Abstract

Fluorite-type SrF2:Er powders were synthesized by using a co-precipitation from the aqueous solution technique. X-ray powder diffraction, scanning electron microscopy, absorption and luminescence spectroscopy were used to characterize the samples. For the first time upconversion luminescence of SrF2:Er powders in the visible and near-infrared spectral region upon excitation of 4I13/2 level Er3+ ions was investigated. The decrease in the slopes of the visible upconversion luminescence with increasing excitation power density and concentration of Er3+ ions were experimentally observed and discussed. The most intensive visible luminescence was obtained for SrF2:Er (8.8%) with a maximum quantum yield of 0.19%. Chromaticity coordinates and color temperature of yellow-green upconversion luminescence of SrF2:Er were calculated.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multifunctional nanoheater based on NaGdF4:Yb3+, Er3+ upconversion nanoparticles

Qiyue Shao, Lilai Ouyang, Lifei Jin, and Jianqing Jiang
Opt. Express 23(23) 30057-30066 (2015)

Preparation and upconversion emission enhancement of SiO2 coated YbPO4: Er3+ inverse opals with Ag nanoparticles

Jun Li, Zhengwen Yang, Zhuangzhuang Chai, Jianbei Qiu, and Zhiguo Song
Opt. Mater. Express 7(10) 3503-3516 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Gnach, T. Lipinski, A. Bednarkiewicz, J. Rybka, and J. A. Capobianco, “Upconverting nanoparticles: assessing the toxicity,” Chem. Soc. Rev. 44(6), 1561–1584 (2015).
    [Crossref] [PubMed]
  2. D. Jaque, C. Richard, B. Viana, K. Soga, X. Liu, and J. G. Solé, “Inorganic nanoparticles for optical bioimaging,” Adv. Opt. Photonics 8(1), 1–103 (2016).
    [Crossref]
  3. D. V. Pominova, A. V. Ryabova, K. G. Linkov, I. D. Romanishkin, S. V. Kuznetsov, J. A. Rozhnova, V. I. Konov, and V. B. Loschenov, “Pulsed periodic laser excitation of upconversion luminescence for deep biotissue visualization,” Laser Phys. 26(8), 084001 (2016).
    [Crossref]
  4. J. M. Meruga, W. M. Cross, P. Stanley May, Q. Luu, G. A. Crawford, and J. J. Kellar, “Security printing of covert quick response codes using upconverting nanoparticle inks,” Nanotechnology 23(39), 395201 (2012).
    [Crossref] [PubMed]
  5. J. Zhang, X. Li, and G. Chen, “Upconversion luminescence of Ba9Y2Si6O24:Yb3+-Ln3+ (Ln=Er, Ho, and Tm) phosphors for temperature sensing,” J. Mater. Chem. Phys. 206, 40–47 (2018).
    [Crossref]
  6. P. Du, A. M. Deng, L. Luo, and J. S. Yu, “Simultaneous phase and size manipulation in NaYF4:Er3+/Yb3+ upconverting nanoparticles for non-invasion optical thermometer,” New J. Chem. 41(22), 13855–13861 (2017).
    [Crossref]
  7. J. Hölsä, T. Laamanen, T. Laihinen, M. Lastusaari, L. Pihlgren, and L. C. V. Rodrigues, “White up-conversion luminescence of NaYF4:Yb3+,Pr3+,Er3+,” Opt. Mater. 36(10), 1627–1630 (2014).
    [Crossref]
  8. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–1734 (2004).
    [Crossref] [PubMed]
  9. M. Kaiser, C. Würth, M. Kraft, I. Hyppänen, T. Soukka, and U. Resch-Genger, “Power-dependent upconversion quantum yield of NaYF4:Yb3+,Er3+ nano- and micrometer-sized particles - measurements and simulations,” Nanoscale 9(28), 10051–10058 (2017).
    [Crossref] [PubMed]
  10. H. Wang, X. Yin, M. Xing, Y. Fu, Y. Tian, X. Feng, T. Jiang, and X. Luo, “Thermal effects of Er3+ / Yb3+ doped NaYF4 phosphor induced by 980 / 1510 nm laser diode irradiation,” J. Am. Ceram. Soc. 101(2), 865–873 (2018).
    [Crossref]
  11. M. Misiak, M. Skowicki, T. Lipiński, A. Kowalczyk, K. Prorok, S. Arabasz, and A. Bednarkiewicz, “Biofunctionalized upconverting CaF2:Yb, Tm nanoparticles for Candida albicans detection and imaging,” Nano Res. 10(10), 3333–3345 (2017).
    [Crossref]
  12. N. Rakov, G. S. Maciel, and M. Xiao, “Upconversion fluorescence and its thermometric sensitivity of Er3+:Yb3+ co-doped SrF2 powders prepared by combustion synthesis,” Electron. Mater. Lett. 10(5), 985–989 (2014).
    [Crossref]
  13. C. Zhang, Z. Hou, R. Chai, Z. Cheng, Z. Xu, C. Li, L. Huang, and J. Lin, “Mesoporous SrF2 and SrF2:Ln3+ (Ln=Ce, Tb, Yb, Er) hierarchical microspheres: hydrothermal synthesis, growing mechanism, and luminescent properties,” J. Phys. Chem. 114(15), 6928–6936 (2010).
  14. A. A. Lyapin, P. A. Ryabochkina, A. N. Chabushkin, S. N. Ushakov, and P. P. Fedorov, “Investigation of the mechanisms of upconversion luminescencein Ho3+ doped CaF2 crystals and ceramics upon excitation of 5I7 level,” J. Lumin. 167, 120–125 (2015).
    [Crossref]
  15. P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, V. V. Voronov, A. A. Lyapin, P. A. Ryabochkina, M. V. Chernov, M. N. Mayakova, D. V. Pominova, O. V. Uvarov, A. E. Baranchikov, V. K. Ivanov, A. A. Pynenkov, and K. N. Nishchev, “Preparation and properties of methylcellulose/nanocellulose/CaF2:Ho polymer-inorganic composite films for two-micron radiation visualizers,” J. Fluor. Chem. 202, 9–18 (2017).
    [Crossref]
  16. A. A. Lyapin, P. A. Ryabochkina, S. N. Ushakov, and P. P. Fedorov, “Visualiser of two-micron laser radiation based on Ho: CaF2 crystals,” Quantum Electron. 44(6), 602–605 (2014).
    [Crossref]
  17. A. A. Lyapin, S. V. Kuznetsov, P. A. Ryabochkina, A. P. Merculov, M. V. Chernov, Yu. A. Ermakova, A. A. Luginina, and P. P. Fedorov, “Upconversion luminescence of Ca1-xHoxF2+x and Sr0.98-xEr0.02HoxF2.02+x powders upon excitation by an infrared laser,” Laser Phys. Lett. 14(7), 076003 (2017).
    [Crossref]
  18. C. M. Verber, D. R. Grieser, and W. H. Jones., “Cooperative and sequential excitation of red fluorescence of Ho3+ in CaF2,” J. Appl. Phys. 42(7), 2767–2769 (1971).
    [Crossref]
  19. S. R. Bullock, B. R. Reddy, P. Venkateswarlu, and S. K. Nash-Stevenson, “Site-selective energy upconversion in CaF2:Ho3+,” J. Opt. Soc. Am. B 14(3), 553–559 (1997).
    [Crossref]
  20. M. B. Seelbinder and J. C. Wright, “Site-selective spectroscopy of CaF2:Ho3+,” Phys. Rev. B 20(10), 4308–4320 (1979).
    [Crossref]
  21. S. H. Tang, H. Y. Zhang, M. H. Kuok, and S. C. Kee, “Fluorescence and upconversion in CaF2:Ho3+,” Phys. Stat. Sol. B-Basic Res. 168(1), 351–360 (1991).
  22. S. Ivanova, F. Pellé, A. Tkachuk, M.-F. Joubert, Y. Guyot, and V. P. Gapontzev, “Upconversion luminescence dynamics of Er-doped fluoride crystals for optical converters,” J. Lumin. 128(5), 914–917 (2008).
    [Crossref]
  23. S. A. Pollack, D. B. Chang, and N. L. Moise, “Upconversion‐pumped infrared erbium laser,” J. Appl. Phys. 60(12), 4077–4086 (1986).
    [Crossref]
  24. S. A. Pollack and D. B. Chang, “Ion‐pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2, and CaF2 crystals,” J. Appl. Phys. 64(6), 2885–2893 (1988).
    [Crossref]
  25. J. P. Jouart and G. Mary, “Upconversion in Er3+-doped fluorite-type crystals pumped by 1.5 μm tunable diode laser,” J. Lumin. 46(1), 39–45 (1990).
    [Crossref]
  26. M. R. Brown, H. Thomas, J. S. S. Whiting, and W. A. Shand, “Experiments on Er3+ in SrF2. I. Fluorescence Quantum Efficiencies and Lifetimes,” J. Chem. Phys. 50(2), 881–890 (1969).
    [Crossref]
  27. X. Du, X. Wang, L. Meng, Y. Bu, and X. Yan, “Enhance the Er3+ upconversion luminescence by constructing NaGdF4:Er3+ @NaGdF4:Er3+ active-core/active-shell nanocrystals,” Nanoscale Res. Lett. 12(1), 163 (2017).
    [Crossref] [PubMed]
  28. H. Liu, W. Lu, H. Wang, L. Rao, Z. Yi, S. Zeng, and J. Hao, “Simultaneous synthesis and amine-functionalization of single-phase BaYF5:Yb/Er nanoprobe for dual-modal in vivo upconversion fluorescence and long-lasting X-ray computed tomography imaging,” Nanoscale 5(13), 6023–6029 (2013).
    [Crossref] [PubMed]
  29. I. Richman, “Longitudinal Optical Phonons in CaF2, SrF2, and BaF2,” J. Chem. Phys. 41(9), 2836–2837 (1964).
    [Crossref]
  30. S. A. Kazanskii, A. I. Ryskin, A. E. Nikiforov, A. Yu. Zaharov, M. Yu. Ougrumov, and G. S. Shakurov, “EPR spectra and crystal field of hexamer rare-earth clusters in fluorites,” Phys. Rev. B 72(1), 014127 (2005).
    [Crossref]
  31. P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, and V. V. Osiko, “Nanofluorides,” J. Fluor. Chem. 132(12), 1012–1039 (2011).
    [Crossref]
  32. P. P. Fedorov and B. P. Sobolev, “Concentration dependence of unit-cell parameters of phases M1-xRxF2+x with the fluorite structure,” Sov. Phys. Crystallogr. 37, 651–656 (1992).
  33. M. N. Mayakova, A. A. Luginina, S. V. Kuznetsov, V. V. Voronov, R. P. Ermakov, A. E. Baranchikov, V. K. Ivanov, O. V. Karban, and P. P. Fedorov, “Synthesis of SrF2 –YF3 nanopowders by co-precipitation from aqueous solutions,” Mendeleev Commun. 24(6), 360–362 (2014).
    [Crossref]
  34. B. P. Sobolev, K. B. Seiranian, L. S. Garashina, and P. P. Fedorov, “Phase diagrams of the SrF2-(Y,Ln)F3 system. Part 1. X-ray characteristics of phases,” J. Solid State Chem. 28(1), 51–58 (1979).
    [Crossref]
  35. M. Pollnau, D. R. Gamelin, S. R. Lűthi, H. U. Gűdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
    [Crossref]
  36. A. Kobayashi, Absolute Measurements of Photoluminescence Quantum Yields of Organic Compounds Using an Integrating Sphere (Gunma University, 2010).

