Abstract

Although chiroptical effects in plasmonics attract great interest, the nature of the observed circular dichroism (CD) is often not clearly discussed. Here we demonstrate how Mueller matrix ellipsometry can be used to identify the physical origin of different polarization mixing effects, such as true CD, anisotropy or dispersion. We apply the method to a complex design: large area arrays of curved silver nanoparticle rows, embedded in a high index waveguide, fabricated by laser-induced self-assembly. This sample presents both induced linear CD and true CD. The method is widely applicable to all artificial designs and reveals the complex origin of the optical properties.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Circular dichroism enhancement in plasmonic nanorod metamaterials

D. Vestler, I. Shishkin, E. A. Gurvitz, M. E. Nasir, A. Ben-Moshe, A. P. Slobozhanyuk, A. V. Krasavin, T. Levi-Belenkova, A. S. Shalin, P. Ginzburg, G. Markovich, and A. V. Zayats
Opt. Express 26(14) 17841-17848 (2018)

Surface plasmon resonance prism coupler for enhanced circular dichroism sensing

Quoc-Hung Phan, Yu-Lung Lo, and Chih-Ling Huang
Opt. Express 24(12) 12812-12824 (2016)

Strong circular dichroism of core-shell magnetoplasmonic nanoparticles

Paris Varytis, Nikolaos Stefanou, Aristi Christofi, and Nikolaos Papanikolaou
J. Opt. Soc. Am. B 32(6) 1063-1069 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. T. Collins, C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, “Chirality and Chiroptical Effects in Metal Nanostructures: Fundamentals and Current Trends,” Adv.Optical Mater. 5(16), 1700182 (2017).
    [Crossref]
  2. A. Guerrero-Martínez, J. Lorenzo Alonso-Gómez, B. Auguié, M. Magdalena Cid, and L. M. Liz-Marzán, “From individual to collective chirality in metal nanoparticles,” Nano Today 6(4), 381–400 (2011).
    [Crossref]
  3. L. Y. Y. Wang, K. W. W. Smith, S. Dominguez-Medina, N. Moody, J. M. M. Olson, H. Zhang, W. S. S. Chang, N. Kotov, and S. Link, “Circular differential scattering of single chiral self-assembled gold nanorod dimers,” ACS Photonics 2(11), 1602–1610 (2015).
    [Crossref]
  4. O. Arteaga, J. Sancho-Parramon, S. Nichols, B. M. Maoz, A. Canillas, S. Bosch, G. Markovich, and B. Kahr, “Relation between 2D/3D chirality and the appearance of chiroptical effects in real nanostructures,” Opt. Express 24(3), 2242–2252 (2016).
    [Crossref] [PubMed]
  5. S. Zu, Y. Bao, and Z. Fang, “Planar plasmonic chiral nanostructures,” Nanoscale 8(7), 3900–3905 (2016).
    [Crossref] [PubMed]
  6. A. Pham, Q. Jiang, A. Zhao, J. Bellessa, C. Genet, and A. Drezet, “Manifestation of Planar and Bulk Chirality Mixture in Plasmonic Λ-Shaped Nanostructures Caused by Symmetry Breaking Defects,” ACS Photonics 4(10), 2453–2460 (2017).
    [Crossref]
  7. R. Clark Jones, “A New Calculus for the Treatment of Optical Systems. VII. Properties of the N-Matrices,” J. Opt. Soc. Am. 38(8), 671–685 (1948).
    [Crossref]
  8. J. Schellman and H. P. Jensen, “Optical Spectroscopy of Oriented Molecules,” Chem. Rev. 87(6), 1359–1399 (1987).
    [Crossref]
  9. A. Lakhtakia, ed., Selected Papers on Natural Optical Activity (SPIE Press, 1990).
  10. H. Fujiwara, Spectroscopic Ellipsometry Principles and Applications (Wiley, 2003).
  11. O. Arteaga and A. Canillas, “Pseudopolar Decomposition of the Jones and Mueller-Jones Exponential Polarization Matrices,” J. Opt. Soc. Am. A 26(4), 783–793 (2009).
    [Crossref] [PubMed]
  12. O. Arteaga and B. Kahr, “Characterization of Homogenous Depolarizing Media Based on Mueller Matrix Differential Decomposition,” Opt. Lett. 38(7), 1134–1136 (2013).
