Abstract

Cholesteric liquid crystals (CLCs) spontaneously organizing into a periodic helical structure with a twist axis perpendicular to the local director can reflect selected wavelengths of circularly polarized light. The structural color can be easily controlled by manipulating the helical structure, temperature, electric field, and magnetic field. Despite the unique structure and superior performances, free-standing CLCs with confined fluidity, stimuli response, and high structure stability at high temperatures still remain a challenge. Herein, we report a simple and controllable preparation of a novel type of free-standing 3D confined polymer stabilized cholesteric liquid crystal particles (PSCLCPs) based on the microfluidic emulsification, interfacial polymerization, and UV curing. The size of PSCLCPs can be precisely controlled by adjusting the flow rates of the injected fluids in a microfluidic chip. The fluidity of CLCs is effectively restricted within the physical confinement of the polymer layer, the PSCLCPs present reversible thermal response between the cholesteric phase and the isotropic phase. The CLC domains in microcapsules possess superior microstructure stability at high temperatures (near 220 °C). The stand-alone PSCLCPs with confined fluidity, stimuli response and high structure stability at high temperatures will provide ever better performances in their tremendous applications in the field of smart photonic and electro-optical devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals

Vincent P. Tondiglia, Lalgudi V. Natarajan, Christopher A. Bailey, Michael E. McConney, Kyung Min Lee, Timothy J. Bunning, Rafael Zola, Hossein Nemati, Deng-Ke Yang, and Timothy J. White
Opt. Mater. Express 4(7) 1465-1472 (2014)

Low-voltage-modulated laser based on dye-doped polymer stabilized cholesteric liquid crystal

Bo-wei Liu, Zhi-gang Zheng, Xu-chang Chen, and Dong Shen
Opt. Mater. Express 3(4) 519-526 (2013)

Helical pitch dependence of the electro-optic characteristics in polymer/cholesteric liquid crystal nanocomposites

Hoekyung Kim, Junji Kobashi, Yasutaka Maeda, Hiroyuki Yoshida, and Masanori Ozaki
Opt. Mater. Express 6(4) 1138-1145 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. J. White and D. J. Broer, “Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers,” Nat. Mater. 14(11), 1087–1098 (2015).
    [Crossref] [PubMed]
  2. Y. Li, Y. Liu, and D. Luo, “Optical thermal sensor based on cholesteric film refilled with mixture of toluene and ethanol,” Opt. Express 25(21), 26349–26355 (2017).
    [Crossref] [PubMed]
  3. J. A. Lv, Y. Liu, J. Wei, E. Chen, L. Qin, and Y. Yu, “Photocontrol of fluid slugs in liquid crystal polymer microactuators,” Nature 537(7619), 179–184 (2016).
    [Crossref] [PubMed]
  4. X. Chen, L. Wang, Y. Chen, C. Li, G. Hou, X. Liu, X. Zhang, W. He, and H. Yang, “Broadband reflection of polymer-stabilized cholesteric liquid crystals induced by a chiral azobenzene compound,” Chem. Commun. (Camb.) 50(6), 691–694 (2014).
    [Crossref]
  5. C. M. Chang, Y. H. Lin, V. Reshetnyak, C. H. Park, R. Manda, and S. H. Lee, “Origins of Kerr phase and orientational phase in polymer-dispersed liquid crystals,” Opt. Express 25(17), 19807–19821 (2017).
    [Crossref] [PubMed]
  6. H. Peng, L. Yu, G. Chen, T. W. Bohl, and Y. Ye, “Low-voltage-driven and highly-diffractive holographic polymer dispersed liquid crystals with spherical morphology,” RSC. Adv. 7(82), 51847–51857 (2017).
  7. S. A. Jiang, W. J. Sun, S. H. Lin, J. D. Lin, and C. Y. Huang, “Optical and electro-optic properties of polymer-stabilized blue phase liquid crystal cells with photoalignment layers,” Opt. Express 25(23), 28179 (2017).
    [Crossref]
  8. B. Y. Liu, C. H. Meng, and L. J. Chen, “Role of monomer alkyl chain length in pretilt angle control of polymer-stabilized liquid crystal alignment system,” J. Phys. Chem. C 121(38), 21037–21044 (2017).
    [Crossref]
  9. Y. J. Liu, X. Ding, S. C. Lin, J. Shi, I. K. Chiang, and T. J. Huang, “Surface acoustic wave driven light shutters using polymer-dispersed liquid crystals,” Adv. Mater. 23(14), 1656–1659 (2011).
    [Crossref] [PubMed]
  10. R. Kumar and K. K. Raina, “Electrically modulated fluorescence in optically active polymer stabilised cholestericliquid crystal shutter,” Liq. Cryst. 41(2), 228–233 (2014).
    [Crossref]
  11. H. P. C. Van-Kuringen, G. M. Eikelboom, I. K. Shishmanova, D. J. Broer, and A. P. Schenning, “Responsive Nanoporous smectic liquid crystal polymer networks as efficient and selective adsorbents,” Adv. Funct. Mater. 24(32), 5045–50551 (2014).
    [Crossref]
  12. Z. Cheng, T. Wang, X. Li, Y. Zhang, and H. Yu, “NIR-VIS-UV light-responsive actuator films of polymer-dispersed liquid crystal/graphene oxide nanocomposites,” ACS Appl. Mater. Interfaces 7(49), 27494–27501 (2015).
    [Crossref] [PubMed]
  13. Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
    [Crossref]
  14. P. Kumar, S. H. Lee, and S. W. Kang, “Advanced bistable cholesteric light shutter with dual frequency nematic liquid crystal,” Opt. Mater. Express 2(8), 1121–1134 (2012).
    [Crossref]
  15. J. Sun, S. Xu, and S. T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/ grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
    [Crossref]
  16. D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W. S. Kim, S. S. Choi, H. J. Park, I. J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
    [Crossref]
  17. M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
    [Crossref] [PubMed]
  18. L. Qin, W. Gu, J. Wei, and Y. L. Yu, “Piecewise phototuning of self-organized helical superstructures,” Adv. Mater. 30, 1704941 (2017).
    [PubMed]
  19. L. J. Chen, Y. N. Li, J. Fan, H. K. Bisoyi, D. A. Weitz, and Q. Li, “Photoresponsive monodisperse cholesteric liquid crystalline microshells for tunable omnidirectional lasing enabled by a visible light-driven chiral molecularswitch,” Adv. Opt. Mater. 2(9), 845–848 (2014).
    [Crossref]
  20. P. Medle Rupnik, D. Lisjak, M. Čopič, S. Čopar, and A. Mertelj, “Field-controlled structures in ferromagnetic cholesteric liquidcrystals,” Sci. Adv. 3(10), 1701336 (2017).
    [Crossref]
  21. Y. Kim and N. Tamaoki, “Asymmetric dimers of chiral azobenzene dopants exhibiting unusual helical twisting power upon photoswitching in cholesteric liquid crystals,” ACS Appl. Mater. Interfaces 8(7), 4918–4926 (2016).
    [Crossref] [PubMed]
  22. P. Lin, Y. Cong, C. Sun, and B. Zhang, “Non-covalent modification of reduced graphene oxide by a chiral liquid crystalline surfactant,” Nanoscale 8(4), 2403–2411 (2016).
    [Crossref] [PubMed]
  23. H. Lu, J. Hu, Y. Chu, and W. Wang, “Cholesteric liquid crystals with an electrically controllable reflection bandwidthbased on ionic polymer networks and chiral ions,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5406–5411 (2015).
    [Crossref]
  24. P. Lin, Y. Cong, and B. Zhang, “Dispersing carbon nanotubes by chiral network surfactants,” ACS Appl. Mater. Interfaces 7(12), 6724–6732 (2015).
    [Crossref] [PubMed]
  25. H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
    [Crossref]
  26. M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18(26), 26995–27003 (2010).
    [Crossref] [PubMed]
  27. K. S. Bae, U. Cha, Y. K. Moon, J. W. Heo, Y. J. Lee, J. H. Kim, and C. J. Yu, “Reflective three-dimensional displays using the cholesteric liquid crystal with an inner patterned retarder,” Opt. Express 20(7), 6927–6931 (2012).
    [Crossref] [PubMed]
  28. N. Zimmermann, G. Jünnemann-Held, P. J. Collings, and H. S. Kitzerow, “Self-organized assemblies of colloidal particles obtained from an aligned chromonic liquid crystal dispersion,” Soft Matter 11(8), 1547–1553 (2015).
    [Crossref] [PubMed]
  29. C. Sánchez, F. Verbakel, M. J. Escuti, C. W. M. Bastiaansen, and D. J. Broer, “Printing of monolithic polymeric microstructures using reactive mesogens,” Adv. Mater. 20(1), 74–78 (2008).
    [Crossref]
  30. E. B. Gracia and O. L. Parri, “A new twist on cholesteric films by using reactive mesogen particles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(43), 11335–11340 (2015).
    [Crossref]
  31. S. J. Aßhoff, S. Sukas, T. Yamaguchi, C. A. Hommersom, S. Le Gac, and N. Katsonis, “Superstructures of chiral nematic microspheres as all-optical switchable distributors of light,” Sci. Rep. 5(1), 14183 (2015).
    [Crossref] [PubMed]
  32. H. J. Seo, S. S. Lee, J. Noh, J.-W. Ka, J. C. Won, C. Park, S.-H. Kim, and Y. H. Kim, “Robust photonic microparticles comprising cholesteric liquid crystals for anti-forgery materials,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(30), 7567–7573 (2017).
    [Crossref]
  33. L. J. Chen, L. L. Gong, Y. L. Lin, X. Y. Jin, H. Y. Li, S. S. Li, K. J. Che, Z. P. Cai, and C. J. Yang, “Microfluidic fabrication of cholesteric liquid crystal core-shell structures toward magnetically transportable microlasers,” Lab Chip 16(7), 1206–1213 (2016).
    [Crossref] [PubMed]
  34. V. G. Kravets, O. P. Marshall, R. R. Nair, B. Thackray, A. Zhukov, J. Leng, and A. N. Grigorenko, “Engineering optical properties of a graphene oxide metamaterial assembled in microfluidic channels,” Opt. Express 23(2), 1265–1275 (2015).
    [Crossref] [PubMed]
  35. V. K. Jagannadh, M. D. Mackenzie, P. Pal, A. K. Kar, and S. S. Gorthi, “Slanted channel microfluidic chip for 3D fluorescence imaging of cells in flow,” Opt. Express 24(19), 22144–22158 (2016).
    [Crossref] [PubMed]
  36. P. Paiè, F. Bragheri, T. Claude, and R. Osellame, “Optofluidic light modulator integrated in lab-on-a-chip,” Opt. Express 25(7), 7313–7323 (2017).
    [Crossref] [PubMed]
  37. Z. L. Li, W. Y. Zhou, M. M. Luo, Y. G. Liu, and J. G. Tian, “Tunable optofluidic microring laser based on a tapered hollow core microstructured optical fiber,” Opt. Express 23(8), 10413–10420 (2015).
    [Crossref] [PubMed]
  38. S. S. Lee, S. K. Kim, J. C. Won, Y. H. Kim, and S. H. Kim, “Reconfigurable photonic capsules containing cholesteric liquid crystals with planar alignment,” Angew. Chem. Int. Ed. Engl. 54(50), 15266–15270 (2015).
    [Crossref] [PubMed]
  39. S. S. Lee, B. Kim, S. K. Kim, J. C. Won, Y. H. Kim, and S. H. Kim, “Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules,” Adv. Mater. 27(4), 627–633 (2015).
    [Crossref] [PubMed]
  40. S. S. Lee, H. J. Seo, Y. H. Kim, and S. H. Kim, “Structural color palettes of core-shell photonic ink capsules containing cholesteric liquid crystals,” Adv. Mater. 29(23), 1606894 (2017).
    [Crossref] [PubMed]
  41. J. H. Jang and S. Y. Park, “pH-responsive cholesteric liquid crystal double emulsion droplets prepared by microfluidics,” Sens. Actuators B Chem. 241, 636–643 (2017).
    [Crossref]
  42. Y. Uchida, Y. Takanishi, and J. Yamamoto, “Controlled fabrication and photonic structure of cholesteric liquid crystalline shells,” Adv. Mater. 25(23), 3234–3237 (2013).
    [Crossref] [PubMed]
  43. C. Cramer, P. Fischer, and E. J. Windhab, “Drop formation in a co-flowing ambient fluid,” Chem. Eng. Sci. 59(15), 3045–3058 (2004).
    [Crossref]

