Xu, Z. Lin, H. Xu, Z. Cai, X. Xu, D. Li, and J. Xu, “Diode-pumped continuous-wave and passively Q-switched Nd: LuAG crystal lasers at 1.1 μm,” Opt. Laser Technol. 96, 190–195 (2017).
[Crossref]

Y. Wang, J. Li, Z. Zhu, Z. You, J. Xu, and C. Tu, “Activation effect of Ho3+ at 2.84 μm MIR luminescence by Yb3+ ions in GGG crystal,” Opt. Lett. 38(20), 3988–3990 (2013).
[Crossref] [PubMed]

Xu, M.

Xu, X.

Q. Cui, Z. Zhou, X. Guan, B. Xu, Z. Lin, H. Xu, Z. Cai, X. Xu, D. Li, and J. Xu, “Diode-pumped continuous-wave and passively Q-switched Nd: LuAG crystal lasers at 1.1 μm,” Opt. Laser Technol. 96, 190–195 (2017).
[Crossref]

Yi, L.

M. Wang, L. Yi, Y. Chen, C. Yu, G. Wang, L. Hu, and J. Zhang, “Effect of Al(PO3)3 content on physical, chemical and optical properties of fluorophosphate glasses for 2μm application,” Mater. Chem. Phys. 114(1), 295–299 (2009).
[Crossref]

Yin, H.

You, Z.

Young, Y. E.

Yu, C.

M. Wang, L. Yi, Y. Chen, C. Yu, G. Wang, L. Hu, and J. Zhang, “Effect of Al(PO3)3 content on physical, chemical and optical properties of fluorophosphate glasses for 2μm application,” Mater. Chem. Phys. 114(1), 295–299 (2009).
[Crossref]

Zhang, J.

M. Wang, L. Yi, Y. Chen, C. Yu, G. Wang, L. Hu, and J. Zhang, “Effect of Al(PO3)3 content on physical, chemical and optical properties of fluorophosphate glasses for 2μm application,” Mater. Chem. Phys. 114(1), 295–299 (2009).
[Crossref]

Zhang, L.

Zhang, P.

Zhou, Z.

Q. Cui, Z. Zhou, X. Guan, B. Xu, Z. Lin, H. Xu, Z. Cai, X. Xu, D. Li, and J. Xu, “Diode-pumped continuous-wave and passively Q-switched Nd: LuAG crystal lasers at 1.1 μm,” Opt. Laser Technol. 96, 190–195 (2017).
[Crossref]

Zhu, S.

Zhu, Z.

Zwieback, I.

Appl. Phys. B (1)

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
[Crossref]

Appl. Phys. Lett. (1)

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[Crossref]

IEEE J. Quantum Electron. (3)

B. Aull and H. Jenssen, “Vibronic interactions in Nd: YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

S. Bowman, W. Rabinovich, A. Bowman, B. Feldman, and G. Rosenblatt, “3 μm laser performance of Ho: YAlO3 and Nd, Ho: YAlO3,” IEEE J. Quantum Electron. 26(3), 403–406 (1990).
[Crossref]

W. Rabinovich, S. Bowman, B. Feldman, and M. Winings, “Tunable laser pumped 3 μm Ho: YAlO3 laser,” IEEE J. Quantum Electron. 27(4), 895–897 (1991).
[Crossref]

J. Appl. Phys. (3)

S. A. Payne, L. K. Smith, and W. F. Krupke, “Cross sections and quantum yields of the 3 μm emission for Er3+ and Ho3+ dopants in crystals,” J. Appl. Phys. 77(9), 4274–4279 (1995).
[Crossref]

A. Diening and S. Kück, “Spectroscopy and diode-pumped laser oscillation of Yb3+, Ho3+-doped yttrium scandium gallium garnet,” J. Appl. Phys. 87(9), 4063–4068 (2000).
[Crossref]

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83(5), 2772–2787 (1998).
[Crossref]

J. Chem. Phys. (2)

G. Ofelt, “Intensities of crystal spectra of rare‐earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

W. Carnall, P. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
[Crossref]

J. Less Common Met. (1)

C. K. Jørgensen and R. Reisfeld, “Judd-Ofelt parameters and chemical bonding,” J. Less Common Met. 93(1), 107–112 (1983).
[Crossref]

J. Lumin. (2)

L. Feng, J. Wang, Q. Tang, L. Liang, H. Liang, and Q. Su, “Optical properties of Ho3+-doped novel oxyfluoride glasses,” J. Lumin. 124(2), 187–194 (2007).
[Crossref]

B. M. Walsh, H. R. Lee, and N. P. Barnes, “Mid infrared lasers for remote sensing applications,” J. Lumin. 169, 400–405 (2016).
[Crossref]

Laser Phys. (1)

J. Liu, J. Liu, and Y. Tang, “Performance of a diode end-pumped Cr, Er: YSGG laser at 2.79 μm,” Laser Phys. 18(10), 1124–1127 (2008).
[Crossref]

Lasers Surg. Med. (1)

R. C. Nuss, R. L. Fabian, R. Sarkar, and C. A. Puliafito, “Infrared laser bone ablation,” Lasers Surg. Med. 8(4), 381–391 (1988).
[Crossref] [PubMed]