    [Crossref] [PubMed]
  13. O. Arteaga, “Number of independent parameters in the Mueller matrix representation of homogeneous depolarizing media,” Opt. Lett. 38(7), 1131–1133 (2013).
    [Crossref] [PubMed]
  14. M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1999).
  15. D. H. Goldstein, Polarized Light (Taylor & Francis Group, 2011).
  16. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
    [Crossref]
  17. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  18. K. A. Willets and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [Crossref] [PubMed]
  19. B. Auguié and W. L. Barnes, “Collective Resonances in Gold Nanoparticle Arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
    [Crossref] [PubMed]
  20. C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
    [Crossref]
  21. S. Bakhti, N. Destouches, and A. V. Tishchenko, “Coupled Mode Modeling to Interpret Hybrid Modes and Fano Resonances in Plasmonic Systems,” ACS Photonics 2(2), 246–255 (2015).
    [Crossref]
  22. S. De Zuani, M. Rommel, R. Vogelgesang, J. Weis, B. Gompf, M. Dressel, and A. Berrier, “Large-Area Two-Dimensional Plasmonic Meta-Glasses and Meta-Crystals: a Comparative Study,” Plasmonics 12(5), 1381–1390 (2017).
    [Crossref] [PubMed]
  23. T. W. H. Oates, M. Ranjan, S. Facsko, and H. Arwin, “Highly Anisotropic Effective Dielectric Functions of Silver Nanoparticle Arrays,” Opt. Express 19(3), 2014–2028 (2011).
    [Crossref] [PubMed]
  24. T. Brakstad, M. Kildemo, Z. Ghadyani, and I. Simonsen, “Dispersion of Polarization Coupling, Localized and Collective Plasmon Modes in a Metallic Photonic Crystal Mapped by Mueller Matrix Ellipsometry,” Opt. Express 23(17), 22800–22815 (2015).
    [Crossref] [PubMed]
  25. M. Wang, A. Löhle, B. Gompf, M. Dressel, and A. Berrier, “Physical Interpretation of Mueller Matrix Spectra: A Versatile Method Applied to Gold Gratings,” Opt. Express 25(6), 6983–6996 (2017).
    [Crossref] [PubMed]
  26. N. Destouches, M. Martínez-García, N. Crespo-Monteiro, G. Vitrant, Z. Liu, A. Trémeau, F. Vocanson, F. Pigeon, S. Reynaud, and Y. Lefkir, “Dichroic Colored Luster of Laser-Induced Silver Nanoparticle Gratings Buried in Dense Inorganic Films,” J. Opt. Soc. Am. B 31(11), C1–C7 (2014).
    [Crossref]
  27. N. Destouches, N. Crespo-Monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-Organized Growth of Metallic Nanoparticles in a Thin Film under Homogeneous and Continuous-Wave Light Excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
    [Crossref]
  28. Z. Liu, J. Siegel, M. Garcia-Lechuga, T. Epicier, Y. Lefkir, S. Reynaud, M. Bugnet, F. Vocanson, J. Solis, G. Vitrant, and N. Destouches, “Three-Dimensional Self-Organization in Nanocomposite Layered Systems by Ultrafast Laser Pulses,” ACS Nano 11(5), 5031–5040 (2017).
    [Crossref] [PubMed]
  29. H. Arwin, A. Mendoza-Galván, R. Magnusson, A. Andersson, J. Landin, K. Järrendahl, E. Garcia-Caurel, and R. Ossikovski, “Structural Circular Birefringence and Dichroism Quantified by Differential Decomposition of Spectroscopic Transmission Mueller Matrices from Cetonia Aurata,” Opt. Lett. 41(14), 3293–3296 (2016).
    [Crossref] [PubMed]
  30. N. Agarwal, J. Yoon, E. Garcia-Caurel, T. Novikova, J.-C. Vanel, A. Pierangelo, A. Bykov, A. Popov, I. Meglinski, and R. Ossikovski, “Spatial Evolution of Depolarization in Homogeneous Turbid Media within the Differential Mueller Matrix Formalism,” Opt. Lett. 40(23), 5634–5637 (2015).
    [Crossref] [PubMed]
  31. H. G. Tompkins and W. A. McGahan, Spectroscopic Ellipsometry and Reflectometry (John Wiley & Sons, 1999).

