Abstract

To explore new upconversion materials for optical temperature sensing, a series of Tm3+-Yb3+ codoped Y4.67Si3O13 (YSO) phosphors was prepared by solid-state reaction. The phase composition was examined by XRD patterns, revealing that the samples are single-phase. Upon 980 nm excitation, four main emission peaks of Tm3+ were observed from the near-ultraviolet to the near-infrared region. The pump-dependence measurement indicates that the blue and near-infrared emissions of Tm3+ are three- and two-photon processes, respectively. By studying the temperature-dependence of the typical YSO:0.5%Tm3+,10%Yb3+ sample, it has been found that the fluorescence intensity ratios (FIRs) of both the 695/789 and 466/484 nm emissions increase with increasing temperature due to the thermally-coupled levels. The repeatability of measurement was examined by relative standard deviation and cycle test. The relative and absolute sensitivities of YSO:0.5%Tm3+,10%Yb3+ were evaluated.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Up-conversion luminescence of novel Yb3+-Ho3+/Er3+ doped Sr5(PO4)3Cl phosphors for optical temperature sensing

Jia Zhang, Guibin Chen, and Zhenghe Hua
Opt. Mater. Express 7(6) 2084-2089 (2017)

Upconversion luminescence of Ba3La(PO4)3:Yb3+-Er3+/Tm3+ phosphors for optimal temperature sensing

Jiafeng Cao, Jia Zhang, and Xiaowei Li
Appl. Opt. 57(6) 1345-1350 (2018)

Optical temperature sensing based on the near-infrared emissions from Nd3+/Yb3+ codoped CaWO4

Wei Xu, Qiutong Song, Longjiang Zheng, Zhiguo Zhang, and Wenwu Cao
Opt. Lett. 39(16) 4635-4638 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. Suo, C. Guo, and T. Li, “Broad-scope thermometry based on dual-color modulation up-conversion phosphor Ba5Gd8Zn4O21:Er3+/Yb3+,” J. Phys. Chem. C 120(5), 2914–2924 (2016).
    [Crossref]
  2. A. K. Singh, P. K. Shahi, S. B. Raib, and B. Ullrich, “Host matrix impact on Er3+ upconversion emission and its temperature dependence,” RSC Advances 5(21), 16067–16073 (2015).
    [Crossref]
  3. X. Li, X. Wang, H. Zhong, L. Cheng, S. Xu, J. Sun, J. Zhang, X. Li, L. Tong, and B. Chen, “Effects of Er3+ concentration on down-/up-conversion luminescence and temperature sensing properties in NaGdTiO4: Er3+/Yb3+ phosphors,” Ceram. Int. 42(13), 14710–14715 (2016).
    [Crossref]
  4. X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7, 43383 (2017).
    [Crossref] [PubMed]
  5. O. A. Savchuk, J. J. Carvajal, C. Cascales, M. Aguiló, and F. Díaz, “Benefits of silica core−shell structures on the temperature sensing properties of Er,Yb:GdVO4 up-conversion Nanoparticles,” ACS Appl. Mater. Interfaces 8(11), 7266–7273 (2016).
    [Crossref] [PubMed]
  6. X. Wang, Q. Liu, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
    [Crossref] [PubMed]
  7. A. Pandey and V. K. Rai, “Improved luminescence and temperature sensing performance of Ho3+-Yb3+-Zn2+:Y2O3 phosphor,” Dalton Trans. 42(30), 11005–11011 (2013).
    [Crossref] [PubMed]
  8. Q. Min, W. Bian, Y. Qi, W. Lu, X. Yu, X. Xu, D. Zhou, and J. Qiu, “Temperature sensing based on the up-conversion emission of Tm3+ in a single KLuF4 microcrystal,” J. Alloys Compd. 728, 1037–1042 (2017).
    [Crossref]
  9. B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
    [Crossref] [PubMed]
  10. D. Wang and N. Kodama, “Visible quantum cutting through downconversion in GdPO4:Tb3+ and Sr3Gd(PO4)3:Tb3+,” J. Solid State Chem. 182(8), 2219–2224 (2009).
    [Crossref]
  11. J. Zhang, Z. Zhai, and Z. Hua, “Investigations on luminescence of Ca8MgGd(PO4)7:Eu2+, Mn2+, Yb3+, Er3+, Ho3+, Tm3+ phosphors,” Mater. Res. Bull. 74, 34–40 (2016).
    [Crossref]
  12. G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 91(13), 133103 (2007).
    [Crossref]
  13. D. Li, Y. Wang, X. Zhang, L. Liu, and Y. Song, “Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3,” Opt. Commun. 285(7), 1925–1928 (2012).
    [Crossref]
  14. D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
    [Crossref] [PubMed]
  15. L. Tong, X. Li, R. Hua, L. Cheng, J. Sun, J. Zhang, S. Xu, H. Zheng, Y. Zhang, and B. Chen, “Optical temperature sensing properties of Yb3+/Tm3+ co-doped NaLuF4 crystals,” Curr. Appl. Phys. 17(7), 999–1004 (2017).
    [Crossref]
  16. L. Xing, Y. Xu, R. Wang, W. Xu, and Z. Zhang, “Highly sensitive optical thermometry based on upconversion emissions in Tm3+/Yb3+ codoped LiNbO3 single crystal,” Opt. Lett. 39(3), 454–457 (2014).
    [Crossref] [PubMed]
  17. L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “The sensitivity of nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
    [Crossref]
  18. M. D. Dramićanin, “Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts. A review,” Methods Appl. Fluoresc. 4(4), 042001 (2016).
    [Crossref] [PubMed]
  19. H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
    [Crossref] [PubMed]
  20. R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
    [Crossref]
  21. I. Baginskiy and R. S. Liu, “Significant improved luminescence intensity of Eu2+ -doped Ca3SiO4Cl2 green phosphor for white LEDs synthesized through two-stage method,” J. Electrochem. Soc. 156(5), G29–G32 (2009).
    [Crossref]
  22. C. Zeng, Y. Hu, Z. Xia, and H. Huang, “A novel apatite-based warm white emitting phosphor Ba3GdK(PO4)3F:Tb3+, Eu3+ with efficient energy transfer for w-LEDs,” RSC Advances 5(83), 68099–68108 (2015).
    [Crossref]

