Abstract

We show that phase-change materials can be used to switch photonic nanostructures between cloaking and superscattering regimes at mid-infrared wavelengths. More specifically, we investigate the scattering properties of subwavelength three-layer cylindrical structures in which the material in the outer shell is the phase-change material Ge2Sb2Te5 (GST). We first show that, when GST is switched between its amorphous and crystalline phases, properly designed electrically small structures can switch between resonant scattering and cloaking invisibility regimes. The contrast ratio between the scattering cross sections of the cloaking invisibility and resonant scattering regimes reaches almost unity. We then also show that larger, moderately small cylindrical structures can be designed to switch between superscattering and cloaking invisibility regimes, when GST is switched between its crystalline and amorphous phases. The contrast ratio between the scattering cross sections of cloaking invisibility and superscattering regimes can be as high as ∼ 93%. Our results could be potentially important for developing a new generation of compact reconfigurable optical devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Switching of the direction of reflectionless light propagation at exceptional points in non-PT-symmetric structures using phase-change materials

Yin Huang, Yuecheng Shen, Changjun Min, and Georgios Veronis
Opt. Express 25(22) 27283-27297 (2017)

Reconfigurable near-IR metasurface based on Ge2Sb2Te5 phase-change material

Alexej V. Pogrebnyakov, Jeremy A. Bossard, Jeremiah P. Turpin, J. David Musgraves, Hee Jung Shin, Clara Rivero-Baleine, Nikolas Podraza, Kathleen A. Richardson, Douglas H. Werner, and Theresa S. Mayer
Opt. Mater. Express 8(8) 2264-2275 (2018)

Cloaking and enhanced scattering of core-shell plasmonic nanowires

Ali Mirzaei, Ilya V. Shadrivov, Andrey E. Miroshnichenko, and Yuri S. Kivshar
Opt. Express 21(9) 10454-10459 (2013)

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
    [Crossref]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref] [PubMed]
  3. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
    [Crossref]
  4. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19, 22029–22106 (2011).
    [Crossref] [PubMed]
  5. Z. Yang, R. Jiang, X. Zhuo, Y. Xie, J. Wang, and H. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
    [Crossref]
  6. Y. Huang, G. Veronis, and C. Min, “Unidirectional reflectionless propagation in plasmonic waveguide-cavity systems at exceptional points,” Opt. Express 23, 29882–29895 (2015).
    [Crossref] [PubMed]
  7. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13543 (2003).
    [Crossref] [PubMed]
  8. J. B. Jackson and N. J. Halas, “Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates,” Proc. Natl. Acad. Sci. USA 101, 17930–17935 (2004).
    [Crossref] [PubMed]
  9. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [Crossref] [PubMed]
  10. A. Alu and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett. 102, 233901 (2009).
    [Crossref] [PubMed]
  11. P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics 6, 380–385 (2012).
    [Crossref]
  12. A. Alu and N. Engheta, “Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging,” Phys. Rev. Lett. 105, 263906 (2010).
    [Crossref]
  13. A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Optical metacages,” Phys. Rev. Lett. 115, 215501 (2015).
    [Crossref] [PubMed]
  14. A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
    [Crossref]
  15. P. Chen, J Soric, and A. Alu, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24, OP281–OP304 (2012).
    [PubMed]
  16. A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “All-dielectric multilayer cylindrical structures for invisibility cloaking,” Sci. Rep. 5, 9574 (2015).
    [Crossref] [PubMed]
  17. S. Muhlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83, 195116 (2011).
    [Crossref]
  18. A. Monti, F. Bilotti, and A. Toscano, “Optical cloaking of cylindrical objects by using covers made of core-shell nanoparticles,” Opt. Lett. 36, 4479–4481 (2011).
    [Crossref] [PubMed]
  19. Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105, 013901(2010).
    [Crossref] [PubMed]
  20. Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. Lett. 98, 043101(2011).
    [Crossref]
  21. A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Superscattering of light optimized by a genetic algorithm,” Appl. Phys. Lett. 105, 011109 (2014).
    [Crossref]
  22. Y. Huang and L. Gao, “Superscattering of light from core-shell nonlocal plasmonic nanoparticles,” J. Phys. Chem. C 118, 30170–30178 (2014).
    [Crossref]
  23. X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett. 98, 251109 (2011).
    [Crossref]
  24. J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
    [Crossref] [PubMed]
  25. S. Kim, H. Yun, K. Park, J. Hong, J. Yun, K. Lee, J. Kim, S. Jeong, S. Mun, J. Sung, Y. Lee, and B. Lee, “Active directional switching of surface plasmon polaritons using a phase transition material,” Sci. Rep. 7, 43723 (2017).
    [Crossref] [PubMed]
  26. C. Argyropoulos, P. Chen, F. Monticone, G. D. Aguanno, and A. Alu, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012).
    [Crossref] [PubMed]
  27. X. Chen, V. Sandoghdar, and M. Agio, “Coherent interaction of light with a metallic structure coupled to a single quantum emitter: from superabsorption to cloaking,” Phys. Rev. Lett. 110, 153605 (2013).
    [Crossref] [PubMed]
  28. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7, 653–658 (2008).
    [Crossref] [PubMed]
  29. M. Rude, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. Abajo, H. Altug, and V. Pruneri, “Ultrafast and broadband tuning of resonant optical nanostructures using phase-change materials,” Adv. Optical Mater. 4, 1060–1066 (2016).
    [Crossref]
  30. D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, C. T. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1556–1569 (2012).
    [Crossref]
  31. T. Hira, T. Homma, T. Uchiyama, K. Kuwamura, Y. Kihara, and T. Saiki, “All-optical switching of localized surface plasmon resonance in single gold nanosandwich using GeSbTe film as an active medium,” Appl. Phys. Lett. 106, 031105 (2015).
    [Crossref]
  32. M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6, 824–832 (2007).
    [Crossref] [PubMed]
  33. M. H. R. Lankhorst, B. W. Ketelaarsand, and R. A. M. Wolters, “Low-cost and nanoscale non-volatile memory concept for future silicon chips,” Nat. Mater. 4, 347–352 (2005).
    [Crossref] [PubMed]
  34. F. F. Schlich, P. Zalden, A. M. Lindenberg, and R. Spolenak, “Color switching with enhanced optical contrast in ultrathin phase change materials and semiconductors induced by femtosecond laser pulses,” ACS Photonics 2, 178–182 (2015).
    [Crossref]
  35. M. Rude, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active control of surface plasmon waveguides with a phase change material,” ACS Photonics 2, 669–674 (2015).
    [Crossref]
  36. Q. Wang, E. T. F. Rogers, B. Gholipour, C. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
    [Crossref]
  37. P. Li, X. Yang, T. W. W. Mab, J. Hanss, M. Lewin, A. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15, 870–876 (2016).
    [Crossref] [PubMed]
  38. V. K. Mkhitaryan, D. S. Ghosh, M. Rude, J. Canet-Ferrer, R. A. Maniyara, K. K. Gopalan, and V. Pruneri, “Tunable complete optical absorption in multilayer structures including Ge2Sb2Te5 without lithographic patterns,” Adv. Optical Mater. 5, 1600452 (2017).
    [Crossref]
  39. S. Yoo, T. Gwon, T. Eom, S. Kim, and C. Hwang, “Multicolor changeable optical coating by adopting multiple layers of ultrathin phase change material film,” ACS Photonics 3, 1265–1270 (2016).
    [Crossref]
  40. Y. Huang, Y. Shen, C. Min, and G. Veronis, “Switching of the direction of reflectionless light propagation at exceptional points in non-PT-symmetric structures using phase-change materials,” Opt. Express 25, 27283–27297 (2017).
    [Crossref] [PubMed]
  41. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
    [Crossref]
  42. E. Thiessen, R. L. Heinisch, F. X. Bronold, and H. Fehske, “Surface mode hybridization in the optical response of core-shell particles,” Phys. Rev. A 93, 033827 (2016).
    [Crossref]
  43. Y. Shen, L. V. Wang, and J. Shen, “Ultralong photonic nanojet formed by a two-layer dielectric microsphere,” Opt. Lett. 39, 4120–4123 (2014).
    [Crossref] [PubMed]
  44. A. Mirzaei, I. V. Shadrivov, A. E. Miroshnichenko, and Y. S. Kivshar, “Cloaking and enhanced scattering of core-shell plasmonic nanowires,” Opt. Express 21, 10454–10459 (2013).
    [Crossref] [PubMed]
  45. M. Razeghi and B. Nguyen, “Advances in mid-infrared detection and imaging: a key issues review,” Rep. Prog. Phys. 77, 082401 (2014).
    [Crossref] [PubMed]
  46. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
    [Crossref] [PubMed]
  47. X. Liu, L. Gu, Q. Zhang, J. Wu, Y. Long, and Z. Fan, “All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity,” Nat. Commun. 5, 4007 (2014).
    [Crossref] [PubMed]
  48. R. Li, Z. Wei, F. Zhao, X. Gao, X. Fang, Y. Li, X. Wang, J. Tang, D. Fang, H. Wang, R. Chen, and X. Wang, “Investigation of localized and delocalized excitons in ZnO/ZnS core-shell heterostructured nanowires,” Nanophotonics 7, 1093–1100 (2017).
  49. J. D. Jackson, Classical Electrodynamics (Wiley, 1998).
  50. A. Alu, D. Rainwater, and A. Kerkhoff, “Plasmonic cloaking of cylinders: finite length, oblique illumination and cross-polarization coupling,” New J. Phys. 12, 103028 (2010).
    [Crossref]
  51. F. Monticone, C. Argyropoulos, and A. Alu, “Multilayered plasmonic covers for comblike scattering response and optical tagging,” Phys. Rev. Lett. 110, 113901 (2013).
    [Crossref] [PubMed]
  52. F. Monticone, C. Argyropoulos, and A. Alu, “Layered plasmonic cloaks to tailor the optical scattering at the nanoscale,” Sci. Rep. 2, 912 (2012).
    [Crossref] [PubMed]
  53. M. G. Silveirinha, A. Alu, and N. Engheta, “Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation,” Phys. Rev. B 78, 075107 (2008).
    [Crossref]
  54. M. E. Aryaee Panah, O. Takayama, S. V. Morozov, K. E. Kudryavtsev, E. S. Semenova, and A. V. Lavrinenko, “Highly doped InP as a low loss plasmonic material for mid-IR region,” Opt. Express 24, 29077–29088 (2016).
    [Crossref]
  55. M. Farhat, S. Muhlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20, 13896–13906 (2012).
    [Crossref] [PubMed]
  56. K. Kim, Y. No, S. Chang, J. Choi, and H. Park, “Invisible hyperbolic metamaterial nanotube at visible frequency,” Sci. Rep. 5, 16027 (2015).
    [Crossref] [PubMed]
  57. C. Diaz-Avino, M. Naserpour, and C. J. Zapata-Rodriguez, “Optimization of multilayered nanotubes for maximal scattering cancellation,” Opt. Express 24, 18184–18196 (2016).
    [Crossref]
  58. Y. Huang, C. Min, P. Dastmalchi, and G. Veronis, “Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors,” Opt. Express 11, 14922–14936 (2015).
    [Crossref]
  59. L. Zhang, R. Tu, and H. Dai, “Parallel core-shell metal-dielectric-semiconductor germanium nanowires for high-current surround-gate field-effect transistors,” Nano Lett. 6, 2785–2789 (2006).
    [Crossref] [PubMed]
  60. P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4, 2036–2046 (2017).
    [Crossref]

