Abstract

In the search for alternative plasmonic materials, SrMoO3 has recently been identified as possessing a number of desirable optical properties. Owing to the requirement for many plasmonic devices to operate at elevated temperatures however, it is essential to characterize the degradation of these properties upon heating. Here, SrMoO3 thin films are annealed in air at temperatures ranging from 75 - 500° C. Characterizations by AFM, XRD, and spectroscopic ellipsometry after each anneal identify a loss of metallic behaviour after annealing at 500° C, together with the underlying mechanism. Moreover, it is shown that by annealing the films in nitrogen following deposition, an additional crystalline phase of SrMoO4 is induced at the film’s surface, which suppresses oxidation at elevated temperatures.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Temperature stability of thin film refractory plasmonic materials

Matthew P. Wells, Ryan Bower, Rebecca Kilmurray, Bin Zou, Andrei P. Mihai, Gomathi Gobalakrichenane, Neil McN. Alford, Rupert F. M. Oulton, Lesley F. Cohen, Stefan A. Maier, Anatoly V. Zayats, and Peter K. Petrov
Opt. Express 26(12) 15726-15744 (2018)

Substrate-insensitive atomic layer deposition of plasmonic titanium nitride films

Ing-Song Yu, Hsyi-En Cheng, Chun-Chieh Chang, Yan-Wei Lin, Hou-Tong Chen, Yao-Chin Wang, and Zu-Po Yang
Opt. Mater. Express 7(3) 777-784 (2017)

Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications

Christine M. Zgrabik and Evelyn L. Hu
Opt. Mater. Express 5(12) 2786-2797 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. Mo, L. Yang, E. H. Lee, and S. He, “High-efficiency plasmonic metamaterial selective emitter based on an optimized spherical core-shell nanostructure for planar solar thermophotovoltaics,” Plasmonics 10(3), 529–538 (2015).
  2. S. V. Boriskina and H. Ghasemi, “Plasmonic materials for energy: from physics to applications,” Mater. Today 16(10), 375–386 (2013).
  3. C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photo-catalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
  4. Z. Wang, P. Tao, Y. Liu, H. Xu, Q. Ye, H. Hu, C. Song, Z. Chen, W. Shang, and T. Deng, “Rapid charging of thermal energy storage materials through plasmonic heating,” Sci. Rep. 4, 6246 (2014).
    [PubMed]
  5. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
    [PubMed]
  6. J. Leuthold, C. Haffner, W. Heini, C. Hoessbacher, J. Niegemann, Y. Fedoryshyn, A. Emboras, C. Hafner, A. Melikyan, M. Kohl, D. L. Elder, L. R. Dalton, and I. Tomkos, “Plasmonic devices for communications,” in Transparent Optical Networks (ICTON), 17th International Conference on (IEEE, 2015), pp. 1–3.
  7. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
  8. A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
    [PubMed]
  9. N. G. Khlebtsov and A. Dykman, “Optical properties and biomedical applications of plasmonic nanoparticles,” J. Quant. Spectrosc. Radiat. Transf. 111(1), 1–35 (2010).
  10. J. Park, Y. Choi, M. Lee, H. Jeon, and S. Kim, “Novel and simple route to fabricate fully biocompatible plasmonic mushroom arrays adhered on silk biopolymer,” Nanoscale 7(2), 426–431 (2015).
    [PubMed]
  11. L. Guo, J. A. Jackman, H. H. Yang, P. Chen, N. J. Cho, and D. H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10(2), 213–239 (2015).
  12. S. C. Warren, D. A. Walker, and B. A. Grzybowski, “Plasmoelectronics: Coupling Plasmonic Excitation with Electron Flow,” Langmuir 28(24), 9093–9102 (2012).
    [PubMed]
  13. A. Boltasseva, “Empowering plasmonics and metamaterials technology with new material platforms,” MRS Bull. 39(5), 461–468 (2014).
  14. H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776–2802 (2016).
  15. S. T. Sundari, S. Chandra, and A. K. Tyagi, “Temperature dependent optical properties of silver from spectroscopic ellip-sometry and density functional theory calculations,” J. Appl. Phys. 114(3), 33515 (2013).
  16. M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5, 1700622 (2017).
  17. J. Trollmann and A. Pucci, “Infrared dielectric function of gold films in relation to their morphology,” J. Phys. Chem. C 118(27), 15011–15018 (2014).
  18. J. Hyuk Park, P. Nagpal, S. H. Oh, and D. J. Norris, “Improved dielectric functions in metallic films obtained via template stripping,” Appl. Phys. Lett. 100(8), 081105 (2012).
  19. T. G. Mackay and A. Lakhtakia, “A limitation of the Bruggeman formalism for homogenization,” Opt. Commun. 234(1–6), 35–42 (2004).
  20. A. Lalisse, G. Tessier, J. R. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119(45), 25518–25528 (2015).
  21. P. Patsalas, C. Charitidis, and S. Logothetidis, “The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films,” Surf. Coat. Tech. 125(1–3), 335–340 (2000).
  22. W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
    [PubMed]
  23. G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
    [PubMed]
  24. U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).
  25. P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(6), 3128–3154 (2015).
  26. J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110, 101901 (2017).
  27. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
    [PubMed]