2017 (11)

C. M. Chang, Y. H. Lin, V. Reshetnyak, C. H. Park, R. Manda, and S. H. Lee, “Origins of Kerr phase and orientational phase in polymer-dispersed liquid crystals,” Opt. Express 25(17), 19807–19821 (2017).
[Crossref] [PubMed]

H. Peng, L. Yu, G. Chen, T. W. Bohl, and Y. Ye, “Low-voltage-driven and highly-diffractive holographic polymer dispersed liquid crystals with spherical morphology,” RSC. Adv. 7(82), 51847–51857 (2017).

S. A. Jiang, W. J. Sun, S. H. Lin, J. D. Lin, and C. Y. Huang, “Optical and electro-optic properties of polymer-stabilized blue phase liquid crystal cells with photoalignment layers,” Opt. Express 25(23), 28179 (2017).
[Crossref]

B. Y. Liu, C. H. Meng, and L. J. Chen, “Role of monomer alkyl chain length in pretilt angle control of polymer-stabilized liquid crystal alignment system,” J. Phys. Chem. C 121(38), 21037–21044 (2017).
[Crossref]

Y. Li, Y. Liu, and D. Luo, “Optical thermal sensor based on cholesteric film refilled with mixture of toluene and ethanol,” Opt. Express 25(21), 26349–26355 (2017).
[Crossref] [PubMed]

L. Qin, W. Gu, J. Wei, and Y. L. Yu, “Piecewise phototuning of self-organized helical superstructures,” Adv. Mater. 30, 1704941 (2017).
[PubMed]

P. Medle Rupnik, D. Lisjak, M. Čopič, S. Čopar, and A. Mertelj, “Field-controlled structures in ferromagnetic cholesteric liquidcrystals,” Sci. Adv. 3(10), 1701336 (2017).
[Crossref]

H. J. Seo, S. S. Lee, J. Noh, J.-W. Ka, J. C. Won, C. Park, S.-H. Kim, and Y. H. Kim, “Robust photonic microparticles comprising cholesteric liquid crystals for anti-forgery materials,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(30), 7567–7573 (2017).
[Crossref]

P. Paiè, F. Bragheri, T. Claude, and R. Osellame, “Optofluidic light modulator integrated in lab-on-a-chip,” Opt. Express 25(7), 7313–7323 (2017).
[Crossref] [PubMed]

S. S. Lee, H. J. Seo, Y. H. Kim, and S. H. Kim, “Structural color palettes of core-shell photonic ink capsules containing cholesteric liquid crystals,” Adv. Mater. 29(23), 1606894 (2017).
[Crossref] [PubMed]

J. H. Jang and S. Y. Park, “pH-responsive cholesteric liquid crystal double emulsion droplets prepared by microfluidics,” Sens. Actuators B Chem. 241, 636–643 (2017).
[Crossref]

2016 (5)

V. K. Jagannadh, M. D. Mackenzie, P. Pal, A. K. Kar, and S. S. Gorthi, “Slanted channel microfluidic chip for 3D fluorescence imaging of cells in flow,” Opt. Express 24(19), 22144–22158 (2016).
[Crossref] [PubMed]

L. J. Chen, L. L. Gong, Y. L. Lin, X. Y. Jin, H. Y. Li, S. S. Li, K. J. Che, Z. P. Cai, and C. J. Yang, “Microfluidic fabrication of cholesteric liquid crystal core-shell structures toward magnetically transportable microlasers,” Lab Chip 16(7), 1206–1213 (2016).
[Crossref] [PubMed]

Y. Kim and N. Tamaoki, “Asymmetric dimers of chiral azobenzene dopants exhibiting unusual helical twisting power upon photoswitching in cholesteric liquid crystals,” ACS Appl. Mater. Interfaces 8(7), 4918–4926 (2016).
[Crossref] [PubMed]

P. Lin, Y. Cong, C. Sun, and B. Zhang, “Non-covalent modification of reduced graphene oxide by a chiral liquid crystalline surfactant,” Nanoscale 8(4), 2403–2411 (2016).
[Crossref] [PubMed]

J. A. Lv, Y. Liu, J. Wei, E. Chen, L. Qin, and Y. Yu, “Photocontrol of fluid slugs in liquid crystal polymer microactuators,” Nature 537(7619), 179–184 (2016).
[Crossref] [PubMed]

2015 (11)

Z. Cheng, T. Wang, X. Li, Y. Zhang, and H. Yu, “NIR-VIS-UV light-responsive actuator films of polymer-dispersed liquid crystal/graphene oxide nanocomposites,” ACS Appl. Mater. Interfaces 7(49), 27494–27501 (2015).
[Crossref] [PubMed]

T. J. White and D. J. Broer, “Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers,” Nat. Mater. 14(11), 1087–1098 (2015).
[Crossref] [PubMed]

H. Lu, J. Hu, Y. Chu, and W. Wang, “Cholesteric liquid crystals with an electrically controllable reflection bandwidthbased on ionic polymer networks and chiral ions,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5406–5411 (2015).
[Crossref]

P. Lin, Y. Cong, and B. Zhang, “Dispersing carbon nanotubes by chiral network surfactants,” ACS Appl. Mater. Interfaces 7(12), 6724–6732 (2015).
[Crossref] [PubMed]

N. Zimmermann, G. Jünnemann-Held, P. J. Collings, and H. S. Kitzerow, “Self-organized assemblies of colloidal particles obtained from an aligned chromonic liquid crystal dispersion,” Soft Matter 11(8), 1547–1553 (2015).
[Crossref] [PubMed]

V. G. Kravets, O. P. Marshall, R. R. Nair, B. Thackray, A. Zhukov, J. Leng, and A. N. Grigorenko, “Engineering optical properties of a graphene oxide metamaterial assembled in microfluidic channels,” Opt. Express 23(2), 1265–1275 (2015).
[Crossref] [PubMed]

E. B. Gracia and O. L. Parri, “A new twist on cholesteric films by using reactive mesogen particles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(43), 11335–11340 (2015).
[Crossref]

S. J. Aßhoff, S. Sukas, T. Yamaguchi, C. A. Hommersom, S. Le Gac, and N. Katsonis, “Superstructures of chiral nematic microspheres as all-optical switchable distributors of light,” Sci. Rep. 5(1), 14183 (2015).
[Crossref] [PubMed]

Z. L. Li, W. Y. Zhou, M. M. Luo, Y. G. Liu, and J. G. Tian, “Tunable optofluidic microring laser based on a tapered hollow core microstructured optical fiber,” Opt. Express 23(8), 10413–10420 (2015).
[Crossref] [PubMed]

S. S. Lee, S. K. Kim, J. C. Won, Y. H. Kim, and S. H. Kim, “Reconfigurable photonic capsules containing cholesteric liquid crystals with planar alignment,” Angew. Chem. Int. Ed. Engl. 54(50), 15266–15270 (2015).
[Crossref] [PubMed]

S. S. Lee, B. Kim, S. K. Kim, J. C. Won, Y. H. Kim, and S. H. Kim, “Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules,” Adv. Mater. 27(4), 627–633 (2015).
[Crossref] [PubMed]