2017 (6)

Z. Yang, R. Jiang, X. Zhuo, Y. Xie, J. Wang, and H. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

S. Kim, H. Yun, K. Park, J. Hong, J. Yun, K. Lee, J. Kim, S. Jeong, S. Mun, J. Sung, Y. Lee, and B. Lee, “Active directional switching of surface plasmon polaritons using a phase transition material,” Sci. Rep. 7, 43723 (2017).
[Crossref] [PubMed]

Y. Huang, Y. Shen, C. Min, and G. Veronis, “Switching of the direction of reflectionless light propagation at exceptional points in non-PT-symmetric structures using phase-change materials,” Opt. Express 25, 27283–27297 (2017).
[Crossref] [PubMed]

V. K. Mkhitaryan, D. S. Ghosh, M. Rude, J. Canet-Ferrer, R. A. Maniyara, K. K. Gopalan, and V. Pruneri, “Tunable complete optical absorption in multilayer structures including Ge2Sb2Te5 without lithographic patterns,” Adv. Optical Mater. 5, 1600452 (2017).
[Crossref]

R. Li, Z. Wei, F. Zhao, X. Gao, X. Fang, Y. Li, X. Wang, J. Tang, D. Fang, H. Wang, R. Chen, and X. Wang, “Investigation of localized and delocalized excitons in ZnO/ZnS core-shell heterostructured nanowires,” Nanophotonics 7, 1093–1100 (2017).

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4, 2036–2046 (2017).
[Crossref]

2016 (7)

C. Diaz-Avino, M. Naserpour, and C. J. Zapata-Rodriguez, “Optimization of multilayered nanotubes for maximal scattering cancellation,” Opt. Express 24, 18184–18196 (2016).
[Crossref]

M. E. Aryaee Panah, O. Takayama, S. V. Morozov, K. E. Kudryavtsev, E. S. Semenova, and A. V. Lavrinenko, “Highly doped InP as a low loss plasmonic material for mid-IR region,” Opt. Express 24, 29077–29088 (2016).
[Crossref]

S. Yoo, T. Gwon, T. Eom, S. Kim, and C. Hwang, “Multicolor changeable optical coating by adopting multiple layers of ultrathin phase change material film,” ACS Photonics 3, 1265–1270 (2016).
[Crossref]

E. Thiessen, R. L. Heinisch, F. X. Bronold, and H. Fehske, “Surface mode hybridization in the optical response of core-shell particles,” Phys. Rev. A 93, 033827 (2016).
[Crossref]

M. Rude, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. Abajo, H. Altug, and V. Pruneri, “Ultrafast and broadband tuning of resonant optical nanostructures using phase-change materials,” Adv. Optical Mater. 4, 1060–1066 (2016).
[Crossref]

Q. Wang, E. T. F. Rogers, B. Gholipour, C. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

P. Li, X. Yang, T. W. W. Mab, J. Hanss, M. Lewin, A. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15, 870–876 (2016).
[Crossref] [PubMed]

2015 (8)

F. F. Schlich, P. Zalden, A. M. Lindenberg, and R. Spolenak, “Color switching with enhanced optical contrast in ultrathin phase change materials and semiconductors induced by femtosecond laser pulses,” ACS Photonics 2, 178–182 (2015).
[Crossref]

M. Rude, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active control of surface plasmon waveguides with a phase change material,” ACS Photonics 2, 669–674 (2015).
[Crossref]

T. Hira, T. Homma, T. Uchiyama, K. Kuwamura, Y. Kihara, and T. Saiki, “All-optical switching of localized surface plasmon resonance in single gold nanosandwich using GeSbTe film as an active medium,” Appl. Phys. Lett. 106, 031105 (2015).
[Crossref]

Y. Huang, G. Veronis, and C. Min, “Unidirectional reflectionless propagation in plasmonic waveguide-cavity systems at exceptional points,” Opt. Express 23, 29882–29895 (2015).
[Crossref] [PubMed]

A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Optical metacages,” Phys. Rev. Lett. 115, 215501 (2015).
[Crossref] [PubMed]

A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “All-dielectric multilayer cylindrical structures for invisibility cloaking,” Sci. Rep. 5, 9574 (2015).
[Crossref] [PubMed]

Y. Huang, C. Min, P. Dastmalchi, and G. Veronis, “Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors,” Opt. Express 11, 14922–14936 (2015).
[Crossref]

K. Kim, Y. No, S. Chang, J. Choi, and H. Park, “Invisible hyperbolic metamaterial nanotube at visible frequency,” Sci. Rep. 5, 16027 (2015).
[Crossref] [PubMed]

2014 (5)

Y. Shen, L. V. Wang, and J. Shen, “Ultralong photonic nanojet formed by a two-layer dielectric microsphere,” Opt. Lett. 39, 4120–4123 (2014).
[Crossref] [PubMed]

M. Razeghi and B. Nguyen, “Advances in mid-infrared detection and imaging: a key issues review,” Rep. Prog. Phys. 77, 082401 (2014).
[Crossref] [PubMed]

X. Liu, L. Gu, Q. Zhang, J. Wu, Y. Long, and Z. Fan, “All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity,” Nat. Commun. 5, 4007 (2014).
[Crossref] [PubMed]

A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Superscattering of light optimized by a genetic algorithm,” Appl. Phys. Lett. 105, 011109 (2014).
[Crossref]

Y. Huang and L. Gao, “Superscattering of light from core-shell nonlocal plasmonic nanoparticles,” J. Phys. Chem. C 118, 30170–30178 (2014).
[Crossref]

2013 (4)

X. Chen, V. Sandoghdar, and M. Agio, “Coherent interaction of light with a metallic structure coupled to a single quantum emitter: from superabsorption to cloaking,” Phys. Rev. Lett. 110, 153605 (2013).
[Crossref] [PubMed]

J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref] [PubMed]

F. Monticone, C. Argyropoulos, and A. Alu, “Multilayered plasmonic covers for comblike scattering response and optical tagging,” Phys. Rev. Lett. 110, 113901 (2013).
[Crossref] [PubMed]

A. Mirzaei, I. V. Shadrivov, A. E. Miroshnichenko, and Y. S. Kivshar, “Cloaking and enhanced scattering of core-shell plasmonic nanowires,” Opt. Express 21, 10454–10459 (2013).
[Crossref] [PubMed]

2012 (6)

F. Monticone, C. Argyropoulos, and A. Alu, “Layered plasmonic cloaks to tailor the optical scattering at the nanoscale,” Sci. Rep. 2, 912 (2012).
[Crossref] [PubMed]

M. Farhat, S. Muhlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20, 13896–13906 (2012).
[Crossref] [PubMed]

C. Argyropoulos, P. Chen, F. Monticone, G. D. Aguanno, and A. Alu, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012).
[Crossref] [PubMed]

P. Chen, J Soric, and A. Alu, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24, OP281–OP304 (2012).
[PubMed]

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, C. T. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1556–1569 (2012).
[Crossref]

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics 6, 380–385 (2012).
[Crossref]

2011 (5)

S. Muhlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83, 195116 (2011).
[Crossref]

A. Monti, F. Bilotti, and A. Toscano, “Optical cloaking of cylindrical objects by using covers made of core-shell nanoparticles,” Opt. Lett. 36, 4479–4481 (2011).
[Crossref] [PubMed]

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19, 22029–22106 (2011).
[Crossref] [PubMed]

Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. Lett. 98, 043101(2011).
[Crossref]

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett. 98, 251109 (2011).
[Crossref]

2010 (4)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105, 013901(2010).
[Crossref] [PubMed]

A. Alu and N. Engheta, “Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging,” Phys. Rev. Lett. 105, 263906 (2010).
[Crossref]

A. Alu, D. Rainwater, and A. Kerkhoff, “Plasmonic cloaking of cylinders: finite length, oblique illumination and cross-polarization coupling,” New J. Phys. 12, 103028 (2010).
[Crossref]

2009 (1)

A. Alu and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett. 102, 233901 (2009).
[Crossref] [PubMed]

2008 (2)

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7, 653–658 (2008).
[Crossref] [PubMed]

M. G. Silveirinha, A. Alu, and N. Engheta, “Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation,” Phys. Rev. B 78, 075107 (2008).
[Crossref]

2007 (3)

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref] [PubMed]

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6, 824–832 (2007).
[Crossref] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

2006 (1)

L. Zhang, R. Tu, and H. Dai, “Parallel core-shell metal-dielectric-semiconductor germanium nanowires for high-current surround-gate field-effect transistors,” Nano Lett. 6, 2785–2789 (2006).
[Crossref] [PubMed]

2005 (2)

A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[Crossref]

M. H. R. Lankhorst, B. W. Ketelaarsand, and R. A. M. Wolters, “Low-cost and nanoscale non-volatile memory concept for future silicon chips,” Nat. Mater. 4, 347–352 (2005).
[Crossref] [PubMed]

2004 (1)

J. B. Jackson and N. J. Halas, “Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates,” Proc. Natl. Acad. Sci. USA 101, 17930–17935 (2004).
[Crossref] [PubMed]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13543 (2003).
[Crossref] [PubMed]

Abajo, F. J.