2017 (2)

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5, 1700622 (2017).

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110, 101901 (2017).

2016 (1)

2015 (6)

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(6), 3128–3154 (2015).

A. Lalisse, G. Tessier, J. R. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119(45), 25518–25528 (2015).

L. Mo, L. Yang, E. H. Lee, and S. He, “High-efficiency plasmonic metamaterial selective emitter based on an optimized spherical core-shell nanostructure for planar solar thermophotovoltaics,” Plasmonics 10(3), 529–538 (2015).

J. Park, Y. Choi, M. Lee, H. Jeon, and S. Kim, “Novel and simple route to fabricate fully biocompatible plasmonic mushroom arrays adhered on silk biopolymer,” Nanoscale 7(2), 426–431 (2015).
[PubMed]

L. Guo, J. A. Jackman, H. H. Yang, P. Chen, N. J. Cho, and D. H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10(2), 213–239 (2015).

2014 (6)

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photo-catalytic devices,” Nat. Photonics 8(2), 95–103 (2014).

Z. Wang, P. Tao, Y. Liu, H. Xu, Q. Ye, H. Hu, C. Song, Z. Chen, W. Shang, and T. Deng, “Rapid charging of thermal energy storage materials through plasmonic heating,” Sci. Rep. 4, 6246 (2014).
[PubMed]

A. Boltasseva, “Empowering plasmonics and metamaterials technology with new material platforms,” MRS Bull. 39(5), 461–468 (2014).

J. Trollmann and A. Pucci, “Infrared dielectric function of gold films in relation to their morphology,” J. Phys. Chem. C 118(27), 15011–15018 (2014).

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[PubMed]

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[PubMed]

2013 (2)

S. T. Sundari, S. Chandra, and A. K. Tyagi, “Temperature dependent optical properties of silver from spectroscopic ellip-sometry and density functional theory calculations,” J. Appl. Phys. 114(3), 33515 (2013).

S. V. Boriskina and H. Ghasemi, “Plasmonic materials for energy: from physics to applications,” Mater. Today 16(10), 375–386 (2013).

2012 (2)

S. C. Warren, D. A. Walker, and B. A. Grzybowski, “Plasmoelectronics: Coupling Plasmonic Excitation with Electron Flow,” Langmuir 28(24), 9093–9102 (2012).
[PubMed]

J. Hyuk Park, P. Nagpal, S. H. Oh, and D. J. Norris, “Improved dielectric functions in metallic films obtained via template stripping,” Appl. Phys. Lett. 100(8), 081105 (2012).

2011 (1)

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[PubMed]

2010 (2)

N. G. Khlebtsov and A. Dykman, “Optical properties and biomedical applications of plasmonic nanoparticles,” J. Quant. Spectrosc. Radiat. Transf. 111(1), 1–35 (2010).

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).

2004 (2)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[PubMed]

T. G. Mackay and A. Lakhtakia, “A limitation of the Bruggeman formalism for homogenization,” Opt. Commun. 234(1–6), 35–42 (2004).

2003 (1)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[PubMed]

2000 (1)

P. Patsalas, C. Charitidis, and S. Logothetidis, “The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films,” Surf. Coat. Tech. 125(1–3), 335–340 (2000).

Alford, N. McN.

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5, 1700622 (2017).

