Abstract

To explore new upconversion materials for optical temperature sensing, a series of Tm3+-Yb3+ codoped Y4.67Si3O13 (YSO) phosphors was prepared by solid-state reaction. The phase composition was examined by XRD patterns, revealing that the samples are single-phase. Upon 980 nm excitation, four main emission peaks of Tm3+ were observed from the near-ultraviolet to the near-infrared region. The pump-dependence measurement indicates that the blue and near-infrared emissions of Tm3+ are three- and two-photon processes, respectively. By studying the temperature-dependence of the typical YSO:0.5%Tm3+,10%Yb3+ sample, it has been found that the fluorescence intensity ratios (FIRs) of both the 695/789 and 466/484 nm emissions increase with increasing temperature due to the thermally-coupled levels. The repeatability of measurement was examined by relative standard deviation and cycle test. The relative and absolute sensitivities of YSO:0.5%Tm3+,10%Yb3+ were evaluated.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Upconversion luminescence of Ba3La(PO4)3:Yb3+-Er3+/Tm3+ phosphors for optimal temperature sensing

Jiafeng Cao, Jia Zhang, and Xiaowei Li
Appl. Opt. 57(6) 1345-1350 (2018)

Influence of excitation power and doping concentration on the upconversion emission and optical temperature sensing behavior of Er3+: BaGd2(MoO4)4 phosphors

Ruoshan Lei, Degang Deng, Xin Liu, Feifei Huang, Huanping Wang, Shilong Zhao, and Shiqing Xu
Opt. Mater. Express 8(10) 3023-3035 (2018)

Up-conversion luminescence of novel Yb3+-Ho3+/Er3+ doped Sr5(PO4)3Cl phosphors for optical temperature sensing

Jia Zhang, Guibin Chen, and Zhenghe Hua
Opt. Mater. Express 7(6) 2084-2089 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. Suo, C. Guo, and T. Li, “Broad-scope thermometry based on dual-color modulation up-conversion phosphor Ba5Gd8Zn4O21:Er3+/Yb3+,” J. Phys. Chem. C 120(5), 2914–2924 (2016).
    [Crossref]
  2. A. K. Singh, P. K. Shahi, S. B. Raib, and B. Ullrich, “Host matrix impact on Er3+ upconversion emission and its temperature dependence,” RSC Advances 5(21), 16067–16073 (2015).
    [Crossref]
  3. X. Li, X. Wang, H. Zhong, L. Cheng, S. Xu, J. Sun, J. Zhang, X. Li, L. Tong, and B. Chen, “Effects of Er3+ concentration on down-/up-conversion luminescence and temperature sensing properties in NaGdTiO4: Er3+/Yb3+ phosphors,” Ceram. Int. 42(13), 14710–14715 (2016).
    [Crossref]
  4. X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7, 43383 (2017).
    [Crossref] [PubMed]
  5. O. A. Savchuk, J. J. Carvajal, C. Cascales, M. Aguiló, and F. Díaz, “Benefits of silica core−shell structures on the temperature sensing properties of Er,Yb:GdVO4 up-conversion Nanoparticles,” ACS Appl. Mater. Interfaces 8(11), 7266–7273 (2016).
    [Crossref] [PubMed]
  6. X. Wang, Q. Liu, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
    [Crossref] [PubMed]
  7. A. Pandey and V. K. Rai, “Improved luminescence and temperature sensing performance of Ho3+-Yb3+-Zn2+:Y2O3 phosphor,” Dalton Trans. 42(30), 11005–11011 (2013).
    [Crossref] [PubMed]
  8. Q. Min, W. Bian, Y. Qi, W. Lu, X. Yu, X. Xu, D. Zhou, and J. Qiu, “Temperature sensing based on the up-conversion emission of Tm3+ in a single KLuF4 microcrystal,” J. Alloys Compd. 728, 1037–1042 (2017).
    [Crossref]
  9. B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
    [Crossref] [PubMed]
  10. D. Wang and N. Kodama, “Visible quantum cutting through downconversion in GdPO4:Tb3+ and Sr3Gd(PO4)3:Tb3+,” J. Solid State Chem. 182(8), 2219–2224 (2009).
    [Crossref]
  11. J. Zhang, Z. Zhai, and Z. Hua, “Investigations on luminescence of Ca8MgGd(PO4)7:Eu2+, Mn2+, Yb3+, Er3+, Ho3+, Tm3+ phosphors,” Mater. Res. Bull. 74, 34–40 (2016).
    [Crossref]
  12. G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 91(13), 133103 (2007).
    [Crossref]
  13. D. Li, Y. Wang, X. Zhang, L. Liu, and Y. Song, “Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3,” Opt. Commun. 285(7), 1925–1928 (2012).
    [Crossref]
  14. D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
    [Crossref] [PubMed]
  15. L. Tong, X. Li, R. Hua, L. Cheng, J. Sun, J. Zhang, S. Xu, H. Zheng, Y. Zhang, and B. Chen, “Optical temperature sensing properties of Yb3+/Tm3+ co-doped NaLuF4 crystals,” Curr. Appl. Phys. 17(7), 999–1004 (2017).
    [Crossref]
  16. L. Xing, Y. Xu, R. Wang, W. Xu, and Z. Zhang, “Highly sensitive optical thermometry based on upconversion emissions in Tm3+/Yb3+ codoped LiNbO3 single crystal,” Opt. Lett. 39(3), 454–457 (2014).
    [Crossref] [PubMed]
  17. L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “The sensitivity of nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
    [Crossref]
  18. M. D. Dramićanin, “Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts. A review,” Methods Appl. Fluoresc. 4(4), 042001 (2016).
    [Crossref] [PubMed]
  19. H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
    [Crossref] [PubMed]
  20. R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
    [Crossref]
  21. I. Baginskiy and R. S. Liu, “Significant improved luminescence intensity of Eu2+ -doped Ca3SiO4Cl2 green phosphor for white LEDs synthesized through two-stage method,” J. Electrochem. Soc. 156(5), G29–G32 (2009).
    [Crossref]
  22. C. Zeng, Y. Hu, Z. Xia, and H. Huang, “A novel apatite-based warm white emitting phosphor Ba3GdK(PO4)3F:Tb3+, Eu3+ with efficient energy transfer for w-LEDs,” RSC Advances 5(83), 68099–68108 (2015).
    [Crossref]