2017 (5)

J. T. Collins, C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, “Chirality and Chiroptical Effects in Metal Nanostructures: Fundamentals and Current Trends,” Adv.Optical Mater. 5(16), 1700182 (2017).
[Crossref]

A. Pham, Q. Jiang, A. Zhao, J. Bellessa, C. Genet, and A. Drezet, “Manifestation of Planar and Bulk Chirality Mixture in Plasmonic Λ-Shaped Nanostructures Caused by Symmetry Breaking Defects,” ACS Photonics 4(10), 2453–2460 (2017).
[Crossref]

S. De Zuani, M. Rommel, R. Vogelgesang, J. Weis, B. Gompf, M. Dressel, and A. Berrier, “Large-Area Two-Dimensional Plasmonic Meta-Glasses and Meta-Crystals: a Comparative Study,” Plasmonics 12(5), 1381–1390 (2017).
[Crossref] [PubMed]

M. Wang, A. Löhle, B. Gompf, M. Dressel, and A. Berrier, “Physical Interpretation of Mueller Matrix Spectra: A Versatile Method Applied to Gold Gratings,” Opt. Express 25(6), 6983–6996 (2017).
[Crossref] [PubMed]

Z. Liu, J. Siegel, M. Garcia-Lechuga, T. Epicier, Y. Lefkir, S. Reynaud, M. Bugnet, F. Vocanson, J. Solis, G. Vitrant, and N. Destouches, “Three-Dimensional Self-Organization in Nanocomposite Layered Systems by Ultrafast Laser Pulses,” ACS Nano 11(5), 5031–5040 (2017).
[Crossref] [PubMed]

2016 (3)

2015 (4)

L. Y. Y. Wang, K. W. W. Smith, S. Dominguez-Medina, N. Moody, J. M. M. Olson, H. Zhang, W. S. S. Chang, N. Kotov, and S. Link, “Circular differential scattering of single chiral self-assembled gold nanorod dimers,” ACS Photonics 2(11), 1602–1610 (2015).
[Crossref]

S. Bakhti, N. Destouches, and A. V. Tishchenko, “Coupled Mode Modeling to Interpret Hybrid Modes and Fano Resonances in Plasmonic Systems,” ACS Photonics 2(2), 246–255 (2015).
[Crossref]

N. Agarwal, J. Yoon, E. Garcia-Caurel, T. Novikova, J.-C. Vanel, A. Pierangelo, A. Bykov, A. Popov, I. Meglinski, and R. Ossikovski, “Spatial Evolution of Depolarization in Homogeneous Turbid Media within the Differential Mueller Matrix Formalism,” Opt. Lett. 40(23), 5634–5637 (2015).
[Crossref] [PubMed]

T. Brakstad, M. Kildemo, Z. Ghadyani, and I. Simonsen, “Dispersion of Polarization Coupling, Localized and Collective Plasmon Modes in a Metallic Photonic Crystal Mapped by Mueller Matrix Ellipsometry,” Opt. Express 23(17), 22800–22815 (2015).
[Crossref] [PubMed]

2014 (2)

N. Destouches, M. Martínez-García, N. Crespo-Monteiro, G. Vitrant, Z. Liu, A. Trémeau, F. Vocanson, F. Pigeon, S. Reynaud, and Y. Lefkir, “Dichroic Colored Luster of Laser-Induced Silver Nanoparticle Gratings Buried in Dense Inorganic Films,” J. Opt. Soc. Am. B 31(11), C1–C7 (2014).
[Crossref]

N. Destouches, N. Crespo-Monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-Organized Growth of Metallic Nanoparticles in a Thin Film under Homogeneous and Continuous-Wave Light Excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

2013 (2)

2011 (2)

A. Guerrero-Martínez, J. Lorenzo Alonso-Gómez, B. Auguié, M. Magdalena Cid, and L. M. Liz-Marzán, “From individual to collective chirality in metal nanoparticles,” Nano Today 6(4), 381–400 (2011).
[Crossref]

T. W. H. Oates, M. Ranjan, S. Facsko, and H. Arwin, “Highly Anisotropic Effective Dielectric Functions of Silver Nanoparticle Arrays,” Opt. Express 19(3), 2014–2028 (2011).
[Crossref] [PubMed]

2010 (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

B. Auguié and W. L. Barnes, “Collective Resonances in Gold Nanoparticle Arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

2007 (1)

K. A. Willets and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

2005 (1)

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

2003 (1)

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

1987 (1)

J. Schellman and H. P. Jensen, “Optical Spectroscopy of Oriented Molecules,” Chem. Rev. 87(6), 1359–1399 (1987).
[Crossref]

1948 (1)

Agarwal, N.

Andersson, A.

Arteaga, O.

Arwin, H.

Atwater, H. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

Auguié, B.

A. Guerrero-Martínez, J. Lorenzo Alonso-Gómez, B. Auguié, M. Magdalena Cid, and L. M. Liz-Marzán, “From individual to collective chirality in metal nanoparticles,” Nano Today 6(4), 381–400 (2011).
[Crossref]

B. Auguié and W. L. Barnes, “Collective Resonances in Gold Nanoparticle Arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Bakhti, S.