Atwater, H. A.

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[PubMed]

Baffou, G.

A. Lalisse, G. Tessier, J. R. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119(45), 25518–25528 (2015).

Bankson, J. A.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[PubMed]

Boltasseva, A.

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776–2802 (2016).

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).

A. Boltasseva, “Empowering plasmonics and metamaterials technology with new material platforms,” MRS Bull. 39(5), 461–468 (2014).

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[PubMed]

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[PubMed]

Boriskina, S. V.

S. V. Boriskina and H. Ghasemi, “Plasmonic materials for energy: from physics to applications,” Mater. Today 16(10), 375–386 (2013).

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).

Briggs, J. A.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110, 101901 (2017).

Chandra, S.

S. T. Sundari, S. Chandra, and A. K. Tyagi, “Temperature dependent optical properties of silver from spectroscopic ellip-sometry and density functional theory calculations,” J. Appl. Phys. 114(3), 33515 (2013).

Charitidis, C.

P. Patsalas, C. Charitidis, and S. Logothetidis, “The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films,” Surf. Coat. Tech. 125(1–3), 335–340 (2000).

Chen, P.

L. Guo, J. A. Jackman, H. H. Yang, P. Chen, N. J. Cho, and D. H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10(2), 213–239 (2015).

Chen, Z.

Z. Wang, P. Tao, Y. Liu, H. Xu, Q. Ye, H. Hu, C. Song, Z. Chen, W. Shang, and T. Deng, “Rapid charging of thermal energy storage materials through plasmonic heating,” Sci. Rep. 4, 6246 (2014).
[PubMed]

Cho, N. J.

L. Guo, J. A. Jackman, H. H. Yang, P. Chen, N. J. Cho, and D. H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10(2), 213–239 (2015).

Choi, Y.

J. Park, Y. Choi, M. Lee, H. Jeon, and S. Kim, “Novel and simple route to fabricate fully biocompatible plasmonic mushroom arrays adhered on silk biopolymer,” Nanoscale 7(2), 426–431 (2015).
[PubMed]

Clavero, C.

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photo-catalytic devices,” Nat. Photonics 8(2), 95–103 (2014).

Cohen, L. F.

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5, 1700622 (2017).

Deng, T.

Z. Wang, P. Tao, Y. Liu, H. Xu, Q. Ye, H. Hu, C. Song, Z. Chen, W. Shang, and T. Deng, “Rapid charging of thermal energy storage materials through plasmonic heating,” Sci. Rep. 4, 6246 (2014).
[PubMed]

Dionne, J. A.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110, 101901 (2017).

Doiron, B. G.

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5, 1700622 (2017).

Dykman, A.

N. G. Khlebtsov and A. Dykman, “Optical properties and biomedical applications of plasmonic nanoparticles,” J. Quant. Spectrosc. Radiat. Transf. 111(1), 1–35 (2010).

Ghasemi, H.

S. V. Boriskina and H. Ghasemi, “Plasmonic materials for energy: from physics to applications,” Mater. Today 16(10), 375–386 (2013).

Goldhaber-Gordon, D.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110, 101901 (2017).

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).

Grzybowski, B. A.

S. C. Warren, D. A. Walker, and B. A. Grzybowski, “Plasmoelectronics: Coupling Plasmonic Excitation with Electron Flow,” Langmuir 28(24), 9093–9102 (2012).
[PubMed]

Guan, J.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[PubMed]

Gubeljak, P.

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5, 1700622 (2017).

Guler, U.

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776–2802 (2016).

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[PubMed]

Guo, L.

L. Guo, J. A. Jackman, H. H. Yang, P. Chen, N. J. Cho, and D. H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10(2), 213–239 (2015).

Halas, N. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[PubMed]

Harrison, N. M.

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5, 1700622 (2017).

Hazle, J. D.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[PubMed]

He, S.

L. Mo, L. Yang, E. H. Lee, and S. He, “High-efficiency plasmonic metamaterial selective emitter based on an optimized spherical core-shell nanostructure for planar solar thermophotovoltaics,” Plasmonics 10(3), 529–538 (2015).

Hirsch, L. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[PubMed]

Hu, H.