2014 (4)

L. J. Chen, Y. N. Li, J. Fan, H. K. Bisoyi, D. A. Weitz, and Q. Li, “Photoresponsive monodisperse cholesteric liquid crystalline microshells for tunable omnidirectional lasing enabled by a visible light-driven chiral molecularswitch,” Adv. Opt. Mater. 2(9), 845–848 (2014).
[Crossref]

X. Chen, L. Wang, Y. Chen, C. Li, G. Hou, X. Liu, X. Zhang, W. He, and H. Yang, “Broadband reflection of polymer-stabilized cholesteric liquid crystals induced by a chiral azobenzene compound,” Chem. Commun. (Camb.) 50(6), 691–694 (2014).
[Crossref]

R. Kumar and K. K. Raina, “Electrically modulated fluorescence in optically active polymer stabilised cholestericliquid crystal shutter,” Liq. Cryst. 41(2), 228–233 (2014).
[Crossref]

H. P. C. Van-Kuringen, G. M. Eikelboom, I. K. Shishmanova, D. J. Broer, and A. P. Schenning, “Responsive Nanoporous smectic liquid crystal polymer networks as efficient and selective adsorbents,” Adv. Funct. Mater. 24(32), 5045–50551 (2014).
[Crossref]

2013 (2)

J. Sun, S. Xu, and S. T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/ grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
[Crossref]

Y. Uchida, Y. Takanishi, and J. Yamamoto, “Controlled fabrication and photonic structure of cholesteric liquid crystalline shells,” Adv. Mater. 25(23), 3234–3237 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (2)

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W. S. Kim, S. S. Choi, H. J. Park, I. J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

Y. J. Liu, X. Ding, S. C. Lin, J. Shi, I. K. Chiang, and T. J. Huang, “Surface acoustic wave driven light shutters using polymer-dispersed liquid crystals,” Adv. Mater. 23(14), 1656–1659 (2011).
[Crossref] [PubMed]

2010 (1)

2008 (1)

C. Sánchez, F. Verbakel, M. J. Escuti, C. W. M. Bastiaansen, and D. J. Broer, “Printing of monolithic polymeric microstructures using reactive mesogens,” Adv. Mater. 20(1), 74–78 (2008).
[Crossref]

2004 (2)

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

C. Cramer, P. Fischer, and E. J. Windhab, “Drop formation in a co-flowing ambient fluid,” Chem. Eng. Sci. 59(15), 3045–3058 (2004).
[Crossref]

2001 (1)

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

Aßhoff, S. J.

S. J. Aßhoff, S. Sukas, T. Yamaguchi, C. A. Hommersom, S. Le Gac, and N. Katsonis, “Superstructures of chiral nematic microspheres as all-optical switchable distributors of light,” Sci. Rep. 5(1), 14183 (2015).
[Crossref] [PubMed]

Bae, K. S.

Bastiaansen, C. W. M.

C. Sánchez, F. Verbakel, M. J. Escuti, C. W. M. Bastiaansen, and D. J. Broer, “Printing of monolithic polymeric microstructures using reactive mesogens,” Adv. Mater. 20(1), 74–78 (2008).
[Crossref]

Bisoyi, H. K.

L. J. Chen, Y. N. Li, J. Fan, H. K. Bisoyi, D. A. Weitz, and Q. Li, “Photoresponsive monodisperse cholesteric liquid crystalline microshells for tunable omnidirectional lasing enabled by a visible light-driven chiral molecularswitch,” Adv. Opt. Mater. 2(9), 845–848 (2014).
[Crossref]

Bohl, T. W.

H. Peng, L. Yu, G. Chen, T. W. Bohl, and Y. Ye, “Low-voltage-driven and highly-diffractive holographic polymer dispersed liquid crystals with spherical morphology,” RSC. Adv. 7(82), 51847–51857 (2017).

Bragheri, F.

Broer, D. J.

T. J. White and D. J. Broer, “Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers,” Nat. Mater. 14(11), 1087–1098 (2015).
[Crossref] [PubMed]

H. P. C. Van-Kuringen, G. M. Eikelboom, I. K. Shishmanova, D. J. Broer, and A. P. Schenning, “Responsive Nanoporous smectic liquid crystal polymer networks as efficient and selective adsorbents,” Adv. Funct. Mater. 24(32), 5045–50551 (2014).
[Crossref]

C. Sánchez, F. Verbakel, M. J. Escuti, C. W. M. Bastiaansen, and D. J. Broer, “Printing of monolithic polymeric microstructures using reactive mesogens,” Adv. Mater. 20(1), 74–78 (2008).
[Crossref]

Cai, Z. P.

L. J. Chen, L. L. Gong, Y. L. Lin, X. Y. Jin, H. Y. Li, S. S. Li, K. J. Che, Z. P. Cai, and C. J. Yang, “Microfluidic fabrication of cholesteric liquid crystal core-shell structures toward magnetically transportable microlasers,” Lab Chip 16(7), 1206–1213 (2016).
[Crossref] [PubMed]

Castles, F.

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W. S. Kim, S. S. Choi, H. J. Park, I. J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

Cha, U.

Chang, C. M.

Che, K. J.

L. J. Chen, L. L. Gong, Y. L. Lin, X. Y. Jin, H. Y. Li, S. S. Li, K. J. Che, Z. P. Cai, and C. J. Yang, “Microfluidic fabrication of cholesteric liquid crystal core-shell structures toward magnetically transportable microlasers,” Lab Chip 16(7), 1206–1213 (2016).
[Crossref] [PubMed]

Chen, E.

J. A. Lv, Y. Liu, J. Wei, E. Chen, L. Qin, and Y. Yu, “Photocontrol of fluid slugs in liquid crystal polymer microactuators,” Nature 537(7619), 179–184 (2016).
[Crossref] [PubMed]

Chen, G.

H. Peng, L. Yu, G. Chen, T. W. Bohl, and Y. Ye, “Low-voltage-driven and highly-diffractive holographic polymer dispersed liquid crystals with spherical morphology,” RSC. Adv. 7(82), 51847–51857 (2017).

Chen, L. J.

B. Y. Liu, C. H. Meng, and L. J. Chen, “Role of monomer alkyl chain length in pretilt angle control of polymer-stabilized liquid crystal alignment system,” J. Phys. Chem. C 121(38), 21037–21044 (2017).
[Crossref]

L. J. Chen, L. L. Gong, Y. L. Lin, X. Y. Jin, H. Y. Li, S. S. Li, K. J. Che, Z. P. Cai, and C. J. Yang, “Microfluidic fabrication of cholesteric liquid crystal core-shell structures toward magnetically transportable microlasers,” Lab Chip 16(7), 1206–1213 (2016).
[Crossref] [PubMed]

L. J. Chen, Y. N. Li, J. Fan, H. K. Bisoyi, D. A. Weitz, and Q. Li, “Photoresponsive monodisperse cholesteric liquid crystalline microshells for tunable omnidirectional lasing enabled by a visible light-driven chiral molecularswitch,” Adv. Opt. Mater. 2(9), 845–848 (2014).
[Crossref]

Chen, X.

X. Chen, L. Wang, Y. Chen, C. Li, G. Hou, X. Liu, X. Zhang, W. He, and H. Yang, “Broadband reflection of polymer-stabilized cholesteric liquid crystals induced by a chiral azobenzene compound,” Chem. Commun. (Camb.) 50(6), 691–694 (2014).
[Crossref]

Chen, Y.

X. Chen, L. Wang, Y. Chen, C. Li, G. Hou, X. Liu, X. Zhang, W. He, and H. Yang, “Broadband reflection of polymer-stabilized cholesteric liquid crystals induced by a chiral azobenzene compound,” Chem. Commun. (Camb.) 50(6), 691–694 (2014).
[Crossref]

Cheng, Z.

Z. Cheng, T. Wang, X. Li, Y. Zhang, and H. Yu, “NIR-VIS-UV light-responsive actuator films of polymer-dispersed liquid crystal/graphene oxide nanocomposites,” ACS Appl. Mater. Interfaces 7(49), 27494–27501 (2015).
[Crossref] [PubMed]

Chiang, I. K.

Y. J. Liu, X. Ding, S. C. Lin, J. Shi, I. K. Chiang, and T. J. Huang, “Surface acoustic wave driven light shutters using polymer-dispersed liquid crystals,” Adv. Mater. 23(14), 1656–1659 (2011).
[Crossref] [PubMed]

Choi, S. S.

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W. S. Kim, S. S. Choi, H. J. Park, I. J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

Chu, Y.

H. Lu, J. Hu, Y. Chu, and W. Wang, “Cholesteric liquid crystals with an electrically controllable reflection bandwidthbased on ionic polymer networks and chiral ions,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5406–5411 (2015).
[Crossref]

Chung, I. J.

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W. S. Kim, S. S. Choi, H. J. Park, I. J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

Claude, T.

Coles, H. J.

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W. S. Kim, S. S. Choi, H. J. Park, I. J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

Collings, P. J.

N. Zimmermann, G. Jünnemann-Held, P. J. Collings, and H. S. Kitzerow, “Self-organized assemblies of colloidal particles obtained from an aligned chromonic liquid crystal dispersion,” Soft Matter 11(8), 1547–1553 (2015).
[Crossref] [PubMed]

Cong, Y.

P. Lin, Y. Cong, C. Sun, and B. Zhang, “Non-covalent modification of reduced graphene oxide by a chiral liquid crystalline surfactant,” Nanoscale 8(4), 2403–2411 (2016).
[Crossref] [PubMed]

P. Lin, Y. Cong, and B. Zhang, “Dispersing carbon nanotubes by chiral network surfactants,” ACS Appl. Mater. Interfaces 7(12), 6724–6732 (2015).
[Crossref] [PubMed]

Copar, S.

