Abstract

In this work, thermo-optic (TO) tunable chirped waveguide Bragg gratings based on organic-inorganic hybrid PMMA material are achieved using the metal-print-defining technique. The molecular structural characteristics and thermal stabilities of the polymer grafting materials are analyzed. Structural parameters of the chirped waveguide gratings and self-electrode heaters are designed and performances of the entire device are simulated. The contrast value of the reflection band is about 15 dB between 1530 and 1570 nm. The actual thermo-optic sensitivity of the chirped grating is 0.2 nm/K. The time delay is obtained as 112 ps and the group velocity dispersion is measured as 2.1 ps/nm. This technique is very beneficial for achieving the dispersion-compensating optical communication system.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polymer/silica hybrid integration waveguide Bragg grating based on surface plasmon polaritons

Liang Tian, Fei Wang, Yuanda Wu, Xiaoqiang Sun, Yunji Yi, and Daming Zhang
Appl. Opt. 57(13) 3607-3611 (2018)

Metal-printing directly defined polymer optical waveguide sensors for detecting effective anti-inflammatory concentrations of peimine as fritillaria alkaloid drugs

P. F. Yi, P. Shen, Y. Zheng, C. M. Chen, L. G. Liang, J. H. Wang, L. C. Shang Guan, and D. M. Zhang
Opt. Mater. Express 7(7) 2230-2241 (2017)

Fabrication of a third-order polymer chirped waveguide Bragg grating with tapered core size by contact lithography

Binfeng Yun, Guohua Hu, Ruohu Zhang, and Yiping Cui
Appl. Opt. 54(3) 467-471 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Z. y. Zhang, A. M. Novo, D. Liu, N. Keil, and N. Grote, “Compact and tunable silicon nitride Bragg grating filters in polymer,” Opt. Commun. 321, 23–27 (2014).
    [Crossref]
  2. M. Thiel, G. Flachenecker, and W. Schade, “Femtosecond laser writing of Bragg grating waveguide bundles in bulk glass,” Opt. Lett. 40(7), 1266–1269 (2015).
    [Crossref] [PubMed]
  3. C. Porzi, G. Serafino, P. Velha, P. Ghelfi, and A. Bogoni, “Integrated SOI high-Order phase-shifted Bragg Grating for microwave photonics signal processing,” J. Lightwave Technol. 35(20), 4479–4487 (2017).
    [Crossref]
  4. H. Okamoto and K. Kusaka, “Low Loss Plasmonic Bragg Gratings with a Trench Plasmonic Waveguide,” Plasmonics 12(5), 1481–1485 (2017).
    [Crossref]
  5. C. Klitis, G. Cantarella, M. J. Strain, and M. Sorel, “High-extinction-ratio TE/TM selective Bragg grating filters on silicon-on-insulator,” Opt. Lett. 42(15), 3040–3043 (2017).
    [Crossref] [PubMed]
  6. S. H. Park, J. K. Seo, J. Park, H. K. Lee, J. S. Shin, and M. C. Oh, “Transmission type tunable wavelength filters based on polymer waveguide Bragg reflectors,” Opt. Commun. 362, 96–100 (2016).
    [Crossref]
  7. P. A. Cooper, L. G. Carpenter, C. Holmes, C. Sima, J. C. Gates, and P. G. R. Smith, “Power-Efficiency enhanced thermally tunable Bragg grating for silica-on-silicon photonics,” IEEE Photonics J. 7(2), 1 (2015).
    [Crossref]
  8. B. Yun, G. Hu, R. Zhang, and Y. Cui, “Fabrication of a third-order polymer chirped waveguide Bragg grating with tapered core size by contact lithography,” Appl. Opt. 54(3), 467–471 (2015).
    [Crossref]
  9. P. Bettini, E. Guerreschi, and G. Sala, “Development and experimental validation of a numerical tool for structural health and usage monitoring systems based on chirped grating sensors,” Sensors (Basel) 15(1), 1321–1341 (2015).
    [Crossref] [PubMed]
  10. A. Bostani, M. Ahlawat, A. Tehranchi, R. Morandotti, and R. Kashyap, “Tailoring and tuning of the broadband spectrum of a step-chirped grating based frequency doubler using tightly-focused Gaussian beams,” Opt. Express 21(24), 29847–29853 (2013).
    [Crossref] [PubMed]
  11. W. Zhang and J. Yao, “Silicon-based on-chip electrically-tunable spectral shaper for continuously tunable linearly chirped microwave waveform generation,” J. Lightwave Technol. 34(20), 4664–4672 (2016).
    [Crossref]
  12. W. Zhang and J. Yao, “Photonic generation of linearly chirped microwave waveforms using a silicon-based on-chip spectral shaper incorporating two linearly chirped waveguide Bragg gratings,” J. Lightwave Technol. 33(24), 5047–5054 (2015).
    [Crossref]
  13. T. Tiess, C. Chojetzki, M. Rothhardt, H. Bartelt, and M. Jäger, “Fiber-integrated concept to electrically tune pulsed fiber lasers based on step-chirped fiber Bragg grating arrays,” Opt. Express 23(15), 19634–19645 (2015).
    [Crossref] [PubMed]
  14. A. V. Tokarev, G. G. Anchutkin, S. V. Varzhel, A. I. Gribaev, A. V. Kulikov, I. K. Meshkovskiy, M. Rothhardt, T. Elsmann, M. Becker, and H. Bartelt, “UV-transparent fluoropolymer fiber coating for the inscription of chirped Bragg gratings arrays,” Opt. Laser Technol. 89, 173–178 (2017).
    [Crossref]
  15. Q. q. Wang, X. Zhang, and J. Li, “Synthesis and evaluation of organic–Inorganic hybrid molecularly imprinted monolith column for selective recognition of acephate and phosphamidon in Vegetables,” Adv. Polym. Technol. 36, 21620 (2015).
  16. X. y. Jia, Z. y. Hu, Y. Zhu, T. Weng, J. Wang, J. Zhang, and Y. Zhu, “Facile synthesis of organic-inorganic hybrid perovskite CH3NH3PbI3 microcrystals,” J. Alloys Compd. 725, 270–274 (2017).
    [Crossref]
  17. G. Roviello, C. Menna, O. Tarallo, L. Ricciotti, F. Messina, C. Ferone, D. Asprone, and R. Cioffi, “G.a Roviello, C. Menna, O. Tarallo, “Lightweight geopolymer-based hybrid materials,” Compos., Part B Eng. 128, 225–237 (2017).
    [Crossref]
  18. G. Semwal and V. Rastogi, “Design optimization of long period waveguide grating devices for refractive index sensing using adaptive particle swarm optimization,” Opt. Commun. 359, 336–343 (2016).
    [Crossref]
  19. P. A. Cooper, L. G. Carpenter, and C. Holmes, “Power-Efficiency Enhanced Thermally Tunable Bragg Grating for Silica-on-Silicon Photonics,” Photonics Journal 7, 7800411 (2015).
  20. G. Huang, J. S. Shin, W. J. Lee, T. H. Park, W. S. Chu, and M. C. Oh, “Surface relief apodized grating tunable filters produced by using a shadow mask,” Opt. Express 23(16), 21090–21096 (2015).
    [Crossref] [PubMed]
  21. W. Jin and K. S. Chiang, “Mode switch based on electro-optic long-period waveguide grating in lithium niobate,” Opt. Lett. 40(2), 237–240 (2015).
    [Crossref] [PubMed]
  22. Q. Liu, Z. Gu, J. S. Kee, and M. K. Park, “Silicon waveguide filter based on cladding modulated anti-symmetric long-period grating,” Opt. Express 22(24), 29954–29963 (2014).
    [Crossref] [PubMed]
  23. S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Behaviour of intrinsic polymer optical fibre sensor for large-strain applications,” Meas. Sci. Technol. 18(10), 3144–3154 (2007).
    [Crossref]
  24. W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. H. Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
    [Crossref]
  25. Y. Gu, C. Chen, Y. Zheng, Z. Shi, X. Wang, Y. Yi, T. Jiang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “Heat-induced multimode interference variable optical attenuator based on novel organic-inorganic hybrid materials,” J. Opt. 17(8), 1–9 (2015).
    [Crossref]
  26. Z. Yang, C. m. Chen, and Y. l. Gu, “Metal-cladding directly defined active integrated optical waveguide device based on erbium-containing polymer,” RSC Advances 6, 3224–3230 (2015).
  27. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1208 (1965).
    [Crossref]
  28. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  29. H. Y. Chang, Y. C. Chang, H. J. Sheng, M.-Y. Fu, W.-F. Liu, and R. Kashyap, “An Ultra-Sensitive Liquid-Level Indicator Based on an Etched Chirped-Fiber Bragg Grating,” IEEE Photonics Technol. Lett. 28(3), 268–271 (2016).
    [Crossref]
  30. K. Markowski, K. Jedrzejewski, and T. Osuch, “Numerical analysis of double chirp effect in tapered and linearly chirped fiber Bragg gratings,” Appl. Opt. 55(17), 4505–4513 (2016).
    [Crossref] [PubMed]
  31. T. A. Hamdalla, “Wavelength profiles of nonlinear irradiated apodized chirped Bragg grating,” Curr. Appl. Phys. 13(3), 533–536 (2013).
    [Crossref]
  32. L. y. Wu, L. Pei, C. Liu, and J. Wang, “Research on tunable phase shift induced by piezoelectric transducer in linearly chirped fiber Bragg grating with the V-I transmission matrix formalism,” Opt. Laser Technol. 79, 15–19 (2016).
    [Crossref]
  33. J. Feng, X. Zhang, S. Wu, H. Xiong, F. Gao, Z. Zhuang, and X. Yuan, “Configuration with four chirped volume Bragg gratings in parallel combination for large dispersion applications,” Opt. Eng. 54(5), 056105 (2015).
    [Crossref]
  34. A. Hessainiaa, S. El-Akrmi, and H. Triki, “Analysis of fiber Bragg grating with exponential–linear and parabolic taper profiles for dispersion slope compensation in optical fiber links,” Optik (Stuttg.) 125(17), 4642–4645 (2014).
    [Crossref]
  35. Y. F. Yan, C. T. Zheng, X. Q. Sun, F. Wang, and D. M. Zhang, “Fast response 2×2 thermo-optic switch with polymer/silica hybrid waveguide,” Chin. Opt. Lett. 10(9), 092501 (2012).
    [Crossref]
  36. C. M. S. Vicente, E. Pecoraro, R. A. S. Ferreira, P. S. Andre, R. Nogueira, Y. Messaddeq, S. J. L. Ribeiro, and L. D. Carlos, “Waveguides and gratings fabrication in zirconium-based organic/inorganic hybrids,” J. Sol-Gel Sci. Technol. 48, 80–85 (2008).