Z. Wang, P. Tao, Y. Liu, H. Xu, Q. Ye, H. Hu, C. Song, Z. Chen, W. Shang, and T. Deng, “Rapid charging of thermal energy storage materials through plasmonic heating,” Sci. Rep. 4, 6246 (2014).
[PubMed]

Hyuk Park, J.

J. Hyuk Park, P. Nagpal, S. H. Oh, and D. J. Norris, “Improved dielectric functions in metallic films obtained via template stripping,” Appl. Phys. Lett. 100(8), 081105 (2012).

Irudayaraj, J. M.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[PubMed]

Jackman, J. A.

L. Guo, J. A. Jackman, H. H. Yang, P. Chen, N. J. Cho, and D. H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10(2), 213–239 (2015).

Jeon, H.

J. Park, Y. Choi, M. Lee, H. Jeon, and S. Kim, “Novel and simple route to fabricate fully biocompatible plasmonic mushroom arrays adhered on silk biopolymer,” Nanoscale 7(2), 426–431 (2015).
[PubMed]

Kalfagiannis, N.

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(6), 3128–3154 (2015).

Kassavetis, S.

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(6), 3128–3154 (2015).

Khlebtsov, N. G.

N. G. Khlebtsov and A. Dykman, “Optical properties and biomedical applications of plasmonic nanoparticles,” J. Quant. Spectrosc. Radiat. Transf. 111(1), 1–35 (2010).

Kildishev, A. V.

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776–2802 (2016).

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[PubMed]

Kilmurray, R.

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5, 1700622 (2017).

Kim, D. H.

L. Guo, J. A. Jackman, H. H. Yang, P. Chen, N. J. Cho, and D. H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10(2), 213–239 (2015).

Kim, S.

J. Park, Y. Choi, M. Lee, H. Jeon, and S. Kim, “Novel and simple route to fabricate fully biocompatible plasmonic mushroom arrays adhered on silk biopolymer,” Nanoscale 7(2), 426–431 (2015).
[PubMed]

Kinsey, N.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[PubMed]

Lakhtakia, A.

T. G. Mackay and A. Lakhtakia, “A limitation of the Bruggeman formalism for homogenization,” Opt. Commun. 234(1–6), 35–42 (2004).

Lalisse, A.

A. Lalisse, G. Tessier, J. R. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119(45), 25518–25528 (2015).

Lee, E. H.

L. Mo, L. Yang, E. H. Lee, and S. He, “High-efficiency plasmonic metamaterial selective emitter based on an optimized spherical core-shell nanostructure for planar solar thermophotovoltaics,” Plasmonics 10(3), 529–538 (2015).

Lee, M.

J. Park, Y. Choi, M. Lee, H. Jeon, and S. Kim, “Novel and simple route to fabricate fully biocompatible plasmonic mushroom arrays adhered on silk biopolymer,” Nanoscale 7(2), 426–431 (2015).
[PubMed]

Li, W.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[PubMed]

Liu, J.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[PubMed]

Liu, Y.

Z. Wang, P. Tao, Y. Liu, H. Xu, Q. Ye, H. Hu, C. Song, Z. Chen, W. Shang, and T. Deng, “Rapid charging of thermal energy storage materials through plasmonic heating,” Sci. Rep. 4, 6246 (2014).
[PubMed]

Logothetidis, S.

P. Patsalas, C. Charitidis, and S. Logothetidis, “The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films,” Surf. Coat. Tech. 125(1–3), 335–340 (2000).

Mackay, T. G.

T. G. Mackay and A. Lakhtakia, “A limitation of the Bruggeman formalism for homogenization,” Opt. Commun. 234(1–6), 35–42 (2004).

Maier, S. A.

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5, 1700622 (2017).

Mallia, G.

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5, 1700622 (2017).

Melosh, N. A.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110, 101901 (2017).

Mihai, A. P.

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5, 1700622 (2017).

Mo, L.

L. Mo, L. Yang, E. H. Lee, and S. He, “High-efficiency plasmonic metamaterial selective emitter based on an optimized spherical core-shell nanostructure for planar solar thermophotovoltaics,” Plasmonics 10(3), 529–538 (2015).

Nagpal, P.

J. Hyuk Park, P. Nagpal, S. H. Oh, and D. J. Norris, “Improved dielectric functions in metallic films obtained via template stripping,” Appl. Phys. Lett. 100(8), 081105 (2012).