2017 (3)

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7, 43383 (2017).
[Crossref] [PubMed]

Q. Min, W. Bian, Y. Qi, W. Lu, X. Yu, X. Xu, D. Zhou, and J. Qiu, “Temperature sensing based on the up-conversion emission of Tm3+ in a single KLuF4 microcrystal,” J. Alloys Compd. 728, 1037–1042 (2017).
[Crossref]

L. Tong, X. Li, R. Hua, L. Cheng, J. Sun, J. Zhang, S. Xu, H. Zheng, Y. Zhang, and B. Chen, “Optical temperature sensing properties of Yb3+/Tm3+ co-doped NaLuF4 crystals,” Curr. Appl. Phys. 17(7), 999–1004 (2017).
[Crossref]

2016 (7)

H. Suo, C. Guo, and T. Li, “Broad-scope thermometry based on dual-color modulation up-conversion phosphor Ba5Gd8Zn4O21:Er3+/Yb3+,” J. Phys. Chem. C 120(5), 2914–2924 (2016).
[Crossref]

O. A. Savchuk, J. J. Carvajal, C. Cascales, M. Aguiló, and F. Díaz, “Benefits of silica core−shell structures on the temperature sensing properties of Er,Yb:GdVO4 up-conversion Nanoparticles,” ACS Appl. Mater. Interfaces 8(11), 7266–7273 (2016).
[Crossref] [PubMed]

X. Wang, Q. Liu, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
[Crossref] [PubMed]

J. Zhang, Z. Zhai, and Z. Hua, “Investigations on luminescence of Ca8MgGd(PO4)7:Eu2+, Mn2+, Yb3+, Er3+, Ho3+, Tm3+ phosphors,” Mater. Res. Bull. 74, 34–40 (2016).
[Crossref]

X. Li, X. Wang, H. Zhong, L. Cheng, S. Xu, J. Sun, J. Zhang, X. Li, L. Tong, and B. Chen, “Effects of Er3+ concentration on down-/up-conversion luminescence and temperature sensing properties in NaGdTiO4: Er3+/Yb3+ phosphors,” Ceram. Int. 42(13), 14710–14715 (2016).
[Crossref]

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “The sensitivity of nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

M. D. Dramićanin, “Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts. A review,” Methods Appl. Fluoresc. 4(4), 042001 (2016).
[Crossref] [PubMed]

2015 (3)

A. K. Singh, P. K. Shahi, S. B. Raib, and B. Ullrich, “Host matrix impact on Er3+ upconversion emission and its temperature dependence,” RSC Advances 5(21), 16067–16073 (2015).
[Crossref]

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

C. Zeng, Y. Hu, Z. Xia, and H. Huang, “A novel apatite-based warm white emitting phosphor Ba3GdK(PO4)3F:Tb3+, Eu3+ with efficient energy transfer for w-LEDs,” RSC Advances 5(83), 68099–68108 (2015).
[Crossref]

2014 (2)

L. Xing, Y. Xu, R. Wang, W. Xu, and Z. Zhang, “Highly sensitive optical thermometry based on upconversion emissions in Tm3+/Yb3+ codoped LiNbO3 single crystal,” Opt. Lett. 39(3), 454–457 (2014).
[Crossref] [PubMed]

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

2013 (1)

A. Pandey and V. K. Rai, “Improved luminescence and temperature sensing performance of Ho3+-Yb3+-Zn2+:Y2O3 phosphor,” Dalton Trans. 42(30), 11005–11011 (2013).
[Crossref] [PubMed]