P. Medle Rupnik, D. Lisjak, M. Čopič, S. Čopar, and A. Mertelj, “Field-controlled structures in ferromagnetic cholesteric liquidcrystals,” Sci. Adv. 3(10), 1701336 (2017).
[Crossref]

Copic, M.

P. Medle Rupnik, D. Lisjak, M. Čopič, S. Čopar, and A. Mertelj, “Field-controlled structures in ferromagnetic cholesteric liquidcrystals,” Sci. Adv. 3(10), 1701336 (2017).
[Crossref]

Cramer, C.

C. Cramer, P. Fischer, and E. J. Windhab, “Drop formation in a co-flowing ambient fluid,” Chem. Eng. Sci. 59(15), 3045–3058 (2004).
[Crossref]

Ding, X.

Y. J. Liu, X. Ding, S. C. Lin, J. Shi, I. K. Chiang, and T. J. Huang, “Surface acoustic wave driven light shutters using polymer-dispersed liquid crystals,” Adv. Mater. 23(14), 1656–1659 (2011).
[Crossref] [PubMed]

Eikelboom, G. M.

H. P. C. Van-Kuringen, G. M. Eikelboom, I. K. Shishmanova, D. J. Broer, and A. P. Schenning, “Responsive Nanoporous smectic liquid crystal polymer networks as efficient and selective adsorbents,” Adv. Funct. Mater. 24(32), 5045–50551 (2014).
[Crossref]

Escuti, M. J.

C. Sánchez, F. Verbakel, M. J. Escuti, C. W. M. Bastiaansen, and D. J. Broer, “Printing of monolithic polymeric microstructures using reactive mesogens,” Adv. Mater. 20(1), 74–78 (2008).
[Crossref]

Fan, J.

L. J. Chen, Y. N. Li, J. Fan, H. K. Bisoyi, D. A. Weitz, and Q. Li, “Photoresponsive monodisperse cholesteric liquid crystalline microshells for tunable omnidirectional lasing enabled by a visible light-driven chiral molecularswitch,” Adv. Opt. Mater. 2(9), 845–848 (2014).
[Crossref]

Fan, Y. H.

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

Finkelmann, H.

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

Fischer, P.

C. Cramer, P. Fischer, and E. J. Windhab, “Drop formation in a co-flowing ambient fluid,” Chem. Eng. Sci. 59(15), 3045–3058 (2004).
[Crossref]

Gardiner, D. J.

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W. S. Kim, S. S. Choi, H. J. Park, I. J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

Gauza, S.

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

Gong, L. L.

L. J. Chen, L. L. Gong, Y. L. Lin, X. Y. Jin, H. Y. Li, S. S. Li, K. J. Che, Z. P. Cai, and C. J. Yang, “Microfluidic fabrication of cholesteric liquid crystal core-shell structures toward magnetically transportable microlasers,” Lab Chip 16(7), 1206–1213 (2016).
[Crossref] [PubMed]

Gorthi, S. S.

Gracia, E. B.

E. B. Gracia and O. L. Parri, “A new twist on cholesteric films by using reactive mesogen particles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(43), 11335–11340 (2015).
[Crossref]

Grigorenko, A. N.

Gu, W.

L. Qin, W. Gu, J. Wei, and Y. L. Yu, “Piecewise phototuning of self-organized helical superstructures,” Adv. Mater. 30, 1704941 (2017).
[PubMed]

He, W.

X. Chen, L. Wang, Y. Chen, C. Li, G. Hou, X. Liu, X. Zhang, W. He, and H. Yang, “Broadband reflection of polymer-stabilized cholesteric liquid crystals induced by a chiral azobenzene compound,” Chem. Commun. (Camb.) 50(6), 691–694 (2014).
[Crossref]

Heo, J. W.

Hommersom, C. A.

S. J. Aßhoff, S. Sukas, T. Yamaguchi, C. A. Hommersom, S. Le Gac, and N. Katsonis, “Superstructures of chiral nematic microspheres as all-optical switchable distributors of light,” Sci. Rep. 5(1), 14183 (2015).
[Crossref] [PubMed]

Hou, G.

X. Chen, L. Wang, Y. Chen, C. Li, G. Hou, X. Liu, X. Zhang, W. He, and H. Yang, “Broadband reflection of polymer-stabilized cholesteric liquid crystals induced by a chiral azobenzene compound,” Chem. Commun. (Camb.) 50(6), 691–694 (2014).
[Crossref]

Hu, J.

H. Lu, J. Hu, Y. Chu, and W. Wang, “Cholesteric liquid crystals with an electrically controllable reflection bandwidthbased on ionic polymer networks and chiral ions,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5406–5411 (2015).
[Crossref]

Huang, C. Y.

Huang, T. J.

Y. J. Liu, X. Ding, S. C. Lin, J. Shi, I. K. Chiang, and T. J. Huang, “Surface acoustic wave driven light shutters using polymer-dispersed liquid crystals,” Adv. Mater. 23(14), 1656–1659 (2011).
[Crossref] [PubMed]

Humar, M.

Jagannadh, V. K.

Jang, J. H.

J. H. Jang and S. Y. Park, “pH-responsive cholesteric liquid crystal double emulsion droplets prepared by microfluidics,” Sens. Actuators B Chem. 241, 636–643 (2017).
[Crossref]

Jiang, S. A.

Jin, X. Y.

L. J. Chen, L. L. Gong, Y. L. Lin, X. Y. Jin, H. Y. Li, S. S. Li, K. J. Che, Z. P. Cai, and C. J. Yang, “Microfluidic fabrication of cholesteric liquid crystal core-shell structures toward magnetically transportable microlasers,” Lab Chip 16(7), 1206–1213 (2016).
[Crossref] [PubMed]

Jünnemann-Held, G.

N. Zimmermann, G. Jünnemann-Held, P. J. Collings, and H. S. Kitzerow, “Self-organized assemblies of colloidal particles obtained from an aligned chromonic liquid crystal dispersion,” Soft Matter 11(8), 1547–1553 (2015).
[Crossref] [PubMed]

Ka, J.-W.

H. J. Seo, S. S. Lee, J. Noh, J.-W. Ka, J. C. Won, C. Park, S.-H. Kim, and Y. H. Kim, “Robust photonic microparticles comprising cholesteric liquid crystals for anti-forgery materials,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(30), 7567–7573 (2017).
[Crossref]

Kang, S. W.

Kar, A. K.

Katsonis, N.

S. J. Aßhoff, S. Sukas, T. Yamaguchi, C. A. Hommersom, S. Le Gac, and N. Katsonis, “Superstructures of chiral nematic microspheres as all-optical switchable distributors of light,” Sci. Rep. 5(1), 14183 (2015).
[Crossref] [PubMed]

Kim, B.

S. S. Lee, B. Kim, S. K. Kim, J. C. Won, Y. H. Kim, and S. H. Kim, “Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules,” Adv. Mater. 27(4), 627–633 (2015).
[Crossref] [PubMed]

Kim, J. H.

Kim, S. H.

S. S. Lee, H. J. Seo, Y. H. Kim, and S. H. Kim, “Structural color palettes of core-shell photonic ink capsules containing cholesteric liquid crystals,” Adv. Mater. 29(23), 1606894 (2017).
[Crossref] [PubMed]

S. S. Lee, S. K. Kim, J. C. Won, Y. H. Kim, and S. H. Kim, “Reconfigurable photonic capsules containing cholesteric liquid crystals with planar alignment,” Angew. Chem. Int. Ed. Engl. 54(50), 15266–15270 (2015).
[Crossref] [PubMed]

S. S. Lee, B. Kim, S. K. Kim, J. C. Won, Y. H. Kim, and S. H. Kim, “Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules,” Adv. Mater. 27(4), 627–633 (2015).
[Crossref] [PubMed]

Kim, S. K.

S. S. Lee, B. Kim, S. K. Kim, J. C. Won, Y. H. Kim, and S. H. Kim, “Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules,” Adv. Mater. 27(4), 627–633 (2015).
[Crossref] [PubMed]

S. S. Lee, S. K. Kim, J. C. Won, Y. H. Kim, and S. H. Kim, “Reconfigurable photonic capsules containing cholesteric liquid crystals with planar alignment,” Angew. Chem. Int. Ed. Engl. 54(50), 15266–15270 (2015).
[Crossref] [PubMed]

Kim, S. T.

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

Kim, S.-H.

H. J. Seo, S. S. Lee, J. Noh, J.-W. Ka, J. C. Won, C. Park, S.-H. Kim, and Y. H. Kim, “Robust photonic microparticles comprising cholesteric liquid crystals for anti-forgery materials,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(30), 7567–7573 (2017).
[Crossref]

Kim, W. S.

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W. S. Kim, S. S. Choi, H. J. Park, I. J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

Kim, Y.

Y. Kim and N. Tamaoki, “Asymmetric dimers of chiral azobenzene dopants exhibiting unusual helical twisting power upon photoswitching in cholesteric liquid crystals,” ACS Appl. Mater. Interfaces 8(7), 4918–4926 (2016).
[Crossref] [PubMed]

Kim, Y. H.

H. J. Seo, S. S. Lee, J. Noh, J.-W. Ka, J. C. Won, C. Park, S.-H. Kim, and Y. H. Kim, “Robust photonic microparticles comprising cholesteric liquid crystals for anti-forgery materials,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(30), 7567–7573 (2017).
[Crossref]

S. S. Lee, H. J. Seo, Y. H. Kim, and S. H. Kim, “Structural color palettes of core-shell photonic ink capsules containing cholesteric liquid crystals,” Adv. Mater. 29(23), 1606894 (2017).
[Crossref] [PubMed]

S. S. Lee, B. Kim, S. K. Kim, J. C. Won, Y. H. Kim, and S. H. Kim, “Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules,” Adv. Mater. 27(4), 627–633 (2015).
[Crossref] [PubMed]

S. S. Lee, S. K. Kim, J. C. Won, Y. H. Kim, and S. H. Kim, “Reconfigurable photonic capsules containing cholesteric liquid crystals with planar alignment,” Angew. Chem. Int. Ed. Engl. 54(50), 15266–15270 (2015).
[Crossref] [PubMed]

Kitzerow, H. S.