2017 (6)

H. Okamoto and K. Kusaka, “Low Loss Plasmonic Bragg Gratings with a Trench Plasmonic Waveguide,” Plasmonics 12(5), 1481–1485 (2017).
[Crossref]

X. y. Jia, Z. y. Hu, Y. Zhu, T. Weng, J. Wang, J. Zhang, and Y. Zhu, “Facile synthesis of organic-inorganic hybrid perovskite CH3NH3PbI3 microcrystals,” J. Alloys Compd. 725, 270–274 (2017).
[Crossref]

G. Roviello, C. Menna, O. Tarallo, L. Ricciotti, F. Messina, C. Ferone, D. Asprone, and R. Cioffi, “G.a Roviello, C. Menna, O. Tarallo, “Lightweight geopolymer-based hybrid materials,” Compos., Part B Eng. 128, 225–237 (2017).
[Crossref]

A. V. Tokarev, G. G. Anchutkin, S. V. Varzhel, A. I. Gribaev, A. V. Kulikov, I. K. Meshkovskiy, M. Rothhardt, T. Elsmann, M. Becker, and H. Bartelt, “UV-transparent fluoropolymer fiber coating for the inscription of chirped Bragg gratings arrays,” Opt. Laser Technol. 89, 173–178 (2017).
[Crossref]

C. Klitis, G. Cantarella, M. J. Strain, and M. Sorel, “High-extinction-ratio TE/TM selective Bragg grating filters on silicon-on-insulator,” Opt. Lett. 42(15), 3040–3043 (2017).
[Crossref] [PubMed]

C. Porzi, G. Serafino, P. Velha, P. Ghelfi, and A. Bogoni, “Integrated SOI high-Order phase-shifted Bragg Grating for microwave photonics signal processing,” J. Lightwave Technol. 35(20), 4479–4487 (2017).
[Crossref]

2016 (6)

K. Markowski, K. Jedrzejewski, and T. Osuch, “Numerical analysis of double chirp effect in tapered and linearly chirped fiber Bragg gratings,” Appl. Opt. 55(17), 4505–4513 (2016).
[Crossref] [PubMed]

W. Zhang and J. Yao, “Silicon-based on-chip electrically-tunable spectral shaper for continuously tunable linearly chirped microwave waveform generation,” J. Lightwave Technol. 34(20), 4664–4672 (2016).
[Crossref]

H. Y. Chang, Y. C. Chang, H. J. Sheng, M.-Y. Fu, W.-F. Liu, and R. Kashyap, “An Ultra-Sensitive Liquid-Level Indicator Based on an Etched Chirped-Fiber Bragg Grating,” IEEE Photonics Technol. Lett. 28(3), 268–271 (2016).
[Crossref]

L. y. Wu, L. Pei, C. Liu, and J. Wang, “Research on tunable phase shift induced by piezoelectric transducer in linearly chirped fiber Bragg grating with the V-I transmission matrix formalism,” Opt. Laser Technol. 79, 15–19 (2016).
[Crossref]

G. Semwal and V. Rastogi, “Design optimization of long period waveguide grating devices for refractive index sensing using adaptive particle swarm optimization,” Opt. Commun. 359, 336–343 (2016).
[Crossref]

S. H. Park, J. K. Seo, J. Park, H. K. Lee, J. S. Shin, and M. C. Oh, “Transmission type tunable wavelength filters based on polymer waveguide Bragg reflectors,” Opt. Commun. 362, 96–100 (2016).
[Crossref]

2015 (13)

P. A. Cooper, L. G. Carpenter, C. Holmes, C. Sima, J. C. Gates, and P. G. R. Smith, “Power-Efficiency enhanced thermally tunable Bragg grating for silica-on-silicon photonics,” IEEE Photonics J. 7(2), 1 (2015).
[Crossref]

P. Bettini, E. Guerreschi, and G. Sala, “Development and experimental validation of a numerical tool for structural health and usage monitoring systems based on chirped grating sensors,” Sensors (Basel) 15(1), 1321–1341 (2015).
[Crossref] [PubMed]

P. A. Cooper, L. G. Carpenter, and C. Holmes, “Power-Efficiency Enhanced Thermally Tunable Bragg Grating for Silica-on-Silicon Photonics,” Photonics Journal 7, 7800411 (2015).

J. Feng, X. Zhang, S. Wu, H. Xiong, F. Gao, Z. Zhuang, and X. Yuan, “Configuration with four chirped volume Bragg gratings in parallel combination for large dispersion applications,” Opt. Eng. 54(5), 056105 (2015).
[Crossref]

Q. q. Wang, X. Zhang, and J. Li, “Synthesis and evaluation of organic–Inorganic hybrid molecularly imprinted monolith column for selective recognition of acephate and phosphamidon in Vegetables,” Adv. Polym. Technol. 36, 21620 (2015).