2018 (2)

J. Zhang, X. Li, and G. Chen, “Upconversion luminescence of Ba9Y2Si6O24:Yb3+-Ln3+ (Ln=Er, Ho, and Tm) phosphors for temperature sensing,” J. Mater. Chem. Phys. 206, 40–47 (2018).
[Crossref]

H. Wang, X. Yin, M. Xing, Y. Fu, Y. Tian, X. Feng, T. Jiang, and X. Luo, “Thermal effects of Er3+ / Yb3+ doped NaYF4 phosphor induced by 980 / 1510 nm laser diode irradiation,” J. Am. Ceram. Soc. 101(2), 865–873 (2018).
[Crossref]

2017 (6)

M. Misiak, M. Skowicki, T. Lipiński, A. Kowalczyk, K. Prorok, S. Arabasz, and A. Bednarkiewicz, “Biofunctionalized upconverting CaF2:Yb, Tm nanoparticles for Candida albicans detection and imaging,” Nano Res. 10(10), 3333–3345 (2017).
[Crossref]

P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, V. V. Voronov, A. A. Lyapin, P. A. Ryabochkina, M. V. Chernov, M. N. Mayakova, D. V. Pominova, O. V. Uvarov, A. E. Baranchikov, V. K. Ivanov, A. A. Pynenkov, and K. N. Nishchev, “Preparation and properties of methylcellulose/nanocellulose/CaF2:Ho polymer-inorganic composite films for two-micron radiation visualizers,” J. Fluor. Chem. 202, 9–18 (2017).
[Crossref]

A. A. Lyapin, S. V. Kuznetsov, P. A. Ryabochkina, A. P. Merculov, M. V. Chernov, Yu. A. Ermakova, A. A. Luginina, and P. P. Fedorov, “Upconversion luminescence of Ca1-xHoxF2+x and Sr0.98-xEr0.02HoxF2.02+x powders upon excitation by an infrared laser,” Laser Phys. Lett. 14(7), 076003 (2017).
[Crossref]

P. Du, A. M. Deng, L. Luo, and J. S. Yu, “Simultaneous phase and size manipulation in NaYF4:Er3+/Yb3+ upconverting nanoparticles for non-invasion optical thermometer,” New J. Chem. 41(22), 13855–13861 (2017).
[Crossref]

M. Kaiser, C. Würth, M. Kraft, I. Hyppänen, T. Soukka, and U. Resch-Genger, “Power-dependent upconversion quantum yield of NaYF4:Yb3+,Er3+ nano- and micrometer-sized particles - measurements and simulations,” Nanoscale 9(28), 10051–10058 (2017).
[Crossref] [PubMed]

X. Du, X. Wang, L. Meng, Y. Bu, and X. Yan, “Enhance the Er3+ upconversion luminescence by constructing NaGdF4:Er3+ @NaGdF4:Er3+ active-core/active-shell nanocrystals,” Nanoscale Res. Lett. 12(1), 163 (2017).
[Crossref] [PubMed]

2016 (2)

D. Jaque, C. Richard, B. Viana, K. Soga, X. Liu, and J. G. Solé, “Inorganic nanoparticles for optical bioimaging,” Adv. Opt. Photonics 8(1), 1–103 (2016).
[Crossref]

D. V. Pominova, A. V. Ryabova, K. G. Linkov, I. D. Romanishkin, S. V. Kuznetsov, J. A. Rozhnova, V. I. Konov, and V. B. Loschenov, “Pulsed periodic laser excitation of upconversion luminescence for deep biotissue visualization,” Laser Phys. 26(8), 084001 (2016).
[Crossref]

2015 (2)

A. Gnach, T. Lipinski, A. Bednarkiewicz, J. Rybka, and J. A. Capobianco, “Upconverting nanoparticles: assessing the toxicity,” Chem. Soc. Rev. 44(6), 1561–1584 (2015).
[Crossref] [PubMed]

A. A. Lyapin, P. A. Ryabochkina, A. N. Chabushkin, S. N. Ushakov, and P. P. Fedorov, “Investigation of the mechanisms of upconversion luminescencein Ho3+ doped CaF2 crystals and ceramics upon excitation of 5I7 level,” J. Lumin. 167, 120–125 (2015).
[Crossref]

2014 (4)

M. N. Mayakova, A. A. Luginina, S. V. Kuznetsov, V. V. Voronov, R. P. Ermakov, A. E. Baranchikov, V. K. Ivanov, O. V. Karban, and P. P. Fedorov, “Synthesis of SrF2 –YF3 nanopowders by co-precipitation from aqueous solutions,” Mendeleev Commun. 24(6), 360–362 (2014).
[Crossref]

J. Hölsä, T. Laamanen, T. Laihinen, M. Lastusaari, L. Pihlgren, and L. C. V. Rodrigues, “White up-conversion luminescence of NaYF4:Yb3+,Pr3+,Er3+,” Opt. Mater. 36(10), 1627–1630 (2014).
[Crossref]

A. A. Lyapin, P. A. Ryabochkina, S. N. Ushakov, and P. P. Fedorov, “Visualiser of two-micron laser radiation based on Ho: CaF2 crystals,” Quantum Electron. 44(6), 602–605 (2014).
[Crossref]

N. Rakov, G. S. Maciel, and M. Xiao, “Upconversion fluorescence and its thermometric sensitivity of Er3+:Yb3+ co-doped SrF2 powders prepared by combustion synthesis,” Electron. Mater. Lett. 10(5), 985–989 (2014).
[Crossref]

2013 (1)

H. Liu, W. Lu, H. Wang, L. Rao, Z. Yi, S. Zeng, and J. Hao, “Simultaneous synthesis and amine-functionalization of single-phase BaYF5:Yb/Er nanoprobe for dual-modal in vivo upconversion fluorescence and long-lasting X-ray computed tomography imaging,” Nanoscale 5(13), 6023–6029 (2013).
[Crossref] [PubMed]

2012 (1)

J. M. Meruga, W. M. Cross, P. Stanley May, Q. Luu, G. A. Crawford, and J. J. Kellar, “Security printing of covert quick response codes using upconverting nanoparticle inks,” Nanotechnology 23(39), 395201 (2012).
[Crossref] [PubMed]

2011 (1)

P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, and V. V. Osiko, “Nanofluorides,” J. Fluor. Chem. 132(12), 1012–1039 (2011).
[Crossref]

2010 (1)

C. Zhang, Z. Hou, R. Chai, Z. Cheng, Z. Xu, C. Li, L. Huang, and J. Lin, “Mesoporous SrF2 and SrF2:Ln3+ (Ln=Ce, Tb, Yb, Er) hierarchical microspheres: hydrothermal synthesis, growing mechanism, and luminescent properties,” J. Phys. Chem. 114(15), 6928–6936 (2010).

2008 (1)

S. Ivanova, F. Pellé, A. Tkachuk, M.-F. Joubert, Y. Guyot, and V. P. Gapontzev, “Upconversion luminescence dynamics of Er-doped fluoride crystals for optical converters,” J. Lumin. 128(5), 914–917 (2008).
[Crossref]

2005 (1)

S. A. Kazanskii, A. I. Ryskin, A. E. Nikiforov, A. Yu. Zaharov, M. Yu. Ougrumov, and G. S. Shakurov, “EPR spectra and crystal field of hexamer rare-earth clusters in fluorites,” Phys. Rev. B 72(1), 014127 (2005).
[Crossref]

2004 (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–1734 (2004).
[Crossref] [PubMed]

2000 (1)

M. Pollnau, D. R. Gamelin, S. R. Lűthi, H. U. Gűdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

1997 (1)

1992 (1)

P. P. Fedorov and B. P. Sobolev, “Concentration dependence of unit-cell parameters of phases M1-xRxF2+x with the fluorite structure,” Sov. Phys. Crystallogr. 37, 651–656 (1992).

1991 (1)

S. H. Tang, H. Y. Zhang, M. H. Kuok, and S. C. Kee, “Fluorescence and upconversion in CaF2:Ho3+,” Phys. Stat. Sol. B-Basic Res. 168(1), 351–360 (1991).

1990 (1)

J. P. Jouart and G. Mary, “Upconversion in Er3+-doped fluorite-type crystals pumped by 1.5 μm tunable diode laser,” J. Lumin. 46(1), 39–45 (1990).
[Crossref]

1988 (1)

S. A. Pollack and D. B. Chang, “Ion‐pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2, and CaF2 crystals,” J. Appl. Phys. 64(6), 2885–2893 (1988).
[Crossref]

1986 (1)

S. A. Pollack, D. B. Chang, and N. L. Moise, “Upconversion‐pumped infrared erbium laser,” J. Appl. Phys. 60(12), 4077–4086 (1986).
[Crossref]

1979 (2)

M. B. Seelbinder and J. C. Wright, “Site-selective spectroscopy of CaF2:Ho3+,” Phys. Rev. B 20(10), 4308–4320 (1979).
[Crossref]

B. P. Sobolev, K. B. Seiranian, L. S. Garashina, and P. P. Fedorov, “Phase diagrams of the SrF2-(Y,Ln)F3 system. Part 1. X-ray characteristics of phases,” J. Solid State Chem. 28(1), 51–58 (1979).
[Crossref]

1971 (1)

C. M. Verber, D. R. Grieser, and W. H. Jones., “Cooperative and sequential excitation of red fluorescence of Ho3+ in CaF2,” J. Appl. Phys. 42(7), 2767–2769 (1971).
[Crossref]

1969 (1)

M. R. Brown, H. Thomas, J. S. S. Whiting, and W. A. Shand, “Experiments on Er3+ in SrF2. I. Fluorescence Quantum Efficiencies and Lifetimes,” J. Chem. Phys. 50(2), 881–890 (1969).
[Crossref]

1964 (1)

I. Richman, “Longitudinal Optical Phonons in CaF2, SrF2, and BaF2,” J. Chem. Phys. 41(9), 2836–2837 (1964).
[Crossref]

Arabasz, S.

M. Misiak, M. Skowicki, T. Lipiński, A. Kowalczyk, K. Prorok, S. Arabasz, and A. Bednarkiewicz, “Biofunctionalized upconverting CaF2:Yb, Tm nanoparticles for Candida albicans detection and imaging,” Nano Res. 10(10), 3333–3345 (2017).
[Crossref]

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–1734 (2004).
[Crossref] [PubMed]

Baranchikov, A. E.

P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, V. V. Voronov, A. A. Lyapin, P. A. Ryabochkina, M. V. Chernov, M. N. Mayakova, D. V. Pominova, O. V. Uvarov, A. E. Baranchikov, V. K. Ivanov, A. A. Pynenkov, and K. N. Nishchev, “Preparation and properties of methylcellulose/nanocellulose/CaF2:Ho polymer-inorganic composite films for two-micron radiation visualizers,” J. Fluor. Chem. 202, 9–18 (2017).
[Crossref]

M. N. Mayakova, A. A. Luginina, S. V. Kuznetsov, V. V. Voronov, R. P. Ermakov, A. E. Baranchikov, V. K. Ivanov, O. V. Karban, and P. P. Fedorov, “Synthesis of SrF2 –YF3 nanopowders by co-precipitation from aqueous solutions,” Mendeleev Commun. 24(6), 360–362 (2014).
[Crossref]

Bednarkiewicz, A.