M. Rude, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. Abajo, H. Altug, and V. Pruneri, “Ultrafast and broadband tuning of resonant optical nanostructures using phase-change materials,” Adv. Optical Mater. 4, 1060–1066 (2016).
[Crossref]

Afshinmanesh, F.

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics 6, 380–385 (2012).
[Crossref]

Agio, M.

X. Chen, V. Sandoghdar, and M. Agio, “Coherent interaction of light with a metallic structure coupled to a single quantum emitter: from superabsorption to cloaking,” Phys. Rev. Lett. 110, 153605 (2013).
[Crossref] [PubMed]

Aguanno, G. D.

C. Argyropoulos, P. Chen, F. Monticone, G. D. Aguanno, and A. Alu, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012).
[Crossref] [PubMed]

Altug, H.

M. Rude, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. Abajo, H. Altug, and V. Pruneri, “Ultrafast and broadband tuning of resonant optical nanostructures using phase-change materials,” Adv. Optical Mater. 4, 1060–1066 (2016).
[Crossref]

Alu, A.

F. Monticone, C. Argyropoulos, and A. Alu, “Multilayered plasmonic covers for comblike scattering response and optical tagging,” Phys. Rev. Lett. 110, 113901 (2013).
[Crossref] [PubMed]

F. Monticone, C. Argyropoulos, and A. Alu, “Layered plasmonic cloaks to tailor the optical scattering at the nanoscale,” Sci. Rep. 2, 912 (2012).
[Crossref] [PubMed]

P. Chen, J Soric, and A. Alu, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24, OP281–OP304 (2012).
[PubMed]

C. Argyropoulos, P. Chen, F. Monticone, G. D. Aguanno, and A. Alu, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012).
[Crossref] [PubMed]

A. Alu and N. Engheta, “Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging,” Phys. Rev. Lett. 105, 263906 (2010).
[Crossref]

A. Alu, D. Rainwater, and A. Kerkhoff, “Plasmonic cloaking of cylinders: finite length, oblique illumination and cross-polarization coupling,” New J. Phys. 12, 103028 (2010).
[Crossref]

A. Alu and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett. 102, 233901 (2009).
[Crossref] [PubMed]

M. G. Silveirinha, A. Alu, and N. Engheta, “Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation,” Phys. Rev. B 78, 075107 (2008).
[Crossref]

A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[Crossref]

Antoniou, N.

J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref] [PubMed]

Aplin, D. P. R.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref] [PubMed]

Arbouet, A.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4, 2036–2046 (2017).
[Crossref]

Argyropoulos, C.

F. Monticone, C. Argyropoulos, and A. Alu, “Multilayered plasmonic covers for comblike scattering response and optical tagging,” Phys. Rev. Lett. 110, 113901 (2013).
[Crossref] [PubMed]

F. Monticone, C. Argyropoulos, and A. Alu, “Layered plasmonic cloaks to tailor the optical scattering at the nanoscale,” Sci. Rep. 2, 912 (2012).
[Crossref] [PubMed]

C. Argyropoulos, P. Chen, F. Monticone, G. D. Aguanno, and A. Alu, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012).
[Crossref] [PubMed]

Aryaee Panah, M. E.

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

Bai, B.

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett. 98, 251109 (2011).
[Crossref]

Bankson, J. A.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13543 (2003).
[Crossref] [PubMed]

Bao, X. Y.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Baron, T.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4, 2036–2046 (2017).
[Crossref]

Bilotti, F.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[Crossref]

Brongersma, M. L.

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics 6, 380–385 (2012).
[Crossref]

Bronold, F. X.

E. Thiessen, R. L. Heinisch, F. X. Bronold, and H. Fehske, “Surface mode hybridization in the optical response of core-shell particles,” Phys. Rev. A 93, 033827 (2016).
[Crossref]

Canet-Ferrer, J.

V. K. Mkhitaryan, D. S. Ghosh, M. Rude, J. Canet-Ferrer, R. A. Maniyara, K. K. Gopalan, and V. Pruneri, “Tunable complete optical absorption in multilayer structures including Ge2Sb2Te5 without lithographic patterns,” Adv. Optical Mater. 5, 1600452 (2017).
[Crossref]

Cao, L.

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics 6, 380–385 (2012).
[Crossref]

Capasso, F.

J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref] [PubMed]

Carrilero, A.

M. Rude, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. Abajo, H. Altug, and V. Pruneri, “Ultrafast and broadband tuning of resonant optical nanostructures using phase-change materials,” Adv. Optical Mater. 4, 1060–1066 (2016).
[Crossref]

Cetin, A. E.

M. Rude, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. Abajo, H. Altug, and V. Pruneri, “Ultrafast and broadband tuning of resonant optical nanostructures using phase-change materials,” Adv. Optical Mater. 4, 1060–1066 (2016).
[Crossref]

Chang, S.

K. Kim, Y. No, S. Chang, J. Choi, and H. Park, “Invisible hyperbolic metamaterial nanotube at visible frequency,” Sci. Rep. 5, 16027 (2015).
[Crossref] [PubMed]

Chen, P.

C. Argyropoulos, P. Chen, F. Monticone, G. D. Aguanno, and A. Alu, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012).
[Crossref] [PubMed]

P. Chen, J Soric, and A. Alu, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24, OP281–OP304 (2012).
[PubMed]

Chen, R.

R. Li, Z. Wei, F. Zhao, X. Gao, X. Fang, Y. Li, X. Wang, J. Tang, D. Fang, H. Wang, R. Chen, and X. Wang, “Investigation of localized and delocalized excitons in ZnO/ZnS core-shell heterostructured nanowires,” Nanophotonics 7, 1093–1100 (2017).

Chen, X.

X. Chen, V. Sandoghdar, and M. Agio, “Coherent interaction of light with a metallic structure coupled to a single quantum emitter: from superabsorption to cloaking,” Phys. Rev. Lett. 110, 153605 (2013).
[Crossref] [PubMed]

Chettiar, U. K.

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics 6, 380–385 (2012).
[Crossref]

Choi, J.

K. Kim, Y. No, S. Chang, J. Choi, and H. Park, “Invisible hyperbolic metamaterial nanotube at visible frequency,” Sci. Rep. 5, 16027 (2015).
[Crossref] [PubMed]

Chong, C. T.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, C. T. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1556–1569 (2012).
[Crossref]

Cuche, A.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4, 2036–2046 (2017).
[Crossref]

Dai, H.

L. Zhang, R. Tu, and H. Dai, “Parallel core-shell metal-dielectric-semiconductor germanium nanowires for high-current surround-gate field-effect transistors,” Nano Lett. 6, 2785–2789 (2006).
[Crossref] [PubMed]

Dastmalchi, P.

Y. Huang, C. Min, P. Dastmalchi, and G. Veronis, “Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors,” Opt. Express 11, 14922–14936 (2015).
[Crossref]

Dayeh, S. A.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Diaz-Avino, C.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Elliott, S. R.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, C. T. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1556–1569 (2012).
[Crossref]

Engheta, N.

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics 6, 380–385 (2012).
[Crossref]

A. Alu and N. Engheta, “Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging,” Phys. Rev. Lett. 105, 263906 (2010).
[Crossref]

A. Alu and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett. 102, 233901 (2009).
[Crossref] [PubMed]

M. G. Silveirinha, A. Alu, and N. Engheta, “Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation,” Phys. Rev. B 78, 075107 (2008).
[Crossref]

A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[Crossref]

Eom, T.

S. Yoo, T. Gwon, T. Eom, S. Kim, and C. Hwang, “Multicolor changeable optical coating by adopting multiple layers of ultrathin phase change material film,” ACS Photonics 3, 1265–1270 (2016).
[Crossref]

Fan, P.

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics 6, 380–385 (2012).
[Crossref]

Fan, S.

Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. Lett. 98, 043101(2011).
[Crossref]

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105, 013901(2010).
[Crossref] [PubMed]

Fan, Z.

X. Liu, L. Gu, Q. Zhang, J. Wu, Y. Long, and Z. Fan, “All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity,” Nat. Commun. 5, 4007 (2014).
[Crossref] [PubMed]

Fang, D.

R. Li, Z. Wei, F. Zhao, X. Gao, X. Fang, Y. Li, X. Wang, J. Tang, D. Fang, H. Wang, R. Chen, and X. Wang, “Investigation of localized and delocalized excitons in ZnO/ZnS core-shell heterostructured nanowires,” Nanophotonics 7, 1093–1100 (2017).

Fang, X.

R. Li, Z. Wei, F. Zhao, X. Gao, X. Fang, Y. Li, X. Wang, J. Tang, D. Fang, H. Wang, R. Chen, and X. Wang, “Investigation of localized and delocalized excitons in ZnO/ZnS core-shell heterostructured nanowires,” Nanophotonics 7, 1093–1100 (2017).

Farhat, M.

M. Farhat, S. Muhlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20, 13896–13906 (2012).
[Crossref] [PubMed]

S. Muhlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83, 195116 (2011).
[Crossref]

Fehske, H.

E. Thiessen, R. L. Heinisch, F. X. Bronold, and H. Fehske, “Surface mode hybridization in the optical response of core-shell particles,” Phys. Rev. A 93, 033827 (2016).
[Crossref]

Fournel, F.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4, 2036–2046 (2017).
[Crossref]

Francs, G.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4, 2036–2046 (2017).
[Crossref]

Gao, L.

Y. Huang and L. Gao, “Superscattering of light from core-shell nonlocal plasmonic nanoparticles,” J. Phys. Chem. C 118, 30170–30178 (2014).
[Crossref]

Gao, X.