Y. Gu, C. Chen, Y. Zheng, Z. Shi, X. Wang, Y. Yi, T. Jiang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “Heat-induced multimode interference variable optical attenuator based on novel organic-inorganic hybrid materials,” J. Opt. 17(8), 1–9 (2015).
[Crossref]

Z. Yang, C. m. Chen, and Y. l. Gu, “Metal-cladding directly defined active integrated optical waveguide device based on erbium-containing polymer,” RSC Advances 6, 3224–3230 (2015).

W. Jin and K. S. Chiang, “Mode switch based on electro-optic long-period waveguide grating in lithium niobate,” Opt. Lett. 40(2), 237–240 (2015).
[Crossref] [PubMed]

B. Yun, G. Hu, R. Zhang, and Y. Cui, “Fabrication of a third-order polymer chirped waveguide Bragg grating with tapered core size by contact lithography,” Appl. Opt. 54(3), 467–471 (2015).
[Crossref]

M. Thiel, G. Flachenecker, and W. Schade, “Femtosecond laser writing of Bragg grating waveguide bundles in bulk glass,” Opt. Lett. 40(7), 1266–1269 (2015).
[Crossref] [PubMed]

T. Tiess, C. Chojetzki, M. Rothhardt, H. Bartelt, and M. Jäger, “Fiber-integrated concept to electrically tune pulsed fiber lasers based on step-chirped fiber Bragg grating arrays,” Opt. Express 23(15), 19634–19645 (2015).
[Crossref] [PubMed]

G. Huang, J. S. Shin, W. J. Lee, T. H. Park, W. S. Chu, and M. C. Oh, “Surface relief apodized grating tunable filters produced by using a shadow mask,” Opt. Express 23(16), 21090–21096 (2015).
[Crossref] [PubMed]

W. Zhang and J. Yao, “Photonic generation of linearly chirped microwave waveforms using a silicon-based on-chip spectral shaper incorporating two linearly chirped waveguide Bragg gratings,” J. Lightwave Technol. 33(24), 5047–5054 (2015).
[Crossref]

2014 (3)

Q. Liu, Z. Gu, J. S. Kee, and M. K. Park, “Silicon waveguide filter based on cladding modulated anti-symmetric long-period grating,” Opt. Express 22(24), 29954–29963 (2014).
[Crossref] [PubMed]

Z. y. Zhang, A. M. Novo, D. Liu, N. Keil, and N. Grote, “Compact and tunable silicon nitride Bragg grating filters in polymer,” Opt. Commun. 321, 23–27 (2014).
[Crossref]

A. Hessainiaa, S. El-Akrmi, and H. Triki, “Analysis of fiber Bragg grating with exponential–linear and parabolic taper profiles for dispersion slope compensation in optical fiber links,” Optik (Stuttg.) 125(17), 4642–4645 (2014).
[Crossref]

2013 (2)

2012 (1)

2011 (1)

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. H. Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

2008 (1)

C. M. S. Vicente, E. Pecoraro, R. A. S. Ferreira, P. S. Andre, R. Nogueira, Y. Messaddeq, S. J. L. Ribeiro, and L. D. Carlos, “Waveguides and gratings fabrication in zirconium-based organic/inorganic hybrids,” J. Sol-Gel Sci. Technol. 48, 80–85 (2008).

2007 (1)

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Behaviour of intrinsic polymer optical fibre sensor for large-strain applications,” Meas. Sci. Technol. 18(10), 3144–3154 (2007).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1965 (1)

Ahlawat, M.

Anchutkin, G. G.

A. V. Tokarev, G. G. Anchutkin, S. V. Varzhel, A. I. Gribaev, A. V. Kulikov, I. K. Meshkovskiy, M. Rothhardt, T. Elsmann, M. Becker, and H. Bartelt, “UV-transparent fluoropolymer fiber coating for the inscription of chirped Bragg gratings arrays,” Opt. Laser Technol. 89, 173–178 (2017).
[Crossref]

Andre, P. S.

C. M. S. Vicente, E. Pecoraro, R. A. S. Ferreira, P. S. Andre, R. Nogueira, Y. Messaddeq, S. J. L. Ribeiro, and L. D. Carlos, “Waveguides and gratings fabrication in zirconium-based organic/inorganic hybrids,” J. Sol-Gel Sci. Technol. 48, 80–85 (2008).

Andresen, S.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. H. Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Asprone, D.

G. Roviello, C. Menna, O. Tarallo, L. Ricciotti, F. Messina, C. Ferone, D. Asprone, and R. Cioffi, “G.a Roviello, C. Menna, O. Tarallo, “Lightweight geopolymer-based hybrid materials,” Compos., Part B Eng. 128, 225–237 (2017).
[Crossref]

Bache, M.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. H. Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Bang, O.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. H. Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Bartelt, H.

A. V. Tokarev, G. G. Anchutkin, S. V. Varzhel, A. I. Gribaev, A. V. Kulikov, I. K. Meshkovskiy, M. Rothhardt, T. Elsmann, M. Becker, and H. Bartelt, “UV-transparent fluoropolymer fiber coating for the inscription of chirped Bragg gratings arrays,” Opt. Laser Technol. 89, 173–178 (2017).
[Crossref]

T. Tiess, C. Chojetzki, M. Rothhardt, H. Bartelt, and M. Jäger, “Fiber-integrated concept to electrically tune pulsed fiber lasers based on step-chirped fiber Bragg grating arrays,” Opt. Express 23(15), 19634–19645 (2015).
[Crossref] [PubMed]

Becker, M.

A. V. Tokarev, G. G. Anchutkin, S. V. Varzhel, A. I. Gribaev, A. V. Kulikov, I. K. Meshkovskiy, M. Rothhardt, T. Elsmann, M. Becker, and H. Bartelt, “UV-transparent fluoropolymer fiber coating for the inscription of chirped Bragg gratings arrays,” Opt. Laser Technol. 89, 173–178 (2017).
[Crossref]

Bettini, P.

P. Bettini, E. Guerreschi, and G. Sala, “Development and experimental validation of a numerical tool for structural health and usage monitoring systems based on chirped grating sensors,” Sensors (Basel) 15(1), 1321–1341 (2015).
[Crossref] [PubMed]

Bogoni, A.

Bostani, A.

Cantarella, G.

Carlos, L. D.

C. M. S. Vicente, E. Pecoraro, R. A. S. Ferreira, P. S. Andre, R. Nogueira, Y. Messaddeq, S. J. L. Ribeiro, and L. D. Carlos, “Waveguides and gratings fabrication in zirconium-based organic/inorganic hybrids,” J. Sol-Gel Sci. Technol. 48, 80–85 (2008).

Carpenter, L. G.

P. A. Cooper, L. G. Carpenter, C. Holmes, C. Sima, J. C. Gates, and P. G. R. Smith, “Power-Efficiency enhanced thermally tunable Bragg grating for silica-on-silicon photonics,” IEEE Photonics J. 7(2), 1 (2015).
[Crossref]

P. A. Cooper, L. G. Carpenter, and C. Holmes, “Power-Efficiency Enhanced Thermally Tunable Bragg Grating for Silica-on-Silicon Photonics,” Photonics Journal 7, 7800411 (2015).

Chang, H. Y.

H. Y. Chang, Y. C. Chang, H. J. Sheng, M.-Y. Fu, W.-F. Liu, and R. Kashyap, “An Ultra-Sensitive Liquid-Level Indicator Based on an Etched Chirped-Fiber Bragg Grating,” IEEE Photonics Technol. Lett. 28(3), 268–271 (2016).
[Crossref]

Chang, Y. C.

H. Y. Chang, Y. C. Chang, H. J. Sheng, M.-Y. Fu, W.-F. Liu, and R. Kashyap, “An Ultra-Sensitive Liquid-Level Indicator Based on an Etched Chirped-Fiber Bragg Grating,” IEEE Photonics Technol. Lett. 28(3), 268–271 (2016).
[Crossref]

Chen, C.