N. Zimmermann, G. Jünnemann-Held, P. J. Collings, and H. S. Kitzerow, “Self-organized assemblies of colloidal particles obtained from an aligned chromonic liquid crystal dispersion,” Soft Matter 11(8), 1547–1553 (2015).
[Crossref] [PubMed]

Kravets, V. G.

Kumar, P.

Kumar, R.

R. Kumar and K. K. Raina, “Electrically modulated fluorescence in optically active polymer stabilised cholestericliquid crystal shutter,” Liq. Cryst. 41(2), 228–233 (2014).
[Crossref]

Le Gac, S.

S. J. Aßhoff, S. Sukas, T. Yamaguchi, C. A. Hommersom, S. Le Gac, and N. Katsonis, “Superstructures of chiral nematic microspheres as all-optical switchable distributors of light,” Sci. Rep. 5(1), 14183 (2015).
[Crossref] [PubMed]

Lee, S. H.

Lee, S. S.

H. J. Seo, S. S. Lee, J. Noh, J.-W. Ka, J. C. Won, C. Park, S.-H. Kim, and Y. H. Kim, “Robust photonic microparticles comprising cholesteric liquid crystals for anti-forgery materials,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(30), 7567–7573 (2017).
[Crossref]

S. S. Lee, H. J. Seo, Y. H. Kim, and S. H. Kim, “Structural color palettes of core-shell photonic ink capsules containing cholesteric liquid crystals,” Adv. Mater. 29(23), 1606894 (2017).
[Crossref] [PubMed]

S. S. Lee, B. Kim, S. K. Kim, J. C. Won, Y. H. Kim, and S. H. Kim, “Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules,” Adv. Mater. 27(4), 627–633 (2015).
[Crossref] [PubMed]

S. S. Lee, S. K. Kim, J. C. Won, Y. H. Kim, and S. H. Kim, “Reconfigurable photonic capsules containing cholesteric liquid crystals with planar alignment,” Angew. Chem. Int. Ed. Engl. 54(50), 15266–15270 (2015).
[Crossref] [PubMed]

Lee, Y. J.

Leng, J.

Li, C.

X. Chen, L. Wang, Y. Chen, C. Li, G. Hou, X. Liu, X. Zhang, W. He, and H. Yang, “Broadband reflection of polymer-stabilized cholesteric liquid crystals induced by a chiral azobenzene compound,” Chem. Commun. (Camb.) 50(6), 691–694 (2014).
[Crossref]

Li, H. Y.

L. J. Chen, L. L. Gong, Y. L. Lin, X. Y. Jin, H. Y. Li, S. S. Li, K. J. Che, Z. P. Cai, and C. J. Yang, “Microfluidic fabrication of cholesteric liquid crystal core-shell structures toward magnetically transportable microlasers,” Lab Chip 16(7), 1206–1213 (2016).
[Crossref] [PubMed]

Li, Q.

L. J. Chen, Y. N. Li, J. Fan, H. K. Bisoyi, D. A. Weitz, and Q. Li, “Photoresponsive monodisperse cholesteric liquid crystalline microshells for tunable omnidirectional lasing enabled by a visible light-driven chiral molecularswitch,” Adv. Opt. Mater. 2(9), 845–848 (2014).
[Crossref]

Li, S. S.

L. J. Chen, L. L. Gong, Y. L. Lin, X. Y. Jin, H. Y. Li, S. S. Li, K. J. Che, Z. P. Cai, and C. J. Yang, “Microfluidic fabrication of cholesteric liquid crystal core-shell structures toward magnetically transportable microlasers,” Lab Chip 16(7), 1206–1213 (2016).
[Crossref] [PubMed]

Li, X.

Z. Cheng, T. Wang, X. Li, Y. Zhang, and H. Yu, “NIR-VIS-UV light-responsive actuator films of polymer-dispersed liquid crystal/graphene oxide nanocomposites,” ACS Appl. Mater. Interfaces 7(49), 27494–27501 (2015).
[Crossref] [PubMed]

Li, Y.

Li, Y. N.

L. J. Chen, Y. N. Li, J. Fan, H. K. Bisoyi, D. A. Weitz, and Q. Li, “Photoresponsive monodisperse cholesteric liquid crystalline microshells for tunable omnidirectional lasing enabled by a visible light-driven chiral molecularswitch,” Adv. Opt. Mater. 2(9), 845–848 (2014).
[Crossref]

Li, Z. L.

Lin, J. D.

Lin, P.

P. Lin, Y. Cong, C. Sun, and B. Zhang, “Non-covalent modification of reduced graphene oxide by a chiral liquid crystalline surfactant,” Nanoscale 8(4), 2403–2411 (2016).
[Crossref] [PubMed]

P. Lin, Y. Cong, and B. Zhang, “Dispersing carbon nanotubes by chiral network surfactants,” ACS Appl. Mater. Interfaces 7(12), 6724–6732 (2015).
[Crossref] [PubMed]

Lin, S. C.

Y. J. Liu, X. Ding, S. C. Lin, J. Shi, I. K. Chiang, and T. J. Huang, “Surface acoustic wave driven light shutters using polymer-dispersed liquid crystals,” Adv. Mater. 23(14), 1656–1659 (2011).
[Crossref] [PubMed]

Lin, S. H.

Lin, Y. H.

C. M. Chang, Y. H. Lin, V. Reshetnyak, C. H. Park, R. Manda, and S. H. Lee, “Origins of Kerr phase and orientational phase in polymer-dispersed liquid crystals,” Opt. Express 25(17), 19807–19821 (2017).
[Crossref] [PubMed]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

Lin, Y. L.

L. J. Chen, L. L. Gong, Y. L. Lin, X. Y. Jin, H. Y. Li, S. S. Li, K. J. Che, Z. P. Cai, and C. J. Yang, “Microfluidic fabrication of cholesteric liquid crystal core-shell structures toward magnetically transportable microlasers,” Lab Chip 16(7), 1206–1213 (2016).
[Crossref] [PubMed]

Lisjak, D.

P. Medle Rupnik, D. Lisjak, M. Čopič, S. Čopar, and A. Mertelj, “Field-controlled structures in ferromagnetic cholesteric liquidcrystals,” Sci. Adv. 3(10), 1701336 (2017).
[Crossref]

Liu, B. Y.

B. Y. Liu, C. H. Meng, and L. J. Chen, “Role of monomer alkyl chain length in pretilt angle control of polymer-stabilized liquid crystal alignment system,” J. Phys. Chem. C 121(38), 21037–21044 (2017).
[Crossref]

Liu, X.

X. Chen, L. Wang, Y. Chen, C. Li, G. Hou, X. Liu, X. Zhang, W. He, and H. Yang, “Broadband reflection of polymer-stabilized cholesteric liquid crystals induced by a chiral azobenzene compound,” Chem. Commun. (Camb.) 50(6), 691–694 (2014).
[Crossref]

Liu, Y.

Y. Li, Y. Liu, and D. Luo, “Optical thermal sensor based on cholesteric film refilled with mixture of toluene and ethanol,” Opt. Express 25(21), 26349–26355 (2017).
[Crossref] [PubMed]

J. A. Lv, Y. Liu, J. Wei, E. Chen, L. Qin, and Y. Yu, “Photocontrol of fluid slugs in liquid crystal polymer microactuators,” Nature 537(7619), 179–184 (2016).
[Crossref] [PubMed]

Liu, Y. G.

Liu, Y. J.

Y. J. Liu, X. Ding, S. C. Lin, J. Shi, I. K. Chiang, and T. J. Huang, “Surface acoustic wave driven light shutters using polymer-dispersed liquid crystals,” Adv. Mater. 23(14), 1656–1659 (2011).
[Crossref] [PubMed]

Lu, H.

H. Lu, J. Hu, Y. Chu, and W. Wang, “Cholesteric liquid crystals with an electrically controllable reflection bandwidthbased on ionic polymer networks and chiral ions,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5406–5411 (2015).
[Crossref]

Luo, D.

Luo, M. M.

Lv, J. A.

J. A. Lv, Y. Liu, J. Wei, E. Chen, L. Qin, and Y. Yu, “Photocontrol of fluid slugs in liquid crystal polymer microactuators,” Nature 537(7619), 179–184 (2016).
[Crossref] [PubMed]

Mackenzie, M. D.

Manda, R.

Marshall, O. P.

Medle Rupnik, P.

P. Medle Rupnik, D. Lisjak, M. Čopič, S. Čopar, and A. Mertelj, “Field-controlled structures in ferromagnetic cholesteric liquidcrystals,” Sci. Adv. 3(10), 1701336 (2017).
[Crossref]

Meng, C. H.

B. Y. Liu, C. H. Meng, and L. J. Chen, “Role of monomer alkyl chain length in pretilt angle control of polymer-stabilized liquid crystal alignment system,” J. Phys. Chem. C 121(38), 21037–21044 (2017).
[Crossref]

Mertelj, A.

P. Medle Rupnik, D. Lisjak, M. Čopič, S. Čopar, and A. Mertelj, “Field-controlled structures in ferromagnetic cholesteric liquidcrystals,” Sci. Adv. 3(10), 1701336 (2017).
[Crossref]

Mitov, M.

M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
[Crossref] [PubMed]

Moon, Y. K.

Morris, S. M.

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W. S. Kim, S. S. Choi, H. J. Park, I. J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

Muñoz, A.

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

Muševic, I.

Nair, R. R.