R. Li, Z. Wei, F. Zhao, X. Gao, X. Fang, Y. Li, X. Wang, J. Tang, D. Fang, H. Wang, R. Chen, and X. Wang, “Investigation of localized and delocalized excitons in ZnO/ZnS core-shell heterostructured nanowires,” Nanophotonics 7, 1093–1100 (2017).

Gholipour, B.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Ghosh, D. S.

V. K. Mkhitaryan, D. S. Ghosh, M. Rude, J. Canet-Ferrer, R. A. Maniyara, K. K. Gopalan, and V. Pruneri, “Tunable complete optical absorption in multilayer structures including Ge2Sb2Te5 without lithographic patterns,” Adv. Optical Mater. 5, 1600452 (2017).
[Crossref]

Girard, C.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4, 2036–2046 (2017).
[Crossref]

Gopalan, K. K.

V. K. Mkhitaryan, D. S. Ghosh, M. Rude, J. Canet-Ferrer, R. A. Maniyara, K. K. Gopalan, and V. Pruneri, “Tunable complete optical absorption in multilayer structures including Ge2Sb2Te5 without lithographic patterns,” Adv. Optical Mater. 5, 1600452 (2017).
[Crossref]

Gu, L.

X. Liu, L. Gu, Q. Zhang, J. Wu, Y. Long, and Z. Fan, “All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity,” Nat. Commun. 5, 4007 (2014).
[Crossref] [PubMed]

Gwon, T.

S. Yoo, T. Gwon, T. Eom, S. Kim, and C. Hwang, “Multicolor changeable optical coating by adopting multiple layers of ultrathin phase change material film,” ACS Photonics 3, 1265–1270 (2016).
[Crossref]

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

J. B. Jackson and N. J. Halas, “Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates,” Proc. Natl. Acad. Sci. USA 101, 17930–17935 (2004).
[Crossref] [PubMed]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13543 (2003).
[Crossref] [PubMed]

Hanss, J.

P. Li, X. Yang, T. W. W. Mab, J. Hanss, M. Lewin, A. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15, 870–876 (2016).
[Crossref] [PubMed]

Hazle, J. D.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13543 (2003).
[Crossref] [PubMed]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
[Crossref]

Heinisch, R. L.

E. Thiessen, R. L. Heinisch, F. X. Bronold, and H. Fehske, “Surface mode hybridization in the optical response of core-shell particles,” Phys. Rev. A 93, 033827 (2016).
[Crossref]

Hira, T.

T. Hira, T. Homma, T. Uchiyama, K. Kuwamura, Y. Kihara, and T. Saiki, “All-optical switching of localized surface plasmon resonance in single gold nanosandwich using GeSbTe film as an active medium,” Appl. Phys. Lett. 106, 031105 (2015).
[Crossref]

Hirsch, L. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13543 (2003).
[Crossref] [PubMed]

Homma, T.

T. Hira, T. Homma, T. Uchiyama, K. Kuwamura, Y. Kihara, and T. Saiki, “All-optical switching of localized surface plasmon resonance in single gold nanosandwich using GeSbTe film as an active medium,” Appl. Phys. Lett. 106, 031105 (2015).
[Crossref]

Hong, J.

S. Kim, H. Yun, K. Park, J. Hong, J. Yun, K. Lee, J. Kim, S. Jeong, S. Mun, J. Sung, Y. Lee, and B. Lee, “Active directional switching of surface plasmon polaritons using a phase transition material,” Sci. Rep. 7, 43723 (2017).
[Crossref] [PubMed]

Huang, Y.

Y. Huang, Y. Shen, C. Min, and G. Veronis, “Switching of the direction of reflectionless light propagation at exceptional points in non-PT-symmetric structures using phase-change materials,” Opt. Express 25, 27283–27297 (2017).
[Crossref] [PubMed]

Y. Huang, G. Veronis, and C. Min, “Unidirectional reflectionless propagation in plasmonic waveguide-cavity systems at exceptional points,” Opt. Express 23, 29882–29895 (2015).
[Crossref] [PubMed]

Y. Huang, C. Min, P. Dastmalchi, and G. Veronis, “Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors,” Opt. Express 11, 14922–14936 (2015).
[Crossref]

Y. Huang and L. Gao, “Superscattering of light from core-shell nonlocal plasmonic nanoparticles,” J. Phys. Chem. C 118, 30170–30178 (2014).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[Crossref]

Hwang, C.

S. Yoo, T. Gwon, T. Eom, S. Kim, and C. Hwang, “Multicolor changeable optical coating by adopting multiple layers of ultrathin phase change material film,” ACS Photonics 3, 1265–1270 (2016).
[Crossref]

Jackson, J. B.

J. B. Jackson and N. J. Halas, “Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates,” Proc. Natl. Acad. Sci. USA 101, 17930–17935 (2004).
[Crossref] [PubMed]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1998).

Jeong, S.

S. Kim, H. Yun, K. Park, J. Hong, J. Yun, K. Lee, J. Kim, S. Jeong, S. Mun, J. Sung, Y. Lee, and B. Lee, “Active directional switching of surface plasmon polaritons using a phase transition material,” Sci. Rep. 7, 43723 (2017).
[Crossref] [PubMed]

Jiang, R.

Z. Yang, R. Jiang, X. Zhuo, Y. Xie, J. Wang, and H. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

Jin, G.

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett. 98, 251109 (2011).
[Crossref]

Kerkhoff, A.

A. Alu, D. Rainwater, and A. Kerkhoff, “Plasmonic cloaking of cylinders: finite length, oblique illumination and cross-polarization coupling,” New J. Phys. 12, 103028 (2010).
[Crossref]

Ketelaarsand, B. W.

M. H. R. Lankhorst, B. W. Ketelaarsand, and R. A. M. Wolters, “Low-cost and nanoscale non-volatile memory concept for future silicon chips,” Nat. Mater. 4, 347–352 (2005).
[Crossref] [PubMed]

Kihara, Y.

T. Hira, T. Homma, T. Uchiyama, K. Kuwamura, Y. Kihara, and T. Saiki, “All-optical switching of localized surface plasmon resonance in single gold nanosandwich using GeSbTe film as an active medium,” Appl. Phys. Lett. 106, 031105 (2015).
[Crossref]

Kim, J.

S. Kim, H. Yun, K. Park, J. Hong, J. Yun, K. Lee, J. Kim, S. Jeong, S. Mun, J. Sung, Y. Lee, and B. Lee, “Active directional switching of surface plasmon polaritons using a phase transition material,” Sci. Rep. 7, 43723 (2017).
[Crossref] [PubMed]

Kim, K.

K. Kim, Y. No, S. Chang, J. Choi, and H. Park, “Invisible hyperbolic metamaterial nanotube at visible frequency,” Sci. Rep. 5, 16027 (2015).
[Crossref] [PubMed]

Kim, S.

S. Kim, H. Yun, K. Park, J. Hong, J. Yun, K. Lee, J. Kim, S. Jeong, S. Mun, J. Sung, Y. Lee, and B. Lee, “Active directional switching of surface plasmon polaritons using a phase transition material,” Sci. Rep. 7, 43723 (2017).
[Crossref] [PubMed]

S. Yoo, T. Gwon, T. Eom, S. Kim, and C. Hwang, “Multicolor changeable optical coating by adopting multiple layers of ultrathin phase change material film,” ACS Photonics 3, 1265–1270 (2016).
[Crossref]

Kivshar, Y. S.

A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Optical metacages,” Phys. Rev. Lett. 115, 215501 (2015).
[Crossref] [PubMed]

A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “All-dielectric multilayer cylindrical structures for invisibility cloaking,” Sci. Rep. 5, 9574 (2015).
[Crossref] [PubMed]

A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Superscattering of light optimized by a genetic algorithm,” Appl. Phys. Lett. 105, 011109 (2014).
[Crossref]

A. Mirzaei, I. V. Shadrivov, A. E. Miroshnichenko, and Y. S. Kivshar, “Cloaking and enhanced scattering of core-shell plasmonic nanowires,” Opt. Express 21, 10454–10459 (2013).
[Crossref] [PubMed]

Kremers, S.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7, 653–658 (2008).
[Crossref] [PubMed]

Kudryavtsev, K. E.

Kuwamura, K.

T. Hira, T. Homma, T. Uchiyama, K. Kuwamura, Y. Kihara, and T. Saiki, “All-optical switching of localized surface plasmon resonance in single gold nanosandwich using GeSbTe film as an active medium,” Appl. Phys. Lett. 106, 031105 (2015).
[Crossref]

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

Lankhorst, M. H. R.

M. H. R. Lankhorst, B. W. Ketelaarsand, and R. A. M. Wolters, “Low-cost and nanoscale non-volatile memory concept for future silicon chips,” Nat. Mater. 4, 347–352 (2005).
[Crossref] [PubMed]

Larrey, V.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4, 2036–2046 (2017).
[Crossref]

Larrieu, G.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4, 2036–2046 (2017).
[Crossref]

Lavrinenko, A. V.

Lecestre, A.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4, 2036–2046 (2017).
[Crossref]

Lederer, F.

M. Farhat, S. Muhlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20, 13896–13906 (2012).
[Crossref] [PubMed]

S. Muhlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83, 195116 (2011).
[Crossref]

Lee, B.

S. Kim, H. Yun, K. Park, J. Hong, J. Yun, K. Lee, J. Kim, S. Jeong, S. Mun, J. Sung, Y. Lee, and B. Lee, “Active directional switching of surface plasmon polaritons using a phase transition material,” Sci. Rep. 7, 43723 (2017).
[Crossref] [PubMed]

Lee, K.

S. Kim, H. Yun, K. Park, J. Hong, J. Yun, K. Lee, J. Kim, S. Jeong, S. Mun, J. Sung, Y. Lee, and B. Lee, “Active directional switching of surface plasmon polaritons using a phase transition material,” Sci. Rep. 7, 43723 (2017).
[Crossref] [PubMed]

Lee, T. H.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, C. T. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1556–1569 (2012).
[Crossref]

Lee, Y.