S. Bakhti, N. Destouches, and A. V. Tishchenko, “Coupled Mode Modeling to Interpret Hybrid Modes and Fano Resonances in Plasmonic Systems,” ACS Photonics 2(2), 246–255 (2015).
[Crossref]

Bao, Y.

S. Zu, Y. Bao, and Z. Fang, “Planar plasmonic chiral nanostructures,” Nanoscale 8(7), 3900–3905 (2016).
[Crossref] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Barnes, W. L.

B. Auguié and W. L. Barnes, “Collective Resonances in Gold Nanoparticle Arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Bellessa, J.

A. Pham, Q. Jiang, A. Zhao, J. Bellessa, C. Genet, and A. Drezet, “Manifestation of Planar and Bulk Chirality Mixture in Plasmonic Λ-Shaped Nanostructures Caused by Symmetry Breaking Defects,” ACS Photonics 4(10), 2453–2460 (2017).
[Crossref]

Berrier, A.

S. De Zuani, M. Rommel, R. Vogelgesang, J. Weis, B. Gompf, M. Dressel, and A. Berrier, “Large-Area Two-Dimensional Plasmonic Meta-Glasses and Meta-Crystals: a Comparative Study,” Plasmonics 12(5), 1381–1390 (2017).
[Crossref] [PubMed]

M. Wang, A. Löhle, B. Gompf, M. Dressel, and A. Berrier, “Physical Interpretation of Mueller Matrix Spectra: A Versatile Method Applied to Gold Gratings,” Opt. Express 25(6), 6983–6996 (2017).
[Crossref] [PubMed]

Bosch, S.

Brakstad, T.

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Bugnet, M.

Z. Liu, J. Siegel, M. Garcia-Lechuga, T. Epicier, Y. Lefkir, S. Reynaud, M. Bugnet, F. Vocanson, J. Solis, G. Vitrant, and N. Destouches, “Three-Dimensional Self-Organization in Nanocomposite Layered Systems by Ultrafast Laser Pulses,” ACS Nano 11(5), 5031–5040 (2017).
[Crossref] [PubMed]

Bykov, A.

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Canillas, A.

Centini, M.

J. T. Collins, C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, “Chirality and Chiroptical Effects in Metal Nanostructures: Fundamentals and Current Trends,” Adv.Optical Mater. 5(16), 1700182 (2017).
[Crossref]

Chang, W. S. S.

L. Y. Y. Wang, K. W. W. Smith, S. Dominguez-Medina, N. Moody, J. M. M. Olson, H. Zhang, W. S. S. Chang, N. Kotov, and S. Link, “Circular differential scattering of single chiral self-assembled gold nanorod dimers,” ACS Photonics 2(11), 1602–1610 (2015).
[Crossref]

Clark Jones, R.

Collins, J. T.

J. T. Collins, C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, “Chirality and Chiroptical Effects in Metal Nanostructures: Fundamentals and Current Trends,” Adv.Optical Mater. 5(16), 1700182 (2017).
[Crossref]

Crespo-Monteiro, N.

N. Destouches, M. Martínez-García, N. Crespo-Monteiro, G. Vitrant, Z. Liu, A. Trémeau, F. Vocanson, F. Pigeon, S. Reynaud, and Y. Lefkir, “Dichroic Colored Luster of Laser-Induced Silver Nanoparticle Gratings Buried in Dense Inorganic Films,” J. Opt. Soc. Am. B 31(11), C1–C7 (2014).
[Crossref]

N. Destouches, N. Crespo-Monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-Organized Growth of Metallic Nanoparticles in a Thin Film under Homogeneous and Continuous-Wave Light Excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

De Zuani, S.

S. De Zuani, M. Rommel, R. Vogelgesang, J. Weis, B. Gompf, M. Dressel, and A. Berrier, “Large-Area Two-Dimensional Plasmonic Meta-Glasses and Meta-Crystals: a Comparative Study,” Plasmonics 12(5), 1381–1390 (2017).
[Crossref] [PubMed]

Destouches, N.