Naik, G. V.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110, 101901 (2017).

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[PubMed]

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[PubMed]

Norris, D. J.

J. Hyuk Park, P. Nagpal, S. H. Oh, and D. J. Norris, “Improved dielectric functions in metallic films obtained via template stripping,” Appl. Phys. Lett. 100(8), 081105 (2012).

Oh, S. H.

J. Hyuk Park, P. Nagpal, S. H. Oh, and D. J. Norris, “Improved dielectric functions in metallic films obtained via template stripping,” Appl. Phys. Lett. 100(8), 081105 (2012).

Ormandy, K. L.

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5, 1700622 (2017).

Oulton, R. F. M.

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5, 1700622 (2017).

Park, J.

J. Park, Y. Choi, M. Lee, H. Jeon, and S. Kim, “Novel and simple route to fabricate fully biocompatible plasmonic mushroom arrays adhered on silk biopolymer,” Nanoscale 7(2), 426–431 (2015).
[PubMed]

Patsalas, P.

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(6), 3128–3154 (2015).

P. Patsalas, C. Charitidis, and S. Logothetidis, “The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films,” Surf. Coat. Tech. 125(1–3), 335–340 (2000).

Petach, T. A.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110, 101901 (2017).

Petrov, P. K.

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5, 1700622 (2017).

Plain, J. R.

A. Lalisse, G. Tessier, J. R. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119(45), 25518–25528 (2015).

Price, R. E.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[PubMed]

Pucci, A.

J. Trollmann and A. Pucci, “Infrared dielectric function of gold films in relation to their morphology,” J. Phys. Chem. C 118(27), 15011–15018 (2014).

Reddy, H.

Rivera, B.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[PubMed]

Saber, S. M.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[PubMed]

Saha, B.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[PubMed]

Sahasrabuddhe, K.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110, 101901 (2017).

Sands, T. D.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[PubMed]

Sershen, S. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[PubMed]

Shalaev, V. M.

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776–2802 (2016).

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[PubMed]

Shang, W.

Z. Wang, P. Tao, Y. Liu, H. Xu, Q. Ye, H. Hu, C. Song, Z. Chen, W. Shang, and T. Deng, “Rapid charging of thermal energy storage materials through plasmonic heating,” Sci. Rep. 4, 6246 (2014).
[PubMed]

Song, C.

Z. Wang, P. Tao, Y. Liu, H. Xu, Q. Ye, H. Hu, C. Song, Z. Chen, W. Shang, and T. Deng, “Rapid charging of thermal energy storage materials through plasmonic heating,” Sci. Rep. 4, 6246 (2014).
[PubMed]

Stach, E. A.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[PubMed]

Stafford, R. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[PubMed]

Stockman, M. I.

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[PubMed]

Sundari, S. T.

S. T. Sundari, S. Chandra, and A. K. Tyagi, “Temperature dependent optical properties of silver from spectroscopic ellip-sometry and density functional theory calculations,” J. Appl. Phys. 114(3), 33515 (2013).

Tao, P.

Z. Wang, P. Tao, Y. Liu, H. Xu, Q. Ye, H. Hu, C. Song, Z. Chen, W. Shang, and T. Deng, “Rapid charging of thermal energy storage materials through plasmonic heating,” Sci. Rep. 4, 6246 (2014).
[PubMed]

Tessier, G.

A. Lalisse, G. Tessier, J. R. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119(45), 25518–25528 (2015).

Trollmann, J.

J. Trollmann and A. Pucci, “Infrared dielectric function of gold films in relation to their morphology,” J. Phys. Chem. C 118(27), 15011–15018 (2014).

Tyagi, A. K.

S. T. Sundari, S. Chandra, and A. K. Tyagi, “Temperature dependent optical properties of silver from spectroscopic ellip-sometry and density functional theory calculations,” J. Appl. Phys. 114(3), 33515 (2013).

Walker, D. A.

S. C. Warren, D. A. Walker, and B. A. Grzybowski, “Plasmoelectronics: Coupling Plasmonic Excitation with Electron Flow,” Langmuir 28(24), 9093–9102 (2012).
[PubMed]

Wang, Z.