M. Misiak, M. Skowicki, T. Lipiński, A. Kowalczyk, K. Prorok, S. Arabasz, and A. Bednarkiewicz, “Biofunctionalized upconverting CaF2:Yb, Tm nanoparticles for Candida albicans detection and imaging,” Nano Res. 10(10), 3333–3345 (2017).
[Crossref]

A. Gnach, T. Lipinski, A. Bednarkiewicz, J. Rybka, and J. A. Capobianco, “Upconverting nanoparticles: assessing the toxicity,” Chem. Soc. Rev. 44(6), 1561–1584 (2015).
[Crossref] [PubMed]

Brown, M. R.

M. R. Brown, H. Thomas, J. S. S. Whiting, and W. A. Shand, “Experiments on Er3+ in SrF2. I. Fluorescence Quantum Efficiencies and Lifetimes,” J. Chem. Phys. 50(2), 881–890 (1969).
[Crossref]

Bu, Y.

X. Du, X. Wang, L. Meng, Y. Bu, and X. Yan, “Enhance the Er3+ upconversion luminescence by constructing NaGdF4:Er3+ @NaGdF4:Er3+ active-core/active-shell nanocrystals,” Nanoscale Res. Lett. 12(1), 163 (2017).
[Crossref] [PubMed]

Bullock, S. R.

Capobianco, J. A.

A. Gnach, T. Lipinski, A. Bednarkiewicz, J. Rybka, and J. A. Capobianco, “Upconverting nanoparticles: assessing the toxicity,” Chem. Soc. Rev. 44(6), 1561–1584 (2015).
[Crossref] [PubMed]

Chabushkin, A. N.

A. A. Lyapin, P. A. Ryabochkina, A. N. Chabushkin, S. N. Ushakov, and P. P. Fedorov, “Investigation of the mechanisms of upconversion luminescencein Ho3+ doped CaF2 crystals and ceramics upon excitation of 5I7 level,” J. Lumin. 167, 120–125 (2015).
[Crossref]

Chai, R.

C. Zhang, Z. Hou, R. Chai, Z. Cheng, Z. Xu, C. Li, L. Huang, and J. Lin, “Mesoporous SrF2 and SrF2:Ln3+ (Ln=Ce, Tb, Yb, Er) hierarchical microspheres: hydrothermal synthesis, growing mechanism, and luminescent properties,” J. Phys. Chem. 114(15), 6928–6936 (2010).

Chang, D. B.

S. A. Pollack and D. B. Chang, “Ion‐pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2, and CaF2 crystals,” J. Appl. Phys. 64(6), 2885–2893 (1988).
[Crossref]

S. A. Pollack, D. B. Chang, and N. L. Moise, “Upconversion‐pumped infrared erbium laser,” J. Appl. Phys. 60(12), 4077–4086 (1986).
[Crossref]

Chen, G.

J. Zhang, X. Li, and G. Chen, “Upconversion luminescence of Ba9Y2Si6O24:Yb3+-Ln3+ (Ln=Er, Ho, and Tm) phosphors for temperature sensing,” J. Mater. Chem. Phys. 206, 40–47 (2018).
[Crossref]

Cheng, Z.

C. Zhang, Z. Hou, R. Chai, Z. Cheng, Z. Xu, C. Li, L. Huang, and J. Lin, “Mesoporous SrF2 and SrF2:Ln3+ (Ln=Ce, Tb, Yb, Er) hierarchical microspheres: hydrothermal synthesis, growing mechanism, and luminescent properties,” J. Phys. Chem. 114(15), 6928–6936 (2010).

Chernov, M. V.

P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, V. V. Voronov, A. A. Lyapin, P. A. Ryabochkina, M. V. Chernov, M. N. Mayakova, D. V. Pominova, O. V. Uvarov, A. E. Baranchikov, V. K. Ivanov, A. A. Pynenkov, and K. N. Nishchev, “Preparation and properties of methylcellulose/nanocellulose/CaF2:Ho polymer-inorganic composite films for two-micron radiation visualizers,” J. Fluor. Chem. 202, 9–18 (2017).
[Crossref]

A. A. Lyapin, S. V. Kuznetsov, P. A. Ryabochkina, A. P. Merculov, M. V. Chernov, Yu. A. Ermakova, A. A. Luginina, and P. P. Fedorov, “Upconversion luminescence of Ca1-xHoxF2+x and Sr0.98-xEr0.02HoxF2.02+x powders upon excitation by an infrared laser,” Laser Phys. Lett. 14(7), 076003 (2017).
[Crossref]

Crawford, G. A.

J. M. Meruga, W. M. Cross, P. Stanley May, Q. Luu, G. A. Crawford, and J. J. Kellar, “Security printing of covert quick response codes using upconverting nanoparticle inks,” Nanotechnology 23(39), 395201 (2012).
[Crossref] [PubMed]

Cross, W. M.

J. M. Meruga, W. M. Cross, P. Stanley May, Q. Luu, G. A. Crawford, and J. J. Kellar, “Security printing of covert quick response codes using upconverting nanoparticle inks,” Nanotechnology 23(39), 395201 (2012).
[Crossref] [PubMed]

Deng, A. M.

P. Du, A. M. Deng, L. Luo, and J. S. Yu, “Simultaneous phase and size manipulation in NaYF4:Er3+/Yb3+ upconverting nanoparticles for non-invasion optical thermometer,” New J. Chem. 41(22), 13855–13861 (2017).
[Crossref]

Du, P.

P. Du, A. M. Deng, L. Luo, and J. S. Yu, “Simultaneous phase and size manipulation in NaYF4:Er3+/Yb3+ upconverting nanoparticles for non-invasion optical thermometer,” New J. Chem. 41(22), 13855–13861 (2017).
[Crossref]

Du, X.

X. Du, X. Wang, L. Meng, Y. Bu, and X. Yan, “Enhance the Er3+ upconversion luminescence by constructing NaGdF4:Er3+ @NaGdF4:Er3+ active-core/active-shell nanocrystals,” Nanoscale Res. Lett. 12(1), 163 (2017).
[Crossref] [PubMed]

Ermakov, R. P.

M. N. Mayakova, A. A. Luginina, S. V. Kuznetsov, V. V. Voronov, R. P. Ermakov, A. E. Baranchikov, V. K. Ivanov, O. V. Karban, and P. P. Fedorov, “Synthesis of SrF2 –YF3 nanopowders by co-precipitation from aqueous solutions,” Mendeleev Commun. 24(6), 360–362 (2014).
[Crossref]

Ermakova, Yu. A.

A. A. Lyapin, S. V. Kuznetsov, P. A. Ryabochkina, A. P. Merculov, M. V. Chernov, Yu. A. Ermakova, A. A. Luginina, and P. P. Fedorov, “Upconversion luminescence of Ca1-xHoxF2+x and Sr0.98-xEr0.02HoxF2.02+x powders upon excitation by an infrared laser,” Laser Phys. Lett. 14(7), 076003 (2017).
[Crossref]

Fedorov, P. P.

A. A. Lyapin, S. V. Kuznetsov, P. A. Ryabochkina, A. P. Merculov, M. V. Chernov, Yu. A. Ermakova, A. A. Luginina, and P. P. Fedorov, “Upconversion luminescence of Ca1-xHoxF2+x and Sr0.98-xEr0.02HoxF2.02+x powders upon excitation by an infrared laser,” Laser Phys. Lett. 14(7), 076003 (2017).
[Crossref]

P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, V. V. Voronov, A. A. Lyapin, P. A. Ryabochkina, M. V. Chernov, M. N. Mayakova, D. V. Pominova, O. V. Uvarov, A. E. Baranchikov, V. K. Ivanov, A. A. Pynenkov, and K. N. Nishchev, “Preparation and properties of methylcellulose/nanocellulose/CaF2:Ho polymer-inorganic composite films for two-micron radiation visualizers,” J. Fluor. Chem. 202, 9–18 (2017).
[Crossref]

A. A. Lyapin, P. A. Ryabochkina, A. N. Chabushkin, S. N. Ushakov, and P. P. Fedorov, “Investigation of the mechanisms of upconversion luminescencein Ho3+ doped CaF2 crystals and ceramics upon excitation of 5I7 level,” J. Lumin. 167, 120–125 (2015).
[Crossref]

A. A. Lyapin, P. A. Ryabochkina, S. N. Ushakov, and P. P. Fedorov, “Visualiser of two-micron laser radiation based on Ho: CaF2 crystals,” Quantum Electron. 44(6), 602–605 (2014).
[Crossref]

M. N. Mayakova, A. A. Luginina, S. V. Kuznetsov, V. V. Voronov, R. P. Ermakov, A. E. Baranchikov, V. K. Ivanov, O. V. Karban, and P. P. Fedorov, “Synthesis of SrF2 –YF3 nanopowders by co-precipitation from aqueous solutions,” Mendeleev Commun. 24(6), 360–362 (2014).
[Crossref]

P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, and V. V. Osiko, “Nanofluorides,” J. Fluor. Chem. 132(12), 1012–1039 (2011).
[Crossref]

P. P. Fedorov and B. P. Sobolev, “Concentration dependence of unit-cell parameters of phases M1-xRxF2+x with the fluorite structure,” Sov. Phys. Crystallogr. 37, 651–656 (1992).

B. P. Sobolev, K. B. Seiranian, L. S. Garashina, and P. P. Fedorov, “Phase diagrams of the SrF2-(Y,Ln)F3 system. Part 1. X-ray characteristics of phases,” J. Solid State Chem. 28(1), 51–58 (1979).
[Crossref]

Feng, X.

H. Wang, X. Yin, M. Xing, Y. Fu, Y. Tian, X. Feng, T. Jiang, and X. Luo, “Thermal effects of Er3+ / Yb3+ doped NaYF4 phosphor induced by 980 / 1510 nm laser diode irradiation,” J. Am. Ceram. Soc. 101(2), 865–873 (2018).
[Crossref]

Fu, Y.

H. Wang, X. Yin, M. Xing, Y. Fu, Y. Tian, X. Feng, T. Jiang, and X. Luo, “Thermal effects of Er3+ / Yb3+ doped NaYF4 phosphor induced by 980 / 1510 nm laser diode irradiation,” J. Am. Ceram. Soc. 101(2), 865–873 (2018).
[Crossref]

Gamelin, D. R.

M. Pollnau, D. R. Gamelin, S. R. Lűthi, H. U. Gűdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Gapontzev, V. P.

S. Ivanova, F. Pellé, A. Tkachuk, M.-F. Joubert, Y. Guyot, and V. P. Gapontzev, “Upconversion luminescence dynamics of Er-doped fluoride crystals for optical converters,” J. Lumin. 128(5), 914–917 (2008).
[Crossref]

Garashina, L. S.

B. P. Sobolev, K. B. Seiranian, L. S. Garashina, and P. P. Fedorov, “Phase diagrams of the SrF2-(Y,Ln)F3 system. Part 1. X-ray characteristics of phases,” J. Solid State Chem. 28(1), 51–58 (1979).
[Crossref]

Gnach, A.

A. Gnach, T. Lipinski, A. Bednarkiewicz, J. Rybka, and J. A. Capobianco, “Upconverting nanoparticles: assessing the toxicity,” Chem. Soc. Rev. 44(6), 1561–1584 (2015).
[Crossref] [PubMed]

Grieser, D. R.