2017 (3)

Q. Min, W. Bian, Y. Qi, W. Lu, X. Yu, X. Xu, D. Zhou, and J. Qiu, “Temperature sensing based on the up-conversion emission of Tm3+ in a single KLuF4 microcrystal,” J. Alloys Compd. 728, 1037–1042 (2017).
[Crossref]

L. Tong, X. Li, R. Hua, L. Cheng, J. Sun, J. Zhang, S. Xu, H. Zheng, Y. Zhang, and B. Chen, “Optical temperature sensing properties of Yb3+/Tm3+ co-doped NaLuF4 crystals,” Curr. Appl. Phys. 17(7), 999–1004 (2017).
[Crossref]

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7, 43383 (2017).
[Crossref] [PubMed]

2016 (7)

O. A. Savchuk, J. J. Carvajal, C. Cascales, M. Aguiló, and F. Díaz, “Benefits of silica core−shell structures on the temperature sensing properties of Er,Yb:GdVO4 up-conversion Nanoparticles,” ACS Appl. Mater. Interfaces 8(11), 7266–7273 (2016).
[Crossref] [PubMed]

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “The sensitivity of nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

M. D. Dramićanin, “Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts. A review,” Methods Appl. Fluoresc. 4(4), 042001 (2016).
[Crossref] [PubMed]

X. Li, X. Wang, H. Zhong, L. Cheng, S. Xu, J. Sun, J. Zhang, X. Li, L. Tong, and B. Chen, “Effects of Er3+ concentration on down-/up-conversion luminescence and temperature sensing properties in NaGdTiO4: Er3+/Yb3+ phosphors,” Ceram. Int. 42(13), 14710–14715 (2016).
[Crossref]

H. Suo, C. Guo, and T. Li, “Broad-scope thermometry based on dual-color modulation up-conversion phosphor Ba5Gd8Zn4O21:Er3+/Yb3+,” J. Phys. Chem. C 120(5), 2914–2924 (2016).
[Crossref]

J. Zhang, Z. Zhai, and Z. Hua, “Investigations on luminescence of Ca8MgGd(PO4)7:Eu2+, Mn2+, Yb3+, Er3+, Ho3+, Tm3+ phosphors,” Mater. Res. Bull. 74, 34–40 (2016).
[Crossref]

X. Wang, Q. Liu, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
[Crossref] [PubMed]

2015 (3)

A. K. Singh, P. K. Shahi, S. B. Raib, and B. Ullrich, “Host matrix impact on Er3+ upconversion emission and its temperature dependence,” RSC Advances 5(21), 16067–16073 (2015).
[Crossref]

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

C. Zeng, Y. Hu, Z. Xia, and H. Huang, “A novel apatite-based warm white emitting phosphor Ba3GdK(PO4)3F:Tb3+, Eu3+ with efficient energy transfer for w-LEDs,” RSC Advances 5(83), 68099–68108 (2015).
[Crossref]

2014 (2)

L. Xing, Y. Xu, R. Wang, W. Xu, and Z. Zhang, “Highly sensitive optical thermometry based on upconversion emissions in Tm3+/Yb3+ codoped LiNbO3 single crystal,” Opt. Lett. 39(3), 454–457 (2014).
[Crossref] [PubMed]

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

2013 (1)

A. Pandey and V. K. Rai, “Improved luminescence and temperature sensing performance of Ho3+-Yb3+-Zn2+:Y2O3 phosphor,” Dalton Trans. 42(30), 11005–11011 (2013).
[Crossref] [PubMed]