Y. Gu, C. Chen, Y. Zheng, Z. Shi, X. Wang, Y. Yi, T. Jiang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “Heat-induced multimode interference variable optical attenuator based on novel organic-inorganic hybrid materials,” J. Opt. 17(8), 1–9 (2015).
[Crossref]

Chen, C. m.

Z. Yang, C. m. Chen, and Y. l. Gu, “Metal-cladding directly defined active integrated optical waveguide device based on erbium-containing polymer,” RSC Advances 6, 3224–3230 (2015).

Chiang, K. S.

Chojetzki, C.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chu, W. S.

Cioffi, R.

G. Roviello, C. Menna, O. Tarallo, L. Ricciotti, F. Messina, C. Ferone, D. Asprone, and R. Cioffi, “G.a Roviello, C. Menna, O. Tarallo, “Lightweight geopolymer-based hybrid materials,” Compos., Part B Eng. 128, 225–237 (2017).
[Crossref]

Cooper, P. A.

P. A. Cooper, L. G. Carpenter, and C. Holmes, “Power-Efficiency Enhanced Thermally Tunable Bragg Grating for Silica-on-Silicon Photonics,” Photonics Journal 7, 7800411 (2015).

P. A. Cooper, L. G. Carpenter, C. Holmes, C. Sima, J. C. Gates, and P. G. R. Smith, “Power-Efficiency enhanced thermally tunable Bragg grating for silica-on-silicon photonics,” IEEE Photonics J. 7(2), 1 (2015).
[Crossref]

Cui, Y.

Cui, Z.

Y. Gu, C. Chen, Y. Zheng, Z. Shi, X. Wang, Y. Yi, T. Jiang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “Heat-induced multimode interference variable optical attenuator based on novel organic-inorganic hybrid materials,” J. Opt. 17(8), 1–9 (2015).
[Crossref]

El-Akrmi, S.

A. Hessainiaa, S. El-Akrmi, and H. Triki, “Analysis of fiber Bragg grating with exponential–linear and parabolic taper profiles for dispersion slope compensation in optical fiber links,” Optik (Stuttg.) 125(17), 4642–4645 (2014).
[Crossref]

Elsmann, T.

A. V. Tokarev, G. G. Anchutkin, S. V. Varzhel, A. I. Gribaev, A. V. Kulikov, I. K. Meshkovskiy, M. Rothhardt, T. Elsmann, M. Becker, and H. Bartelt, “UV-transparent fluoropolymer fiber coating for the inscription of chirped Bragg gratings arrays,” Opt. Laser Technol. 89, 173–178 (2017).
[Crossref]

Feng, J.

J. Feng, X. Zhang, S. Wu, H. Xiong, F. Gao, Z. Zhuang, and X. Yuan, “Configuration with four chirped volume Bragg gratings in parallel combination for large dispersion applications,” Opt. Eng. 54(5), 056105 (2015).
[Crossref]

Ferone, C.

G. Roviello, C. Menna, O. Tarallo, L. Ricciotti, F. Messina, C. Ferone, D. Asprone, and R. Cioffi, “G.a Roviello, C. Menna, O. Tarallo, “Lightweight geopolymer-based hybrid materials,” Compos., Part B Eng. 128, 225–237 (2017).
[Crossref]

Ferreira, R. A. S.

C. M. S. Vicente, E. Pecoraro, R. A. S. Ferreira, P. S. Andre, R. Nogueira, Y. Messaddeq, S. J. L. Ribeiro, and L. D. Carlos, “Waveguides and gratings fabrication in zirconium-based organic/inorganic hybrids,” J. Sol-Gel Sci. Technol. 48, 80–85 (2008).

Flachenecker, G.

Fu, M.-Y.

H. Y. Chang, Y. C. Chang, H. J. Sheng, M.-Y. Fu, W.-F. Liu, and R. Kashyap, “An Ultra-Sensitive Liquid-Level Indicator Based on an Etched Chirped-Fiber Bragg Grating,” IEEE Photonics Technol. Lett. 28(3), 268–271 (2016).
[Crossref]

Gao, F.

J. Feng, X. Zhang, S. Wu, H. Xiong, F. Gao, Z. Zhuang, and X. Yuan, “Configuration with four chirped volume Bragg gratings in parallel combination for large dispersion applications,” Opt. Eng. 54(5), 056105 (2015).
[Crossref]

Gates, J. C.

P. A. Cooper, L. G. Carpenter, C. Holmes, C. Sima, J. C. Gates, and P. G. R. Smith, “Power-Efficiency enhanced thermally tunable Bragg grating for silica-on-silicon photonics,” IEEE Photonics J. 7(2), 1 (2015).
[Crossref]

Ghelfi, P.

Gribaev, A. I.

A. V. Tokarev, G. G. Anchutkin, S. V. Varzhel, A. I. Gribaev, A. V. Kulikov, I. K. Meshkovskiy, M. Rothhardt, T. Elsmann, M. Becker, and H. Bartelt, “UV-transparent fluoropolymer fiber coating for the inscription of chirped Bragg gratings arrays,” Opt. Laser Technol. 89, 173–178 (2017).
[Crossref]

Grote, N.

Z. y. Zhang, A. M. Novo, D. Liu, N. Keil, and N. Grote, “Compact and tunable silicon nitride Bragg grating filters in polymer,” Opt. Commun. 321, 23–27 (2014).
[Crossref]

Gu, Y.

Y. Gu, C. Chen, Y. Zheng, Z. Shi, X. Wang, Y. Yi, T. Jiang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “Heat-induced multimode interference variable optical attenuator based on novel organic-inorganic hybrid materials,” J. Opt. 17(8), 1–9 (2015).
[Crossref]

Gu, Y. l.

Z. Yang, C. m. Chen, and Y. l. Gu, “Metal-cladding directly defined active integrated optical waveguide device based on erbium-containing polymer,” RSC Advances 6, 3224–3230 (2015).

Gu, Z.

Guerreschi, E.

P. Bettini, E. Guerreschi, and G. Sala, “Development and experimental validation of a numerical tool for structural health and usage monitoring systems based on chirped grating sensors,” Sensors (Basel) 15(1), 1321–1341 (2015).
[Crossref] [PubMed]

Hamdalla, T. A.

T. A. Hamdalla, “Wavelength profiles of nonlinear irradiated apodized chirped Bragg grating,” Curr. Appl. Phys. 13(3), 533–536 (2013).
[Crossref]

Hansen, K. S.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. H. Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Hassan, T.

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Behaviour of intrinsic polymer optical fibre sensor for large-strain applications,” Meas. Sci. Technol. 18(10), 3144–3154 (2007).
[Crossref]

Hessainiaa, A.

A. Hessainiaa, S. El-Akrmi, and H. Triki, “Analysis of fiber Bragg grating with exponential–linear and parabolic taper profiles for dispersion slope compensation in optical fiber links,” Optik (Stuttg.) 125(17), 4642–4645 (2014).
[Crossref]

Holmes, C.

P. A. Cooper, L. G. Carpenter, and C. Holmes, “Power-Efficiency Enhanced Thermally Tunable Bragg Grating for Silica-on-Silicon Photonics,” Photonics Journal 7, 7800411 (2015).

P. A. Cooper, L. G. Carpenter, C. Holmes, C. Sima, J. C. Gates, and P. G. R. Smith, “Power-Efficiency enhanced thermally tunable Bragg grating for silica-on-silicon photonics,” IEEE Photonics J. 7(2), 1 (2015).
[Crossref]

Hu, G.

Hu, Z. y.

X. y. Jia, Z. y. Hu, Y. Zhu, T. Weng, J. Wang, J. Zhang, and Y. Zhu, “Facile synthesis of organic-inorganic hybrid perovskite CH3NH3PbI3 microcrystals,” J. Alloys Compd. 725, 270–274 (2017).
[Crossref]

Huang, G.

Jacobsen, T.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. H. Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Jäger, M.