Z. Wang, P. Tao, Y. Liu, H. Xu, Q. Ye, H. Hu, C. Song, Z. Chen, W. Shang, and T. Deng, “Rapid charging of thermal energy storage materials through plasmonic heating,” Sci. Rep. 4, 6246 (2014).
[PubMed]

Warren, S. C.

S. C. Warren, D. A. Walker, and B. A. Grzybowski, “Plasmoelectronics: Coupling Plasmonic Excitation with Electron Flow,” Langmuir 28(24), 9093–9102 (2012).
[PubMed]

Wells, M. P.

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5, 1700622 (2017).

West, J. L.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[PubMed]

Xu, H.

Z. Wang, P. Tao, Y. Liu, H. Xu, Q. Ye, H. Hu, C. Song, Z. Chen, W. Shang, and T. Deng, “Rapid charging of thermal energy storage materials through plasmonic heating,” Sci. Rep. 4, 6246 (2014).
[PubMed]

Yang, H. H.

L. Guo, J. A. Jackman, H. H. Yang, P. Chen, N. J. Cho, and D. H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10(2), 213–239 (2015).

Yang, L.

L. Mo, L. Yang, E. H. Lee, and S. He, “High-efficiency plasmonic metamaterial selective emitter based on an optimized spherical core-shell nanostructure for planar solar thermophotovoltaics,” Plasmonics 10(3), 529–538 (2015).

Ye, Q.

Z. Wang, P. Tao, Y. Liu, H. Xu, Q. Ye, H. Hu, C. Song, Z. Chen, W. Shang, and T. Deng, “Rapid charging of thermal energy storage materials through plasmonic heating,” Sci. Rep. 4, 6246 (2014).
[PubMed]

Zhao, Y.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110, 101901 (2017).

Zou, B.

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5, 1700622 (2017).

Adv. Mater. (1)

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[PubMed]

Adv. Opt. Mater. (1)

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5, 1700622 (2017).

Appl. Phys. Lett. (2)

J. Hyuk Park, P. Nagpal, S. H. Oh, and D. J. Norris, “Improved dielectric functions in metallic films obtained via template stripping,” Appl. Phys. Lett. 100(8), 081105 (2012).

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110, 101901 (2017).

J. Appl. Phys. (1)

S. T. Sundari, S. Chandra, and A. K. Tyagi, “Temperature dependent optical properties of silver from spectroscopic ellip-sometry and density functional theory calculations,” J. Appl. Phys. 114(3), 33515 (2013).

J. Phys. Chem. C (2)

A. Lalisse, G. Tessier, J. R. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119(45), 25518–25528 (2015).

J. Trollmann and A. Pucci, “Infrared dielectric function of gold films in relation to their morphology,” J. Phys. Chem. C 118(27), 15011–15018 (2014).

J. Quant. Spectrosc. Radiat. Transf. (1)

N. G. Khlebtsov and A. Dykman, “Optical properties and biomedical applications of plasmonic nanoparticles,” J. Quant. Spectrosc. Radiat. Transf. 111(1), 1–35 (2010).

Langmuir (1)

S. C. Warren, D. A. Walker, and B. A. Grzybowski, “Plasmoelectronics: Coupling Plasmonic Excitation with Electron Flow,” Langmuir 28(24), 9093–9102 (2012).
[PubMed]

Mater. Today (2)

S. V. Boriskina and H. Ghasemi, “Plasmonic materials for energy: from physics to applications,” Mater. Today 16(10), 375–386 (2013).

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).

Materials (Basel) (1)

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(6), 3128–3154 (2015).

MRS Bull. (1)

A. Boltasseva, “Empowering plasmonics and metamaterials technology with new material platforms,” MRS Bull. 39(5), 461–468 (2014).

Nano Today (1)

L. Guo, J. A. Jackman, H. H. Yang, P. Chen, N. J. Cho, and D. H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10(2), 213–239 (2015).

Nanoscale (1)

J. Park, Y. Choi, M. Lee, H. Jeon, and S. Kim, “Novel and simple route to fabricate fully biocompatible plasmonic mushroom arrays adhered on silk biopolymer,” Nanoscale 7(2), 426–431 (2015).
[PubMed]

Nat. Photonics (2)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photo-catalytic devices,” Nat. Photonics 8(2), 95–103 (2014).