S. Kim, H. Yun, K. Park, J. Hong, J. Yun, K. Lee, J. Kim, S. Jeong, S. Mun, J. Sung, Y. Lee, and B. Lee, “Active directional switching of surface plasmon polaritons using a phase transition material,” Sci. Rep. 7, 43723 (2017).
[Crossref] [PubMed]

Lencer, D.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7, 653–658 (2008).
[Crossref] [PubMed]

Lewin, M.

P. Li, X. Yang, T. W. W. Mab, J. Hanss, M. Lewin, A. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15, 870–876 (2016).
[Crossref] [PubMed]

Li, P.

P. Li, X. Yang, T. W. W. Mab, J. Hanss, M. Lewin, A. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15, 870–876 (2016).
[Crossref] [PubMed]

Li, R.

R. Li, Z. Wei, F. Zhao, X. Gao, X. Fang, Y. Li, X. Wang, J. Tang, D. Fang, H. Wang, R. Chen, and X. Wang, “Investigation of localized and delocalized excitons in ZnO/ZnS core-shell heterostructured nanowires,” Nanophotonics 7, 1093–1100 (2017).

Li, X.

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett. 98, 251109 (2011).
[Crossref]

Li, Y.

R. Li, Z. Wei, F. Zhao, X. Gao, X. Fang, Y. Li, X. Wang, J. Tang, D. Fang, H. Wang, R. Chen, and X. Wang, “Investigation of localized and delocalized excitons in ZnO/ZnS core-shell heterostructured nanowires,” Nanophotonics 7, 1093–1100 (2017).

Lin, H.

Z. Yang, R. Jiang, X. Zhuo, Y. Xie, J. Wang, and H. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

Lin, J.

J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref] [PubMed]

Lindenberg, A. M.

F. F. Schlich, P. Zalden, A. M. Lindenberg, and R. Spolenak, “Color switching with enhanced optical contrast in ultrathin phase change materials and semiconductors induced by femtosecond laser pulses,” ACS Photonics 2, 178–182 (2015).
[Crossref]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

Liu, X.

X. Liu, L. Gu, Q. Zhang, J. Wu, Y. Long, and Z. Fan, “All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity,” Nat. Commun. 5, 4007 (2014).
[Crossref] [PubMed]

Lo, Y. H.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref] [PubMed]

Loke, D.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, C. T. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1556–1569 (2012).
[Crossref]

Long, Y.

X. Liu, L. Gu, Q. Zhang, J. Wu, Y. Long, and Z. Fan, “All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity,” Nat. Commun. 5, 4007 (2014).
[Crossref] [PubMed]

Mab, T. W. W.

P. Li, X. Yang, T. W. W. Mab, J. Hanss, M. Lewin, A. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15, 870–876 (2016).
[Crossref] [PubMed]

Maniyara, R. A.

V. K. Mkhitaryan, D. S. Ghosh, M. Rude, J. Canet-Ferrer, R. A. Maniyara, K. K. Gopalan, and V. Pruneri, “Tunable complete optical absorption in multilayer structures including Ge2Sb2Te5 without lithographic patterns,” Adv. Optical Mater. 5, 1600452 (2017).
[Crossref]

Michel, A. U.

P. Li, X. Yang, T. W. W. Mab, J. Hanss, M. Lewin, A. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15, 870–876 (2016).
[Crossref] [PubMed]

Miller, T. A.

M. Rude, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. Abajo, H. Altug, and V. Pruneri, “Ultrafast and broadband tuning of resonant optical nanostructures using phase-change materials,” Adv. Optical Mater. 4, 1060–1066 (2016).
[Crossref]

Min, C.

Miroshnichenko, A. E.

A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “All-dielectric multilayer cylindrical structures for invisibility cloaking,” Sci. Rep. 5, 9574 (2015).
[Crossref] [PubMed]

A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Optical metacages,” Phys. Rev. Lett. 115, 215501 (2015).
[Crossref] [PubMed]

A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Superscattering of light optimized by a genetic algorithm,” Appl. Phys. Lett. 105, 011109 (2014).
[Crossref]

A. Mirzaei, I. V. Shadrivov, A. E. Miroshnichenko, and Y. S. Kivshar, “Cloaking and enhanced scattering of core-shell plasmonic nanowires,” Opt. Express 21, 10454–10459 (2013).
[Crossref] [PubMed]

Mirzaei, A.

A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “All-dielectric multilayer cylindrical structures for invisibility cloaking,” Sci. Rep. 5, 9574 (2015).
[Crossref] [PubMed]

A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Optical metacages,” Phys. Rev. Lett. 115, 215501 (2015).
[Crossref] [PubMed]

A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Superscattering of light optimized by a genetic algorithm,” Appl. Phys. Lett. 105, 011109 (2014).
[Crossref]

A. Mirzaei, I. V. Shadrivov, A. E. Miroshnichenko, and Y. S. Kivshar, “Cloaking and enhanced scattering of core-shell plasmonic nanowires,” Opt. Express 21, 10454–10459 (2013).
[Crossref] [PubMed]

Mkhitaryan, V.

M. Rude, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. Abajo, H. Altug, and V. Pruneri, “Ultrafast and broadband tuning of resonant optical nanostructures using phase-change materials,” Adv. Optical Mater. 4, 1060–1066 (2016).
[Crossref]

Mkhitaryan, V. K.

V. K. Mkhitaryan, D. S. Ghosh, M. Rude, J. Canet-Ferrer, R. A. Maniyara, K. K. Gopalan, and V. Pruneri, “Tunable complete optical absorption in multilayer structures including Ge2Sb2Te5 without lithographic patterns,” Adv. Optical Mater. 5, 1600452 (2017).
[Crossref]

Monti, A.

Monticone, F.

F. Monticone, C. Argyropoulos, and A. Alu, “Multilayered plasmonic covers for comblike scattering response and optical tagging,” Phys. Rev. Lett. 110, 113901 (2013).
[Crossref] [PubMed]

F. Monticone, C. Argyropoulos, and A. Alu, “Layered plasmonic cloaks to tailor the optical scattering at the nanoscale,” Sci. Rep. 2, 912 (2012).
[Crossref] [PubMed]

C. Argyropoulos, P. Chen, F. Monticone, G. D. Aguanno, and A. Alu, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012).
[Crossref] [PubMed]

Morozov, S. V.

Mueller, J. B.

J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref] [PubMed]

Muhlig, S.

M. Farhat, S. Muhlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20, 13896–13906 (2012).
[Crossref] [PubMed]

S. Muhlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83, 195116 (2011).
[Crossref]

Mun, S.

S. Kim, H. Yun, K. Park, J. Hong, J. Yun, K. Lee, J. Kim, S. Jeong, S. Mun, J. Sung, Y. Lee, and B. Lee, “Active directional switching of surface plasmon polaritons using a phase transition material,” Sci. Rep. 7, 43723 (2017).
[Crossref] [PubMed]

Naserpour, M.

Nguyen, B.

M. Razeghi and B. Nguyen, “Advances in mid-infrared detection and imaging: a key issues review,” Rep. Prog. Phys. 77, 082401 (2014).
[Crossref] [PubMed]

No, Y.

K. Kim, Y. No, S. Chang, J. Choi, and H. Park, “Invisible hyperbolic metamaterial nanotube at visible frequency,” Sci. Rep. 5, 16027 (2015).
[Crossref] [PubMed]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
[Crossref]

Paillard, V.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4, 2036–2046 (2017).
[Crossref]

Park, H.

K. Kim, Y. No, S. Chang, J. Choi, and H. Park, “Invisible hyperbolic metamaterial nanotube at visible frequency,” Sci. Rep. 5, 16027 (2015).
[Crossref] [PubMed]

Park, J.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref] [PubMed]

Park, K.

S. Kim, H. Yun, K. Park, J. Hong, J. Yun, K. Lee, J. Kim, S. Jeong, S. Mun, J. Sung, Y. Lee, and B. Lee, “Active directional switching of surface plasmon polaritons using a phase transition material,” Sci. Rep. 7, 43723 (2017).
[Crossref] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

Price, R. E.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13543 (2003).
[Crossref] [PubMed]

Pruneri, V.

V. K. Mkhitaryan, D. S. Ghosh, M. Rude, J. Canet-Ferrer, R. A. Maniyara, K. K. Gopalan, and V. Pruneri, “Tunable complete optical absorption in multilayer structures including Ge2Sb2Te5 without lithographic patterns,” Adv. Optical Mater. 5, 1600452 (2017).
[Crossref]

M. Rude, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. Abajo, H. Altug, and V. Pruneri, “Ultrafast and broadband tuning of resonant optical nanostructures using phase-change materials,” Adv. Optical Mater. 4, 1060–1066 (2016).
[Crossref]

M. Rude, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active control of surface plasmon waveguides with a phase change material,” ACS Photonics 2, 669–674 (2015).
[Crossref]

Quidant, R.

M. Rude, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active control of surface plasmon waveguides with a phase change material,” ACS Photonics 2, 669–674 (2015).
[Crossref]

Rainwater, D.

A. Alu, D. Rainwater, and A. Kerkhoff, “Plasmonic cloaking of cylinders: finite length, oblique illumination and cross-polarization coupling,” New J. Phys. 12, 103028 (2010).
[Crossref]

Razeghi, M.

M. Razeghi and B. Nguyen, “Advances in mid-infrared detection and imaging: a key issues review,” Rep. Prog. Phys. 77, 082401 (2014).
[Crossref] [PubMed]

Renger, J.

M. Rude, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active control of surface plasmon waveguides with a phase change material,” ACS Photonics 2, 669–674 (2015).
[Crossref]

Rivera, B.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13543 (2003).
[Crossref] [PubMed]

Robertson, J.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7, 653–658 (2008).
[Crossref] [PubMed]

Rockstuhl, C.

M. Farhat, S. Muhlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20, 13896–13906 (2012).
[Crossref] [PubMed]

S. Muhlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83, 195116 (2011).
[Crossref]

Rogers, E. T. F.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Ruan, Z.

Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. Lett. 98, 043101(2011).
[Crossref]

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105, 013901(2010).
[Crossref] [PubMed]

Rude, M.