Jedrzejewski, K.

Jia, X. y.

X. y. Jia, Z. y. Hu, Y. Zhu, T. Weng, J. Wang, J. Zhang, and Y. Zhu, “Facile synthesis of organic-inorganic hybrid perovskite CH3NH3PbI3 microcrystals,” J. Alloys Compd. 725, 270–274 (2017).
[Crossref]

Jiang, T.

Y. Gu, C. Chen, Y. Zheng, Z. Shi, X. Wang, Y. Yi, T. Jiang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “Heat-induced multimode interference variable optical attenuator based on novel organic-inorganic hybrid materials,” J. Opt. 17(8), 1–9 (2015).
[Crossref]

Jin, W.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kashyap, R.

H. Y. Chang, Y. C. Chang, H. J. Sheng, M.-Y. Fu, W.-F. Liu, and R. Kashyap, “An Ultra-Sensitive Liquid-Level Indicator Based on an Etched Chirped-Fiber Bragg Grating,” IEEE Photonics Technol. Lett. 28(3), 268–271 (2016).
[Crossref]

A. Bostani, M. Ahlawat, A. Tehranchi, R. Morandotti, and R. Kashyap, “Tailoring and tuning of the broadband spectrum of a step-chirped grating based frequency doubler using tightly-focused Gaussian beams,” Opt. Express 21(24), 29847–29853 (2013).
[Crossref] [PubMed]

Kee, J. S.

Keil, N.

Z. y. Zhang, A. M. Novo, D. Liu, N. Keil, and N. Grote, “Compact and tunable silicon nitride Bragg grating filters in polymer,” Opt. Commun. 321, 23–27 (2014).
[Crossref]

Kiesel, S.

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Behaviour of intrinsic polymer optical fibre sensor for large-strain applications,” Meas. Sci. Technol. 18(10), 3144–3154 (2007).
[Crossref]

Klitis, C.

Kowalsky, M.

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Behaviour of intrinsic polymer optical fibre sensor for large-strain applications,” Meas. Sci. Technol. 18(10), 3144–3154 (2007).
[Crossref]

Kulikov, A. V.

A. V. Tokarev, G. G. Anchutkin, S. V. Varzhel, A. I. Gribaev, A. V. Kulikov, I. K. Meshkovskiy, M. Rothhardt, T. Elsmann, M. Becker, and H. Bartelt, “UV-transparent fluoropolymer fiber coating for the inscription of chirped Bragg gratings arrays,” Opt. Laser Technol. 89, 173–178 (2017).
[Crossref]

Kusaka, K.

H. Okamoto and K. Kusaka, “Low Loss Plasmonic Bragg Gratings with a Trench Plasmonic Waveguide,” Plasmonics 12(5), 1481–1485 (2017).
[Crossref]

Lee, H. K.

S. H. Park, J. K. Seo, J. Park, H. K. Lee, J. S. Shin, and M. C. Oh, “Transmission type tunable wavelength filters based on polymer waveguide Bragg reflectors,” Opt. Commun. 362, 96–100 (2016).
[Crossref]

Lee, W. J.

Li, J.

Q. q. Wang, X. Zhang, and J. Li, “Synthesis and evaluation of organic–Inorganic hybrid molecularly imprinted monolith column for selective recognition of acephate and phosphamidon in Vegetables,” Adv. Polym. Technol. 36, 21620 (2015).

Liu, C.

L. y. Wu, L. Pei, C. Liu, and J. Wang, “Research on tunable phase shift induced by piezoelectric transducer in linearly chirped fiber Bragg grating with the V-I transmission matrix formalism,” Opt. Laser Technol. 79, 15–19 (2016).
[Crossref]

Liu, D.

Z. y. Zhang, A. M. Novo, D. Liu, N. Keil, and N. Grote, “Compact and tunable silicon nitride Bragg grating filters in polymer,” Opt. Commun. 321, 23–27 (2014).
[Crossref]

Liu, Q.

Liu, W.-F.

H. Y. Chang, Y. C. Chang, H. J. Sheng, M.-Y. Fu, W.-F. Liu, and R. Kashyap, “An Ultra-Sensitive Liquid-Level Indicator Based on an Etched Chirped-Fiber Bragg Grating,” IEEE Photonics Technol. Lett. 28(3), 268–271 (2016).
[Crossref]

Malitson, I. H.

Markowski, K.

Menna, C.

G. Roviello, C. Menna, O. Tarallo, L. Ricciotti, F. Messina, C. Ferone, D. Asprone, and R. Cioffi, “G.a Roviello, C. Menna, O. Tarallo, “Lightweight geopolymer-based hybrid materials,” Compos., Part B Eng. 128, 225–237 (2017).
[Crossref]

Meshkovskiy, I. K.

A. V. Tokarev, G. G. Anchutkin, S. V. Varzhel, A. I. Gribaev, A. V. Kulikov, I. K. Meshkovskiy, M. Rothhardt, T. Elsmann, M. Becker, and H. Bartelt, “UV-transparent fluoropolymer fiber coating for the inscription of chirped Bragg gratings arrays,” Opt. Laser Technol. 89, 173–178 (2017).
[Crossref]

Messaddeq, Y.

C. M. S. Vicente, E. Pecoraro, R. A. S. Ferreira, P. S. Andre, R. Nogueira, Y. Messaddeq, S. J. L. Ribeiro, and L. D. Carlos, “Waveguides and gratings fabrication in zirconium-based organic/inorganic hybrids,” J. Sol-Gel Sci. Technol. 48, 80–85 (2008).

Messina, F.

G. Roviello, C. Menna, O. Tarallo, L. Ricciotti, F. Messina, C. Ferone, D. Asprone, and R. Cioffi, “G.a Roviello, C. Menna, O. Tarallo, “Lightweight geopolymer-based hybrid materials,” Compos., Part B Eng. 128, 225–237 (2017).
[Crossref]

Morandotti, R.

Nielsen, F. K.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. H. Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Nogueira, R.

C. M. S. Vicente, E. Pecoraro, R. A. S. Ferreira, P. S. Andre, R. Nogueira, Y. Messaddeq, S. J. L. Ribeiro, and L. D. Carlos, “Waveguides and gratings fabrication in zirconium-based organic/inorganic hybrids,” J. Sol-Gel Sci. Technol. 48, 80–85 (2008).

Novo, A. M.

Z. y. Zhang, A. M. Novo, D. Liu, N. Keil, and N. Grote, “Compact and tunable silicon nitride Bragg grating filters in polymer,” Opt. Commun. 321, 23–27 (2014).
[Crossref]

Oh, M. C.

S. H. Park, J. K. Seo, J. Park, H. K. Lee, J. S. Shin, and M. C. Oh, “Transmission type tunable wavelength filters based on polymer waveguide Bragg reflectors,” Opt. Commun. 362, 96–100 (2016).
[Crossref]

G. Huang, J. S. Shin, W. J. Lee, T. H. Park, W. S. Chu, and M. C. Oh, “Surface relief apodized grating tunable filters produced by using a shadow mask,” Opt. Express 23(16), 21090–21096 (2015).
[Crossref] [PubMed]

Okamoto, H.

H. Okamoto and K. Kusaka, “Low Loss Plasmonic Bragg Gratings with a Trench Plasmonic Waveguide,” Plasmonics 12(5), 1481–1485 (2017).
[Crossref]

Osuch, T.

Park, J.

S. H. Park, J. K. Seo, J. Park, H. K. Lee, J. S. Shin, and M. C. Oh, “Transmission type tunable wavelength filters based on polymer waveguide Bragg reflectors,” Opt. Commun. 362, 96–100 (2016).
[Crossref]

Park, M. K.

Park, S. H.

S. H. Park, J. K. Seo, J. Park, H. K. Lee, J. S. Shin, and M. C. Oh, “Transmission type tunable wavelength filters based on polymer waveguide Bragg reflectors,” Opt. Commun. 362, 96–100 (2016).
[Crossref]

Park, T. H.