Z. Liu, J. Siegel, M. Garcia-Lechuga, T. Epicier, Y. Lefkir, S. Reynaud, M. Bugnet, F. Vocanson, J. Solis, G. Vitrant, and N. Destouches, “Three-Dimensional Self-Organization in Nanocomposite Layered Systems by Ultrafast Laser Pulses,” ACS Nano 11(5), 5031–5040 (2017).
[Crossref] [PubMed]

S. Bakhti, N. Destouches, and A. V. Tishchenko, “Coupled Mode Modeling to Interpret Hybrid Modes and Fano Resonances in Plasmonic Systems,” ACS Photonics 2(2), 246–255 (2015).
[Crossref]

N. Destouches, N. Crespo-Monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-Organized Growth of Metallic Nanoparticles in a Thin Film under Homogeneous and Continuous-Wave Light Excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

N. Destouches, M. Martínez-García, N. Crespo-Monteiro, G. Vitrant, Z. Liu, A. Trémeau, F. Vocanson, F. Pigeon, S. Reynaud, and Y. Lefkir, “Dichroic Colored Luster of Laser-Induced Silver Nanoparticle Gratings Buried in Dense Inorganic Films,” J. Opt. Soc. Am. B 31(11), C1–C7 (2014).
[Crossref]

Dominguez-Medina, S.

L. Y. Y. Wang, K. W. W. Smith, S. Dominguez-Medina, N. Moody, J. M. M. Olson, H. Zhang, W. S. S. Chang, N. Kotov, and S. Link, “Circular differential scattering of single chiral self-assembled gold nanorod dimers,” ACS Photonics 2(11), 1602–1610 (2015).
[Crossref]

Dressel, M.

M. Wang, A. Löhle, B. Gompf, M. Dressel, and A. Berrier, “Physical Interpretation of Mueller Matrix Spectra: A Versatile Method Applied to Gold Gratings,” Opt. Express 25(6), 6983–6996 (2017).
[Crossref] [PubMed]

S. De Zuani, M. Rommel, R. Vogelgesang, J. Weis, B. Gompf, M. Dressel, and A. Berrier, “Large-Area Two-Dimensional Plasmonic Meta-Glasses and Meta-Crystals: a Comparative Study,” Plasmonics 12(5), 1381–1390 (2017).
[Crossref] [PubMed]

Drezet, A.

A. Pham, Q. Jiang, A. Zhao, J. Bellessa, C. Genet, and A. Drezet, “Manifestation of Planar and Bulk Chirality Mixture in Plasmonic Λ-Shaped Nanostructures Caused by Symmetry Breaking Defects,” ACS Photonics 4(10), 2453–2460 (2017).
[Crossref]

Epicier, T.

Z. Liu, J. Siegel, M. Garcia-Lechuga, T. Epicier, Y. Lefkir, S. Reynaud, M. Bugnet, F. Vocanson, J. Solis, G. Vitrant, and N. Destouches, “Three-Dimensional Self-Organization in Nanocomposite Layered Systems by Ultrafast Laser Pulses,” ACS Nano 11(5), 5031–5040 (2017).
[Crossref] [PubMed]

N. Destouches, N. Crespo-Monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-Organized Growth of Metallic Nanoparticles in a Thin Film under Homogeneous and Continuous-Wave Light Excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

Facsko, S.

Fang, Z.

S. Zu, Y. Bao, and Z. Fang, “Planar plasmonic chiral nanostructures,” Nanoscale 8(7), 3900–3905 (2016).
[Crossref] [PubMed]

Garcia-Caurel, E.

Garcia-Lechuga, M.

Z. Liu, J. Siegel, M. Garcia-Lechuga, T. Epicier, Y. Lefkir, S. Reynaud, M. Bugnet, F. Vocanson, J. Solis, G. Vitrant, and N. Destouches, “Three-Dimensional Self-Organization in Nanocomposite Layered Systems by Ultrafast Laser Pulses,” ACS Nano 11(5), 5031–5040 (2017).
[Crossref] [PubMed]

Genet, C.

A. Pham, Q. Jiang, A. Zhao, J. Bellessa, C. Genet, and A. Drezet, “Manifestation of Planar and Bulk Chirality Mixture in Plasmonic Λ-Shaped Nanostructures Caused by Symmetry Breaking Defects,” ACS Photonics 4(10), 2453–2460 (2017).
[Crossref]

Ghadyani, Z.

Gompf, B.

M. Wang, A. Löhle, B. Gompf, M. Dressel, and A. Berrier, “Physical Interpretation of Mueller Matrix Spectra: A Versatile Method Applied to Gold Gratings,” Opt. Express 25(6), 6983–6996 (2017).
[Crossref] [PubMed]

S. De Zuani, M. Rommel, R. Vogelgesang, J. Weis, B. Gompf, M. Dressel, and A. Berrier, “Large-Area Two-Dimensional Plasmonic Meta-Glasses and Meta-Crystals: a Comparative Study,” Plasmonics 12(5), 1381–1390 (2017).
[Crossref] [PubMed]

Guerrero-Martínez, A.