V. K. Mkhitaryan, D. S. Ghosh, M. Rude, J. Canet-Ferrer, R. A. Maniyara, K. K. Gopalan, and V. Pruneri, “Tunable complete optical absorption in multilayer structures including Ge2Sb2Te5 without lithographic patterns,” Adv. Optical Mater. 5, 1600452 (2017).
[Crossref]

M. Rude, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. Abajo, H. Altug, and V. Pruneri, “Ultrafast and broadband tuning of resonant optical nanostructures using phase-change materials,” Adv. Optical Mater. 4, 1060–1066 (2016).
[Crossref]

M. Rude, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active control of surface plasmon waveguides with a phase change material,” ACS Photonics 2, 669–674 (2015).
[Crossref]

Saiki, T.

T. Hira, T. Homma, T. Uchiyama, K. Kuwamura, Y. Kihara, and T. Saiki, “All-optical switching of localized surface plasmon resonance in single gold nanosandwich using GeSbTe film as an active medium,” Appl. Phys. Lett. 106, 031105 (2015).
[Crossref]

Sandoghdar, V.

X. Chen, V. Sandoghdar, and M. Agio, “Coherent interaction of light with a metallic structure coupled to a single quantum emitter: from superabsorption to cloaking,” Phys. Rev. Lett. 110, 153605 (2013).
[Crossref] [PubMed]

Schlich, F. F.

F. F. Schlich, P. Zalden, A. M. Lindenberg, and R. Spolenak, “Color switching with enhanced optical contrast in ultrathin phase change materials and semiconductors induced by femtosecond laser pulses,” ACS Photonics 2, 178–182 (2015).
[Crossref]

Semenova, E. S.

Sershen, S. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13543 (2003).
[Crossref] [PubMed]

Shadrivov, I. V.

A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Optical metacages,” Phys. Rev. Lett. 115, 215501 (2015).
[Crossref] [PubMed]

A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “All-dielectric multilayer cylindrical structures for invisibility cloaking,” Sci. Rep. 5, 9574 (2015).
[Crossref] [PubMed]

A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Superscattering of light optimized by a genetic algorithm,” Appl. Phys. Lett. 105, 011109 (2014).
[Crossref]

A. Mirzaei, I. V. Shadrivov, A. E. Miroshnichenko, and Y. S. Kivshar, “Cloaking and enhanced scattering of core-shell plasmonic nanowires,” Opt. Express 21, 10454–10459 (2013).
[Crossref] [PubMed]

Shen, J.

Shen, Y.

Shi, L. P.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, C. T. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1556–1569 (2012).
[Crossref]

Shportko, K.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7, 653–658 (2008).
[Crossref] [PubMed]

Silveirinha, M. G.

M. G. Silveirinha, A. Alu, and N. Engheta, “Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation,” Phys. Rev. B 78, 075107 (2008).
[Crossref]

Simpson, R. E.

M. Rude, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active control of surface plasmon waveguides with a phase change material,” ACS Photonics 2, 669–674 (2015).
[Crossref]

Soci, C.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref] [PubMed]

Soric, J

P. Chen, J Soric, and A. Alu, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24, OP281–OP304 (2012).
[PubMed]

Spolenak, R.

F. F. Schlich, P. Zalden, A. M. Lindenberg, and R. Spolenak, “Color switching with enhanced optical contrast in ultrathin phase change materials and semiconductors induced by femtosecond laser pulses,” ACS Photonics 2, 178–182 (2015).
[Crossref]

Stafford, R. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13543 (2003).
[Crossref] [PubMed]

Stockman, M. I.

Sung, J.

S. Kim, H. Yun, K. Park, J. Hong, J. Yun, K. Lee, J. Kim, S. Jeong, S. Mun, J. Sung, Y. Lee, and B. Lee, “Active directional switching of surface plasmon polaritons using a phase transition material,” Sci. Rep. 7, 43723 (2017).
[Crossref] [PubMed]

Takayama, O.

Tan, Q.

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett. 98, 251109 (2011).
[Crossref]

Tang, J.

R. Li, Z. Wei, F. Zhao, X. Gao, X. Fang, Y. Li, X. Wang, J. Tang, D. Fang, H. Wang, R. Chen, and X. Wang, “Investigation of localized and delocalized excitons in ZnO/ZnS core-shell heterostructured nanowires,” Nanophotonics 7, 1093–1100 (2017).

Taubner, T.

P. Li, X. Yang, T. W. W. Mab, J. Hanss, M. Lewin, A. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15, 870–876 (2016).
[Crossref] [PubMed]

Teng, J.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Thiessen, E.

E. Thiessen, R. L. Heinisch, F. X. Bronold, and H. Fehske, “Surface mode hybridization in the optical response of core-shell particles,” Phys. Rev. A 93, 033827 (2016).
[Crossref]

Toscano, A.

Tu, R.

L. Zhang, R. Tu, and H. Dai, “Parallel core-shell metal-dielectric-semiconductor germanium nanowires for high-current surround-gate field-effect transistors,” Nano Lett. 6, 2785–2789 (2006).
[Crossref] [PubMed]

Uchiyama, T.

T. Hira, T. Homma, T. Uchiyama, K. Kuwamura, Y. Kihara, and T. Saiki, “All-optical switching of localized surface plasmon resonance in single gold nanosandwich using GeSbTe film as an active medium,” Appl. Phys. Lett. 106, 031105 (2015).
[Crossref]

Veronis, G.

Wall, S.

M. Rude, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. Abajo, H. Altug, and V. Pruneri, “Ultrafast and broadband tuning of resonant optical nanostructures using phase-change materials,” Adv. Optical Mater. 4, 1060–1066 (2016).
[Crossref]

Wang, C.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Wang, D.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref] [PubMed]

Wang, H.

R. Li, Z. Wei, F. Zhao, X. Gao, X. Fang, Y. Li, X. Wang, J. Tang, D. Fang, H. Wang, R. Chen, and X. Wang, “Investigation of localized and delocalized excitons in ZnO/ZnS core-shell heterostructured nanowires,” Nanophotonics 7, 1093–1100 (2017).

Wang, J.

Z. Yang, R. Jiang, X. Zhuo, Y. Xie, J. Wang, and H. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

Wang, L. V.

Wang, Q.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref] [PubMed]

Wang, W. J.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, C. T. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1556–1569 (2012).
[Crossref]

Wang, X.

R. Li, Z. Wei, F. Zhao, X. Gao, X. Fang, Y. Li, X. Wang, J. Tang, D. Fang, H. Wang, R. Chen, and X. Wang, “Investigation of localized and delocalized excitons in ZnO/ZnS core-shell heterostructured nanowires,” Nanophotonics 7, 1093–1100 (2017).

R. Li, Z. Wei, F. Zhao, X. Gao, X. Fang, Y. Li, X. Wang, J. Tang, D. Fang, H. Wang, R. Chen, and X. Wang, “Investigation of localized and delocalized excitons in ZnO/ZnS core-shell heterostructured nanowires,” Nanophotonics 7, 1093–1100 (2017).

Wei, Z.

R. Li, Z. Wei, F. Zhao, X. Gao, X. Fang, Y. Li, X. Wang, J. Tang, D. Fang, H. Wang, R. Chen, and X. Wang, “Investigation of localized and delocalized excitons in ZnO/ZnS core-shell heterostructured nanowires,” Nanophotonics 7, 1093–1100 (2017).

West, J. L.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13543 (2003).
[Crossref] [PubMed]

Wiecha, P. R.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4, 2036–2046 (2017).
[Crossref]

Woda, M.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7, 653–658 (2008).
[Crossref] [PubMed]

Wolters, R. A. M.

M. H. R. Lankhorst, B. W. Ketelaarsand, and R. A. M. Wolters, “Low-cost and nanoscale non-volatile memory concept for future silicon chips,” Nat. Mater. 4, 347–352 (2005).
[Crossref] [PubMed]

Wu, J.

X. Liu, L. Gu, Q. Zhang, J. Wu, Y. Long, and Z. Fan, “All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity,” Nat. Commun. 5, 4007 (2014).
[Crossref] [PubMed]

Wuttig, M.

P. Li, X. Yang, T. W. W. Mab, J. Hanss, M. Lewin, A. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15, 870–876 (2016).
[Crossref] [PubMed]

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7, 653–658 (2008).
[Crossref] [PubMed]

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6, 824–832 (2007).
[Crossref] [PubMed]

Xiang, B.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref] [PubMed]

Xie, Y.

Z. Yang, R. Jiang, X. Zhuo, Y. Xie, J. Wang, and H. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

Yamada, N.

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6, 824–832 (2007).
[Crossref] [PubMed]

Yang, X.

P. Li, X. Yang, T. W. W. Mab, J. Hanss, M. Lewin, A. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15, 870–876 (2016).
[Crossref] [PubMed]

Yang, Z.

Z. Yang, R. Jiang, X. Zhuo, Y. Xie, J. Wang, and H. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

Yeo, Y. C.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, C. T. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1556–1569 (2012).
[Crossref]

Yoo, S.

S. Yoo, T. Gwon, T. Eom, S. Kim, and C. Hwang, “Multicolor changeable optical coating by adopting multiple layers of ultrathin phase change material film,” ACS Photonics 3, 1265–1270 (2016).
[Crossref]

Yuan, G.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref] [PubMed]

Yuan, X.

J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref] [PubMed]

Yun, H.

S. Kim, H. Yun, K. Park, J. Hong, J. Yun, K. Lee, J. Kim, S. Jeong, S. Mun, J. Sung, Y. Lee, and B. Lee, “Active directional switching of surface plasmon polaritons using a phase transition material,” Sci. Rep. 7, 43723 (2017).
[Crossref] [PubMed]

Yun, J.

S. Kim, H. Yun, K. Park, J. Hong, J. Yun, K. Lee, J. Kim, S. Jeong, S. Mun, J. Sung, Y. Lee, and B. Lee, “Active directional switching of surface plasmon polaritons using a phase transition material,” Sci. Rep. 7, 43723 (2017).
[Crossref] [PubMed]

Zalden, P.