Noh, J.

H. J. Seo, S. S. Lee, J. Noh, J.-W. Ka, J. C. Won, C. Park, S.-H. Kim, and Y. H. Kim, “Robust photonic microparticles comprising cholesteric liquid crystals for anti-forgery materials,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(30), 7567–7573 (2017).
[Crossref]

Osellame, R.

Paiè, P.

Pal, P.

Palffy-Muhoray, P.

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

Park, C.

H. J. Seo, S. S. Lee, J. Noh, J.-W. Ka, J. C. Won, C. Park, S.-H. Kim, and Y. H. Kim, “Robust photonic microparticles comprising cholesteric liquid crystals for anti-forgery materials,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(30), 7567–7573 (2017).
[Crossref]

Park, C. H.

Park, H. J.

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W. S. Kim, S. S. Choi, H. J. Park, I. J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

Park, S. Y.

J. H. Jang and S. Y. Park, “pH-responsive cholesteric liquid crystal double emulsion droplets prepared by microfluidics,” Sens. Actuators B Chem. 241, 636–643 (2017).
[Crossref]

Parri, O. L.

E. B. Gracia and O. L. Parri, “A new twist on cholesteric films by using reactive mesogen particles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(43), 11335–11340 (2015).
[Crossref]

Peng, H.

H. Peng, L. Yu, G. Chen, T. W. Bohl, and Y. Ye, “Low-voltage-driven and highly-diffractive holographic polymer dispersed liquid crystals with spherical morphology,” RSC. Adv. 7(82), 51847–51857 (2017).

Qasim, M. M.

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W. S. Kim, S. S. Choi, H. J. Park, I. J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

Qin, L.

L. Qin, W. Gu, J. Wei, and Y. L. Yu, “Piecewise phototuning of self-organized helical superstructures,” Adv. Mater. 30, 1704941 (2017).
[PubMed]

J. A. Lv, Y. Liu, J. Wei, E. Chen, L. Qin, and Y. Yu, “Photocontrol of fluid slugs in liquid crystal polymer microactuators,” Nature 537(7619), 179–184 (2016).
[Crossref] [PubMed]

Raina, K. K.

R. Kumar and K. K. Raina, “Electrically modulated fluorescence in optically active polymer stabilised cholestericliquid crystal shutter,” Liq. Cryst. 41(2), 228–233 (2014).
[Crossref]

Ren, H.

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

Reshetnyak, V.

Sánchez, C.

C. Sánchez, F. Verbakel, M. J. Escuti, C. W. M. Bastiaansen, and D. J. Broer, “Printing of monolithic polymeric microstructures using reactive mesogens,” Adv. Mater. 20(1), 74–78 (2008).
[Crossref]

Schenning, A. P.

H. P. C. Van-Kuringen, G. M. Eikelboom, I. K. Shishmanova, D. J. Broer, and A. P. Schenning, “Responsive Nanoporous smectic liquid crystal polymer networks as efficient and selective adsorbents,” Adv. Funct. Mater. 24(32), 5045–50551 (2014).
[Crossref]

Seo, H. J.

H. J. Seo, S. S. Lee, J. Noh, J.-W. Ka, J. C. Won, C. Park, S.-H. Kim, and Y. H. Kim, “Robust photonic microparticles comprising cholesteric liquid crystals for anti-forgery materials,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(30), 7567–7573 (2017).
[Crossref]

S. S. Lee, H. J. Seo, Y. H. Kim, and S. H. Kim, “Structural color palettes of core-shell photonic ink capsules containing cholesteric liquid crystals,” Adv. Mater. 29(23), 1606894 (2017).
[Crossref] [PubMed]

Shi, J.

Y. J. Liu, X. Ding, S. C. Lin, J. Shi, I. K. Chiang, and T. J. Huang, “Surface acoustic wave driven light shutters using polymer-dispersed liquid crystals,” Adv. Mater. 23(14), 1656–1659 (2011).
[Crossref] [PubMed]

Shishmanova, I. K.

H. P. C. Van-Kuringen, G. M. Eikelboom, I. K. Shishmanova, D. J. Broer, and A. P. Schenning, “Responsive Nanoporous smectic liquid crystal polymer networks as efficient and selective adsorbents,” Adv. Funct. Mater. 24(32), 5045–50551 (2014).
[Crossref]

Sukas, S.

S. J. Aßhoff, S. Sukas, T. Yamaguchi, C. A. Hommersom, S. Le Gac, and N. Katsonis, “Superstructures of chiral nematic microspheres as all-optical switchable distributors of light,” Sci. Rep. 5(1), 14183 (2015).
[Crossref] [PubMed]

Sun, C.

P. Lin, Y. Cong, C. Sun, and B. Zhang, “Non-covalent modification of reduced graphene oxide by a chiral liquid crystalline surfactant,” Nanoscale 8(4), 2403–2411 (2016).
[Crossref] [PubMed]

Sun, J.

J. Sun, S. Xu, and S. T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/ grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
[Crossref]

Sun, W. J.

Taheri, B.

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

Takanishi, Y.

Y. Uchida, Y. Takanishi, and J. Yamamoto, “Controlled fabrication and photonic structure of cholesteric liquid crystalline shells,” Adv. Mater. 25(23), 3234–3237 (2013).
[Crossref] [PubMed]

Tamaoki, N.

Y. Kim and N. Tamaoki, “Asymmetric dimers of chiral azobenzene dopants exhibiting unusual helical twisting power upon photoswitching in cholesteric liquid crystals,” ACS Appl. Mater. Interfaces 8(7), 4918–4926 (2016).
[Crossref] [PubMed]

Thackray, B.

Tian, J. G.

Uchida, Y.

Y. Uchida, Y. Takanishi, and J. Yamamoto, “Controlled fabrication and photonic structure of cholesteric liquid crystalline shells,” Adv. Mater. 25(23), 3234–3237 (2013).
[Crossref] [PubMed]

Van-Kuringen, H. P. C.

H. P. C. Van-Kuringen, G. M. Eikelboom, I. K. Shishmanova, D. J. Broer, and A. P. Schenning, “Responsive Nanoporous smectic liquid crystal polymer networks as efficient and selective adsorbents,” Adv. Funct. Mater. 24(32), 5045–50551 (2014).
[Crossref]

Verbakel, F.

C. Sánchez, F. Verbakel, M. J. Escuti, C. W. M. Bastiaansen, and D. J. Broer, “Printing of monolithic polymeric microstructures using reactive mesogens,” Adv. Mater. 20(1), 74–78 (2008).
[Crossref]

Wang, L.

X. Chen, L. Wang, Y. Chen, C. Li, G. Hou, X. Liu, X. Zhang, W. He, and H. Yang, “Broadband reflection of polymer-stabilized cholesteric liquid crystals induced by a chiral azobenzene compound,” Chem. Commun. (Camb.) 50(6), 691–694 (2014).
[Crossref]

Wang, T.

Z. Cheng, T. Wang, X. Li, Y. Zhang, and H. Yu, “NIR-VIS-UV light-responsive actuator films of polymer-dispersed liquid crystal/graphene oxide nanocomposites,” ACS Appl. Mater. Interfaces 7(49), 27494–27501 (2015).
[Crossref] [PubMed]

Wang, W.

H. Lu, J. Hu, Y. Chu, and W. Wang, “Cholesteric liquid crystals with an electrically controllable reflection bandwidthbased on ionic polymer networks and chiral ions,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5406–5411 (2015).
[Crossref]

Wei, J.

L. Qin, W. Gu, J. Wei, and Y. L. Yu, “Piecewise phototuning of self-organized helical superstructures,” Adv. Mater. 30, 1704941 (2017).
[PubMed]

J. A. Lv, Y. Liu, J. Wei, E. Chen, L. Qin, and Y. Yu, “Photocontrol of fluid slugs in liquid crystal polymer microactuators,” Nature 537(7619), 179–184 (2016).
[Crossref] [PubMed]

Weitz, D. A.

L. J. Chen, Y. N. Li, J. Fan, H. K. Bisoyi, D. A. Weitz, and Q. Li, “Photoresponsive monodisperse cholesteric liquid crystalline microshells for tunable omnidirectional lasing enabled by a visible light-driven chiral molecularswitch,” Adv. Opt. Mater. 2(9), 845–848 (2014).
[Crossref]

White, T. J.

T. J. White and D. J. Broer, “Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers,” Nat. Mater. 14(11), 1087–1098 (2015).
[Crossref] [PubMed]

Windhab, E. J.

C. Cramer, P. Fischer, and E. J. Windhab, “Drop formation in a co-flowing ambient fluid,” Chem. Eng. Sci. 59(15), 3045–3058 (2004).
[Crossref]

Won, J. C.

H. J. Seo, S. S. Lee, J. Noh, J.-W. Ka, J. C. Won, C. Park, S.-H. Kim, and Y. H. Kim, “Robust photonic microparticles comprising cholesteric liquid crystals for anti-forgery materials,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(30), 7567–7573 (2017).
[Crossref]

S. S. Lee, S. K. Kim, J. C. Won, Y. H. Kim, and S. H. Kim, “Reconfigurable photonic capsules containing cholesteric liquid crystals with planar alignment,” Angew. Chem. Int. Ed. Engl. 54(50), 15266–15270 (2015).
[Crossref] [PubMed]

S. S. Lee, B. Kim, S. K. Kim, J. C. Won, Y. H. Kim, and S. H. Kim, “Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules,” Adv. Mater. 27(4), 627–633 (2015).
[Crossref] [PubMed]

Wu, S. T.

J. Sun, S. Xu, and S. T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/ grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
[Crossref]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

Xu, S.

J. Sun, S. Xu, and S. T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/ grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
[Crossref]

Yamaguchi, T.