2012 (2)

D. Li, Y. Wang, X. Zhang, L. Liu, and Y. Song, “Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3,” Opt. Commun. 285(7), 1925–1928 (2012).
[Crossref]

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

2009 (2)

D. Wang and N. Kodama, “Visible quantum cutting through downconversion in GdPO4:Tb3+ and Sr3Gd(PO4)3:Tb3+,” J. Solid State Chem. 182(8), 2219–2224 (2009).
[Crossref]

I. Baginskiy and R. S. Liu, “Significant improved luminescence intensity of Eu2+ -doped Ca3SiO4Cl2 green phosphor for white LEDs synthesized through two-stage method,” J. Electrochem. Soc. 156(5), G29–G32 (2009).
[Crossref]

2007 (2)

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 91(13), 133103 (2007).
[Crossref]

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
[Crossref]

Aguiló, M.

O. A. Savchuk, J. J. Carvajal, C. Cascales, M. Aguiló, and F. Díaz, “Benefits of silica core−shell structures on the temperature sensing properties of Er,Yb:GdVO4 up-conversion Nanoparticles,” ACS Appl. Mater. Interfaces 8(11), 7266–7273 (2016).
[Crossref] [PubMed]

Baginskiy, I.

I. Baginskiy and R. S. Liu, “Significant improved luminescence intensity of Eu2+ -doped Ca3SiO4Cl2 green phosphor for white LEDs synthesized through two-stage method,” J. Electrochem. Soc. 156(5), G29–G32 (2009).
[Crossref]

Bednarkiewicz, A.

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “The sensitivity of nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

Bian, W.

Q. Min, W. Bian, Y. Qi, W. Lu, X. Yu, X. Xu, D. Zhou, and J. Qiu, “Temperature sensing based on the up-conversion emission of Tm3+ in a single KLuF4 microcrystal,” J. Alloys Compd. 728, 1037–1042 (2017).
[Crossref]

Bu, Y.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7, 43383 (2017).
[Crossref] [PubMed]

Cai, P.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7, 43383 (2017).
[Crossref] [PubMed]

X. Wang, Q. Liu, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
[Crossref] [PubMed]

Cao, B.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Cao, Y.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

Carvajal, J. J.

O. A. Savchuk, J. J. Carvajal, C. Cascales, M. Aguiló, and F. Díaz, “Benefits of silica core−shell structures on the temperature sensing properties of Er,Yb:GdVO4 up-conversion Nanoparticles,” ACS Appl. Mater. Interfaces 8(11), 7266–7273 (2016).
[Crossref] [PubMed]

Cascales, C.

O. A. Savchuk, J. J. Carvajal, C. Cascales, M. Aguiló, and F. Díaz, “Benefits of silica core−shell structures on the temperature sensing properties of Er,Yb:GdVO4 up-conversion Nanoparticles,” ACS Appl. Mater. Interfaces 8(11), 7266–7273 (2016).
[Crossref] [PubMed]

Chen, B.

L. Tong, X. Li, R. Hua, L. Cheng, J. Sun, J. Zhang, S. Xu, H. Zheng, Y. Zhang, and B. Chen, “Optical temperature sensing properties of Yb3+/Tm3+ co-doped NaLuF4 crystals,” Curr. Appl. Phys. 17(7), 999–1004 (2017).
[Crossref]

X. Li, X. Wang, H. Zhong, L. Cheng, S. Xu, J. Sun, J. Zhang, X. Li, L. Tong, and B. Chen, “Effects of Er3+ concentration on down-/up-conversion luminescence and temperature sensing properties in NaGdTiO4: Er3+/Yb3+ phosphors,” Ceram. Int. 42(13), 14710–14715 (2016).
[Crossref]

Chen, D.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

Chen, G. Y.

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 91(13), 133103 (2007).
[Crossref]

Chen, X.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

Cheng, L.

L. Tong, X. Li, R. Hua, L. Cheng, J. Sun, J. Zhang, S. Xu, H. Zheng, Y. Zhang, and B. Chen, “Optical temperature sensing properties of Yb3+/Tm3+ co-doped NaLuF4 crystals,” Curr. Appl. Phys. 17(7), 999–1004 (2017).
[Crossref]

X. Li, X. Wang, H. Zhong, L. Cheng, S. Xu, J. Sun, J. Zhang, X. Li, L. Tong, and B. Chen, “Effects of Er3+ concentration on down-/up-conversion luminescence and temperature sensing properties in NaGdTiO4: Er3+/Yb3+ phosphors,” Ceram. Int. 42(13), 14710–14715 (2016).
[Crossref]

Díaz, F.