F. F. Schlich, P. Zalden, A. M. Lindenberg, and R. Spolenak, “Color switching with enhanced optical contrast in ultrathin phase change materials and semiconductors induced by femtosecond laser pulses,” ACS Photonics 2, 178–182 (2015).
[Crossref]

Zapata-Rodriguez, C. J.

Zhang, A.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, R. Tu, and H. Dai, “Parallel core-shell metal-dielectric-semiconductor germanium nanowires for high-current surround-gate field-effect transistors,” Nano Lett. 6, 2785–2789 (2006).
[Crossref] [PubMed]

Zhang, Q.

X. Liu, L. Gu, Q. Zhang, J. Wu, Y. Long, and Z. Fan, “All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity,” Nat. Commun. 5, 4007 (2014).
[Crossref] [PubMed]

Zhao, F.

R. Li, Z. Wei, F. Zhao, X. Gao, X. Fang, Y. Li, X. Wang, J. Tang, D. Fang, H. Wang, R. Chen, and X. Wang, “Investigation of localized and delocalized excitons in ZnO/ZnS core-shell heterostructured nanowires,” Nanophotonics 7, 1093–1100 (2017).

Zhao, R.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, C. T. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1556–1569 (2012).
[Crossref]

Zheludev, N. I.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Zhuo, X.

Z. Yang, R. Jiang, X. Zhuo, Y. Xie, J. Wang, and H. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

ACS Photonics (4)

F. F. Schlich, P. Zalden, A. M. Lindenberg, and R. Spolenak, “Color switching with enhanced optical contrast in ultrathin phase change materials and semiconductors induced by femtosecond laser pulses,” ACS Photonics 2, 178–182 (2015).
[Crossref]

M. Rude, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active control of surface plasmon waveguides with a phase change material,” ACS Photonics 2, 669–674 (2015).
[Crossref]

S. Yoo, T. Gwon, T. Eom, S. Kim, and C. Hwang, “Multicolor changeable optical coating by adopting multiple layers of ultrathin phase change material film,” ACS Photonics 3, 1265–1270 (2016).
[Crossref]

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4, 2036–2046 (2017).
[Crossref]

Adv. Mater. (1)

P. Chen, J Soric, and A. Alu, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24, OP281–OP304 (2012).
[PubMed]

Adv. Optical Mater. (2)

V. K. Mkhitaryan, D. S. Ghosh, M. Rude, J. Canet-Ferrer, R. A. Maniyara, K. K. Gopalan, and V. Pruneri, “Tunable complete optical absorption in multilayer structures including Ge2Sb2Te5 without lithographic patterns,” Adv. Optical Mater. 5, 1600452 (2017).
[Crossref]

M. Rude, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. Abajo, H. Altug, and V. Pruneri, “Ultrafast and broadband tuning of resonant optical nanostructures using phase-change materials,” Adv. Optical Mater. 4, 1060–1066 (2016).
[Crossref]

Appl. Phys. Lett. (4)

T. Hira, T. Homma, T. Uchiyama, K. Kuwamura, Y. Kihara, and T. Saiki, “All-optical switching of localized surface plasmon resonance in single gold nanosandwich using GeSbTe film as an active medium,” Appl. Phys. Lett. 106, 031105 (2015).
[Crossref]

Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. Lett. 98, 043101(2011).
[Crossref]

A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Superscattering of light optimized by a genetic algorithm,” Appl. Phys. Lett. 105, 011109 (2014).
[Crossref]

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett. 98, 251109 (2011).
[Crossref]

J. Phys. Chem. C (1)

Y. Huang and L. Gao, “Superscattering of light from core-shell nonlocal plasmonic nanoparticles,” J. Phys. Chem. C 118, 30170–30178 (2014).
[Crossref]

Nano Lett. (2)

L. Zhang, R. Tu, and H. Dai, “Parallel core-shell metal-dielectric-semiconductor germanium nanowires for high-current surround-gate field-effect transistors,” Nano Lett. 6, 2785–2789 (2006).
[Crossref] [PubMed]

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref] [PubMed]

Nanophotonics (1)

R. Li, Z. Wei, F. Zhao, X. Gao, X. Fang, Y. Li, X. Wang, J. Tang, D. Fang, H. Wang, R. Chen, and X. Wang, “Investigation of localized and delocalized excitons in ZnO/ZnS core-shell heterostructured nanowires,” Nanophotonics 7, 1093–1100 (2017).

Nat. Commun. (1)

X. Liu, L. Gu, Q. Zhang, J. Wu, Y. Long, and Z. Fan, “All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity,” Nat. Commun. 5, 4007 (2014).
[Crossref] [PubMed]

Nat. Mater. (5)

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7, 653–658 (2008).
[Crossref] [PubMed]

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6, 824–832 (2007).
[Crossref] [PubMed]

M. H. R. Lankhorst, B. W. Ketelaarsand, and R. A. M. Wolters, “Low-cost and nanoscale non-volatile memory concept for future silicon chips,” Nat. Mater. 4, 347–352 (2005).
[Crossref] [PubMed]

P. Li, X. Yang, T. W. W. Mab, J. Hanss, M. Lewin, A. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15, 870–876 (2016).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

Nat. Photonics (3)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics 6, 380–385 (2012).
[Crossref]

Q. Wang, E. T. F. Rogers, B. Gholipour, C. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

New J. Phys. (1)

A. Alu, D. Rainwater, and A. Kerkhoff, “Plasmonic cloaking of cylinders: finite length, oblique illumination and cross-polarization coupling,” New J. Phys. 12, 103028 (2010).
[Crossref]

Opt. Express (8)

M. E. Aryaee Panah, O. Takayama, S. V. Morozov, K. E. Kudryavtsev, E. S. Semenova, and A. V. Lavrinenko, “Highly doped InP as a low loss plasmonic material for mid-IR region,” Opt. Express 24, 29077–29088 (2016).
[Crossref]

M. Farhat, S. Muhlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20, 13896–13906 (2012).
[Crossref] [PubMed]

C. Diaz-Avino, M. Naserpour, and C. J. Zapata-Rodriguez, “Optimization of multilayered nanotubes for maximal scattering cancellation,” Opt. Express 24, 18184–18196 (2016).
[Crossref]

Y. Huang, C. Min, P. Dastmalchi, and G. Veronis, “Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors,” Opt. Express 11, 14922–14936 (2015).
[Crossref]

A. Mirzaei, I. V. Shadrivov, A. E. Miroshnichenko, and Y. S. Kivshar, “Cloaking and enhanced scattering of core-shell plasmonic nanowires,” Opt. Express 21, 10454–10459 (2013).
[Crossref] [PubMed]

Y. Huang, Y. Shen, C. Min, and G. Veronis, “Switching of the direction of reflectionless light propagation at exceptional points in non-PT-symmetric structures using phase-change materials,” Opt. Express 25, 27283–27297 (2017).
[Crossref] [PubMed]

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19, 22029–22106 (2011).
[Crossref] [PubMed]

Y. Huang, G. Veronis, and C. Min, “Unidirectional reflectionless propagation in plasmonic waveguide-cavity systems at exceptional points,” Opt. Express 23, 29882–29895 (2015).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rep. (1)

Z. Yang, R. Jiang, X. Zhuo, Y. Xie, J. Wang, and H. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

Phys. Rev. A (1)

E. Thiessen, R. L. Heinisch, F. X. Bronold, and H. Fehske, “Surface mode hybridization in the optical response of core-shell particles,” Phys. Rev. A 93, 033827 (2016).
[Crossref]

Phys. Rev. B (2)

M. G. Silveirinha, A. Alu, and N. Engheta, “Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation,” Phys. Rev. B 78, 075107 (2008).
[Crossref]

S. Muhlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83, 195116 (2011).
[Crossref]

Phys. Rev. E (1)

A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[Crossref]

Phys. Rev. Lett. (7)

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105, 013901(2010).
[Crossref] [PubMed]

A. Alu and N. Engheta, “Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging,” Phys. Rev. Lett. 105, 263906 (2010).
[Crossref]

A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Optical metacages,” Phys. Rev. Lett. 115, 215501 (2015).
[Crossref] [PubMed]

A. Alu and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett. 102, 233901 (2009).
[Crossref] [PubMed]

C. Argyropoulos, P. Chen, F. Monticone, G. D. Aguanno, and A. Alu, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012).
[Crossref] [PubMed]

X. Chen, V. Sandoghdar, and M. Agio, “Coherent interaction of light with a metallic structure coupled to a single quantum emitter: from superabsorption to cloaking,” Phys. Rev. Lett. 110, 153605 (2013).
[Crossref] [PubMed]

F. Monticone, C. Argyropoulos, and A. Alu, “Multilayered plasmonic covers for comblike scattering response and optical tagging,” Phys. Rev. Lett. 110, 113901 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (2)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13543 (2003).
[Crossref] [PubMed]

J. B. Jackson and N. J. Halas, “Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates,” Proc. Natl. Acad. Sci. USA 101, 17930–17935 (2004).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

M. Razeghi and B. Nguyen, “Advances in mid-infrared detection and imaging: a key issues review,” Rep. Prog. Phys. 77, 082401 (2014).
[Crossref] [PubMed]

Sci. Rep. (4)

F. Monticone, C. Argyropoulos, and A. Alu, “Layered plasmonic cloaks to tailor the optical scattering at the nanoscale,” Sci. Rep. 2, 912 (2012).
[Crossref] [PubMed]

K. Kim, Y. No, S. Chang, J. Choi, and H. Park, “Invisible hyperbolic metamaterial nanotube at visible frequency,” Sci. Rep. 5, 16027 (2015).
[Crossref] [PubMed]

A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “All-dielectric multilayer cylindrical structures for invisibility cloaking,” Sci. Rep. 5, 9574 (2015).
[Crossref] [PubMed]

S. Kim, H. Yun, K. Park, J. Hong, J. Yun, K. Lee, J. Kim, S. Jeong, S. Mun, J. Sung, Y. Lee, and B. Lee, “Active directional switching of surface plasmon polaritons using a phase transition material,” Sci. Rep. 7, 43723 (2017).
[Crossref] [PubMed]

Science (2)