2012 (2)

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

D. Li, Y. Wang, X. Zhang, L. Liu, and Y. Song, “Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3,” Opt. Commun. 285(7), 1925–1928 (2012).
[Crossref]

2009 (2)

D. Wang and N. Kodama, “Visible quantum cutting through downconversion in GdPO4:Tb3+ and Sr3Gd(PO4)3:Tb3+,” J. Solid State Chem. 182(8), 2219–2224 (2009).
[Crossref]

I. Baginskiy and R. S. Liu, “Significant improved luminescence intensity of Eu2+ -doped Ca3SiO4Cl2 green phosphor for white LEDs synthesized through two-stage method,” J. Electrochem. Soc. 156(5), G29–G32 (2009).
[Crossref]

2007 (2)

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 91(13), 133103 (2007).
[Crossref]

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
[Crossref]

Aguiló, M.

O. A. Savchuk, J. J. Carvajal, C. Cascales, M. Aguiló, and F. Díaz, “Benefits of silica core−shell structures on the temperature sensing properties of Er,Yb:GdVO4 up-conversion Nanoparticles,” ACS Appl. Mater. Interfaces 8(11), 7266–7273 (2016).
[Crossref] [PubMed]

Baginskiy, I.

I. Baginskiy and R. S. Liu, “Significant improved luminescence intensity of Eu2+ -doped Ca3SiO4Cl2 green phosphor for white LEDs synthesized through two-stage method,” J. Electrochem. Soc. 156(5), G29–G32 (2009).
[Crossref]

Bednarkiewicz, A.

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “The sensitivity of nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

Bian, W.

Q. Min, W. Bian, Y. Qi, W. Lu, X. Yu, X. Xu, D. Zhou, and J. Qiu, “Temperature sensing based on the up-conversion emission of Tm3+ in a single KLuF4 microcrystal,” J. Alloys Compd. 728, 1037–1042 (2017).
[Crossref]

Bu, Y.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7, 43383 (2017).
[Crossref] [PubMed]

Cai, P.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7, 43383 (2017).
[Crossref] [PubMed]

X. Wang, Q. Liu, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
[Crossref] [PubMed]

Cao, B.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Cao, Y.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

Carvajal, J. J.

O. A. Savchuk, J. J. Carvajal, C. Cascales, M. Aguiló, and F. Díaz, “Benefits of silica core−shell structures on the temperature sensing properties of Er,Yb:GdVO4 up-conversion Nanoparticles,” ACS Appl. Mater. Interfaces 8(11), 7266–7273 (2016).
[Crossref] [PubMed]

Cascales, C.

O. A. Savchuk, J. J. Carvajal, C. Cascales, M. Aguiló, and F. Díaz, “Benefits of silica core−shell structures on the temperature sensing properties of Er,Yb:GdVO4 up-conversion Nanoparticles,” ACS Appl. Mater. Interfaces 8(11), 7266–7273 (2016).
[Crossref] [PubMed]

Chen, B.

L. Tong, X. Li, R. Hua, L. Cheng, J. Sun, J. Zhang, S. Xu, H. Zheng, Y. Zhang, and B. Chen, “Optical temperature sensing properties of Yb3+/Tm3+ co-doped NaLuF4 crystals,” Curr. Appl. Phys. 17(7), 999–1004 (2017).
[Crossref]

X. Li, X. Wang, H. Zhong, L. Cheng, S. Xu, J. Sun, J. Zhang, X. Li, L. Tong, and B. Chen, “Effects of Er3+ concentration on down-/up-conversion luminescence and temperature sensing properties in NaGdTiO4: Er3+/Yb3+ phosphors,” Ceram. Int. 42(13), 14710–14715 (2016).
[Crossref]

Chen, D.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

Chen, G. Y.

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 91(13), 133103 (2007).
[Crossref]

Chen, X.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

Cheng, L.

L. Tong, X. Li, R. Hua, L. Cheng, J. Sun, J. Zhang, S. Xu, H. Zheng, Y. Zhang, and B. Chen, “Optical temperature sensing properties of Yb3+/Tm3+ co-doped NaLuF4 crystals,” Curr. Appl. Phys. 17(7), 999–1004 (2017).
[Crossref]

X. Li, X. Wang, H. Zhong, L. Cheng, S. Xu, J. Sun, J. Zhang, X. Li, L. Tong, and B. Chen, “Effects of Er3+ concentration on down-/up-conversion luminescence and temperature sensing properties in NaGdTiO4: Er3+/Yb3+ phosphors,” Ceram. Int. 42(13), 14710–14715 (2016).
[Crossref]

Díaz, F.

O. A. Savchuk, J. J. Carvajal, C. Cascales, M. Aguiló, and F. Díaz, “Benefits of silica core−shell structures on the temperature sensing properties of Er,Yb:GdVO4 up-conversion Nanoparticles,” ACS Appl. Mater. Interfaces 8(11), 7266–7273 (2016).
[Crossref] [PubMed]

Ding, M.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

Dong, B.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Dramicanin, M. D.