C. M. Verber, D. R. Grieser, and W. H. Jones., “Cooperative and sequential excitation of red fluorescence of Ho3+ in CaF2,” J. Appl. Phys. 42(7), 2767–2769 (1971).
[Crossref]

Gudel, H. U.

M. Pollnau, D. R. Gamelin, S. R. Lűthi, H. U. Gűdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Guyot, Y.

S. Ivanova, F. Pellé, A. Tkachuk, M.-F. Joubert, Y. Guyot, and V. P. Gapontzev, “Upconversion luminescence dynamics of Er-doped fluoride crystals for optical converters,” J. Lumin. 128(5), 914–917 (2008).
[Crossref]

Hao, J.

H. Liu, W. Lu, H. Wang, L. Rao, Z. Yi, S. Zeng, and J. Hao, “Simultaneous synthesis and amine-functionalization of single-phase BaYF5:Yb/Er nanoprobe for dual-modal in vivo upconversion fluorescence and long-lasting X-ray computed tomography imaging,” Nanoscale 5(13), 6023–6029 (2013).
[Crossref] [PubMed]

Hehlen, M. P.

M. Pollnau, D. R. Gamelin, S. R. Lűthi, H. U. Gűdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Hölsä, J.

J. Hölsä, T. Laamanen, T. Laihinen, M. Lastusaari, L. Pihlgren, and L. C. V. Rodrigues, “White up-conversion luminescence of NaYF4:Yb3+,Pr3+,Er3+,” Opt. Mater. 36(10), 1627–1630 (2014).
[Crossref]

Hou, Z.

C. Zhang, Z. Hou, R. Chai, Z. Cheng, Z. Xu, C. Li, L. Huang, and J. Lin, “Mesoporous SrF2 and SrF2:Ln3+ (Ln=Ce, Tb, Yb, Er) hierarchical microspheres: hydrothermal synthesis, growing mechanism, and luminescent properties,” J. Phys. Chem. 114(15), 6928–6936 (2010).

Huang, L.

C. Zhang, Z. Hou, R. Chai, Z. Cheng, Z. Xu, C. Li, L. Huang, and J. Lin, “Mesoporous SrF2 and SrF2:Ln3+ (Ln=Ce, Tb, Yb, Er) hierarchical microspheres: hydrothermal synthesis, growing mechanism, and luminescent properties,” J. Phys. Chem. 114(15), 6928–6936 (2010).

Hyppänen, I.

M. Kaiser, C. Würth, M. Kraft, I. Hyppänen, T. Soukka, and U. Resch-Genger, “Power-dependent upconversion quantum yield of NaYF4:Yb3+,Er3+ nano- and micrometer-sized particles - measurements and simulations,” Nanoscale 9(28), 10051–10058 (2017).
[Crossref] [PubMed]

Ivanov, V. K.

P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, V. V. Voronov, A. A. Lyapin, P. A. Ryabochkina, M. V. Chernov, M. N. Mayakova, D. V. Pominova, O. V. Uvarov, A. E. Baranchikov, V. K. Ivanov, A. A. Pynenkov, and K. N. Nishchev, “Preparation and properties of methylcellulose/nanocellulose/CaF2:Ho polymer-inorganic composite films for two-micron radiation visualizers,” J. Fluor. Chem. 202, 9–18 (2017).
[Crossref]

M. N. Mayakova, A. A. Luginina, S. V. Kuznetsov, V. V. Voronov, R. P. Ermakov, A. E. Baranchikov, V. K. Ivanov, O. V. Karban, and P. P. Fedorov, “Synthesis of SrF2 –YF3 nanopowders by co-precipitation from aqueous solutions,” Mendeleev Commun. 24(6), 360–362 (2014).
[Crossref]

Ivanova, S.

S. Ivanova, F. Pellé, A. Tkachuk, M.-F. Joubert, Y. Guyot, and V. P. Gapontzev, “Upconversion luminescence dynamics of Er-doped fluoride crystals for optical converters,” J. Lumin. 128(5), 914–917 (2008).
[Crossref]

Jaque, D.

D. Jaque, C. Richard, B. Viana, K. Soga, X. Liu, and J. G. Solé, “Inorganic nanoparticles for optical bioimaging,” Adv. Opt. Photonics 8(1), 1–103 (2016).
[Crossref]

Jiang, T.

H. Wang, X. Yin, M. Xing, Y. Fu, Y. Tian, X. Feng, T. Jiang, and X. Luo, “Thermal effects of Er3+ / Yb3+ doped NaYF4 phosphor induced by 980 / 1510 nm laser diode irradiation,” J. Am. Ceram. Soc. 101(2), 865–873 (2018).
[Crossref]

Jones, W. H.

C. M. Verber, D. R. Grieser, and W. H. Jones., “Cooperative and sequential excitation of red fluorescence of Ho3+ in CaF2,” J. Appl. Phys. 42(7), 2767–2769 (1971).
[Crossref]

Jouart, J. P.

J. P. Jouart and G. Mary, “Upconversion in Er3+-doped fluorite-type crystals pumped by 1.5 μm tunable diode laser,” J. Lumin. 46(1), 39–45 (1990).
[Crossref]

Joubert, M.-F.

S. Ivanova, F. Pellé, A. Tkachuk, M.-F. Joubert, Y. Guyot, and V. P. Gapontzev, “Upconversion luminescence dynamics of Er-doped fluoride crystals for optical converters,” J. Lumin. 128(5), 914–917 (2008).
[Crossref]

Kaiser, M.

M. Kaiser, C. Würth, M. Kraft, I. Hyppänen, T. Soukka, and U. Resch-Genger, “Power-dependent upconversion quantum yield of NaYF4:Yb3+,Er3+ nano- and micrometer-sized particles - measurements and simulations,” Nanoscale 9(28), 10051–10058 (2017).
[Crossref] [PubMed]

Karban, O. V.

M. N. Mayakova, A. A. Luginina, S. V. Kuznetsov, V. V. Voronov, R. P. Ermakov, A. E. Baranchikov, V. K. Ivanov, O. V. Karban, and P. P. Fedorov, “Synthesis of SrF2 –YF3 nanopowders by co-precipitation from aqueous solutions,” Mendeleev Commun. 24(6), 360–362 (2014).
[Crossref]

Kazanskii, S. A.

S. A. Kazanskii, A. I. Ryskin, A. E. Nikiforov, A. Yu. Zaharov, M. Yu. Ougrumov, and G. S. Shakurov, “EPR spectra and crystal field of hexamer rare-earth clusters in fluorites,” Phys. Rev. B 72(1), 014127 (2005).
[Crossref]

Kee, S. C.

S. H. Tang, H. Y. Zhang, M. H. Kuok, and S. C. Kee, “Fluorescence and upconversion in CaF2:Ho3+,” Phys. Stat. Sol. B-Basic Res. 168(1), 351–360 (1991).

Kellar, J. J.

J. M. Meruga, W. M. Cross, P. Stanley May, Q. Luu, G. A. Crawford, and J. J. Kellar, “Security printing of covert quick response codes using upconverting nanoparticle inks,” Nanotechnology 23(39), 395201 (2012).
[Crossref] [PubMed]

Konov, V. I.

D. V. Pominova, A. V. Ryabova, K. G. Linkov, I. D. Romanishkin, S. V. Kuznetsov, J. A. Rozhnova, V. I. Konov, and V. B. Loschenov, “Pulsed periodic laser excitation of upconversion luminescence for deep biotissue visualization,” Laser Phys. 26(8), 084001 (2016).
[Crossref]

Kowalczyk, A.

M. Misiak, M. Skowicki, T. Lipiński, A. Kowalczyk, K. Prorok, S. Arabasz, and A. Bednarkiewicz, “Biofunctionalized upconverting CaF2:Yb, Tm nanoparticles for Candida albicans detection and imaging,” Nano Res. 10(10), 3333–3345 (2017).
[Crossref]

Kraft, M.

M. Kaiser, C. Würth, M. Kraft, I. Hyppänen, T. Soukka, and U. Resch-Genger, “Power-dependent upconversion quantum yield of NaYF4:Yb3+,Er3+ nano- and micrometer-sized particles - measurements and simulations,” Nanoscale 9(28), 10051–10058 (2017).
[Crossref] [PubMed]

Kuok, M. H.

S. H. Tang, H. Y. Zhang, M. H. Kuok, and S. C. Kee, “Fluorescence and upconversion in CaF2:Ho3+,” Phys. Stat. Sol. B-Basic Res. 168(1), 351–360 (1991).

Kuznetsov, S. V.

A. A. Lyapin, S. V. Kuznetsov, P. A. Ryabochkina, A. P. Merculov, M. V. Chernov, Yu. A. Ermakova, A. A. Luginina, and P. P. Fedorov, “Upconversion luminescence of Ca1-xHoxF2+x and Sr0.98-xEr0.02HoxF2.02+x powders upon excitation by an infrared laser,” Laser Phys. Lett. 14(7), 076003 (2017).
[Crossref]

P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, V. V. Voronov, A. A. Lyapin, P. A. Ryabochkina, M. V. Chernov, M. N. Mayakova, D. V. Pominova, O. V. Uvarov, A. E. Baranchikov, V. K. Ivanov, A. A. Pynenkov, and K. N. Nishchev, “Preparation and properties of methylcellulose/nanocellulose/CaF2:Ho polymer-inorganic composite films for two-micron radiation visualizers,” J. Fluor. Chem. 202, 9–18 (2017).
[Crossref]

D. V. Pominova, A. V. Ryabova, K. G. Linkov, I. D. Romanishkin, S. V. Kuznetsov, J. A. Rozhnova, V. I. Konov, and V. B. Loschenov, “Pulsed periodic laser excitation of upconversion luminescence for deep biotissue visualization,” Laser Phys. 26(8), 084001 (2016).
[Crossref]

M. N. Mayakova, A. A. Luginina, S. V. Kuznetsov, V. V. Voronov, R. P. Ermakov, A. E. Baranchikov, V. K. Ivanov, O. V. Karban, and P. P. Fedorov, “Synthesis of SrF2 –YF3 nanopowders by co-precipitation from aqueous solutions,” Mendeleev Commun. 24(6), 360–362 (2014).
[Crossref]

P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, and V. V. Osiko, “Nanofluorides,” J. Fluor. Chem. 132(12), 1012–1039 (2011).
[Crossref]

Laamanen, T.

J. Hölsä, T. Laamanen, T. Laihinen, M. Lastusaari, L. Pihlgren, and L. C. V. Rodrigues, “White up-conversion luminescence of NaYF4:Yb3+,Pr3+,Er3+,” Opt. Mater. 36(10), 1627–1630 (2014).
[Crossref]

Laihinen, T.

J. Hölsä, T. Laamanen, T. Laihinen, M. Lastusaari, L. Pihlgren, and L. C. V. Rodrigues, “White up-conversion luminescence of NaYF4:Yb3+,Pr3+,Er3+,” Opt. Mater. 36(10), 1627–1630 (2014).
[Crossref]

Lastusaari, M.

J. Hölsä, T. Laamanen, T. Laihinen, M. Lastusaari, L. Pihlgren, and L. C. V. Rodrigues, “White up-conversion luminescence of NaYF4:Yb3+,Pr3+,Er3+,” Opt. Mater. 36(10), 1627–1630 (2014).
[Crossref]

Li, C.