O. A. Savchuk, J. J. Carvajal, C. Cascales, M. Aguiló, and F. Díaz, “Benefits of silica core−shell structures on the temperature sensing properties of Er,Yb:GdVO4 up-conversion Nanoparticles,” ACS Appl. Mater. Interfaces 8(11), 7266–7273 (2016).
[Crossref] [PubMed]

Ding, M.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

Dong, B.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Dramicanin, M. D.

M. D. Dramićanin, “Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts. A review,” Methods Appl. Fluoresc. 4(4), 042001 (2016).
[Crossref] [PubMed]

Feng, Z.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Guo, C.

H. Suo, C. Guo, and T. Li, “Broad-scope thermometry based on dual-color modulation up-conversion phosphor Ba5Gd8Zn4O21:Er3+/Yb3+,” J. Phys. Chem. C 120(5), 2914–2924 (2016).
[Crossref]

He, Y.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Hirosaki, N.

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
[Crossref]

Hreniak, D.

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “The sensitivity of nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

Hu, Y.

C. Zeng, Y. Hu, Z. Xia, and H. Huang, “A novel apatite-based warm white emitting phosphor Ba3GdK(PO4)3F:Tb3+, Eu3+ with efficient energy transfer for w-LEDs,” RSC Advances 5(83), 68099–68108 (2015).
[Crossref]

Hua, R.

L. Tong, X. Li, R. Hua, L. Cheng, J. Sun, J. Zhang, S. Xu, H. Zheng, Y. Zhang, and B. Chen, “Optical temperature sensing properties of Yb3+/Tm3+ co-doped NaLuF4 crystals,” Curr. Appl. Phys. 17(7), 999–1004 (2017).
[Crossref]

Hua, Z.

J. Zhang, Z. Zhai, and Z. Hua, “Investigations on luminescence of Ca8MgGd(PO4)7:Eu2+, Mn2+, Yb3+, Er3+, Ho3+, Tm3+ phosphors,” Mater. Res. Bull. 74, 34–40 (2016).
[Crossref]

Huang, H.

C. Zeng, Y. Hu, Z. Xia, and H. Huang, “A novel apatite-based warm white emitting phosphor Ba3GdK(PO4)3F:Tb3+, Eu3+ with efficient energy transfer for w-LEDs,” RSC Advances 5(83), 68099–68108 (2015).
[Crossref]

Ji, Z.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

Kimura, N.

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
[Crossref]

Kodama, N.

D. Wang and N. Kodama, “Visible quantum cutting through downconversion in GdPO4:Tb3+ and Sr3Gd(PO4)3:Tb3+,” J. Solid State Chem. 182(8), 2219–2224 (2009).
[Crossref]

Kong, J.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

Li, D.

D. Li, Y. Wang, X. Zhang, L. Liu, and Y. Song, “Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3,” Opt. Commun. 285(7), 1925–1928 (2012).
[Crossref]

Li, T.

H. Suo, C. Guo, and T. Li, “Broad-scope thermometry based on dual-color modulation up-conversion phosphor Ba5Gd8Zn4O21:Er3+/Yb3+,” J. Phys. Chem. C 120(5), 2914–2924 (2016).
[Crossref]

Li, X.

L. Tong, X. Li, R. Hua, L. Cheng, J. Sun, J. Zhang, S. Xu, H. Zheng, Y. Zhang, and B. Chen, “Optical temperature sensing properties of Yb3+/Tm3+ co-doped NaLuF4 crystals,” Curr. Appl. Phys. 17(7), 999–1004 (2017).
[Crossref]

X. Li, X. Wang, H. Zhong, L. Cheng, S. Xu, J. Sun, J. Zhang, X. Li, L. Tong, and B. Chen, “Effects of Er3+ concentration on down-/up-conversion luminescence and temperature sensing properties in NaGdTiO4: Er3+/Yb3+ phosphors,” Ceram. Int. 42(13), 14710–14715 (2016).
[Crossref]

X. Li, X. Wang, H. Zhong, L. Cheng, S. Xu, J. Sun, J. Zhang, X. Li, L. Tong, and B. Chen, “Effects of Er3+ concentration on down-/up-conversion luminescence and temperature sensing properties in NaGdTiO4: Er3+/Yb3+ phosphors,” Ceram. Int. 42(13), 14710–14715 (2016).
[Crossref]

Li, Z.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Lin, C. C.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

Liu, L.

D. Li, Y. Wang, X. Zhang, L. Liu, and Y. Song, “Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3,” Opt. Commun. 285(7), 1925–1928 (2012).
[Crossref]

Liu, Q.

Liu, R. S.

I. Baginskiy and R. S. Liu, “Significant improved luminescence intensity of Eu2+ -doped Ca3SiO4Cl2 green phosphor for white LEDs synthesized through two-stage method,” J. Electrochem. Soc. 156(5), G29–G32 (2009).
[Crossref]

Liu, R.-S.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

Liu, Y.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 91(13), 133103 (2007).
[Crossref]

Liu, Z.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Lu, W.