M. D. Dramićanin, “Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts. A review,” Methods Appl. Fluoresc. 4(4), 042001 (2016).
[Crossref] [PubMed]

Feng, Z.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Guo, C.

H. Suo, C. Guo, and T. Li, “Broad-scope thermometry based on dual-color modulation up-conversion phosphor Ba5Gd8Zn4O21:Er3+/Yb3+,” J. Phys. Chem. C 120(5), 2914–2924 (2016).
[Crossref]

He, Y.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Hirosaki, N.

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
[Crossref]

Hreniak, D.

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “The sensitivity of nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

Hu, Y.

C. Zeng, Y. Hu, Z. Xia, and H. Huang, “A novel apatite-based warm white emitting phosphor Ba3GdK(PO4)3F:Tb3+, Eu3+ with efficient energy transfer for w-LEDs,” RSC Advances 5(83), 68099–68108 (2015).
[Crossref]

Hua, R.

L. Tong, X. Li, R. Hua, L. Cheng, J. Sun, J. Zhang, S. Xu, H. Zheng, Y. Zhang, and B. Chen, “Optical temperature sensing properties of Yb3+/Tm3+ co-doped NaLuF4 crystals,” Curr. Appl. Phys. 17(7), 999–1004 (2017).
[Crossref]

Hua, Z.

J. Zhang, Z. Zhai, and Z. Hua, “Investigations on luminescence of Ca8MgGd(PO4)7:Eu2+, Mn2+, Yb3+, Er3+, Ho3+, Tm3+ phosphors,” Mater. Res. Bull. 74, 34–40 (2016).
[Crossref]

Huang, H.

C. Zeng, Y. Hu, Z. Xia, and H. Huang, “A novel apatite-based warm white emitting phosphor Ba3GdK(PO4)3F:Tb3+, Eu3+ with efficient energy transfer for w-LEDs,” RSC Advances 5(83), 68099–68108 (2015).
[Crossref]

Ji, Z.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

Kimura, N.

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
[Crossref]

Kodama, N.

D. Wang and N. Kodama, “Visible quantum cutting through downconversion in GdPO4:Tb3+ and Sr3Gd(PO4)3:Tb3+,” J. Solid State Chem. 182(8), 2219–2224 (2009).
[Crossref]

Kong, J.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

Li, D.

D. Li, Y. Wang, X. Zhang, L. Liu, and Y. Song, “Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3,” Opt. Commun. 285(7), 1925–1928 (2012).
[Crossref]

Li, T.

H. Suo, C. Guo, and T. Li, “Broad-scope thermometry based on dual-color modulation up-conversion phosphor Ba5Gd8Zn4O21:Er3+/Yb3+,” J. Phys. Chem. C 120(5), 2914–2924 (2016).
[Crossref]

Li, X.

L. Tong, X. Li, R. Hua, L. Cheng, J. Sun, J. Zhang, S. Xu, H. Zheng, Y. Zhang, and B. Chen, “Optical temperature sensing properties of Yb3+/Tm3+ co-doped NaLuF4 crystals,” Curr. Appl. Phys. 17(7), 999–1004 (2017).
[Crossref]

X. Li, X. Wang, H. Zhong, L. Cheng, S. Xu, J. Sun, J. Zhang, X. Li, L. Tong, and B. Chen, “Effects of Er3+ concentration on down-/up-conversion luminescence and temperature sensing properties in NaGdTiO4: Er3+/Yb3+ phosphors,” Ceram. Int. 42(13), 14710–14715 (2016).
[Crossref]

X. Li, X. Wang, H. Zhong, L. Cheng, S. Xu, J. Sun, J. Zhang, X. Li, L. Tong, and B. Chen, “Effects of Er3+ concentration on down-/up-conversion luminescence and temperature sensing properties in NaGdTiO4: Er3+/Yb3+ phosphors,” Ceram. Int. 42(13), 14710–14715 (2016).
[Crossref]

Li, Z.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Lin, C. C.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

Liu, L.

D. Li, Y. Wang, X. Zhang, L. Liu, and Y. Song, “Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3,” Opt. Commun. 285(7), 1925–1928 (2012).
[Crossref]

Liu, Q.

Liu, R. S.

I. Baginskiy and R. S. Liu, “Significant improved luminescence intensity of Eu2+ -doped Ca3SiO4Cl2 green phosphor for white LEDs synthesized through two-stage method,” J. Electrochem. Soc. 156(5), G29–G32 (2009).
[Crossref]

Liu, R.-S.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

Liu, Y.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 91(13), 133103 (2007).
[Crossref]

Liu, Z.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Lu, W.