C. Zhang, Z. Hou, R. Chai, Z. Cheng, Z. Xu, C. Li, L. Huang, and J. Lin, “Mesoporous SrF2 and SrF2:Ln3+ (Ln=Ce, Tb, Yb, Er) hierarchical microspheres: hydrothermal synthesis, growing mechanism, and luminescent properties,” J. Phys. Chem. 114(15), 6928–6936 (2010).

Li, X.

J. Zhang, X. Li, and G. Chen, “Upconversion luminescence of Ba9Y2Si6O24:Yb3+-Ln3+ (Ln=Er, Ho, and Tm) phosphors for temperature sensing,” J. Mater. Chem. Phys. 206, 40–47 (2018).
[Crossref]

Lin, J.

C. Zhang, Z. Hou, R. Chai, Z. Cheng, Z. Xu, C. Li, L. Huang, and J. Lin, “Mesoporous SrF2 and SrF2:Ln3+ (Ln=Ce, Tb, Yb, Er) hierarchical microspheres: hydrothermal synthesis, growing mechanism, and luminescent properties,” J. Phys. Chem. 114(15), 6928–6936 (2010).

Linkov, K. G.

D. V. Pominova, A. V. Ryabova, K. G. Linkov, I. D. Romanishkin, S. V. Kuznetsov, J. A. Rozhnova, V. I. Konov, and V. B. Loschenov, “Pulsed periodic laser excitation of upconversion luminescence for deep biotissue visualization,” Laser Phys. 26(8), 084001 (2016).
[Crossref]

Lipinski, T.

M. Misiak, M. Skowicki, T. Lipiński, A. Kowalczyk, K. Prorok, S. Arabasz, and A. Bednarkiewicz, “Biofunctionalized upconverting CaF2:Yb, Tm nanoparticles for Candida albicans detection and imaging,” Nano Res. 10(10), 3333–3345 (2017).
[Crossref]

A. Gnach, T. Lipinski, A. Bednarkiewicz, J. Rybka, and J. A. Capobianco, “Upconverting nanoparticles: assessing the toxicity,” Chem. Soc. Rev. 44(6), 1561–1584 (2015).
[Crossref] [PubMed]

Liu, H.

H. Liu, W. Lu, H. Wang, L. Rao, Z. Yi, S. Zeng, and J. Hao, “Simultaneous synthesis and amine-functionalization of single-phase BaYF5:Yb/Er nanoprobe for dual-modal in vivo upconversion fluorescence and long-lasting X-ray computed tomography imaging,” Nanoscale 5(13), 6023–6029 (2013).
[Crossref] [PubMed]

Liu, X.

D. Jaque, C. Richard, B. Viana, K. Soga, X. Liu, and J. G. Solé, “Inorganic nanoparticles for optical bioimaging,” Adv. Opt. Photonics 8(1), 1–103 (2016).
[Crossref]

Loschenov, V. B.

D. V. Pominova, A. V. Ryabova, K. G. Linkov, I. D. Romanishkin, S. V. Kuznetsov, J. A. Rozhnova, V. I. Konov, and V. B. Loschenov, “Pulsed periodic laser excitation of upconversion luminescence for deep biotissue visualization,” Laser Phys. 26(8), 084001 (2016).
[Crossref]

Lu, W.

H. Liu, W. Lu, H. Wang, L. Rao, Z. Yi, S. Zeng, and J. Hao, “Simultaneous synthesis and amine-functionalization of single-phase BaYF5:Yb/Er nanoprobe for dual-modal in vivo upconversion fluorescence and long-lasting X-ray computed tomography imaging,” Nanoscale 5(13), 6023–6029 (2013).
[Crossref] [PubMed]

Luginina, A. A.

P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, V. V. Voronov, A. A. Lyapin, P. A. Ryabochkina, M. V. Chernov, M. N. Mayakova, D. V. Pominova, O. V. Uvarov, A. E. Baranchikov, V. K. Ivanov, A. A. Pynenkov, and K. N. Nishchev, “Preparation and properties of methylcellulose/nanocellulose/CaF2:Ho polymer-inorganic composite films for two-micron radiation visualizers,” J. Fluor. Chem. 202, 9–18 (2017).
[Crossref]

A. A. Lyapin, S. V. Kuznetsov, P. A. Ryabochkina, A. P. Merculov, M. V. Chernov, Yu. A. Ermakova, A. A. Luginina, and P. P. Fedorov, “Upconversion luminescence of Ca1-xHoxF2+x and Sr0.98-xEr0.02HoxF2.02+x powders upon excitation by an infrared laser,” Laser Phys. Lett. 14(7), 076003 (2017).
[Crossref]

M. N. Mayakova, A. A. Luginina, S. V. Kuznetsov, V. V. Voronov, R. P. Ermakov, A. E. Baranchikov, V. K. Ivanov, O. V. Karban, and P. P. Fedorov, “Synthesis of SrF2 –YF3 nanopowders by co-precipitation from aqueous solutions,” Mendeleev Commun. 24(6), 360–362 (2014).
[Crossref]

P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, and V. V. Osiko, “Nanofluorides,” J. Fluor. Chem. 132(12), 1012–1039 (2011).
[Crossref]

Luo, L.

P. Du, A. M. Deng, L. Luo, and J. S. Yu, “Simultaneous phase and size manipulation in NaYF4:Er3+/Yb3+ upconverting nanoparticles for non-invasion optical thermometer,” New J. Chem. 41(22), 13855–13861 (2017).
[Crossref]

Luo, X.

H. Wang, X. Yin, M. Xing, Y. Fu, Y. Tian, X. Feng, T. Jiang, and X. Luo, “Thermal effects of Er3+ / Yb3+ doped NaYF4 phosphor induced by 980 / 1510 nm laser diode irradiation,” J. Am. Ceram. Soc. 101(2), 865–873 (2018).
[Crossref]

Luthi, S. R.

M. Pollnau, D. R. Gamelin, S. R. Lűthi, H. U. Gűdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Luu, Q.

J. M. Meruga, W. M. Cross, P. Stanley May, Q. Luu, G. A. Crawford, and J. J. Kellar, “Security printing of covert quick response codes using upconverting nanoparticle inks,” Nanotechnology 23(39), 395201 (2012).
[Crossref] [PubMed]

Lyapin, A. A.

A. A. Lyapin, S. V. Kuznetsov, P. A. Ryabochkina, A. P. Merculov, M. V. Chernov, Yu. A. Ermakova, A. A. Luginina, and P. P. Fedorov, “Upconversion luminescence of Ca1-xHoxF2+x and Sr0.98-xEr0.02HoxF2.02+x powders upon excitation by an infrared laser,” Laser Phys. Lett. 14(7), 076003 (2017).
[Crossref]

P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, V. V. Voronov, A. A. Lyapin, P. A. Ryabochkina, M. V. Chernov, M. N. Mayakova, D. V. Pominova, O. V. Uvarov, A. E. Baranchikov, V. K. Ivanov, A. A. Pynenkov, and K. N. Nishchev, “Preparation and properties of methylcellulose/nanocellulose/CaF2:Ho polymer-inorganic composite films for two-micron radiation visualizers,” J. Fluor. Chem. 202, 9–18 (2017).
[Crossref]

A. A. Lyapin, P. A. Ryabochkina, A. N. Chabushkin, S. N. Ushakov, and P. P. Fedorov, “Investigation of the mechanisms of upconversion luminescencein Ho3+ doped CaF2 crystals and ceramics upon excitation of 5I7 level,” J. Lumin. 167, 120–125 (2015).
[Crossref]

A. A. Lyapin, P. A. Ryabochkina, S. N. Ushakov, and P. P. Fedorov, “Visualiser of two-micron laser radiation based on Ho: CaF2 crystals,” Quantum Electron. 44(6), 602–605 (2014).
[Crossref]

Maciel, G. S.

N. Rakov, G. S. Maciel, and M. Xiao, “Upconversion fluorescence and its thermometric sensitivity of Er3+:Yb3+ co-doped SrF2 powders prepared by combustion synthesis,” Electron. Mater. Lett. 10(5), 985–989 (2014).
[Crossref]

Mary, G.

J. P. Jouart and G. Mary, “Upconversion in Er3+-doped fluorite-type crystals pumped by 1.5 μm tunable diode laser,” J. Lumin. 46(1), 39–45 (1990).
[Crossref]

Mayakova, M. N.

P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, V. V. Voronov, A. A. Lyapin, P. A. Ryabochkina, M. V. Chernov, M. N. Mayakova, D. V. Pominova, O. V. Uvarov, A. E. Baranchikov, V. K. Ivanov, A. A. Pynenkov, and K. N. Nishchev, “Preparation and properties of methylcellulose/nanocellulose/CaF2:Ho polymer-inorganic composite films for two-micron radiation visualizers,” J. Fluor. Chem. 202, 9–18 (2017).
[Crossref]

M. N. Mayakova, A. A. Luginina, S. V. Kuznetsov, V. V. Voronov, R. P. Ermakov, A. E. Baranchikov, V. K. Ivanov, O. V. Karban, and P. P. Fedorov, “Synthesis of SrF2 –YF3 nanopowders by co-precipitation from aqueous solutions,” Mendeleev Commun. 24(6), 360–362 (2014).
[Crossref]

Meng, L.

X. Du, X. Wang, L. Meng, Y. Bu, and X. Yan, “Enhance the Er3+ upconversion luminescence by constructing NaGdF4:Er3+ @NaGdF4:Er3+ active-core/active-shell nanocrystals,” Nanoscale Res. Lett. 12(1), 163 (2017).
[Crossref] [PubMed]

Merculov, A. P.

A. A. Lyapin, S. V. Kuznetsov, P. A. Ryabochkina, A. P. Merculov, M. V. Chernov, Yu. A. Ermakova, A. A. Luginina, and P. P. Fedorov, “Upconversion luminescence of Ca1-xHoxF2+x and Sr0.98-xEr0.02HoxF2.02+x powders upon excitation by an infrared laser,” Laser Phys. Lett. 14(7), 076003 (2017).
[Crossref]

Meruga, J. M.

J. M. Meruga, W. M. Cross, P. Stanley May, Q. Luu, G. A. Crawford, and J. J. Kellar, “Security printing of covert quick response codes using upconverting nanoparticle inks,” Nanotechnology 23(39), 395201 (2012).
[Crossref] [PubMed]

Misiak, M.

M. Misiak, M. Skowicki, T. Lipiński, A. Kowalczyk, K. Prorok, S. Arabasz, and A. Bednarkiewicz, “Biofunctionalized upconverting CaF2:Yb, Tm nanoparticles for Candida albicans detection and imaging,” Nano Res. 10(10), 3333–3345 (2017).
[Crossref]

Moise, N. L.

S. A. Pollack, D. B. Chang, and N. L. Moise, “Upconversion‐pumped infrared erbium laser,” J. Appl. Phys. 60(12), 4077–4086 (1986).
[Crossref]

Nash-Stevenson, S. K.

Nikiforov, A. E.

S. A. Kazanskii, A. I. Ryskin, A. E. Nikiforov, A. Yu. Zaharov, M. Yu. Ougrumov, and G. S. Shakurov, “EPR spectra and crystal field of hexamer rare-earth clusters in fluorites,” Phys. Rev. B 72(1), 014127 (2005).
[Crossref]

Nishchev, K. N.