Mater. Chem. Phys. (1)

M. Wang, L. Yi, Y. Chen, C. Yu, G. Wang, L. Hu, and J. Zhang, “Effect of Al(PO3)3 content on physical, chemical and optical properties of fluorophosphate glasses for 2μm application,” Mater. Chem. Phys. 114(1), 295–299 (2009).
[Crossref]

Opt. Commun. (1)

H. Chen, F. Chen, T. Wei, Q. Liu, R. Shen, and Y. Tian, “Ho3+ doped fluorophosphate glasses sensitized by Yb3+ for efficient 2μm laser applications,” Opt. Commun. 321, 183–188 (2014).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (1)

Q. Cui, Z. Zhou, X. Guan, B. Xu, Z. Lin, H. Xu, Z. Cai, X. Xu, D. Li, and J. Xu, “Diode-pumped continuous-wave and passively Q-switched Nd: LuAG crystal lasers at 1.1 μm,” Opt. Laser Technol. 96, 190–195 (2017).
[Crossref]

Opt. Lett. (9)

P. Zhang, Y. Hang, Z. Li, Z. Chen, H. Yin, S. Zhu, S. Fu, S. Li, and M. Xu, “Sensitization and deactivation effects of Nd3+on the Ho3+ : 3.9 μm emission in a PbF2 crystal,” Opt. Lett. 42(13), 2559–2562 (2017).
[Crossref] [PubMed]

K. L. Vodopyanov, F. Ganikhanov, J. P. Maffetone, I. Zwieback, and W. Ruderman, “ZnGeP2 optical parametric oscillator with 3.8-12.4-mum tunability,” Opt. Lett. 25(11), 841–843 (2000).
[Crossref] [PubMed]

D.-W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, and R. A. Fields, “Diode-pumped 1-W continuous-wave Er:YAG 3-mum laser,” Opt. Lett. 24(6), 385–387 (1999).
[Crossref] [PubMed]

D. W. Hart, M. Jani, and N. P. Barnes, “Room-temperature lasing of end-pumped Ho:Lu3Al5O12,” Opt. Lett. 21(10), 728–730 (1996).
[Crossref] [PubMed]

Y. E. Young, S. D. Setzler, K. J. Snell, P. A. Budni, T. M. Pollak, and E. P. Chicklis, “Efficient 1645-nm Er:YAG laser,” Opt. Lett. 29(10), 1075–1077 (2004).
[Crossref] [PubMed]

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm,” Opt. Lett. 31(6), 754–756 (2006).
[Crossref] [PubMed]

T. Hu, D. D. Hudson, and S. D. Jackson, “Actively Q-switched 2.9 μm Ho3+Pr3+-doped fluoride fiber laser,” Opt. Lett. 37(11), 2145–2147 (2012).
[Crossref] [PubMed]

P. Zhang, Y. Hang, and L. Zhang, “Deactivation effects of the lowest excited state of Ho3+ at 2.9 μm emission introduced by Pr3+ ions in LiLuF4 crystal,” Opt. Lett. 37(24), 5241–5243 (2012).
[Crossref] [PubMed]

Y. Wang, J. Li, Z. Zhu, Z. You, J. Xu, and C. Tu, “Activation effect of Ho3+ at 2.84 μm MIR luminescence by Yb3+ ions in GGG crystal,” Opt. Lett. 38(20), 3988–3990 (2013).
[Crossref] [PubMed]

Opt. Mater. (1)

C. Jayasankar and E. Rukmini, “Optical properties of Sm3+ ions in zinc and alkali zinc borosulphate glasses,” Opt. Mater. 8(3), 193–205 (1997).
[Crossref]

Phys. Rev. (1)

B. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Room temperature absorption coefficient of the Ho: LuAG, Yb, Ho: LuAG and Yb, Ho, Pr: LuAG crystals. The inset shows samples of as-grown (a) Ho: LuAG (b) Yb, Ho: LuAG (c) Yb, Ho, Pr: LuAG crystals.
Fig. 2
Fig. 2 (a) ~3 μm emission spectra of Ho: LuAG, Yb, Ho: LuAG and Yb, Ho, Pr: LuAG crystals; The inset shows the emission cross-section spectra of Ho: LuAG, Yb, Ho: LuAG and Yb, Ho, Pr: LuAG crystals in the wavelength of 2700-3050 nm. (b) ~2 μm emission spectra of Ho: LuAG, Yb, Ho: LuAG and Yb, Ho, Pr: LuAG crystals.
Fig. 3
Fig. 3 Fluorescence decay curves of Ho: LuAG, Yb, Ho: LuAG and Yb, Ho, Pr: LuAG crystals for the 5I6 and 5I7 manifolds.
Fig. 4
Fig. 4 Energy level diagram of Yb3+, Ho3+, Pr3+ triply doped system. UC: up-conversion, ESA: excited state absorption, NT: nonradiative transition, ET: energy transfer.

Tables (1)

Tables Icon

Table 1 Judd-Ofelt parameters Ω2,4,6, branching ratio β, life-time of 5I6 and 5I7 level for Ho3+ ions (τm and τr are the measured and calculated radiative lifetime)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ e (λ)= β λ 5 I(λ) 8πc n 2 τ r λI(λ)dλ