Q. Min, W. Bian, Y. Qi, W. Lu, X. Yu, X. Xu, D. Zhou, and J. Qiu, “Temperature sensing based on the up-conversion emission of Tm3+ in a single KLuF4 microcrystal,” J. Alloys Compd. 728, 1037–1042 (2017).
[Crossref]

Luo, W.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

Ma, E.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

Marciniak, L.

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “The sensitivity of nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

Min, Q.

Q. Min, W. Bian, Y. Qi, W. Lu, X. Yu, X. Xu, D. Zhou, and J. Qiu, “Temperature sensing based on the up-conversion emission of Tm3+ in a single KLuF4 microcrystal,” J. Alloys Compd. 728, 1037–1042 (2017).
[Crossref]

Mitomo, M.

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
[Crossref]

Pandey, A.

A. Pandey and V. K. Rai, “Improved luminescence and temperature sensing performance of Ho3+-Yb3+-Zn2+:Y2O3 phosphor,” Dalton Trans. 42(30), 11005–11011 (2013).
[Crossref] [PubMed]

Qi, Y.

Q. Min, W. Bian, Y. Qi, W. Lu, X. Yu, X. Xu, D. Zhou, and J. Qiu, “Temperature sensing based on the up-conversion emission of Tm3+ in a single KLuF4 microcrystal,” J. Alloys Compd. 728, 1037–1042 (2017).
[Crossref]

Qin, L.

Qiu, J.

Q. Min, W. Bian, Y. Qi, W. Lu, X. Yu, X. Xu, D. Zhou, and J. Qiu, “Temperature sensing based on the up-conversion emission of Tm3+ in a single KLuF4 microcrystal,” J. Alloys Compd. 728, 1037–1042 (2017).
[Crossref]

Rai, V. K.

A. Pandey and V. K. Rai, “Improved luminescence and temperature sensing performance of Ho3+-Yb3+-Zn2+:Y2O3 phosphor,” Dalton Trans. 42(30), 11005–11011 (2013).
[Crossref] [PubMed]

Raib, S. B.

A. K. Singh, P. K. Shahi, S. B. Raib, and B. Ullrich, “Host matrix impact on Er3+ upconversion emission and its temperature dependence,” RSC Advances 5(21), 16067–16073 (2015).
[Crossref]

Sakuma, K.

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
[Crossref]

Savchuk, O. A.

O. A. Savchuk, J. J. Carvajal, C. Cascales, M. Aguiló, and F. Díaz, “Benefits of silica core−shell structures on the temperature sensing properties of Er,Yb:GdVO4 up-conversion Nanoparticles,” ACS Appl. Mater. Interfaces 8(11), 7266–7273 (2016).
[Crossref] [PubMed]

Seo, H. J.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7, 43383 (2017).
[Crossref] [PubMed]

X. Wang, Q. Liu, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
[Crossref] [PubMed]

Shahi, P. K.

A. K. Singh, P. K. Shahi, S. B. Raib, and B. Ullrich, “Host matrix impact on Er3+ upconversion emission and its temperature dependence,” RSC Advances 5(21), 16067–16073 (2015).
[Crossref]

Shu, S.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

Singh, A. K.

A. K. Singh, P. K. Shahi, S. B. Raib, and B. Ullrich, “Host matrix impact on Er3+ upconversion emission and its temperature dependence,” RSC Advances 5(21), 16067–16073 (2015).
[Crossref]

Somesfalean, G.

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 91(13), 133103 (2007).
[Crossref]

Song, Y.

D. Li, Y. Wang, X. Zhang, L. Liu, and Y. Song, “Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3,” Opt. Commun. 285(7), 1925–1928 (2012).
[Crossref]

Strek, W.

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “The sensitivity of nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

Sun, J.

L. Tong, X. Li, R. Hua, L. Cheng, J. Sun, J. Zhang, S. Xu, H. Zheng, Y. Zhang, and B. Chen, “Optical temperature sensing properties of Yb3+/Tm3+ co-doped NaLuF4 crystals,” Curr. Appl. Phys. 17(7), 999–1004 (2017).
[Crossref]

X. Li, X. Wang, H. Zhong, L. Cheng, S. Xu, J. Sun, J. Zhang, X. Li, L. Tong, and B. Chen, “Effects of Er3+ concentration on down-/up-conversion luminescence and temperature sensing properties in NaGdTiO4: Er3+/Yb3+ phosphors,” Ceram. Int. 42(13), 14710–14715 (2016).
[Crossref]

Sun, Q.

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 91(13), 133103 (2007).
[Crossref]

Suo, H.

H. Suo, C. Guo, and T. Li, “Broad-scope thermometry based on dual-color modulation up-conversion phosphor Ba5Gd8Zn4O21:Er3+/Yb3+,” J. Phys. Chem. C 120(5), 2914–2924 (2016).
[Crossref]

Tong, L.