Q. Min, W. Bian, Y. Qi, W. Lu, X. Yu, X. Xu, D. Zhou, and J. Qiu, “Temperature sensing based on the up-conversion emission of Tm3+ in a single KLuF4 microcrystal,” J. Alloys Compd. 728, 1037–1042 (2017).
[Crossref]

Luo, W.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

Ma, E.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

Marciniak, L.

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “The sensitivity of nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

Min, Q.

Q. Min, W. Bian, Y. Qi, W. Lu, X. Yu, X. Xu, D. Zhou, and J. Qiu, “Temperature sensing based on the up-conversion emission of Tm3+ in a single KLuF4 microcrystal,” J. Alloys Compd. 728, 1037–1042 (2017).
[Crossref]

Mitomo, M.

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
[Crossref]

Pandey, A.

A. Pandey and V. K. Rai, “Improved luminescence and temperature sensing performance of Ho3+-Yb3+-Zn2+:Y2O3 phosphor,” Dalton Trans. 42(30), 11005–11011 (2013).
[Crossref] [PubMed]

Qi, Y.

Q. Min, W. Bian, Y. Qi, W. Lu, X. Yu, X. Xu, D. Zhou, and J. Qiu, “Temperature sensing based on the up-conversion emission of Tm3+ in a single KLuF4 microcrystal,” J. Alloys Compd. 728, 1037–1042 (2017).
[Crossref]

Qin, L.

Qiu, J.

Q. Min, W. Bian, Y. Qi, W. Lu, X. Yu, X. Xu, D. Zhou, and J. Qiu, “Temperature sensing based on the up-conversion emission of Tm3+ in a single KLuF4 microcrystal,” J. Alloys Compd. 728, 1037–1042 (2017).
[Crossref]

Rai, V. K.

A. Pandey and V. K. Rai, “Improved luminescence and temperature sensing performance of Ho3+-Yb3+-Zn2+:Y2O3 phosphor,” Dalton Trans. 42(30), 11005–11011 (2013).
[Crossref] [PubMed]

Raib, S. B.

A. K. Singh, P. K. Shahi, S. B. Raib, and B. Ullrich, “Host matrix impact on Er3+ upconversion emission and its temperature dependence,” RSC Advances 5(21), 16067–16073 (2015).
[Crossref]

Sakuma, K.

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
[Crossref]

Savchuk, O. A.

O. A. Savchuk, J. J. Carvajal, C. Cascales, M. Aguiló, and F. Díaz, “Benefits of silica core−shell structures on the temperature sensing properties of Er,Yb:GdVO4 up-conversion Nanoparticles,” ACS Appl. Mater. Interfaces 8(11), 7266–7273 (2016).
[Crossref] [PubMed]

Seo, H. J.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7, 43383 (2017).
[Crossref] [PubMed]

X. Wang, Q. Liu, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
[Crossref] [PubMed]

Shahi, P. K.

A. K. Singh, P. K. Shahi, S. B. Raib, and B. Ullrich, “Host matrix impact on Er3+ upconversion emission and its temperature dependence,” RSC Advances 5(21), 16067–16073 (2015).
[Crossref]

Shu, S.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

Singh, A. K.

A. K. Singh, P. K. Shahi, S. B. Raib, and B. Ullrich, “Host matrix impact on Er3+ upconversion emission and its temperature dependence,” RSC Advances 5(21), 16067–16073 (2015).
[Crossref]

Somesfalean, G.

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 91(13), 133103 (2007).
[Crossref]

Song, Y.

D. Li, Y. Wang, X. Zhang, L. Liu, and Y. Song, “Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3,” Opt. Commun. 285(7), 1925–1928 (2012).
[Crossref]

Strek, W.

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “The sensitivity of nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

Sun, J.

L. Tong, X. Li, R. Hua, L. Cheng, J. Sun, J. Zhang, S. Xu, H. Zheng, Y. Zhang, and B. Chen, “Optical temperature sensing properties of Yb3+/Tm3+ co-doped NaLuF4 crystals,” Curr. Appl. Phys. 17(7), 999–1004 (2017).
[Crossref]

X. Li, X. Wang, H. Zhong, L. Cheng, S. Xu, J. Sun, J. Zhang, X. Li, L. Tong, and B. Chen, “Effects of Er3+ concentration on down-/up-conversion luminescence and temperature sensing properties in NaGdTiO4: Er3+/Yb3+ phosphors,” Ceram. Int. 42(13), 14710–14715 (2016).
[Crossref]

Sun, Q.

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 91(13), 133103 (2007).
[Crossref]

Suo, H.

H. Suo, C. Guo, and T. Li, “Broad-scope thermometry based on dual-color modulation up-conversion phosphor Ba5Gd8Zn4O21:Er3+/Yb3+,” J. Phys. Chem. C 120(5), 2914–2924 (2016).
[Crossref]

Tong, L.