S. J. Aßhoff, S. Sukas, T. Yamaguchi, C. A. Hommersom, S. Le Gac, and N. Katsonis, “Superstructures of chiral nematic microspheres as all-optical switchable distributors of light,” Sci. Rep. 5(1), 14183 (2015).
[Crossref] [PubMed]

Yamamoto, J.

Y. Uchida, Y. Takanishi, and J. Yamamoto, “Controlled fabrication and photonic structure of cholesteric liquid crystalline shells,” Adv. Mater. 25(23), 3234–3237 (2013).
[Crossref] [PubMed]

Yang, C. J.

L. J. Chen, L. L. Gong, Y. L. Lin, X. Y. Jin, H. Y. Li, S. S. Li, K. J. Che, Z. P. Cai, and C. J. Yang, “Microfluidic fabrication of cholesteric liquid crystal core-shell structures toward magnetically transportable microlasers,” Lab Chip 16(7), 1206–1213 (2016).
[Crossref] [PubMed]

Yang, H.

X. Chen, L. Wang, Y. Chen, C. Li, G. Hou, X. Liu, X. Zhang, W. He, and H. Yang, “Broadband reflection of polymer-stabilized cholesteric liquid crystals induced by a chiral azobenzene compound,” Chem. Commun. (Camb.) 50(6), 691–694 (2014).
[Crossref]

Ye, Y.

H. Peng, L. Yu, G. Chen, T. W. Bohl, and Y. Ye, “Low-voltage-driven and highly-diffractive holographic polymer dispersed liquid crystals with spherical morphology,” RSC. Adv. 7(82), 51847–51857 (2017).

Yu, C. J.

Yu, H.

Z. Cheng, T. Wang, X. Li, Y. Zhang, and H. Yu, “NIR-VIS-UV light-responsive actuator films of polymer-dispersed liquid crystal/graphene oxide nanocomposites,” ACS Appl. Mater. Interfaces 7(49), 27494–27501 (2015).
[Crossref] [PubMed]

Yu, L.

H. Peng, L. Yu, G. Chen, T. W. Bohl, and Y. Ye, “Low-voltage-driven and highly-diffractive holographic polymer dispersed liquid crystals with spherical morphology,” RSC. Adv. 7(82), 51847–51857 (2017).

Yu, Y.

J. A. Lv, Y. Liu, J. Wei, E. Chen, L. Qin, and Y. Yu, “Photocontrol of fluid slugs in liquid crystal polymer microactuators,” Nature 537(7619), 179–184 (2016).
[Crossref] [PubMed]

Yu, Y. L.

L. Qin, W. Gu, J. Wei, and Y. L. Yu, “Piecewise phototuning of self-organized helical superstructures,” Adv. Mater. 30, 1704941 (2017).
[PubMed]

Zhang, B.

P. Lin, Y. Cong, C. Sun, and B. Zhang, “Non-covalent modification of reduced graphene oxide by a chiral liquid crystalline surfactant,” Nanoscale 8(4), 2403–2411 (2016).
[Crossref] [PubMed]

P. Lin, Y. Cong, and B. Zhang, “Dispersing carbon nanotubes by chiral network surfactants,” ACS Appl. Mater. Interfaces 7(12), 6724–6732 (2015).
[Crossref] [PubMed]

Zhang, X.

X. Chen, L. Wang, Y. Chen, C. Li, G. Hou, X. Liu, X. Zhang, W. He, and H. Yang, “Broadband reflection of polymer-stabilized cholesteric liquid crystals induced by a chiral azobenzene compound,” Chem. Commun. (Camb.) 50(6), 691–694 (2014).
[Crossref]

Zhang, Y.

Z. Cheng, T. Wang, X. Li, Y. Zhang, and H. Yu, “NIR-VIS-UV light-responsive actuator films of polymer-dispersed liquid crystal/graphene oxide nanocomposites,” ACS Appl. Mater. Interfaces 7(49), 27494–27501 (2015).
[Crossref] [PubMed]

Zhou, W. Y.

Zhukov, A.

Zimmermann, N.

N. Zimmermann, G. Jünnemann-Held, P. J. Collings, and H. S. Kitzerow, “Self-organized assemblies of colloidal particles obtained from an aligned chromonic liquid crystal dispersion,” Soft Matter 11(8), 1547–1553 (2015).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (3)

Z. Cheng, T. Wang, X. Li, Y. Zhang, and H. Yu, “NIR-VIS-UV light-responsive actuator films of polymer-dispersed liquid crystal/graphene oxide nanocomposites,” ACS Appl. Mater. Interfaces 7(49), 27494–27501 (2015).
[Crossref] [PubMed]

Y. Kim and N. Tamaoki, “Asymmetric dimers of chiral azobenzene dopants exhibiting unusual helical twisting power upon photoswitching in cholesteric liquid crystals,” ACS Appl. Mater. Interfaces 8(7), 4918–4926 (2016).
[Crossref] [PubMed]

P. Lin, Y. Cong, and B. Zhang, “Dispersing carbon nanotubes by chiral network surfactants,” ACS Appl. Mater. Interfaces 7(12), 6724–6732 (2015).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

H. P. C. Van-Kuringen, G. M. Eikelboom, I. K. Shishmanova, D. J. Broer, and A. P. Schenning, “Responsive Nanoporous smectic liquid crystal polymer networks as efficient and selective adsorbents,” Adv. Funct. Mater. 24(32), 5045–50551 (2014).
[Crossref]

Adv. Mater. (8)

M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
[Crossref] [PubMed]

L. Qin, W. Gu, J. Wei, and Y. L. Yu, “Piecewise phototuning of self-organized helical superstructures,” Adv. Mater. 30, 1704941 (2017).
[PubMed]

Y. J. Liu, X. Ding, S. C. Lin, J. Shi, I. K. Chiang, and T. J. Huang, “Surface acoustic wave driven light shutters using polymer-dispersed liquid crystals,” Adv. Mater. 23(14), 1656–1659 (2011).
[Crossref] [PubMed]

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

C. Sánchez, F. Verbakel, M. J. Escuti, C. W. M. Bastiaansen, and D. J. Broer, “Printing of monolithic polymeric microstructures using reactive mesogens,” Adv. Mater. 20(1), 74–78 (2008).
[Crossref]

S. S. Lee, B. Kim, S. K. Kim, J. C. Won, Y. H. Kim, and S. H. Kim, “Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules,” Adv. Mater. 27(4), 627–633 (2015).
[Crossref] [PubMed]

S. S. Lee, H. J. Seo, Y. H. Kim, and S. H. Kim, “Structural color palettes of core-shell photonic ink capsules containing cholesteric liquid crystals,” Adv. Mater. 29(23), 1606894 (2017).
[Crossref] [PubMed]

Y. Uchida, Y. Takanishi, and J. Yamamoto, “Controlled fabrication and photonic structure of cholesteric liquid crystalline shells,” Adv. Mater. 25(23), 3234–3237 (2013).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

L. J. Chen, Y. N. Li, J. Fan, H. K. Bisoyi, D. A. Weitz, and Q. Li, “Photoresponsive monodisperse cholesteric liquid crystalline microshells for tunable omnidirectional lasing enabled by a visible light-driven chiral molecularswitch,” Adv. Opt. Mater. 2(9), 845–848 (2014).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

S. S. Lee, S. K. Kim, J. C. Won, Y. H. Kim, and S. H. Kim, “Reconfigurable photonic capsules containing cholesteric liquid crystals with planar alignment,” Angew. Chem. Int. Ed. Engl. 54(50), 15266–15270 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

J. Sun, S. Xu, and S. T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/ grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
[Crossref]

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W. S. Kim, S. S. Choi, H. J. Park, I. J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

Chem. Commun. (Camb.) (1)

X. Chen, L. Wang, Y. Chen, C. Li, G. Hou, X. Liu, X. Zhang, W. He, and H. Yang, “Broadband reflection of polymer-stabilized cholesteric liquid crystals induced by a chiral azobenzene compound,” Chem. Commun. (Camb.) 50(6), 691–694 (2014).
[Crossref]

Chem. Eng. Sci. (1)

C. Cramer, P. Fischer, and E. J. Windhab, “Drop formation in a co-flowing ambient fluid,” Chem. Eng. Sci. 59(15), 3045–3058 (2004).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (3)

H. Lu, J. Hu, Y. Chu, and W. Wang, “Cholesteric liquid crystals with an electrically controllable reflection bandwidthbased on ionic polymer networks and chiral ions,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5406–5411 (2015).
[Crossref]

E. B. Gracia and O. L. Parri, “A new twist on cholesteric films by using reactive mesogen particles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(43), 11335–11340 (2015).
[Crossref]

H. J. Seo, S. S. Lee, J. Noh, J.-W. Ka, J. C. Won, C. Park, S.-H. Kim, and Y. H. Kim, “Robust photonic microparticles comprising cholesteric liquid crystals for anti-forgery materials,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(30), 7567–7573 (2017).
[Crossref]

J. Phys. Chem. C (1)

B. Y. Liu, C. H. Meng, and L. J. Chen, “Role of monomer alkyl chain length in pretilt angle control of polymer-stabilized liquid crystal alignment system,” J. Phys. Chem. C 121(38), 21037–21044 (2017).
[Crossref]

Lab Chip (1)

L. J. Chen, L. L. Gong, Y. L. Lin, X. Y. Jin, H. Y. Li, S. S. Li, K. J. Che, Z. P. Cai, and C. J. Yang, “Microfluidic fabrication of cholesteric liquid crystal core-shell structures toward magnetically transportable microlasers,” Lab Chip 16(7), 1206–1213 (2016).
[Crossref] [PubMed]

Liq. Cryst. (1)

R. Kumar and K. K. Raina, “Electrically modulated fluorescence in optically active polymer stabilised cholestericliquid crystal shutter,” Liq. Cryst. 41(2), 228–233 (2014).
[Crossref]