L. Tong, X. Li, R. Hua, L. Cheng, J. Sun, J. Zhang, S. Xu, H. Zheng, Y. Zhang, and B. Chen, “Optical temperature sensing properties of Yb3+/Tm3+ co-doped NaLuF4 crystals,” Curr. Appl. Phys. 17(7), 999–1004 (2017).
[Crossref]

X. Li, X. Wang, H. Zhong, L. Cheng, S. Xu, J. Sun, J. Zhang, X. Li, L. Tong, and B. Chen, “Effects of Er3+ concentration on down-/up-conversion luminescence and temperature sensing properties in NaGdTiO4: Er3+/Yb3+ phosphors,” Ceram. Int. 42(13), 14710–14715 (2016).
[Crossref]

Ullrich, B.

A. K. Singh, P. K. Shahi, S. B. Raib, and B. Ullrich, “Host matrix impact on Er3+ upconversion emission and its temperature dependence,” RSC Advances 5(21), 16067–16073 (2015).
[Crossref]

Vu, T.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7, 43383 (2017).
[Crossref] [PubMed]

X. Wang, Q. Liu, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
[Crossref] [PubMed]

Wan, Z.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

Wang, D.

D. Wang and N. Kodama, “Visible quantum cutting through downconversion in GdPO4:Tb3+ and Sr3Gd(PO4)3:Tb3+,” J. Solid State Chem. 182(8), 2219–2224 (2009).
[Crossref]

Wang, F. P.

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 91(13), 133103 (2007).
[Crossref]

Wang, J.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7, 43383 (2017).
[Crossref] [PubMed]

X. Wang, Q. Liu, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
[Crossref] [PubMed]

Wang, R.

Wang, X.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7, 43383 (2017).
[Crossref] [PubMed]

X. Li, X. Wang, H. Zhong, L. Cheng, S. Xu, J. Sun, J. Zhang, X. Li, L. Tong, and B. Chen, “Effects of Er3+ concentration on down-/up-conversion luminescence and temperature sensing properties in NaGdTiO4: Er3+/Yb3+ phosphors,” Ceram. Int. 42(13), 14710–14715 (2016).
[Crossref]

X. Wang, Q. Liu, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
[Crossref] [PubMed]

Wang, Y.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7, 43383 (2017).
[Crossref] [PubMed]

D. Li, Y. Wang, X. Zhang, L. Liu, and Y. Song, “Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3,” Opt. Commun. 285(7), 1925–1928 (2012).
[Crossref]

Waszniewska, K.

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “The sensitivity of nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

Xia, Z.

C. Zeng, Y. Hu, Z. Xia, and H. Huang, “A novel apatite-based warm white emitting phosphor Ba3GdK(PO4)3F:Tb3+, Eu3+ with efficient energy transfer for w-LEDs,” RSC Advances 5(83), 68099–68108 (2015).
[Crossref]

Xie, R. J.

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
[Crossref]

Xing, L.

Xu, S.

L. Tong, X. Li, R. Hua, L. Cheng, J. Sun, J. Zhang, S. Xu, H. Zheng, Y. Zhang, and B. Chen, “Optical temperature sensing properties of Yb3+/Tm3+ co-doped NaLuF4 crystals,” Curr. Appl. Phys. 17(7), 999–1004 (2017).
[Crossref]

X. Li, X. Wang, H. Zhong, L. Cheng, S. Xu, J. Sun, J. Zhang, X. Li, L. Tong, and B. Chen, “Effects of Er3+ concentration on down-/up-conversion luminescence and temperature sensing properties in NaGdTiO4: Er3+/Yb3+ phosphors,” Ceram. Int. 42(13), 14710–14715 (2016).
[Crossref]

Xu, W.

Xu, X.

Q. Min, W. Bian, Y. Qi, W. Lu, X. Yu, X. Xu, D. Zhou, and J. Qiu, “Temperature sensing based on the up-conversion emission of Tm3+ in a single KLuF4 microcrystal,” J. Alloys Compd. 728, 1037–1042 (2017).
[Crossref]

Xu, Y.

Yan, X.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7, 43383 (2017).
[Crossref] [PubMed]

Yu, X.

Q. Min, W. Bian, Y. Qi, W. Lu, X. Yu, X. Xu, D. Zhou, and J. Qiu, “Temperature sensing based on the up-conversion emission of Tm3+ in a single KLuF4 microcrystal,” J. Alloys Compd. 728, 1037–1042 (2017).
[Crossref]

Yu, Y.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

Zeng, C.

C. Zeng, Y. Hu, Z. Xia, and H. Huang, “A novel apatite-based warm white emitting phosphor Ba3GdK(PO4)3F:Tb3+, Eu3+ with efficient energy transfer for w-LEDs,” RSC Advances 5(83), 68099–68108 (2015).
[Crossref]

Zhai, Z.

J. Zhang, Z. Zhai, and Z. Hua, “Investigations on luminescence of Ca8MgGd(PO4)7:Eu2+, Mn2+, Yb3+, Er3+, Ho3+, Tm3+ phosphors,” Mater. Res. Bull. 74, 34–40 (2016).
[Crossref]

Zhang, J.