Pecoraro, E.

C. M. S. Vicente, E. Pecoraro, R. A. S. Ferreira, P. S. Andre, R. Nogueira, Y. Messaddeq, S. J. L. Ribeiro, and L. D. Carlos, “Waveguides and gratings fabrication in zirconium-based organic/inorganic hybrids,” J. Sol-Gel Sci. Technol. 48, 80–85 (2008).

Pei, L.

L. y. Wu, L. Pei, C. Liu, and J. Wang, “Research on tunable phase shift induced by piezoelectric transducer in linearly chirped fiber Bragg grating with the V-I transmission matrix formalism,” Opt. Laser Technol. 79, 15–19 (2016).
[Crossref]

Peters, K.

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Behaviour of intrinsic polymer optical fibre sensor for large-strain applications,” Meas. Sci. Technol. 18(10), 3144–3154 (2007).
[Crossref]

Porzi, C.

Rasmussen, N. H.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. H. Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Rastogi, V.

G. Semwal and V. Rastogi, “Design optimization of long period waveguide grating devices for refractive index sensing using adaptive particle swarm optimization,” Opt. Commun. 359, 336–343 (2016).
[Crossref]

Ribeiro, S. J. L.

C. M. S. Vicente, E. Pecoraro, R. A. S. Ferreira, P. S. Andre, R. Nogueira, Y. Messaddeq, S. J. L. Ribeiro, and L. D. Carlos, “Waveguides and gratings fabrication in zirconium-based organic/inorganic hybrids,” J. Sol-Gel Sci. Technol. 48, 80–85 (2008).

Ricciotti, L.

G. Roviello, C. Menna, O. Tarallo, L. Ricciotti, F. Messina, C. Ferone, D. Asprone, and R. Cioffi, “G.a Roviello, C. Menna, O. Tarallo, “Lightweight geopolymer-based hybrid materials,” Compos., Part B Eng. 128, 225–237 (2017).
[Crossref]

Rose, B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. H. Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Rothhardt, M.

A. V. Tokarev, G. G. Anchutkin, S. V. Varzhel, A. I. Gribaev, A. V. Kulikov, I. K. Meshkovskiy, M. Rothhardt, T. Elsmann, M. Becker, and H. Bartelt, “UV-transparent fluoropolymer fiber coating for the inscription of chirped Bragg gratings arrays,” Opt. Laser Technol. 89, 173–178 (2017).
[Crossref]

T. Tiess, C. Chojetzki, M. Rothhardt, H. Bartelt, and M. Jäger, “Fiber-integrated concept to electrically tune pulsed fiber lasers based on step-chirped fiber Bragg grating arrays,” Opt. Express 23(15), 19634–19645 (2015).
[Crossref] [PubMed]

Roviello, G.

G. Roviello, C. Menna, O. Tarallo, L. Ricciotti, F. Messina, C. Ferone, D. Asprone, and R. Cioffi, “G.a Roviello, C. Menna, O. Tarallo, “Lightweight geopolymer-based hybrid materials,” Compos., Part B Eng. 128, 225–237 (2017).
[Crossref]

Sala, G.

P. Bettini, E. Guerreschi, and G. Sala, “Development and experimental validation of a numerical tool for structural health and usage monitoring systems based on chirped grating sensors,” Sensors (Basel) 15(1), 1321–1341 (2015).
[Crossref] [PubMed]

Schade, W.

Semwal, G.

G. Semwal and V. Rastogi, “Design optimization of long period waveguide grating devices for refractive index sensing using adaptive particle swarm optimization,” Opt. Commun. 359, 336–343 (2016).
[Crossref]

Seo, J. K.

S. H. Park, J. K. Seo, J. Park, H. K. Lee, J. S. Shin, and M. C. Oh, “Transmission type tunable wavelength filters based on polymer waveguide Bragg reflectors,” Opt. Commun. 362, 96–100 (2016).
[Crossref]

Serafino, G.

Sheng, H. J.

H. Y. Chang, Y. C. Chang, H. J. Sheng, M.-Y. Fu, W.-F. Liu, and R. Kashyap, “An Ultra-Sensitive Liquid-Level Indicator Based on an Etched Chirped-Fiber Bragg Grating,” IEEE Photonics Technol. Lett. 28(3), 268–271 (2016).
[Crossref]

Shi, Z.

Y. Gu, C. Chen, Y. Zheng, Z. Shi, X. Wang, Y. Yi, T. Jiang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “Heat-induced multimode interference variable optical attenuator based on novel organic-inorganic hybrid materials,” J. Opt. 17(8), 1–9 (2015).
[Crossref]

Shin, J. S.

S. H. Park, J. K. Seo, J. Park, H. K. Lee, J. S. Shin, and M. C. Oh, “Transmission type tunable wavelength filters based on polymer waveguide Bragg reflectors,” Opt. Commun. 362, 96–100 (2016).
[Crossref]

G. Huang, J. S. Shin, W. J. Lee, T. H. Park, W. S. Chu, and M. C. Oh, “Surface relief apodized grating tunable filters produced by using a shadow mask,” Opt. Express 23(16), 21090–21096 (2015).
[Crossref] [PubMed]

Sima, C.

P. A. Cooper, L. G. Carpenter, C. Holmes, C. Sima, J. C. Gates, and P. G. R. Smith, “Power-Efficiency enhanced thermally tunable Bragg grating for silica-on-silicon photonics,” IEEE Photonics J. 7(2), 1 (2015).
[Crossref]

Smith, P. G. R.

P. A. Cooper, L. G. Carpenter, C. Holmes, C. Sima, J. C. Gates, and P. G. R. Smith, “Power-Efficiency enhanced thermally tunable Bragg grating for silica-on-silicon photonics,” IEEE Photonics J. 7(2), 1 (2015).
[Crossref]

Sorel, M.

Sørensen, O. B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. H. Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Stefani, A.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. H. Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Strain, M. J.

Sun, X.

Y. Gu, C. Chen, Y. Zheng, Z. Shi, X. Wang, Y. Yi, T. Jiang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “Heat-induced multimode interference variable optical attenuator based on novel organic-inorganic hybrid materials,” J. Opt. 17(8), 1–9 (2015).
[Crossref]

Sun, X. Q.

Tarallo, O.

G. Roviello, C. Menna, O. Tarallo, L. Ricciotti, F. Messina, C. Ferone, D. Asprone, and R. Cioffi, “G.a Roviello, C. Menna, O. Tarallo, “Lightweight geopolymer-based hybrid materials,” Compos., Part B Eng. 128, 225–237 (2017).
[Crossref]

Tehranchi, A.

Thiel, M.

Tiess, T.

Tokarev, A. V.

A. V. Tokarev, G. G. Anchutkin, S. V. Varzhel, A. I. Gribaev, A. V. Kulikov, I. K. Meshkovskiy, M. Rothhardt, T. Elsmann, M. Becker, and H. Bartelt, “UV-transparent fluoropolymer fiber coating for the inscription of chirped Bragg gratings arrays,” Opt. Laser Technol. 89, 173–178 (2017).
[Crossref]

Triki, H.

A. Hessainiaa, S. El-Akrmi, and H. Triki, “Analysis of fiber Bragg grating with exponential–linear and parabolic taper profiles for dispersion slope compensation in optical fiber links,” Optik (Stuttg.) 125(17), 4642–4645 (2014).
[Crossref]

Varzhel, S. V.

A. V. Tokarev, G. G. Anchutkin, S. V. Varzhel, A. I. Gribaev, A. V. Kulikov, I. K. Meshkovskiy, M. Rothhardt, T. Elsmann, M. Becker, and H. Bartelt, “UV-transparent fluoropolymer fiber coating for the inscription of chirped Bragg gratings arrays,” Opt. Laser Technol. 89, 173–178 (2017).
[Crossref]

Velha, P.