Nanoscale (1)

P. Lin, Y. Cong, C. Sun, and B. Zhang, “Non-covalent modification of reduced graphene oxide by a chiral liquid crystalline surfactant,” Nanoscale 8(4), 2403–2411 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

T. J. White and D. J. Broer, “Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers,” Nat. Mater. 14(11), 1087–1098 (2015).
[Crossref] [PubMed]

Nature (1)

J. A. Lv, Y. Liu, J. Wei, E. Chen, L. Qin, and Y. Yu, “Photocontrol of fluid slugs in liquid crystal polymer microactuators,” Nature 537(7619), 179–184 (2016).
[Crossref] [PubMed]

Opt. Express (9)

S. A. Jiang, W. J. Sun, S. H. Lin, J. D. Lin, and C. Y. Huang, “Optical and electro-optic properties of polymer-stabilized blue phase liquid crystal cells with photoalignment layers,” Opt. Express 25(23), 28179 (2017).
[Crossref]

Y. Li, Y. Liu, and D. Luo, “Optical thermal sensor based on cholesteric film refilled with mixture of toluene and ethanol,” Opt. Express 25(21), 26349–26355 (2017).
[Crossref] [PubMed]

C. M. Chang, Y. H. Lin, V. Reshetnyak, C. H. Park, R. Manda, and S. H. Lee, “Origins of Kerr phase and orientational phase in polymer-dispersed liquid crystals,” Opt. Express 25(17), 19807–19821 (2017).
[Crossref] [PubMed]

M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18(26), 26995–27003 (2010).
[Crossref] [PubMed]

K. S. Bae, U. Cha, Y. K. Moon, J. W. Heo, Y. J. Lee, J. H. Kim, and C. J. Yu, “Reflective three-dimensional displays using the cholesteric liquid crystal with an inner patterned retarder,” Opt. Express 20(7), 6927–6931 (2012).
[Crossref] [PubMed]

V. G. Kravets, O. P. Marshall, R. R. Nair, B. Thackray, A. Zhukov, J. Leng, and A. N. Grigorenko, “Engineering optical properties of a graphene oxide metamaterial assembled in microfluidic channels,” Opt. Express 23(2), 1265–1275 (2015).
[Crossref] [PubMed]

V. K. Jagannadh, M. D. Mackenzie, P. Pal, A. K. Kar, and S. S. Gorthi, “Slanted channel microfluidic chip for 3D fluorescence imaging of cells in flow,” Opt. Express 24(19), 22144–22158 (2016).
[Crossref] [PubMed]

P. Paiè, F. Bragheri, T. Claude, and R. Osellame, “Optofluidic light modulator integrated in lab-on-a-chip,” Opt. Express 25(7), 7313–7323 (2017).
[Crossref] [PubMed]

Z. L. Li, W. Y. Zhou, M. M. Luo, Y. G. Liu, and J. G. Tian, “Tunable optofluidic microring laser based on a tapered hollow core microstructured optical fiber,” Opt. Express 23(8), 10413–10420 (2015).
[Crossref] [PubMed]

Opt. Mater. Express (1)

RSC. Adv. (1)

H. Peng, L. Yu, G. Chen, T. W. Bohl, and Y. Ye, “Low-voltage-driven and highly-diffractive holographic polymer dispersed liquid crystals with spherical morphology,” RSC. Adv. 7(82), 51847–51857 (2017).

Sci. Adv. (1)

P. Medle Rupnik, D. Lisjak, M. Čopič, S. Čopar, and A. Mertelj, “Field-controlled structures in ferromagnetic cholesteric liquidcrystals,” Sci. Adv. 3(10), 1701336 (2017).
[Crossref]

Sci. Rep. (1)

S. J. Aßhoff, S. Sukas, T. Yamaguchi, C. A. Hommersom, S. Le Gac, and N. Katsonis, “Superstructures of chiral nematic microspheres as all-optical switchable distributors of light,” Sci. Rep. 5(1), 14183 (2015).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

J. H. Jang and S. Y. Park, “pH-responsive cholesteric liquid crystal double emulsion droplets prepared by microfluidics,” Sens. Actuators B Chem. 241, 636–643 (2017).
[Crossref]

Soft Matter (1)

N. Zimmermann, G. Jünnemann-Held, P. J. Collings, and H. S. Kitzerow, “Self-organized assemblies of colloidal particles obtained from an aligned chromonic liquid crystal dispersion,” Soft Matter 11(8), 1547–1553 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Fabrication procedure of PSCLCPs by template microfluidic emulsification, interfacial polymerization and UV photo-polymerization. Schematic of the production of CLC-photocurable precursor droplets (a), optical microscopy image showing the formation of highly monodisperse O/W CLC-photocurable precursor droplets (b), the in situ interfacial polymerization and UV photo-polymerization of PSCLCPs (c).
Fig. 2
Fig. 2 Optical microscope images of representative PSCLCPs, RPSCLCPs-10% prepared with flow rates of (2 μLmin−1, 200 μLmin−1) (a), RPSCLCPs-15% prepared with flow rates of (2 μLmin−1, 40 μLmin−1) (b), GPSCLCPs-10% prepared with flow rates of (2 μLmin−1, 80 μLmin−1) (c), GPSCLCPs-15% prepared with flow rates of (2 μLmin−1, 120 μLmin−1) (d), BPSCLCPs-10% prepared with flow rates of (2 μLmin−1, 200 μLmin−1) (e), BPSCLCPs-15% prepared with flow rates of (2 μLmin−1, 60 μLmin−1) (f), scar bar 200 μm. Size distribution in Figs. 2(g)-2(l) corresponds to the PSCLCPs in images a-f, respectively.
Fig. 3
Fig. 3 The flow rates dependence of the average size of strictly mono-dispersed RPSCLCPs-10%, RPSCLCPs-15%, GPSCLCPs-10%, GPSCLCPs-15%, BPSCLCPs-10% and BPSCLCPs-15% (a-c). SEM image of the purified and dried GPSCLCPs-15% with a size of 199 μm (d), the FTIR spectrum of green CLC-photocurable precursor (15%) droplets with a size of 199 μm before and after UV irradiation (e). Reflectance spectra of RPSCLCPs-10% with a size of 167 μm, GPSCLCPs-10% with a size of 197 μm and BPSCLCPs-10% with a size of 160 μm at 25 °C, the insert shows the corresponding optical microscopy images (f). The stability of GPSCLCPs-10% with a size of 197 μm in the air and in the water containing SDS (g). The stability of RPSCLCPs-10% with a size of 167 μm in ethanol, acidic environment and alkaline environment (h).
Fig. 4
Fig. 4 Polarized optical textures of the CLCs and PSCLCFs from the cholesteric phase to the isotropic state, RCLC (a), RPSCLCF 10% (b), RPSCLCF 15% (c), GCLC (d), GPSCLCF 10% (e), GPSCLCF 15% (f), BCLC (g), BPSCLCF 10% (h), BPSCLCF 15% (i), crossed polarizers, 200 × , scar bar 200 μm.
Fig. 5
Fig. 5 Reflected POMs of RPSCLCPs 10% with a size of 209 μm (a) and RPSCLCPs 15% with a size of 212 μm (b) in the process of heating from 35 °C to 220 °C and cooling back to 35 °C, crossed polarizers, 100 × , scar bar 200 μm.
Fig. 6
Fig. 6 The reflectance spectra of RPSCLCP at different temperatures. Reflected spectra of RPSCLCPs 10% with a size of 209 μm in the heating process (a) and in the cooling process (b). Reflected spectra of RPSCLCPs 15% with a size of 212 μm in the heating process (c) and in the cooling process (d).
Fig. 7
Fig. 7 Reflected POMs of GPSCLCPs 10% with a size of 210 μm (a) and GPSCLCPs 15% with a size of 208 μm (b) in the process of heating from 35 °C to 220 °C and cooling back to 35 °C, crossed polarizers, 100 × , scar bar 200 μm.
Fig. 8
Fig. 8 The reflectance spectra of GPSCLCP at different temperatures. Reflected spectra of GPSCLCPs 10% with a size of 210 μm in the heating process (a) and in the cooling process (b). Reflected spectra of GPSCLCPs 15% with a size of 208 μm in the heating process (c) and in the cooling process (d).
Fig. 9
Fig. 9 Reflected POMs of BPSCLCPs 10% with a size of 208 μm (a) and BPSCLCPs 15% with a size of 212 μm (b) in the process of heating from 35 °C to 220 °C and cooling back to 35 °C, crossed polarizers, 100 × , scar bar 200 μm.
Fig. 10
Fig. 10 The reflectance spectra of BPSCLCP at different temperatures. Reflected spectra of BPSCLCPs 10% with a size of 208 μm in the heating process (a) and in the cooling process (b). Reflected spectra of GPSCLCPs 15% with a size of 212 μm in the heating process (c) and in the cooling process (d).
Fig. 11
Fig. 11 The clearing points of CLCs, PSCLCFs, central parts of the PSCLCPs and marginal parts of the PSCLCPs (a-c).
Fig. 12
Fig. 12 Schematic illustration of the structural transformation of PSCLCPs in the thermal response process between the cholesteric phase and the isotropic phase. The PSCLCPs possess helical self-assembly structure at room temperature. When increasing the temperature, mesogens in the marginal parts of the PSCLCPs tend to keep the helical self-assembly structure, while mesogens in the central parts of the PSCLCPs tend to unwind the helical self-assembly structure. When further increasing the temperature to 220 °C, the whole PSCLCPs reach an isotropic state and exhibit dark between crossed polarizers (the red ∆T means increasing the temperatures, the blue ∆T means decreasing the temperatures).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C V = 1 d ¯ [ i=1 n ( d i d ¯ ) 2 n ] 1 2 ×100%
r= ( 6 Q d T π ) 1 3 2

Metrics