P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, V. V. Voronov, A. A. Lyapin, P. A. Ryabochkina, M. V. Chernov, M. N. Mayakova, D. V. Pominova, O. V. Uvarov, A. E. Baranchikov, V. K. Ivanov, A. A. Pynenkov, and K. N. Nishchev, “Preparation and properties of methylcellulose/nanocellulose/CaF2:Ho polymer-inorganic composite films for two-micron radiation visualizers,” J. Fluor. Chem. 202, 9–18 (2017).
[Crossref]

Osiko, V. V.

P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, and V. V. Osiko, “Nanofluorides,” J. Fluor. Chem. 132(12), 1012–1039 (2011).
[Crossref]

Ougrumov, M. Yu.

S. A. Kazanskii, A. I. Ryskin, A. E. Nikiforov, A. Yu. Zaharov, M. Yu. Ougrumov, and G. S. Shakurov, “EPR spectra and crystal field of hexamer rare-earth clusters in fluorites,” Phys. Rev. B 72(1), 014127 (2005).
[Crossref]

Pellé, F.

S. Ivanova, F. Pellé, A. Tkachuk, M.-F. Joubert, Y. Guyot, and V. P. Gapontzev, “Upconversion luminescence dynamics of Er-doped fluoride crystals for optical converters,” J. Lumin. 128(5), 914–917 (2008).
[Crossref]

Pihlgren, L.

J. Hölsä, T. Laamanen, T. Laihinen, M. Lastusaari, L. Pihlgren, and L. C. V. Rodrigues, “White up-conversion luminescence of NaYF4:Yb3+,Pr3+,Er3+,” Opt. Mater. 36(10), 1627–1630 (2014).
[Crossref]

Pollack, S. A.

S. A. Pollack and D. B. Chang, “Ion‐pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2, and CaF2 crystals,” J. Appl. Phys. 64(6), 2885–2893 (1988).
[Crossref]

S. A. Pollack, D. B. Chang, and N. L. Moise, “Upconversion‐pumped infrared erbium laser,” J. Appl. Phys. 60(12), 4077–4086 (1986).
[Crossref]

Pollnau, M.

M. Pollnau, D. R. Gamelin, S. R. Lűthi, H. U. Gűdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Pominova, D. V.

P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, V. V. Voronov, A. A. Lyapin, P. A. Ryabochkina, M. V. Chernov, M. N. Mayakova, D. V. Pominova, O. V. Uvarov, A. E. Baranchikov, V. K. Ivanov, A. A. Pynenkov, and K. N. Nishchev, “Preparation and properties of methylcellulose/nanocellulose/CaF2:Ho polymer-inorganic composite films for two-micron radiation visualizers,” J. Fluor. Chem. 202, 9–18 (2017).
[Crossref]

D. V. Pominova, A. V. Ryabova, K. G. Linkov, I. D. Romanishkin, S. V. Kuznetsov, J. A. Rozhnova, V. I. Konov, and V. B. Loschenov, “Pulsed periodic laser excitation of upconversion luminescence for deep biotissue visualization,” Laser Phys. 26(8), 084001 (2016).
[Crossref]

Prorok, K.

M. Misiak, M. Skowicki, T. Lipiński, A. Kowalczyk, K. Prorok, S. Arabasz, and A. Bednarkiewicz, “Biofunctionalized upconverting CaF2:Yb, Tm nanoparticles for Candida albicans detection and imaging,” Nano Res. 10(10), 3333–3345 (2017).
[Crossref]

Pynenkov, A. A.

P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, V. V. Voronov, A. A. Lyapin, P. A. Ryabochkina, M. V. Chernov, M. N. Mayakova, D. V. Pominova, O. V. Uvarov, A. E. Baranchikov, V. K. Ivanov, A. A. Pynenkov, and K. N. Nishchev, “Preparation and properties of methylcellulose/nanocellulose/CaF2:Ho polymer-inorganic composite films for two-micron radiation visualizers,” J. Fluor. Chem. 202, 9–18 (2017).
[Crossref]

Rakov, N.

N. Rakov, G. S. Maciel, and M. Xiao, “Upconversion fluorescence and its thermometric sensitivity of Er3+:Yb3+ co-doped SrF2 powders prepared by combustion synthesis,” Electron. Mater. Lett. 10(5), 985–989 (2014).
[Crossref]

Rao, L.

H. Liu, W. Lu, H. Wang, L. Rao, Z. Yi, S. Zeng, and J. Hao, “Simultaneous synthesis and amine-functionalization of single-phase BaYF5:Yb/Er nanoprobe for dual-modal in vivo upconversion fluorescence and long-lasting X-ray computed tomography imaging,” Nanoscale 5(13), 6023–6029 (2013).
[Crossref] [PubMed]

Reddy, B. R.

Resch-Genger, U.

M. Kaiser, C. Würth, M. Kraft, I. Hyppänen, T. Soukka, and U. Resch-Genger, “Power-dependent upconversion quantum yield of NaYF4:Yb3+,Er3+ nano- and micrometer-sized particles - measurements and simulations,” Nanoscale 9(28), 10051–10058 (2017).
[Crossref] [PubMed]

Richard, C.

D. Jaque, C. Richard, B. Viana, K. Soga, X. Liu, and J. G. Solé, “Inorganic nanoparticles for optical bioimaging,” Adv. Opt. Photonics 8(1), 1–103 (2016).
[Crossref]

Richman, I.

I. Richman, “Longitudinal Optical Phonons in CaF2, SrF2, and BaF2,” J. Chem. Phys. 41(9), 2836–2837 (1964).
[Crossref]

Rodrigues, L. C. V.

J. Hölsä, T. Laamanen, T. Laihinen, M. Lastusaari, L. Pihlgren, and L. C. V. Rodrigues, “White up-conversion luminescence of NaYF4:Yb3+,Pr3+,Er3+,” Opt. Mater. 36(10), 1627–1630 (2014).
[Crossref]

Romanishkin, I. D.

D. V. Pominova, A. V. Ryabova, K. G. Linkov, I. D. Romanishkin, S. V. Kuznetsov, J. A. Rozhnova, V. I. Konov, and V. B. Loschenov, “Pulsed periodic laser excitation of upconversion luminescence for deep biotissue visualization,” Laser Phys. 26(8), 084001 (2016).
[Crossref]

Rozhnova, J. A.

D. V. Pominova, A. V. Ryabova, K. G. Linkov, I. D. Romanishkin, S. V. Kuznetsov, J. A. Rozhnova, V. I. Konov, and V. B. Loschenov, “Pulsed periodic laser excitation of upconversion luminescence for deep biotissue visualization,” Laser Phys. 26(8), 084001 (2016).
[Crossref]

Ryabochkina, P. A.

P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, V. V. Voronov, A. A. Lyapin, P. A. Ryabochkina, M. V. Chernov, M. N. Mayakova, D. V. Pominova, O. V. Uvarov, A. E. Baranchikov, V. K. Ivanov, A. A. Pynenkov, and K. N. Nishchev, “Preparation and properties of methylcellulose/nanocellulose/CaF2:Ho polymer-inorganic composite films for two-micron radiation visualizers,” J. Fluor. Chem. 202, 9–18 (2017).
[Crossref]

A. A. Lyapin, S. V. Kuznetsov, P. A. Ryabochkina, A. P. Merculov, M. V. Chernov, Yu. A. Ermakova, A. A. Luginina, and P. P. Fedorov, “Upconversion luminescence of Ca1-xHoxF2+x and Sr0.98-xEr0.02HoxF2.02+x powders upon excitation by an infrared laser,” Laser Phys. Lett. 14(7), 076003 (2017).
[Crossref]

A. A. Lyapin, P. A. Ryabochkina, A. N. Chabushkin, S. N. Ushakov, and P. P. Fedorov, “Investigation of the mechanisms of upconversion luminescencein Ho3+ doped CaF2 crystals and ceramics upon excitation of 5I7 level,” J. Lumin. 167, 120–125 (2015).
[Crossref]

A. A. Lyapin, P. A. Ryabochkina, S. N. Ushakov, and P. P. Fedorov, “Visualiser of two-micron laser radiation based on Ho: CaF2 crystals,” Quantum Electron. 44(6), 602–605 (2014).
[Crossref]

Ryabova, A. V.

D. V. Pominova, A. V. Ryabova, K. G. Linkov, I. D. Romanishkin, S. V. Kuznetsov, J. A. Rozhnova, V. I. Konov, and V. B. Loschenov, “Pulsed periodic laser excitation of upconversion luminescence for deep biotissue visualization,” Laser Phys. 26(8), 084001 (2016).
[Crossref]

Rybka, J.

A. Gnach, T. Lipinski, A. Bednarkiewicz, J. Rybka, and J. A. Capobianco, “Upconverting nanoparticles: assessing the toxicity,” Chem. Soc. Rev. 44(6), 1561–1584 (2015).
[Crossref] [PubMed]

Ryskin, A. I.

S. A. Kazanskii, A. I. Ryskin, A. E. Nikiforov, A. Yu. Zaharov, M. Yu. Ougrumov, and G. S. Shakurov, “EPR spectra and crystal field of hexamer rare-earth clusters in fluorites,” Phys. Rev. B 72(1), 014127 (2005).
[Crossref]

Seelbinder, M. B.

M. B. Seelbinder and J. C. Wright, “Site-selective spectroscopy of CaF2:Ho3+,” Phys. Rev. B 20(10), 4308–4320 (1979).
[Crossref]

Seiranian, K. B.

B. P. Sobolev, K. B. Seiranian, L. S. Garashina, and P. P. Fedorov, “Phase diagrams of the SrF2-(Y,Ln)F3 system. Part 1. X-ray characteristics of phases,” J. Solid State Chem. 28(1), 51–58 (1979).
[Crossref]

Shakurov, G. S.

S. A. Kazanskii, A. I. Ryskin, A. E. Nikiforov, A. Yu. Zaharov, M. Yu. Ougrumov, and G. S. Shakurov, “EPR spectra and crystal field of hexamer rare-earth clusters in fluorites,” Phys. Rev. B 72(1), 014127 (2005).
[Crossref]

Shand, W. A.

M. R. Brown, H. Thomas, J. S. S. Whiting, and W. A. Shand, “Experiments on Er3+ in SrF2. I. Fluorescence Quantum Efficiencies and Lifetimes,” J. Chem. Phys. 50(2), 881–890 (1969).
[Crossref]

Skowicki, M.

M. Misiak, M. Skowicki, T. Lipiński, A. Kowalczyk, K. Prorok, S. Arabasz, and A. Bednarkiewicz, “Biofunctionalized upconverting CaF2:Yb, Tm nanoparticles for Candida albicans detection and imaging,” Nano Res. 10(10), 3333–3345 (2017).
[Crossref]

Sobolev, B. P.

P. P. Fedorov and B. P. Sobolev, “Concentration dependence of unit-cell parameters of phases M1-xRxF2+x with the fluorite structure,” Sov. Phys. Crystallogr. 37, 651–656 (1992).

B. P. Sobolev, K. B. Seiranian, L. S. Garashina, and P. P. Fedorov, “Phase diagrams of the SrF2-(Y,Ln)F3 system. Part 1. X-ray characteristics of phases,” J. Solid State Chem. 28(1), 51–58 (1979).
[Crossref]

Soga, K.