Vicente, C. M. S.

C. M. S. Vicente, E. Pecoraro, R. A. S. Ferreira, P. S. Andre, R. Nogueira, Y. Messaddeq, S. J. L. Ribeiro, and L. D. Carlos, “Waveguides and gratings fabrication in zirconium-based organic/inorganic hybrids,” J. Sol-Gel Sci. Technol. 48, 80–85 (2008).

Wang, F.

Y. Gu, C. Chen, Y. Zheng, Z. Shi, X. Wang, Y. Yi, T. Jiang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “Heat-induced multimode interference variable optical attenuator based on novel organic-inorganic hybrid materials,” J. Opt. 17(8), 1–9 (2015).
[Crossref]

Y. F. Yan, C. T. Zheng, X. Q. Sun, F. Wang, and D. M. Zhang, “Fast response 2×2 thermo-optic switch with polymer/silica hybrid waveguide,” Chin. Opt. Lett. 10(9), 092501 (2012).
[Crossref]

Wang, J.

X. y. Jia, Z. y. Hu, Y. Zhu, T. Weng, J. Wang, J. Zhang, and Y. Zhu, “Facile synthesis of organic-inorganic hybrid perovskite CH3NH3PbI3 microcrystals,” J. Alloys Compd. 725, 270–274 (2017).
[Crossref]

L. y. Wu, L. Pei, C. Liu, and J. Wang, “Research on tunable phase shift induced by piezoelectric transducer in linearly chirped fiber Bragg grating with the V-I transmission matrix formalism,” Opt. Laser Technol. 79, 15–19 (2016).
[Crossref]

Wang, Q. q.

Q. q. Wang, X. Zhang, and J. Li, “Synthesis and evaluation of organic–Inorganic hybrid molecularly imprinted monolith column for selective recognition of acephate and phosphamidon in Vegetables,” Adv. Polym. Technol. 36, 21620 (2015).

Wang, X.

Y. Gu, C. Chen, Y. Zheng, Z. Shi, X. Wang, Y. Yi, T. Jiang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “Heat-induced multimode interference variable optical attenuator based on novel organic-inorganic hybrid materials,” J. Opt. 17(8), 1–9 (2015).
[Crossref]

Weng, T.

X. y. Jia, Z. y. Hu, Y. Zhu, T. Weng, J. Wang, J. Zhang, and Y. Zhu, “Facile synthesis of organic-inorganic hybrid perovskite CH3NH3PbI3 microcrystals,” J. Alloys Compd. 725, 270–274 (2017).
[Crossref]

Wu, L. y.

L. y. Wu, L. Pei, C. Liu, and J. Wang, “Research on tunable phase shift induced by piezoelectric transducer in linearly chirped fiber Bragg grating with the V-I transmission matrix formalism,” Opt. Laser Technol. 79, 15–19 (2016).
[Crossref]

Wu, S.

J. Feng, X. Zhang, S. Wu, H. Xiong, F. Gao, Z. Zhuang, and X. Yuan, “Configuration with four chirped volume Bragg gratings in parallel combination for large dispersion applications,” Opt. Eng. 54(5), 056105 (2015).
[Crossref]

Xiong, H.

J. Feng, X. Zhang, S. Wu, H. Xiong, F. Gao, Z. Zhuang, and X. Yuan, “Configuration with four chirped volume Bragg gratings in parallel combination for large dispersion applications,” Opt. Eng. 54(5), 056105 (2015).
[Crossref]

Yan, Y. F.

Yang, Z.

Z. Yang, C. m. Chen, and Y. l. Gu, “Metal-cladding directly defined active integrated optical waveguide device based on erbium-containing polymer,” RSC Advances 6, 3224–3230 (2015).

Yao, J.

Yi, Y.

Y. Gu, C. Chen, Y. Zheng, Z. Shi, X. Wang, Y. Yi, T. Jiang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “Heat-induced multimode interference variable optical attenuator based on novel organic-inorganic hybrid materials,” J. Opt. 17(8), 1–9 (2015).
[Crossref]

Yuan, W.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. H. Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Yuan, X.

J. Feng, X. Zhang, S. Wu, H. Xiong, F. Gao, Z. Zhuang, and X. Yuan, “Configuration with four chirped volume Bragg gratings in parallel combination for large dispersion applications,” Opt. Eng. 54(5), 056105 (2015).
[Crossref]

Yun, B.

Zhang, D.

Y. Gu, C. Chen, Y. Zheng, Z. Shi, X. Wang, Y. Yi, T. Jiang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “Heat-induced multimode interference variable optical attenuator based on novel organic-inorganic hybrid materials,” J. Opt. 17(8), 1–9 (2015).
[Crossref]

Zhang, D. M.

Zhang, J.

X. y. Jia, Z. y. Hu, Y. Zhu, T. Weng, J. Wang, J. Zhang, and Y. Zhu, “Facile synthesis of organic-inorganic hybrid perovskite CH3NH3PbI3 microcrystals,” J. Alloys Compd. 725, 270–274 (2017).
[Crossref]

Zhang, R.

Zhang, W.

Zhang, X.

J. Feng, X. Zhang, S. Wu, H. Xiong, F. Gao, Z. Zhuang, and X. Yuan, “Configuration with four chirped volume Bragg gratings in parallel combination for large dispersion applications,” Opt. Eng. 54(5), 056105 (2015).
[Crossref]

Q. q. Wang, X. Zhang, and J. Li, “Synthesis and evaluation of organic–Inorganic hybrid molecularly imprinted monolith column for selective recognition of acephate and phosphamidon in Vegetables,” Adv. Polym. Technol. 36, 21620 (2015).

Zhang, Z. y.

Z. y. Zhang, A. M. Novo, D. Liu, N. Keil, and N. Grote, “Compact and tunable silicon nitride Bragg grating filters in polymer,” Opt. Commun. 321, 23–27 (2014).
[Crossref]

Zheng, C. T.

Zheng, Y.

Y. Gu, C. Chen, Y. Zheng, Z. Shi, X. Wang, Y. Yi, T. Jiang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “Heat-induced multimode interference variable optical attenuator based on novel organic-inorganic hybrid materials,” J. Opt. 17(8), 1–9 (2015).
[Crossref]

Zhu, Y.

X. y. Jia, Z. y. Hu, Y. Zhu, T. Weng, J. Wang, J. Zhang, and Y. Zhu, “Facile synthesis of organic-inorganic hybrid perovskite CH3NH3PbI3 microcrystals,” J. Alloys Compd. 725, 270–274 (2017).
[Crossref]

X. y. Jia, Z. y. Hu, Y. Zhu, T. Weng, J. Wang, J. Zhang, and Y. Zhu, “Facile synthesis of organic-inorganic hybrid perovskite CH3NH3PbI3 microcrystals,” J. Alloys Compd. 725, 270–274 (2017).
[Crossref]

Zhuang, Z.

J. Feng, X. Zhang, S. Wu, H. Xiong, F. Gao, Z. Zhuang, and X. Yuan, “Configuration with four chirped volume Bragg gratings in parallel combination for large dispersion applications,” Opt. Eng. 54(5), 056105 (2015).
[Crossref]

Adv. Polym. Technol. (1)

Q. q. Wang, X. Zhang, and J. Li, “Synthesis and evaluation of organic–Inorganic hybrid molecularly imprinted monolith column for selective recognition of acephate and phosphamidon in Vegetables,” Adv. Polym. Technol. 36, 21620 (2015).