A. Guerrero-Martínez, J. Lorenzo Alonso-Gómez, B. Auguié, M. Magdalena Cid, and L. M. Liz-Marzán, “From individual to collective chirality in metal nanoparticles,” Nano Today 6(4), 381–400 (2011).
[Crossref]

Gunnarsson, L.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Haynes, C. L.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Hooper, D. C.

J. T. Collins, C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, “Chirality and Chiroptical Effects in Metal Nanostructures: Fundamentals and Current Trends,” Adv.Optical Mater. 5(16), 1700182 (2017).
[Crossref]

Järrendahl, K.

Jensen, H. P.

J. Schellman and H. P. Jensen, “Optical Spectroscopy of Oriented Molecules,” Chem. Rev. 87(6), 1359–1399 (1987).
[Crossref]

Jiang, Q.

A. Pham, Q. Jiang, A. Zhao, J. Bellessa, C. Genet, and A. Drezet, “Manifestation of Planar and Bulk Chirality Mixture in Plasmonic Λ-Shaped Nanostructures Caused by Symmetry Breaking Defects,” ACS Photonics 4(10), 2453–2460 (2017).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Kahr, B.

Käll, M.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Kasemo, B.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Kildemo, M.

Kotov, N.

L. Y. Y. Wang, K. W. W. Smith, S. Dominguez-Medina, N. Moody, J. M. M. Olson, H. Zhang, W. S. S. Chang, N. Kotov, and S. Link, “Circular differential scattering of single chiral self-assembled gold nanorod dimers,” ACS Photonics 2(11), 1602–1610 (2015).
[Crossref]

Kuppe, C.

J. T. Collins, C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, “Chirality and Chiroptical Effects in Metal Nanostructures: Fundamentals and Current Trends,” Adv.Optical Mater. 5(16), 1700182 (2017).
[Crossref]

Landin, J.

Lefkir, Y.

Z. Liu, J. Siegel, M. Garcia-Lechuga, T. Epicier, Y. Lefkir, S. Reynaud, M. Bugnet, F. Vocanson, J. Solis, G. Vitrant, and N. Destouches, “Three-Dimensional Self-Organization in Nanocomposite Layered Systems by Ultrafast Laser Pulses,” ACS Nano 11(5), 5031–5040 (2017).
[Crossref] [PubMed]

N. Destouches, N. Crespo-Monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-Organized Growth of Metallic Nanoparticles in a Thin Film under Homogeneous and Continuous-Wave Light Excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

N. Destouches, M. Martínez-García, N. Crespo-Monteiro, G. Vitrant, Z. Liu, A. Trémeau, F. Vocanson, F. Pigeon, S. Reynaud, and Y. Lefkir, “Dichroic Colored Luster of Laser-Induced Silver Nanoparticle Gratings Buried in Dense Inorganic Films,” J. Opt. Soc. Am. B 31(11), C1–C7 (2014).
[Crossref]

Link, S.

L. Y. Y. Wang, K. W. W. Smith, S. Dominguez-Medina, N. Moody, J. M. M. Olson, H. Zhang, W. S. S. Chang, N. Kotov, and S. Link, “Circular differential scattering of single chiral self-assembled gold nanorod dimers,” ACS Photonics 2(11), 1602–1610 (2015).
[Crossref]

Liu, Y.

N. Destouches, N. Crespo-Monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-Organized Growth of Metallic Nanoparticles in a Thin Film under Homogeneous and Continuous-Wave Light Excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

Liu, Z.

Z. Liu, J. Siegel, M. Garcia-Lechuga, T. Epicier, Y. Lefkir, S. Reynaud, M. Bugnet, F. Vocanson, J. Solis, G. Vitrant, and N. Destouches, “Three-Dimensional Self-Organization in Nanocomposite Layered Systems by Ultrafast Laser Pulses,” ACS Nano 11(5), 5031–5040 (2017).
[Crossref] [PubMed]

N. Destouches, M. Martínez-García, N. Crespo-Monteiro, G. Vitrant, Z. Liu, A. Trémeau, F. Vocanson, F. Pigeon, S. Reynaud, and Y. Lefkir, “Dichroic Colored Luster of Laser-Induced Silver Nanoparticle Gratings Buried in Dense Inorganic Films,” J. Opt. Soc. Am. B 31(11), C1–C7 (2014).
[Crossref]

Liz-Marzán, L. M.