L. Tong, X. Li, R. Hua, L. Cheng, J. Sun, J. Zhang, S. Xu, H. Zheng, Y. Zhang, and B. Chen, “Optical temperature sensing properties of Yb3+/Tm3+ co-doped NaLuF4 crystals,” Curr. Appl. Phys. 17(7), 999–1004 (2017).
[Crossref]

J. Zhang, Z. Zhai, and Z. Hua, “Investigations on luminescence of Ca8MgGd(PO4)7:Eu2+, Mn2+, Yb3+, Er3+, Ho3+, Tm3+ phosphors,” Mater. Res. Bull. 74, 34–40 (2016).
[Crossref]

X. Li, X. Wang, H. Zhong, L. Cheng, S. Xu, J. Sun, J. Zhang, X. Li, L. Tong, and B. Chen, “Effects of Er3+ concentration on down-/up-conversion luminescence and temperature sensing properties in NaGdTiO4: Er3+/Yb3+ phosphors,” Ceram. Int. 42(13), 14710–14715 (2016).
[Crossref]

Zhang, X.

D. Li, Y. Wang, X. Zhang, L. Liu, and Y. Song, “Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3,” Opt. Commun. 285(7), 1925–1928 (2012).
[Crossref]

Zhang, Y.

L. Tong, X. Li, R. Hua, L. Cheng, J. Sun, J. Zhang, S. Xu, H. Zheng, Y. Zhang, and B. Chen, “Optical temperature sensing properties of Yb3+/Tm3+ co-doped NaLuF4 crystals,” Curr. Appl. Phys. 17(7), 999–1004 (2017).
[Crossref]

Zhang, Y. G.

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 91(13), 133103 (2007).
[Crossref]

Zhang, Z.

Zhang, Z. G.

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 91(13), 133103 (2007).
[Crossref]

Zheng, H.

L. Tong, X. Li, R. Hua, L. Cheng, J. Sun, J. Zhang, S. Xu, H. Zheng, Y. Zhang, and B. Chen, “Optical temperature sensing properties of Yb3+/Tm3+ co-doped NaLuF4 crystals,” Curr. Appl. Phys. 17(7), 999–1004 (2017).
[Crossref]

Zhong, H.

X. Li, X. Wang, H. Zhong, L. Cheng, S. Xu, J. Sun, J. Zhang, X. Li, L. Tong, and B. Chen, “Effects of Er3+ concentration on down-/up-conversion luminescence and temperature sensing properties in NaGdTiO4: Er3+/Yb3+ phosphors,” Ceram. Int. 42(13), 14710–14715 (2016).
[Crossref]

Zhong, J.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

Zhou, D.

Q. Min, W. Bian, Y. Qi, W. Lu, X. Yu, X. Xu, D. Zhou, and J. Qiu, “Temperature sensing based on the up-conversion emission of Tm3+ in a single KLuF4 microcrystal,” J. Alloys Compd. 728, 1037–1042 (2017).
[Crossref]

Zhou, X.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

Zhou, Y.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

Zhu, H.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (2)

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

O. A. Savchuk, J. J. Carvajal, C. Cascales, M. Aguiló, and F. Díaz, “Benefits of silica core−shell structures on the temperature sensing properties of Er,Yb:GdVO4 up-conversion Nanoparticles,” ACS Appl. Mater. Interfaces 8(11), 7266–7273 (2016).
[Crossref] [PubMed]

Adv. Mater. (1)

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 91(13), 133103 (2007).
[Crossref]

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
[Crossref]

Ceram. Int. (1)

X. Li, X. Wang, H. Zhong, L. Cheng, S. Xu, J. Sun, J. Zhang, X. Li, L. Tong, and B. Chen, “Effects of Er3+ concentration on down-/up-conversion luminescence and temperature sensing properties in NaGdTiO4: Er3+/Yb3+ phosphors,” Ceram. Int. 42(13), 14710–14715 (2016).
[Crossref]

Curr. Appl. Phys. (1)

L. Tong, X. Li, R. Hua, L. Cheng, J. Sun, J. Zhang, S. Xu, H. Zheng, Y. Zhang, and B. Chen, “Optical temperature sensing properties of Yb3+/Tm3+ co-doped NaLuF4 crystals,” Curr. Appl. Phys. 17(7), 999–1004 (2017).
[Crossref]

Dalton Trans. (1)

A. Pandey and V. K. Rai, “Improved luminescence and temperature sensing performance of Ho3+-Yb3+-Zn2+:Y2O3 phosphor,” Dalton Trans. 42(30), 11005–11011 (2013).
[Crossref] [PubMed]