L. Tong, X. Li, R. Hua, L. Cheng, J. Sun, J. Zhang, S. Xu, H. Zheng, Y. Zhang, and B. Chen, “Optical temperature sensing properties of Yb3+/Tm3+ co-doped NaLuF4 crystals,” Curr. Appl. Phys. 17(7), 999–1004 (2017).
[Crossref]

X. Li, X. Wang, H. Zhong, L. Cheng, S. Xu, J. Sun, J. Zhang, X. Li, L. Tong, and B. Chen, “Effects of Er3+ concentration on down-/up-conversion luminescence and temperature sensing properties in NaGdTiO4: Er3+/Yb3+ phosphors,” Ceram. Int. 42(13), 14710–14715 (2016).
[Crossref]

Ullrich, B.

A. K. Singh, P. K. Shahi, S. B. Raib, and B. Ullrich, “Host matrix impact on Er3+ upconversion emission and its temperature dependence,” RSC Advances 5(21), 16067–16073 (2015).
[Crossref]

Vu, T.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7, 43383 (2017).
[Crossref] [PubMed]

X. Wang, Q. Liu, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
[Crossref] [PubMed]

Wan, Z.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

Wang, D.

D. Wang and N. Kodama, “Visible quantum cutting through downconversion in GdPO4:Tb3+ and Sr3Gd(PO4)3:Tb3+,” J. Solid State Chem. 182(8), 2219–2224 (2009).
[Crossref]

Wang, F. P.

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 91(13), 133103 (2007).
[Crossref]

Wang, J.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7, 43383 (2017).
[Crossref] [PubMed]

X. Wang, Q. Liu, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
[Crossref] [PubMed]

Wang, R.

Wang, X.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7, 43383 (2017).
[Crossref] [PubMed]

X. Li, X. Wang, H. Zhong, L. Cheng, S. Xu, J. Sun, J. Zhang, X. Li, L. Tong, and B. Chen, “Effects of Er3+ concentration on down-/up-conversion luminescence and temperature sensing properties in NaGdTiO4: Er3+/Yb3+ phosphors,” Ceram. Int. 42(13), 14710–14715 (2016).
[Crossref]

X. Wang, Q. Liu, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
[Crossref] [PubMed]

Wang, Y.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7, 43383 (2017).
[Crossref] [PubMed]

D. Li, Y. Wang, X. Zhang, L. Liu, and Y. Song, “Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3,” Opt. Commun. 285(7), 1925–1928 (2012).
[Crossref]

Waszniewska, K.

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “The sensitivity of nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

Xia, Z.

C. Zeng, Y. Hu, Z. Xia, and H. Huang, “A novel apatite-based warm white emitting phosphor Ba3GdK(PO4)3F:Tb3+, Eu3+ with efficient energy transfer for w-LEDs,” RSC Advances 5(83), 68099–68108 (2015).
[Crossref]

Xie, R. J.

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
[Crossref]

Xing, L.

Xu, S.

L. Tong, X. Li, R. Hua, L. Cheng, J. Sun, J. Zhang, S. Xu, H. Zheng, Y. Zhang, and B. Chen, “Optical temperature sensing properties of Yb3+/Tm3+ co-doped NaLuF4 crystals,” Curr. Appl. Phys. 17(7), 999–1004 (2017).
[Crossref]

X. Li, X. Wang, H. Zhong, L. Cheng, S. Xu, J. Sun, J. Zhang, X. Li, L. Tong, and B. Chen, “Effects of Er3+ concentration on down-/up-conversion luminescence and temperature sensing properties in NaGdTiO4: Er3+/Yb3+ phosphors,” Ceram. Int. 42(13), 14710–14715 (2016).
[Crossref]

Xu, W.

Xu, X.

Q. Min, W. Bian, Y. Qi, W. Lu, X. Yu, X. Xu, D. Zhou, and J. Qiu, “Temperature sensing based on the up-conversion emission of Tm3+ in a single KLuF4 microcrystal,” J. Alloys Compd. 728, 1037–1042 (2017).
[Crossref]

Xu, Y.

Yan, X.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7, 43383 (2017).
[Crossref] [PubMed]

Yu, X.

Q. Min, W. Bian, Y. Qi, W. Lu, X. Yu, X. Xu, D. Zhou, and J. Qiu, “Temperature sensing based on the up-conversion emission of Tm3+ in a single KLuF4 microcrystal,” J. Alloys Compd. 728, 1037–1042 (2017).
[Crossref]

Yu, Y.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

Zeng, C.

C. Zeng, Y. Hu, Z. Xia, and H. Huang, “A novel apatite-based warm white emitting phosphor Ba3GdK(PO4)3F:Tb3+, Eu3+ with efficient energy transfer for w-LEDs,” RSC Advances 5(83), 68099–68108 (2015).
[Crossref]

Zhai, Z.