A. Guerrero-Martínez, J. Lorenzo Alonso-Gómez, B. Auguié, M. Magdalena Cid, and L. M. Liz-Marzán, “From individual to collective chirality in metal nanoparticles,” Nano Today 6(4), 381–400 (2011).
[Crossref]

Löhle, A.

Lorenzo Alonso-Gómez, J.

A. Guerrero-Martínez, J. Lorenzo Alonso-Gómez, B. Auguié, M. Magdalena Cid, and L. M. Liz-Marzán, “From individual to collective chirality in metal nanoparticles,” Nano Today 6(4), 381–400 (2011).
[Crossref]

Magdalena Cid, M.

A. Guerrero-Martínez, J. Lorenzo Alonso-Gómez, B. Auguié, M. Magdalena Cid, and L. M. Liz-Marzán, “From individual to collective chirality in metal nanoparticles,” Nano Today 6(4), 381–400 (2011).
[Crossref]

Magnusson, R.

Maier, S. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

Maoz, B. M.

Markovich, G.

Martínez-García, M.

McFarland, A. D.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Meglinski, I.

Mendoza-Galván, A.

Moody, N.

L. Y. Y. Wang, K. W. W. Smith, S. Dominguez-Medina, N. Moody, J. M. M. Olson, H. Zhang, W. S. S. Chang, N. Kotov, and S. Link, “Circular differential scattering of single chiral self-assembled gold nanorod dimers,” ACS Photonics 2(11), 1602–1610 (2015).
[Crossref]

Nichols, S.

Novikova, T.

Oates, T. W. H.

Olson, J. M. M.

L. Y. Y. Wang, K. W. W. Smith, S. Dominguez-Medina, N. Moody, J. M. M. Olson, H. Zhang, W. S. S. Chang, N. Kotov, and S. Link, “Circular differential scattering of single chiral self-assembled gold nanorod dimers,” ACS Photonics 2(11), 1602–1610 (2015).
[Crossref]

Ossikovski, R.

Pham, A.

A. Pham, Q. Jiang, A. Zhao, J. Bellessa, C. Genet, and A. Drezet, “Manifestation of Planar and Bulk Chirality Mixture in Plasmonic Λ-Shaped Nanostructures Caused by Symmetry Breaking Defects,” ACS Photonics 4(10), 2453–2460 (2017).
[Crossref]

Pierangelo, A.

Pigeon, F.

N. Destouches, N. Crespo-Monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-Organized Growth of Metallic Nanoparticles in a Thin Film under Homogeneous and Continuous-Wave Light Excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

N. Destouches, M. Martínez-García, N. Crespo-Monteiro, G. Vitrant, Z. Liu, A. Trémeau, F. Vocanson, F. Pigeon, S. Reynaud, and Y. Lefkir, “Dichroic Colored Luster of Laser-Induced Silver Nanoparticle Gratings Buried in Dense Inorganic Films,” J. Opt. Soc. Am. B 31(11), C1–C7 (2014).
[Crossref]

Popov, A.

Prikulis, J.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Ranjan, M.

Reynaud, S.

Z. Liu, J. Siegel, M. Garcia-Lechuga, T. Epicier, Y. Lefkir, S. Reynaud, M. Bugnet, F. Vocanson, J. Solis, G. Vitrant, and N. Destouches, “Three-Dimensional Self-Organization in Nanocomposite Layered Systems by Ultrafast Laser Pulses,” ACS Nano 11(5), 5031–5040 (2017).
[Crossref] [PubMed]

N. Destouches, M. Martínez-García, N. Crespo-Monteiro, G. Vitrant, Z. Liu, A. Trémeau, F. Vocanson, F. Pigeon, S. Reynaud, and Y. Lefkir, “Dichroic Colored Luster of Laser-Induced Silver Nanoparticle Gratings Buried in Dense Inorganic Films,” J. Opt. Soc. Am. B 31(11), C1–C7 (2014).
[Crossref]

N. Destouches, N. Crespo-Monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-Organized Growth of Metallic Nanoparticles in a Thin Film under Homogeneous and Continuous-Wave Light Excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

Rommel, M.

S. De Zuani, M. Rommel, R. Vogelgesang, J. Weis, B. Gompf, M. Dressel, and A. Berrier, “Large-Area Two-Dimensional Plasmonic Meta-Glasses and Meta-Crystals: a Comparative Study,” Plasmonics 12(5), 1381–1390 (2017).
[Crossref] [PubMed]

Sancho-Parramon, J.

Schatz, G. C.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Schellman, J.