Appl. Opt. (2)

Chin. Opt. Lett. (1)

Compos., Part B Eng. (1)

G. Roviello, C. Menna, O. Tarallo, L. Ricciotti, F. Messina, C. Ferone, D. Asprone, and R. Cioffi, “G.a Roviello, C. Menna, O. Tarallo, “Lightweight geopolymer-based hybrid materials,” Compos., Part B Eng. 128, 225–237 (2017).
[Crossref]

Curr. Appl. Phys. (1)

T. A. Hamdalla, “Wavelength profiles of nonlinear irradiated apodized chirped Bragg grating,” Curr. Appl. Phys. 13(3), 533–536 (2013).
[Crossref]

IEEE Photonics J. (1)

P. A. Cooper, L. G. Carpenter, C. Holmes, C. Sima, J. C. Gates, and P. G. R. Smith, “Power-Efficiency enhanced thermally tunable Bragg grating for silica-on-silicon photonics,” IEEE Photonics J. 7(2), 1 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. Y. Chang, Y. C. Chang, H. J. Sheng, M.-Y. Fu, W.-F. Liu, and R. Kashyap, “An Ultra-Sensitive Liquid-Level Indicator Based on an Etched Chirped-Fiber Bragg Grating,” IEEE Photonics Technol. Lett. 28(3), 268–271 (2016).
[Crossref]

J. Alloys Compd. (1)

X. y. Jia, Z. y. Hu, Y. Zhu, T. Weng, J. Wang, J. Zhang, and Y. Zhu, “Facile synthesis of organic-inorganic hybrid perovskite CH3NH3PbI3 microcrystals,” J. Alloys Compd. 725, 270–274 (2017).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. (1)

Y. Gu, C. Chen, Y. Zheng, Z. Shi, X. Wang, Y. Yi, T. Jiang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “Heat-induced multimode interference variable optical attenuator based on novel organic-inorganic hybrid materials,” J. Opt. 17(8), 1–9 (2015).
[Crossref]

J. Opt. Soc. Am. (1)

J. Sol-Gel Sci. Technol. (1)

C. M. S. Vicente, E. Pecoraro, R. A. S. Ferreira, P. S. Andre, R. Nogueira, Y. Messaddeq, S. J. L. Ribeiro, and L. D. Carlos, “Waveguides and gratings fabrication in zirconium-based organic/inorganic hybrids,” J. Sol-Gel Sci. Technol. 48, 80–85 (2008).

Meas. Sci. Technol. (1)

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Behaviour of intrinsic polymer optical fibre sensor for large-strain applications,” Meas. Sci. Technol. 18(10), 3144–3154 (2007).
[Crossref]

Opt. Commun. (4)

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. H. Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

G. Semwal and V. Rastogi, “Design optimization of long period waveguide grating devices for refractive index sensing using adaptive particle swarm optimization,” Opt. Commun. 359, 336–343 (2016).
[Crossref]

Z. y. Zhang, A. M. Novo, D. Liu, N. Keil, and N. Grote, “Compact and tunable silicon nitride Bragg grating filters in polymer,” Opt. Commun. 321, 23–27 (2014).
[Crossref]

S. H. Park, J. K. Seo, J. Park, H. K. Lee, J. S. Shin, and M. C. Oh, “Transmission type tunable wavelength filters based on polymer waveguide Bragg reflectors,” Opt. Commun. 362, 96–100 (2016).
[Crossref]

Opt. Eng. (1)

J. Feng, X. Zhang, S. Wu, H. Xiong, F. Gao, Z. Zhuang, and X. Yuan, “Configuration with four chirped volume Bragg gratings in parallel combination for large dispersion applications,” Opt. Eng. 54(5), 056105 (2015).
[Crossref]

Opt. Express (4)

Opt. Laser Technol. (2)

A. V. Tokarev, G. G. Anchutkin, S. V. Varzhel, A. I. Gribaev, A. V. Kulikov, I. K. Meshkovskiy, M. Rothhardt, T. Elsmann, M. Becker, and H. Bartelt, “UV-transparent fluoropolymer fiber coating for the inscription of chirped Bragg gratings arrays,” Opt. Laser Technol. 89, 173–178 (2017).
[Crossref]

L. y. Wu, L. Pei, C. Liu, and J. Wang, “Research on tunable phase shift induced by piezoelectric transducer in linearly chirped fiber Bragg grating with the V-I transmission matrix formalism,” Opt. Laser Technol. 79, 15–19 (2016).
[Crossref]

Opt. Lett. (3)

Optik (Stuttg.) (1)

A. Hessainiaa, S. El-Akrmi, and H. Triki, “Analysis of fiber Bragg grating with exponential–linear and parabolic taper profiles for dispersion slope compensation in optical fiber links,” Optik (Stuttg.) 125(17), 4642–4645 (2014).
[Crossref]

Photonics Journal (1)

P. A. Cooper, L. G. Carpenter, and C. Holmes, “Power-Efficiency Enhanced Thermally Tunable Bragg Grating for Silica-on-Silicon Photonics,” Photonics Journal 7, 7800411 (2015).

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Plasmonics (1)

H. Okamoto and K. Kusaka, “Low Loss Plasmonic Bragg Gratings with a Trench Plasmonic Waveguide,” Plasmonics 12(5), 1481–1485 (2017).
[Crossref]

RSC Advances (1)

Z. Yang, C. m. Chen, and Y. l. Gu, “Metal-cladding directly defined active integrated optical waveguide device based on erbium-containing polymer,” RSC Advances 6, 3224–3230 (2015).

Sensors (Basel) (1)

P. Bettini, E. Guerreschi, and G. Sala, “Development and experimental validation of a numerical tool for structural health and usage monitoring systems based on chirped grating sensors,” Sensors (Basel) 15(1), 1321–1341 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Synthesis process of the organic-inorganic hybrid PMMA material.
Fig. 2
Fig. 2 FTIR spectra of the organic-inorganic hybrid material contrast to pure PMMA.
Fig. 3
Fig. 3 DSC curves of the hybrid PMMA with only epoxy cross-linking and with extra SiO2 networks.
Fig. 4
Fig. 4 The structure of the chirped gratings (a) Schematic diagram of metal-print-defining chirped waveguide Bragg gratings (b) Cross-sectional profile of the waveguide designed.
Fig. 5
Fig. 5 The relationship between the core thickness b and TM mode effective refractive indices of (a) Ncore and (b) Nclad for resonant wavelengths; (c) The absorption loss curves for different metal claddings (Au and Al) simulated.
Fig. 6
Fig. 6 Optical and thermal field simulated (a) Optical field distribution for the TM waveguide (b) thermal field distribution in the waveguide cross-section.
Fig. 7
Fig. 7 The simulating performances of the chirped gratings (a) Reflection spectrum (red) and group time delay (blue) (b) Reflection spectrum (red) and dispersion curve (c) Tunable resonant wavelengths of the chirped grating.
Fig. 8
Fig. 8 The profiles of the chirped waveguide gratings (a) Structural patterns of CBWG region observed by microscope ( × 500) (b) Surface profile of the Au cladding layer measured by AFM.
Fig. 9
Fig. 9 The schematic diagrams of the measurement system.
Fig. 10
Fig. 10 Functional characteristics of the actual CBWG device (a) TO tunable reflection spectrum (b) TO switching response curves.

Tables (1)

Tables Icon

Table 1 Parameters of the waveguide materials

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Λ(z)= Λ 0 C Λ 0 2 π L 2 z
F= F M F M1 F i F 1 , R= | S 21 S 11 | 2 F i =[ s 11 s 12 s 21 s 22 ]
s 11 =cosh[s( z i+1 z i )]j σ s sinh[s( z i+1 z i )] s 12 =j κ s sinh[s( z i+1 z i )] s 21 =j κ s sinh[s( z i+1 z i )] s 22 =cosh[s( z i+1 z i )]+j σ s sinh[s( z i+1 z i )]i=1,2,,M
Φ(z)=C z 2 L 2 , σ =δ+σ- dΦ dz , s(z)= κ 2 σ 2 δ=2π n eff (z)( 1 λ 1 λ B (z) ), σ= 2π λ δ neff ¯ ,κ= π λ δ neff ¯
τ(λ)= λ 2 2πc dθ dλ , D(λ)= dτ dλ

Metrics