J. Zhang, Z. Zhai, and Z. Hua, “Investigations on luminescence of Ca8MgGd(PO4)7:Eu2+, Mn2+, Yb3+, Er3+, Ho3+, Tm3+ phosphors,” Mater. Res. Bull. 74, 34–40 (2016).
[Crossref]

Zhang, J.

L. Tong, X. Li, R. Hua, L. Cheng, J. Sun, J. Zhang, S. Xu, H. Zheng, Y. Zhang, and B. Chen, “Optical temperature sensing properties of Yb3+/Tm3+ co-doped NaLuF4 crystals,” Curr. Appl. Phys. 17(7), 999–1004 (2017).
[Crossref]

J. Zhang, Z. Zhai, and Z. Hua, “Investigations on luminescence of Ca8MgGd(PO4)7:Eu2+, Mn2+, Yb3+, Er3+, Ho3+, Tm3+ phosphors,” Mater. Res. Bull. 74, 34–40 (2016).
[Crossref]

X. Li, X. Wang, H. Zhong, L. Cheng, S. Xu, J. Sun, J. Zhang, X. Li, L. Tong, and B. Chen, “Effects of Er3+ concentration on down-/up-conversion luminescence and temperature sensing properties in NaGdTiO4: Er3+/Yb3+ phosphors,” Ceram. Int. 42(13), 14710–14715 (2016).
[Crossref]

Zhang, X.

D. Li, Y. Wang, X. Zhang, L. Liu, and Y. Song, “Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3,” Opt. Commun. 285(7), 1925–1928 (2012).
[Crossref]

Zhang, Y.

L. Tong, X. Li, R. Hua, L. Cheng, J. Sun, J. Zhang, S. Xu, H. Zheng, Y. Zhang, and B. Chen, “Optical temperature sensing properties of Yb3+/Tm3+ co-doped NaLuF4 crystals,” Curr. Appl. Phys. 17(7), 999–1004 (2017).
[Crossref]

Zhang, Y. G.

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 91(13), 133103 (2007).
[Crossref]

Zhang, Z.

Zhang, Z. G.

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 91(13), 133103 (2007).
[Crossref]

Zheng, H.

L. Tong, X. Li, R. Hua, L. Cheng, J. Sun, J. Zhang, S. Xu, H. Zheng, Y. Zhang, and B. Chen, “Optical temperature sensing properties of Yb3+/Tm3+ co-doped NaLuF4 crystals,” Curr. Appl. Phys. 17(7), 999–1004 (2017).
[Crossref]

Zhong, H.

X. Li, X. Wang, H. Zhong, L. Cheng, S. Xu, J. Sun, J. Zhang, X. Li, L. Tong, and B. Chen, “Effects of Er3+ concentration on down-/up-conversion luminescence and temperature sensing properties in NaGdTiO4: Er3+/Yb3+ phosphors,” Ceram. Int. 42(13), 14710–14715 (2016).
[Crossref]

Zhong, J.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

Zhou, D.

Q. Min, W. Bian, Y. Qi, W. Lu, X. Yu, X. Xu, D. Zhou, and J. Qiu, “Temperature sensing based on the up-conversion emission of Tm3+ in a single KLuF4 microcrystal,” J. Alloys Compd. 728, 1037–1042 (2017).
[Crossref]

Zhou, X.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

Zhou, Y.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

Zhu, H.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (2)

O. A. Savchuk, J. J. Carvajal, C. Cascales, M. Aguiló, and F. Díaz, “Benefits of silica core−shell structures on the temperature sensing properties of Er,Yb:GdVO4 up-conversion Nanoparticles,” ACS Appl. Mater. Interfaces 8(11), 7266–7273 (2016).
[Crossref] [PubMed]

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 91(13), 133103 (2007).
[Crossref]

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
[Crossref]

Ceram. Int. (1)

X. Li, X. Wang, H. Zhong, L. Cheng, S. Xu, J. Sun, J. Zhang, X. Li, L. Tong, and B. Chen, “Effects of Er3+ concentration on down-/up-conversion luminescence and temperature sensing properties in NaGdTiO4: Er3+/Yb3+ phosphors,” Ceram. Int. 42(13), 14710–14715 (2016).
[Crossref]

Curr. Appl. Phys. (1)

L. Tong, X. Li, R. Hua, L. Cheng, J. Sun, J. Zhang, S. Xu, H. Zheng, Y. Zhang, and B. Chen, “Optical temperature sensing properties of Yb3+/Tm3+ co-doped NaLuF4 crystals,” Curr. Appl. Phys. 17(7), 999–1004 (2017).
[Crossref]

Dalton Trans. (1)

A. Pandey and V. K. Rai, “Improved luminescence and temperature sensing performance of Ho3+-Yb3+-Zn2+:Y2O3 phosphor,” Dalton Trans. 42(30), 11005–11011 (2013).
[Crossref] [PubMed]