D. Jaque, C. Richard, B. Viana, K. Soga, X. Liu, and J. G. Solé, “Inorganic nanoparticles for optical bioimaging,” Adv. Opt. Photonics 8(1), 1–103 (2016).
[Crossref]

Solé, J. G.

D. Jaque, C. Richard, B. Viana, K. Soga, X. Liu, and J. G. Solé, “Inorganic nanoparticles for optical bioimaging,” Adv. Opt. Photonics 8(1), 1–103 (2016).
[Crossref]

Soukka, T.

M. Kaiser, C. Würth, M. Kraft, I. Hyppänen, T. Soukka, and U. Resch-Genger, “Power-dependent upconversion quantum yield of NaYF4:Yb3+,Er3+ nano- and micrometer-sized particles - measurements and simulations,” Nanoscale 9(28), 10051–10058 (2017).
[Crossref] [PubMed]

Stanley May, P.

J. M. Meruga, W. M. Cross, P. Stanley May, Q. Luu, G. A. Crawford, and J. J. Kellar, “Security printing of covert quick response codes using upconverting nanoparticle inks,” Nanotechnology 23(39), 395201 (2012).
[Crossref] [PubMed]

Tang, S. H.

S. H. Tang, H. Y. Zhang, M. H. Kuok, and S. C. Kee, “Fluorescence and upconversion in CaF2:Ho3+,” Phys. Stat. Sol. B-Basic Res. 168(1), 351–360 (1991).

Thomas, H.

M. R. Brown, H. Thomas, J. S. S. Whiting, and W. A. Shand, “Experiments on Er3+ in SrF2. I. Fluorescence Quantum Efficiencies and Lifetimes,” J. Chem. Phys. 50(2), 881–890 (1969).
[Crossref]

Tian, Y.

H. Wang, X. Yin, M. Xing, Y. Fu, Y. Tian, X. Feng, T. Jiang, and X. Luo, “Thermal effects of Er3+ / Yb3+ doped NaYF4 phosphor induced by 980 / 1510 nm laser diode irradiation,” J. Am. Ceram. Soc. 101(2), 865–873 (2018).
[Crossref]

Tkachuk, A.

S. Ivanova, F. Pellé, A. Tkachuk, M.-F. Joubert, Y. Guyot, and V. P. Gapontzev, “Upconversion luminescence dynamics of Er-doped fluoride crystals for optical converters,” J. Lumin. 128(5), 914–917 (2008).
[Crossref]

Ushakov, S. N.

A. A. Lyapin, P. A. Ryabochkina, A. N. Chabushkin, S. N. Ushakov, and P. P. Fedorov, “Investigation of the mechanisms of upconversion luminescencein Ho3+ doped CaF2 crystals and ceramics upon excitation of 5I7 level,” J. Lumin. 167, 120–125 (2015).
[Crossref]

A. A. Lyapin, P. A. Ryabochkina, S. N. Ushakov, and P. P. Fedorov, “Visualiser of two-micron laser radiation based on Ho: CaF2 crystals,” Quantum Electron. 44(6), 602–605 (2014).
[Crossref]

Uvarov, O. V.

P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, V. V. Voronov, A. A. Lyapin, P. A. Ryabochkina, M. V. Chernov, M. N. Mayakova, D. V. Pominova, O. V. Uvarov, A. E. Baranchikov, V. K. Ivanov, A. A. Pynenkov, and K. N. Nishchev, “Preparation and properties of methylcellulose/nanocellulose/CaF2:Ho polymer-inorganic composite films for two-micron radiation visualizers,” J. Fluor. Chem. 202, 9–18 (2017).
[Crossref]

Venkateswarlu, P.

Verber, C. M.

C. M. Verber, D. R. Grieser, and W. H. Jones., “Cooperative and sequential excitation of red fluorescence of Ho3+ in CaF2,” J. Appl. Phys. 42(7), 2767–2769 (1971).
[Crossref]

Viana, B.

D. Jaque, C. Richard, B. Viana, K. Soga, X. Liu, and J. G. Solé, “Inorganic nanoparticles for optical bioimaging,” Adv. Opt. Photonics 8(1), 1–103 (2016).
[Crossref]

Voronov, V. V.

P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, V. V. Voronov, A. A. Lyapin, P. A. Ryabochkina, M. V. Chernov, M. N. Mayakova, D. V. Pominova, O. V. Uvarov, A. E. Baranchikov, V. K. Ivanov, A. A. Pynenkov, and K. N. Nishchev, “Preparation and properties of methylcellulose/nanocellulose/CaF2:Ho polymer-inorganic composite films for two-micron radiation visualizers,” J. Fluor. Chem. 202, 9–18 (2017).
[Crossref]

M. N. Mayakova, A. A. Luginina, S. V. Kuznetsov, V. V. Voronov, R. P. Ermakov, A. E. Baranchikov, V. K. Ivanov, O. V. Karban, and P. P. Fedorov, “Synthesis of SrF2 –YF3 nanopowders by co-precipitation from aqueous solutions,” Mendeleev Commun. 24(6), 360–362 (2014).
[Crossref]

Wang, H.

H. Wang, X. Yin, M. Xing, Y. Fu, Y. Tian, X. Feng, T. Jiang, and X. Luo, “Thermal effects of Er3+ / Yb3+ doped NaYF4 phosphor induced by 980 / 1510 nm laser diode irradiation,” J. Am. Ceram. Soc. 101(2), 865–873 (2018).
[Crossref]

H. Liu, W. Lu, H. Wang, L. Rao, Z. Yi, S. Zeng, and J. Hao, “Simultaneous synthesis and amine-functionalization of single-phase BaYF5:Yb/Er nanoprobe for dual-modal in vivo upconversion fluorescence and long-lasting X-ray computed tomography imaging,” Nanoscale 5(13), 6023–6029 (2013).
[Crossref] [PubMed]

Wang, X.

X. Du, X. Wang, L. Meng, Y. Bu, and X. Yan, “Enhance the Er3+ upconversion luminescence by constructing NaGdF4:Er3+ @NaGdF4:Er3+ active-core/active-shell nanocrystals,” Nanoscale Res. Lett. 12(1), 163 (2017).
[Crossref] [PubMed]

Whiting, J. S. S.

M. R. Brown, H. Thomas, J. S. S. Whiting, and W. A. Shand, “Experiments on Er3+ in SrF2. I. Fluorescence Quantum Efficiencies and Lifetimes,” J. Chem. Phys. 50(2), 881–890 (1969).
[Crossref]

Wright, J. C.

M. B. Seelbinder and J. C. Wright, “Site-selective spectroscopy of CaF2:Ho3+,” Phys. Rev. B 20(10), 4308–4320 (1979).
[Crossref]

Würth, C.

M. Kaiser, C. Würth, M. Kraft, I. Hyppänen, T. Soukka, and U. Resch-Genger, “Power-dependent upconversion quantum yield of NaYF4:Yb3+,Er3+ nano- and micrometer-sized particles - measurements and simulations,” Nanoscale 9(28), 10051–10058 (2017).
[Crossref] [PubMed]

Xiao, M.

N. Rakov, G. S. Maciel, and M. Xiao, “Upconversion fluorescence and its thermometric sensitivity of Er3+:Yb3+ co-doped SrF2 powders prepared by combustion synthesis,” Electron. Mater. Lett. 10(5), 985–989 (2014).
[Crossref]

Xing, M.

H. Wang, X. Yin, M. Xing, Y. Fu, Y. Tian, X. Feng, T. Jiang, and X. Luo, “Thermal effects of Er3+ / Yb3+ doped NaYF4 phosphor induced by 980 / 1510 nm laser diode irradiation,” J. Am. Ceram. Soc. 101(2), 865–873 (2018).
[Crossref]

Xu, Z.

C. Zhang, Z. Hou, R. Chai, Z. Cheng, Z. Xu, C. Li, L. Huang, and J. Lin, “Mesoporous SrF2 and SrF2:Ln3+ (Ln=Ce, Tb, Yb, Er) hierarchical microspheres: hydrothermal synthesis, growing mechanism, and luminescent properties,” J. Phys. Chem. 114(15), 6928–6936 (2010).

Yan, X.

X. Du, X. Wang, L. Meng, Y. Bu, and X. Yan, “Enhance the Er3+ upconversion luminescence by constructing NaGdF4:Er3+ @NaGdF4:Er3+ active-core/active-shell nanocrystals,” Nanoscale Res. Lett. 12(1), 163 (2017).
[Crossref] [PubMed]

Yi, Z.

H. Liu, W. Lu, H. Wang, L. Rao, Z. Yi, S. Zeng, and J. Hao, “Simultaneous synthesis and amine-functionalization of single-phase BaYF5:Yb/Er nanoprobe for dual-modal in vivo upconversion fluorescence and long-lasting X-ray computed tomography imaging,” Nanoscale 5(13), 6023–6029 (2013).
[Crossref] [PubMed]

Yin, X.

H. Wang, X. Yin, M. Xing, Y. Fu, Y. Tian, X. Feng, T. Jiang, and X. Luo, “Thermal effects of Er3+ / Yb3+ doped NaYF4 phosphor induced by 980 / 1510 nm laser diode irradiation,” J. Am. Ceram. Soc. 101(2), 865–873 (2018).
[Crossref]

Yu, J. S.

P. Du, A. M. Deng, L. Luo, and J. S. Yu, “Simultaneous phase and size manipulation in NaYF4:Er3+/Yb3+ upconverting nanoparticles for non-invasion optical thermometer,” New J. Chem. 41(22), 13855–13861 (2017).
[Crossref]

Zaharov, A. Yu.

S. A. Kazanskii, A. I. Ryskin, A. E. Nikiforov, A. Yu. Zaharov, M. Yu. Ougrumov, and G. S. Shakurov, “EPR spectra and crystal field of hexamer rare-earth clusters in fluorites,” Phys. Rev. B 72(1), 014127 (2005).
[Crossref]

Zeng, S.

H. Liu, W. Lu, H. Wang, L. Rao, Z. Yi, S. Zeng, and J. Hao, “Simultaneous synthesis and amine-functionalization of single-phase BaYF5:Yb/Er nanoprobe for dual-modal in vivo upconversion fluorescence and long-lasting X-ray computed tomography imaging,” Nanoscale 5(13), 6023–6029 (2013).
[Crossref] [PubMed]

Zhang, C.

C. Zhang, Z. Hou, R. Chai, Z. Cheng, Z. Xu, C. Li, L. Huang, and J. Lin, “Mesoporous SrF2 and SrF2:Ln3+ (Ln=Ce, Tb, Yb, Er) hierarchical microspheres: hydrothermal synthesis, growing mechanism, and luminescent properties,” J. Phys. Chem. 114(15), 6928–6936 (2010).

Zhang, H. Y.

S. H. Tang, H. Y. Zhang, M. H. Kuok, and S. C. Kee, “Fluorescence and upconversion in CaF2:Ho3+,” Phys. Stat. Sol. B-Basic Res. 168(1), 351–360 (1991).

Zhang, J.