J. Alloys Compd. (1)

Q. Min, W. Bian, Y. Qi, W. Lu, X. Yu, X. Xu, D. Zhou, and J. Qiu, “Temperature sensing based on the up-conversion emission of Tm3+ in a single KLuF4 microcrystal,” J. Alloys Compd. 728, 1037–1042 (2017).
[Crossref]

J. Electrochem. Soc. (1)

I. Baginskiy and R. S. Liu, “Significant improved luminescence intensity of Eu2+ -doped Ca3SiO4Cl2 green phosphor for white LEDs synthesized through two-stage method,” J. Electrochem. Soc. 156(5), G29–G32 (2009).
[Crossref]

J. Phys. Chem. C (2)

H. Suo, C. Guo, and T. Li, “Broad-scope thermometry based on dual-color modulation up-conversion phosphor Ba5Gd8Zn4O21:Er3+/Yb3+,” J. Phys. Chem. C 120(5), 2914–2924 (2016).
[Crossref]

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “The sensitivity of nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

J. Solid State Chem. (1)

D. Wang and N. Kodama, “Visible quantum cutting through downconversion in GdPO4:Tb3+ and Sr3Gd(PO4)3:Tb3+,” J. Solid State Chem. 182(8), 2219–2224 (2009).
[Crossref]

Mater. Res. Bull. (1)

J. Zhang, Z. Zhai, and Z. Hua, “Investigations on luminescence of Ca8MgGd(PO4)7:Eu2+, Mn2+, Yb3+, Er3+, Ho3+, Tm3+ phosphors,” Mater. Res. Bull. 74, 34–40 (2016).
[Crossref]

Methods Appl. Fluoresc. (1)

M. D. Dramićanin, “Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts. A review,” Methods Appl. Fluoresc. 4(4), 042001 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

Opt. Commun. (1)

D. Li, Y. Wang, X. Zhang, L. Liu, and Y. Song, “Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3,” Opt. Commun. 285(7), 1925–1928 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

RSC Advances (2)

C. Zeng, Y. Hu, Z. Xia, and H. Huang, “A novel apatite-based warm white emitting phosphor Ba3GdK(PO4)3F:Tb3+, Eu3+ with efficient energy transfer for w-LEDs,” RSC Advances 5(83), 68099–68108 (2015).
[Crossref]

A. K. Singh, P. K. Shahi, S. B. Raib, and B. Ullrich, “Host matrix impact on Er3+ upconversion emission and its temperature dependence,” RSC Advances 5(21), 16067–16073 (2015).
[Crossref]

Sci. Rep. (1)

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7, 43383 (2017).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) XRD patterns of YSO:0.5%Tm3+,xYb3+ (5% ≤ x ≤ 20%); (b) SEM image of YSO:0.5%Tm3+,10%Yb3+.
Fig. 2
Fig. 2 (a) Emission spectra of YSO:0.5%Tm3+,xYb3+ (5% ≤ x ≤ 20%) upon 980 nm excitation; (b) enlarged emission spectra of YSO:0.5%Tm3+,xYb3+ (5% ≤ x ≤ 20%) from 620 to 730 nm; (c) energy level diagram of Tm3+-Yb3+ ions; (d) emission spectra of NaYF4:Yb3+,Tm3+ and YSO:Tm3+,Yb3+.
Fig. 3
Fig. 3 Emission spectra of YSO:0.5%Tm3+,10%Yb3+ upon 980 nm excitation for various pump powers, inset shows dependence of UC emission intensities on the excitation power.
Fig. 4
Fig. 4 (a) Emission spectra of YSO:0.5%Tm3+,10%Yb3+ under 980 excitation at various temperatures; (b) enlarged emission spectra of YSO:0.5%Tm3+,10%Yb3+ from 620 to 730 nm; (c) relative intensities of 695 and 789 nm emissions as a function of temperature; (d) normalized emission spectra in the range of 450-510 nm for YSO:0.5%Tm3+,10%Yb3+ under 980 excitation at various temperatures.
Fig. 5
Fig. 5 Dependence of (a) I695/I789 and (b) I466/I484 on the absolute temperature; absolute (SA) and relative (SR) sensitivities as a function of the temperature from 293 to 553 K for (c) I695/I789 and (d) I466/I484.
Fig. 6
Fig. 6 (a) RSD for the obtained temperature as a function of absolute temperature by using I695/I789 and I466/I484; (b) temperature-induced switching of I695/I789 and I466/I484 (alternating between 293 and 553 K).
Fig. 7
Fig. 7 (a) Relative intensity of Tm3+ 1G4-3H6 emission as a function of absolute temperature; (b) ln(I/IT −1) versus 1/(kT) plot as well as the calculated Ea value.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I f P n
R= I upper / I lower =Nexp( ΔE KT )
S A = d(R) d(T) =R ΔE K T 2
S R =| 1 R d(R) d(T) |= ΔE K T 2
RSD= 1 T ¯ i=1 n ( T i T ¯ ) 2 n1 ×100%
I T = I 0 1+Aexp( ΔE kT )

Metrics