J. Alloys Compd. (1)

Q. Min, W. Bian, Y. Qi, W. Lu, X. Yu, X. Xu, D. Zhou, and J. Qiu, “Temperature sensing based on the up-conversion emission of Tm3+ in a single KLuF4 microcrystal,” J. Alloys Compd. 728, 1037–1042 (2017).
[Crossref]

J. Electrochem. Soc. (1)

I. Baginskiy and R. S. Liu, “Significant improved luminescence intensity of Eu2+ -doped Ca3SiO4Cl2 green phosphor for white LEDs synthesized through two-stage method,” J. Electrochem. Soc. 156(5), G29–G32 (2009).
[Crossref]

J. Phys. Chem. C (2)

H. Suo, C. Guo, and T. Li, “Broad-scope thermometry based on dual-color modulation up-conversion phosphor Ba5Gd8Zn4O21:Er3+/Yb3+,” J. Phys. Chem. C 120(5), 2914–2924 (2016).
[Crossref]

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “The sensitivity of nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

J. Solid State Chem. (1)

D. Wang and N. Kodama, “Visible quantum cutting through downconversion in GdPO4:Tb3+ and Sr3Gd(PO4)3:Tb3+,” J. Solid State Chem. 182(8), 2219–2224 (2009).
[Crossref]

Mater. Res. Bull. (1)

J. Zhang, Z. Zhai, and Z. Hua, “Investigations on luminescence of Ca8MgGd(PO4)7:Eu2+, Mn2+, Yb3+, Er3+, Ho3+, Tm3+ phosphors,” Mater. Res. Bull. 74, 34–40 (2016).
[Crossref]

Methods Appl. Fluoresc. (1)

M. D. Dramićanin, “Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts. A review,” Methods Appl. Fluoresc. 4(4), 042001 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

Opt. Commun. (1)

D. Li, Y. Wang, X. Zhang, L. Liu, and Y. Song, “Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3,” Opt. Commun. 285(7), 1925–1928 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

RSC Advances (2)

A. K. Singh, P. K. Shahi, S. B. Raib, and B. Ullrich, “Host matrix impact on Er3+ upconversion emission and its temperature dependence,” RSC Advances 5(21), 16067–16073 (2015).
[Crossref]

C. Zeng, Y. Hu, Z. Xia, and H. Huang, “A novel apatite-based warm white emitting phosphor Ba3GdK(PO4)3F:Tb3+, Eu3+ with efficient energy transfer for w-LEDs,” RSC Advances 5(83), 68099–68108 (2015).
[Crossref]

Sci. Rep. (1)

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7, 43383 (2017).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) XRD patterns of YSO:0.5%Tm3+,xYb3+ (5% ≤ x ≤ 20%); (b) SEM image of YSO:0.5%Tm3+,10%Yb3+.
Fig. 2
Fig. 2 (a) Emission spectra of YSO:0.5%Tm3+,xYb3+ (5% ≤ x ≤ 20%) upon 980 nm excitation; (b) enlarged emission spectra of YSO:0.5%Tm3+,xYb3+ (5% ≤ x ≤ 20%) from 620 to 730 nm; (c) energy level diagram of Tm3+-Yb3+ ions; (d) emission spectra of NaYF4:Yb3+,Tm3+ and YSO:Tm3+,Yb3+.
Fig. 3
Fig. 3 Emission spectra of YSO:0.5%Tm3+,10%Yb3+ upon 980 nm excitation for various pump powers, inset shows dependence of UC emission intensities on the excitation power.
Fig. 4
Fig. 4 (a) Emission spectra of YSO:0.5%Tm3+,10%Yb3+ under 980 excitation at various temperatures; (b) enlarged emission spectra of YSO:0.5%Tm3+,10%Yb3+ from 620 to 730 nm; (c) relative intensities of 695 and 789 nm emissions as a function of temperature; (d) normalized emission spectra in the range of 450-510 nm for YSO:0.5%Tm3+,10%Yb3+ under 980 excitation at various temperatures.
Fig. 5
Fig. 5 Dependence of (a) I695/I789 and (b) I466/I484 on the absolute temperature; absolute (SA) and relative (SR) sensitivities as a function of the temperature from 293 to 553 K for (c) I695/I789 and (d) I466/I484.
Fig. 6
Fig. 6 (a) RSD for the obtained temperature as a function of absolute temperature by using I695/I789 and I466/I484; (b) temperature-induced switching of I695/I789 and I466/I484 (alternating between 293 and 553 K).
Fig. 7
Fig. 7 (a) Relative intensity of Tm3+ 1G4-3H6 emission as a function of absolute temperature; (b) ln(I/IT −1) versus 1/(kT) plot as well as the calculated Ea value.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I f P n
R= I upper / I lower =Nexp( ΔE KT )
S A = d(R) d(T) =R ΔE K T 2
S R =| 1 R d(R) d(T) |= ΔE K T 2
RSD= 1 T ¯ i=1 n ( T i T ¯ ) 2 n1 ×100%
I T = I 0 1+Aexp( ΔE kT )

Metrics