J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref] [PubMed]

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, C. T. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1556–1569 (2012).
[Crossref]

Other (3)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
[Crossref]

J. D. Jackson, Classical Electrodynamics (Wiley, 1998).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of a three-layer core-shell cylindrical structure. The material in the outer shell is the phase-change material GST.
Fig. 2
Fig. 2 (a) The quantity |ϕu(3 = 3c) − ϕv(3 = 3a)| as a function of γ 1 = ρ 2 ρ 1 and the dielectric constant of the inner shell 2 (Fig. 1). Results are shown for λ0 = 4μm. Eq. (21) is satisfied at three regions in the γ1-2 space, marked as I, II, and III. The open circle corresponds to a point in region III. (b) The quantity γ 2 2 = ( ρ 3 ρ 2 ) 2 as a function of γ 1 = ρ 2 ρ 1 and the dielectric constant of the inner shell 2 (Fig. 1). Results are shown for λ0 = 4μm.
Fig. 3
Fig. 3 (a) The NSCS σN as a function of the dielectric constant of the outer shell 3 for electrically small cylindrical structures as in Fig. 1. Results are shown for λ0 = 4μm, ρ1 = 23 nm, γ 1 = ρ 2 ρ 1 = 1.9, γ 2 = ρ 3 ρ 2 = 1.1145, and 2 = −1.25. The material in the core is ZnO. (b) The NSCS σN as a function of γ 1 = ρ 2 ρ 1 when the phase change material GST in the outer shell is in its crystalline phase. The black line and red circles correspond to lossless and lossy cGST, respectively. All other parameters are as in Fig. 3(a).
Fig. 4
Fig. 4 (a) and (b) Magnetic field amplitude profiles for the optimized electrically small structure of Fig. 1 with GST in its crystalline phase at λ0 = 4 μm, when a plane wave is normally incident from the left. All other parameters are as in Fig. 3(a). The fields are normalized with respect to the field amplitude of the incident plane wave. (c) and (d) Same as in (a) and (b) except that GST is in its amorphous phase.
Fig. 5
Fig. 5 (a)–(d) The NSCS σN for cylindrical structures as in Fig. 1 as a function of γ 1 = ρ 2 ρ 1 and γ 2 = ρ 3 ρ 2 for different scattering orders at the wavelength of λ0 = 4μm for GST in its crystalline phase. The material in the core layer is ZnO, and its radius is ρ1 = 480 nm. The material in the inner shell is TiO2. (e)–(h) Same as in (a)–(d) except that GST is in its amorphous phase. The three-layer core-shell structure is in the superscattering regime for GST in its crystalline phase, and in the cloaking regime for GST in its amorphous phase at the wavelength of λ0 = 4μm, when γ1 = 1.99 and γ2 = 1.26 (white circle).
Fig. 6
Fig. 6 (a) The NSCS σN for cylindrical structures as in Fig. 1 as a function of γ 1 = ρ 2 ρ 1 with γ 2 = ρ 3 ρ 2 = 1.26 at the wavelength of λ0 = 4μm for GST in its crystalline phase. All other parameters are as in Fig. 5(a). The solid lines and circles correspond to lossless and lossy cGST, respectively. (b) Same as in (a) except that GST is in its amorphous phase.
Fig. 7
Fig. 7 (a) and (b) Magnetic field amplitude profiles for a bare ZnO core with radius of ρ1 = 480 nm at the wavelength of λ0=4 μm, when a plane wave is normally incident from the left. The fields are normalized with respect to the field amplitude of the incident plane wave. (c) and (d) Magnetic field amplitude profiles for the optimized core-shell cylindrical structure of Fig. 1 with GST in its crystalline phase and γ 1 = ρ 2 ρ 1 = 1.99. All other parameters are as in Fig. 6(a). (e) and (f) Same as in (c) and (d) except that GST is in its amorphous phase.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

H in = n = H n N n ( 1 ) ,
E in = i k 0 ω 0 n = H n M n ( 1 ) ,
H n = H 0 ( i ) n k 0 ,
H 1 = n = H n [ i c n M n ( 1 ) + d n N n ( 1 ) ] ,
E 1 = i k 1 ω 1 n = H n [ i c n N n ( 1 ) + d n M n ( 1 ) ] ,
H 2 = n = H n [ i g n M n ( 1 ) + f n N n ( 1 ) + i p n M n ( 2 ) + q n N n ( 2 ) ] ,
E 2 = i k 2 ω 2 n = H n [ i g n N n ( 1 ) + f n M n ( 1 ) + i p n N n ( 2 ) + q n M n ( 2 ) ] ,
H 3 = n = H n [ i s n M n ( 1 ) + t n N n ( 1 ) + i w n M n ( 2 ) + v n N n ( 2 ) ] ,
E 3 = i k 3 ω 3 n = H n [ i s n N n ( 1 ) + t n M n ( 1 ) + i w n N n ( 2 ) + v n M n ( 2 ) ] ,
H s = n = H n [ i b n M n ( 3 ) + a n N n ( 3 ) ] ,
E s = i k 0 ω 0 n = H n [ i b n N n ( 3 ) + a n M n ( 3 ) ] .
a n = 0 ,
b n = U n TM U n TM + i V n TM .
U n TM = | J n ( k 1 ρ 1 ) J n ( k 2 ρ 1 ) Y n ( k 2 ρ 1 ) 0 0 0 J n ( k 1 ρ 1 ) η 1 J n ( k 2 ρ 1 ) η 2 Y n ( k 2 ρ 1 ) η 2 0 0 0 0 J n ( k 2 ρ 2 ) Y n ( k 2 ρ 2 ) J n ( k 3 ρ 2 ) Y n ( k 3 ρ 2 ) 0 0 J n ( k 2 ρ 2 ) η 2 Y n ( k 2 ρ 2 ) η 2 J n ( k 3 ρ 2 ) η 3 Y n ( k 3 ρ 2 ) η 3 0 0 0 0 J n ( k 3 ρ 3 ) Y n ( k 3 ρ 3 ) J n ( k 0 ρ 3 ) 0 0 0 J n ( k 3 ρ 3 ) η 3 Y n ( k 3 ρ 3 ) η 3 J n ( k 0 ρ 3 ) η 0 | ,
V n TM = | J n ( k 1 ρ 1 ) J n ( k 2 ρ 1 ) Y n ( k 2 ρ 1 ) 0 0 0 J n ( k 1 ρ 1 ) η 1 J n ( k 2 ρ 1 ) η 2 Y n ( k 2 ρ 1 ) η 2 0 0 0 0 J n ( k 2 ρ 2 ) Y n ( k 2 ρ 2 ) J n ( k 3 ρ 2 ) Y n ( k 3 ρ 2 ) 0 0 J n ( k 2 ρ 2 ) η 2 Y n ( k 2 ρ 2 ) η 2 J n ( k 3 ρ 2 ) η 3 Y n ( k 3 ρ 2 ) η 3 0 0 0 0 J n ( k 3 ρ 3 ) Y n ( k 3 ρ 3 ) Y n ( k 0 ρ 3 ) 0 0 0 J n ( k 3 ρ 3 ) η 3 Y n ( k 3 ρ 3 ) η 3 Y n ( k 0 ρ 3 ) η 0 | ,
σ = 2 λ 0 π n = | b n | 2 = 2 λ 0 π σ N ,
U n TM π ( k 0 ρ 3 ) n 4 n n ! ( n 1 ) ! | 1 1 1 0 0 0 1 1 1 2 1 2 0 0 0 0 ( ρ 2 ρ 1 ) n ( ρ 1 ρ 2 ) n 1 1 0 0 1 2 ( ρ 2 ρ 1 ) n 1 2 ( ρ 1 ρ 2 ) n 1 3 1 3 0 0 0 0 ( ρ 3 ρ 2 ) n ( ρ 2 ρ 3 ) n 1 0 0 0 1 3 ( ρ 3 ρ 2 ) n 1 3 ( ρ 2 ρ 3 ) n 1 0 | ,
V n TM ( k 0 ρ 3 ) n | 1 1 1 0 0 0 1 1 1 2 1 2 0 0 0 0 ( ρ 2 ρ 1 ) n ( ρ 1 ρ 2 ) n 1 1 0 0 1 2 ( ρ 2 ρ 1 ) n 1 2 ( ρ 1 ρ 2 ) n 1 3 1 3 0 0 0 0 ( ρ 3 ρ 2 ) n ( ρ 2 ρ 3 ) n 1 0 0 0 1 3 ( ρ 3 ρ 2 ) n 1 3 ( ρ 2 ρ 3 ) n 1 0 | .
ϕ u = γ 2 2 = ( 3 + 0 ) [ ( 2 1 ) ( 3 + 2 ) ( 1 + 2 ) ( 2 3 ) γ 1 2 ] ( 0 3 ) [ ( 1 2 ) ( 3 2 ) ( 1 + 2 ) ( 2 + 3 ) γ 1 2 ] ,
ϕ v = γ 2 2 = ( 0 3 ) [ ( 2 1 ) ( 3 + 2 ) ( 1 + 2 ) ( 2 3 ) γ 1 2 ] ( 3 + 0 ) [ ( 1 2 ) ( 3 2 ) ( 1 + 2 ) ( 2 + 3 ) γ 1 2 ] .
| ϕ u ( 3 = 3 c ) ϕ v ( 3 = 3 a ) | = | ( 3 c + 0 ) [ ( 2 1 ) ( 3 c + 2 ) ( 1 + 2 ) ( 2 3 c ) γ 1 2 ] ( 0 3 c ) [ ( 1 2 ) ( 3 c 2 ) ( 1 + 2 ) ( 2 + 3 c ) γ 1 2 ] ( 0 3 a ) [ ( 2 1 ) ( 3 a + 2 ) ( 1 + 2 ) ( 2 3 a ) γ 1 2 ] ( 3 a + 0 ) [ ( 1 2 ) ( 3 a 2 ) ( 1 + 2 ) ( 2 + 3 a ) γ 1 2 ] | = 0 .
TiO 2 = 2 = 5.193 + 0.244 λ 0 2 0.0803 ,

Metrics