J. Zhang, X. Li, and G. Chen, “Upconversion luminescence of Ba9Y2Si6O24:Yb3+-Ln3+ (Ln=Er, Ho, and Tm) phosphors for temperature sensing,” J. Mater. Chem. Phys. 206, 40–47 (2018).
[Crossref]

Adv. Opt. Photonics (1)

D. Jaque, C. Richard, B. Viana, K. Soga, X. Liu, and J. G. Solé, “Inorganic nanoparticles for optical bioimaging,” Adv. Opt. Photonics 8(1), 1–103 (2016).
[Crossref]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–1734 (2004).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

A. Gnach, T. Lipinski, A. Bednarkiewicz, J. Rybka, and J. A. Capobianco, “Upconverting nanoparticles: assessing the toxicity,” Chem. Soc. Rev. 44(6), 1561–1584 (2015).
[Crossref] [PubMed]

Electron. Mater. Lett. (1)

N. Rakov, G. S. Maciel, and M. Xiao, “Upconversion fluorescence and its thermometric sensitivity of Er3+:Yb3+ co-doped SrF2 powders prepared by combustion synthesis,” Electron. Mater. Lett. 10(5), 985–989 (2014).
[Crossref]

J. Am. Ceram. Soc. (1)

H. Wang, X. Yin, M. Xing, Y. Fu, Y. Tian, X. Feng, T. Jiang, and X. Luo, “Thermal effects of Er3+ / Yb3+ doped NaYF4 phosphor induced by 980 / 1510 nm laser diode irradiation,” J. Am. Ceram. Soc. 101(2), 865–873 (2018).
[Crossref]

J. Appl. Phys. (3)

C. M. Verber, D. R. Grieser, and W. H. Jones., “Cooperative and sequential excitation of red fluorescence of Ho3+ in CaF2,” J. Appl. Phys. 42(7), 2767–2769 (1971).
[Crossref]

S. A. Pollack, D. B. Chang, and N. L. Moise, “Upconversion‐pumped infrared erbium laser,” J. Appl. Phys. 60(12), 4077–4086 (1986).
[Crossref]

S. A. Pollack and D. B. Chang, “Ion‐pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2, and CaF2 crystals,” J. Appl. Phys. 64(6), 2885–2893 (1988).
[Crossref]

J. Chem. Phys. (2)

M. R. Brown, H. Thomas, J. S. S. Whiting, and W. A. Shand, “Experiments on Er3+ in SrF2. I. Fluorescence Quantum Efficiencies and Lifetimes,” J. Chem. Phys. 50(2), 881–890 (1969).
[Crossref]

I. Richman, “Longitudinal Optical Phonons in CaF2, SrF2, and BaF2,” J. Chem. Phys. 41(9), 2836–2837 (1964).
[Crossref]

J. Fluor. Chem. (2)

P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, and V. V. Osiko, “Nanofluorides,” J. Fluor. Chem. 132(12), 1012–1039 (2011).
[Crossref]

P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, V. V. Voronov, A. A. Lyapin, P. A. Ryabochkina, M. V. Chernov, M. N. Mayakova, D. V. Pominova, O. V. Uvarov, A. E. Baranchikov, V. K. Ivanov, A. A. Pynenkov, and K. N. Nishchev, “Preparation and properties of methylcellulose/nanocellulose/CaF2:Ho polymer-inorganic composite films for two-micron radiation visualizers,” J. Fluor. Chem. 202, 9–18 (2017).
[Crossref]

J. Lumin. (3)

S. Ivanova, F. Pellé, A. Tkachuk, M.-F. Joubert, Y. Guyot, and V. P. Gapontzev, “Upconversion luminescence dynamics of Er-doped fluoride crystals for optical converters,” J. Lumin. 128(5), 914–917 (2008).
[Crossref]

J. P. Jouart and G. Mary, “Upconversion in Er3+-doped fluorite-type crystals pumped by 1.5 μm tunable diode laser,” J. Lumin. 46(1), 39–45 (1990).
[Crossref]

A. A. Lyapin, P. A. Ryabochkina, A. N. Chabushkin, S. N. Ushakov, and P. P. Fedorov, “Investigation of the mechanisms of upconversion luminescencein Ho3+ doped CaF2 crystals and ceramics upon excitation of 5I7 level,” J. Lumin. 167, 120–125 (2015).
[Crossref]

J. Mater. Chem. Phys. (1)

J. Zhang, X. Li, and G. Chen, “Upconversion luminescence of Ba9Y2Si6O24:Yb3+-Ln3+ (Ln=Er, Ho, and Tm) phosphors for temperature sensing,” J. Mater. Chem. Phys. 206, 40–47 (2018).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

C. Zhang, Z. Hou, R. Chai, Z. Cheng, Z. Xu, C. Li, L. Huang, and J. Lin, “Mesoporous SrF2 and SrF2:Ln3+ (Ln=Ce, Tb, Yb, Er) hierarchical microspheres: hydrothermal synthesis, growing mechanism, and luminescent properties,” J. Phys. Chem. 114(15), 6928–6936 (2010).

J. Solid State Chem. (1)

B. P. Sobolev, K. B. Seiranian, L. S. Garashina, and P. P. Fedorov, “Phase diagrams of the SrF2-(Y,Ln)F3 system. Part 1. X-ray characteristics of phases,” J. Solid State Chem. 28(1), 51–58 (1979).
[Crossref]

Laser Phys. (1)

D. V. Pominova, A. V. Ryabova, K. G. Linkov, I. D. Romanishkin, S. V. Kuznetsov, J. A. Rozhnova, V. I. Konov, and V. B. Loschenov, “Pulsed periodic laser excitation of upconversion luminescence for deep biotissue visualization,” Laser Phys. 26(8), 084001 (2016).
[Crossref]

Laser Phys. Lett. (1)

A. A. Lyapin, S. V. Kuznetsov, P. A. Ryabochkina, A. P. Merculov, M. V. Chernov, Yu. A. Ermakova, A. A. Luginina, and P. P. Fedorov, “Upconversion luminescence of Ca1-xHoxF2+x and Sr0.98-xEr0.02HoxF2.02+x powders upon excitation by an infrared laser,” Laser Phys. Lett. 14(7), 076003 (2017).
[Crossref]

Mendeleev Commun. (1)

M. N. Mayakova, A. A. Luginina, S. V. Kuznetsov, V. V. Voronov, R. P. Ermakov, A. E. Baranchikov, V. K. Ivanov, O. V. Karban, and P. P. Fedorov, “Synthesis of SrF2 –YF3 nanopowders by co-precipitation from aqueous solutions,” Mendeleev Commun. 24(6), 360–362 (2014).
[Crossref]

Nano Res. (1)

M. Misiak, M. Skowicki, T. Lipiński, A. Kowalczyk, K. Prorok, S. Arabasz, and A. Bednarkiewicz, “Biofunctionalized upconverting CaF2:Yb, Tm nanoparticles for Candida albicans detection and imaging,” Nano Res. 10(10), 3333–3345 (2017).
[Crossref]

Nanoscale (2)

M. Kaiser, C. Würth, M. Kraft, I. Hyppänen, T. Soukka, and U. Resch-Genger, “Power-dependent upconversion quantum yield of NaYF4:Yb3+,Er3+ nano- and micrometer-sized particles - measurements and simulations,” Nanoscale 9(28), 10051–10058 (2017).
[Crossref] [PubMed]

H. Liu, W. Lu, H. Wang, L. Rao, Z. Yi, S. Zeng, and J. Hao, “Simultaneous synthesis and amine-functionalization of single-phase BaYF5:Yb/Er nanoprobe for dual-modal in vivo upconversion fluorescence and long-lasting X-ray computed tomography imaging,” Nanoscale 5(13), 6023–6029 (2013).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

X. Du, X. Wang, L. Meng, Y. Bu, and X. Yan, “Enhance the Er3+ upconversion luminescence by constructing NaGdF4:Er3+ @NaGdF4:Er3+ active-core/active-shell nanocrystals,” Nanoscale Res. Lett. 12(1), 163 (2017).
[Crossref] [PubMed]

Nanotechnology (1)

J. M. Meruga, W. M. Cross, P. Stanley May, Q. Luu, G. A. Crawford, and J. J. Kellar, “Security printing of covert quick response codes using upconverting nanoparticle inks,” Nanotechnology 23(39), 395201 (2012).
[Crossref] [PubMed]

New J. Chem. (1)

P. Du, A. M. Deng, L. Luo, and J. S. Yu, “Simultaneous phase and size manipulation in NaYF4:Er3+/Yb3+ upconverting nanoparticles for non-invasion optical thermometer,” New J. Chem. 41(22), 13855–13861 (2017).
[Crossref]

Opt. Mater. (1)

J. Hölsä, T. Laamanen, T. Laihinen, M. Lastusaari, L. Pihlgren, and L. C. V. Rodrigues, “White up-conversion luminescence of NaYF4:Yb3+,Pr3+,Er3+,” Opt. Mater. 36(10), 1627–1630 (2014).
[Crossref]

Phys. Rev. B (3)

M. B. Seelbinder and J. C. Wright, “Site-selective spectroscopy of CaF2:Ho3+,” Phys. Rev. B 20(10), 4308–4320 (1979).
[Crossref]

M. Pollnau, D. R. Gamelin, S. R. Lűthi, H. U. Gűdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

S. A. Kazanskii, A. I. Ryskin, A. E. Nikiforov, A. Yu. Zaharov, M. Yu. Ougrumov, and G. S. Shakurov, “EPR spectra and crystal field of hexamer rare-earth clusters in fluorites,” Phys. Rev. B 72(1), 014127 (2005).
[Crossref]

Phys. Stat. Sol. B-Basic Res. (1)

S. H. Tang, H. Y. Zhang, M. H. Kuok, and S. C. Kee, “Fluorescence and upconversion in CaF2:Ho3+,” Phys. Stat. Sol. B-Basic Res. 168(1), 351–360 (1991).

Quantum Electron. (1)

A. A. Lyapin, P. A. Ryabochkina, S. N. Ushakov, and P. P. Fedorov, “Visualiser of two-micron laser radiation based on Ho: CaF2 crystals,” Quantum Electron. 44(6), 602–605 (2014).
[Crossref]

Sov. Phys. Crystallogr. (1)

P. P. Fedorov and B. P. Sobolev, “Concentration dependence of unit-cell parameters of phases M1-xRxF2+x with the fluorite structure,” Sov. Phys. Crystallogr. 37, 651–656 (1992).

Other (1)

A. Kobayashi, Absolute Measurements of Photoluminescence Quantum Yields of Organic Compounds Using an Integrating Sphere (Gunma University, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 XRD pattern (a) and SEM image (b) of the SrF2:Er (6.0%) powder after annealing at 600 °C.
Fig. 2
Fig. 2 The diffuse reflection spectra (a) of Er3+ in the spectral range 300–1800 nm for SrF2:Er (8.8%) powder at 300 K. UC luminescence spectra of the SrF2:Er (8.8%) powder in visible (b) and near-infrared spectral range (c). Partial energy-level diagram (d) of Er3+ in SrF2 [23].
Fig. 3
Fig. 3 P-dependent upconversion luminescence at the 2H9/24I15/2 (а, b), 4S3/24I15/2 (c, d) and 4F9/24I15/2 (e, f) transitions of Er3+ ions for two power density ranges. The diagram is in a double logarithmic scale.
Fig. 4
Fig. 4 (A) The spectral power of the UC luminescence of SrF2:Er powders. (B) The CIE chromaticity diagram of SrF2:Er powders. Excitation power density is 0.51 kW/cm2

Tables (2)

Tables Icon

Table 1 The unit cell parameters of the SrF2:Er powders

Tables Icon

Table 2 The quantum yields, chromaticity coordinates and color temperature of SrF2:Er powders

Metrics