Opt. Commun. (1)

T. G. Mackay and A. Lakhtakia, “A limitation of the Bruggeman formalism for homogenization,” Opt. Commun. 234(1–6), 35–42 (2004).

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[PubMed]

Plasmonics (1)

L. Mo, L. Yang, E. H. Lee, and S. He, “High-efficiency plasmonic metamaterial selective emitter based on an optimized spherical core-shell nanostructure for planar solar thermophotovoltaics,” Plasmonics 10(3), 529–538 (2015).

Proc. Natl. Acad. Sci. U.S.A. (2)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[PubMed]

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[PubMed]

Sci. Rep. (1)

Z. Wang, P. Tao, Y. Liu, H. Xu, Q. Ye, H. Hu, C. Song, Z. Chen, W. Shang, and T. Deng, “Rapid charging of thermal energy storage materials through plasmonic heating,” Sci. Rep. 4, 6246 (2014).
[PubMed]

Science (1)

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[PubMed]

Surf. Coat. Tech. (1)

P. Patsalas, C. Charitidis, and S. Logothetidis, “The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films,” Surf. Coat. Tech. 125(1–3), 335–340 (2000).

Other (1)

J. Leuthold, C. Haffner, W. Heini, C. Hoessbacher, J. Niegemann, Y. Fedoryshyn, A. Emboras, C. Hafner, A. Melikyan, M. Kohl, D. L. Elder, L. R. Dalton, and I. Tomkos, “Plasmonic devices for communications,” in Transparent Optical Networks (ICTON), 17th International Conference on (IEEE, 2015), pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 XRD patterns for strontium molybdate samples produced with and without annealing in nitrogen.
Fig. 2
Fig. 2 SIMS profiles for SMO samples with and without annealing in N2 show that the annealed film has a higher concentration of MoO3 and MoO4 at the sample surface than the non-annealed film. As sputter time increases beyond approximately 75 s, it can be seen that the bulk composition of the two samples is unchanged by the annealing process.
Fig. 3
Fig. 3 XPS core level spectra of strontium molybdate thin films with and without annealing in N2, including (a) Sr 3d, (b) Mo 3d, and (c) O 1s. All spectra are normalised to the respective Sr intensity.
Fig. 4
Fig. 4 AFM images for samples produced (a) without annealing and (b) with 1 hr annealing in nitrogen.
Fig. 5
Fig. 5 Real (a) and imaginary (b) parts of the dielectric permittivity for samples annealed in nitrogen for 0-5 hrs.
Fig. 6
Fig. 6 (a) Variations in SrMoO4 peak intensity as a function of annealing time in N2 and (b) effect of increasing SrMoO4 peak intensity on optical losses.
Fig. 7
Fig. 7 Real (a) and imaginary (c) parts of the dielectric permittivity for SMO sample annealed in air at temperatures up to 500° C. (b) and (d) show respectively the values of the real and imaginary parts of the permittivity measured at 1000 nm after each annealing process.
Fig. 8
Fig. 8 (a) Variation of the intensity of SMO (200) peak as a function of annealing temperature and (b) variation in surface roughness as a function of annealing temperature.
Fig. 9
Fig. 9 Real (a) and imaginary (c) parts of the dielectric permittivity for sample annealed in air at temperatures up to 700° C. (b) and (d) show respectively the values of the real and imaginary parts of the permittivity measured at 1000 nm after each annealing process.
Fig. 10
Fig. 10 (a) Variation of the intensity of SMO (200) peak as a function of annealing temperature and (b) variation in surface roughness as a function of annealing temperature for N2 treated SMO film.
Fig. 11
Fig. 11 Faraday (a) and Joule (b) factors for Au [20], TiN [20], and SMO, deposited both with and without a one-hour anneal in N2.
Fig. 12
Fig. 12 AFM images for SMO samples (a) as grown, (b) after annealing in air at 225° C, (c) after annealing in air at 500° C, and in situ nitrogen annealed SMO samples (d) as grown, (e) after annealing in air at 400° C, and (f) after annealing in air at 700° C.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Fa= | Ein E0 | 2 =9 | ε s ε+2 ε s | 2
Jo= eε'' n s | Ein E0 | 2 = 9eε'' n s | ε s ε+2 ε s | 2