J. Schellman and H. P. Jensen, “Optical Spectroscopy of Oriented Molecules,” Chem. Rev. 87(6), 1359–1399 (1987).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Sibilia, C.

J. T. Collins, C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, “Chirality and Chiroptical Effects in Metal Nanostructures: Fundamentals and Current Trends,” Adv.Optical Mater. 5(16), 1700182 (2017).
[Crossref]

Siegel, J.

Z. Liu, J. Siegel, M. Garcia-Lechuga, T. Epicier, Y. Lefkir, S. Reynaud, M. Bugnet, F. Vocanson, J. Solis, G. Vitrant, and N. Destouches, “Three-Dimensional Self-Organization in Nanocomposite Layered Systems by Ultrafast Laser Pulses,” ACS Nano 11(5), 5031–5040 (2017).
[Crossref] [PubMed]

Simonsen, I.

Smith, K. W. W.

L. Y. Y. Wang, K. W. W. Smith, S. Dominguez-Medina, N. Moody, J. M. M. Olson, H. Zhang, W. S. S. Chang, N. Kotov, and S. Link, “Circular differential scattering of single chiral self-assembled gold nanorod dimers,” ACS Photonics 2(11), 1602–1610 (2015).
[Crossref]

Solis, J.

Z. Liu, J. Siegel, M. Garcia-Lechuga, T. Epicier, Y. Lefkir, S. Reynaud, M. Bugnet, F. Vocanson, J. Solis, G. Vitrant, and N. Destouches, “Three-Dimensional Self-Organization in Nanocomposite Layered Systems by Ultrafast Laser Pulses,” ACS Nano 11(5), 5031–5040 (2017).
[Crossref] [PubMed]

Tishchenko, A. V.

S. Bakhti, N. Destouches, and A. V. Tishchenko, “Coupled Mode Modeling to Interpret Hybrid Modes and Fano Resonances in Plasmonic Systems,” ACS Photonics 2(2), 246–255 (2015).
[Crossref]

Trémeau, A.

Valev, V. K.

J. T. Collins, C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, “Chirality and Chiroptical Effects in Metal Nanostructures: Fundamentals and Current Trends,” Adv.Optical Mater. 5(16), 1700182 (2017).
[Crossref]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Vanel, J.-C.

Vitrant, G.

Z. Liu, J. Siegel, M. Garcia-Lechuga, T. Epicier, Y. Lefkir, S. Reynaud, M. Bugnet, F. Vocanson, J. Solis, G. Vitrant, and N. Destouches, “Three-Dimensional Self-Organization in Nanocomposite Layered Systems by Ultrafast Laser Pulses,” ACS Nano 11(5), 5031–5040 (2017).
[Crossref] [PubMed]

N. Destouches, M. Martínez-García, N. Crespo-Monteiro, G. Vitrant, Z. Liu, A. Trémeau, F. Vocanson, F. Pigeon, S. Reynaud, and Y. Lefkir, “Dichroic Colored Luster of Laser-Induced Silver Nanoparticle Gratings Buried in Dense Inorganic Films,” J. Opt. Soc. Am. B 31(11), C1–C7 (2014).
[Crossref]

N. Destouches, N. Crespo-Monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-Organized Growth of Metallic Nanoparticles in a Thin Film under Homogeneous and Continuous-Wave Light Excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

Vocanson, F.

Z. Liu, J. Siegel, M. Garcia-Lechuga, T. Epicier, Y. Lefkir, S. Reynaud, M. Bugnet, F. Vocanson, J. Solis, G. Vitrant, and N. Destouches, “Three-Dimensional Self-Organization in Nanocomposite Layered Systems by Ultrafast Laser Pulses,” ACS Nano 11(5), 5031–5040 (2017).
[Crossref] [PubMed]

N. Destouches, N. Crespo-Monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-Organized Growth of Metallic Nanoparticles in a Thin Film under Homogeneous and Continuous-Wave Light Excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

N. Destouches, M. Martínez-García, N. Crespo-Monteiro, G. Vitrant, Z. Liu, A. Trémeau, F. Vocanson, F. Pigeon, S. Reynaud, and Y. Lefkir, “Dichroic Colored Luster of Laser-Induced Silver Nanoparticle Gratings Buried in Dense Inorganic Films,” J. Opt. Soc. Am. B 31(11), C1–C7 (2014).
[Crossref]

Vogelgesang, R.

S. De Zuani, M. Rommel, R. Vogelgesang, J. Weis, B. Gompf, M. Dressel, and A. Berrier, “Large-Area Two-Dimensional Plasmonic Meta-Glasses and Meta-Crystals: a Comparative Study,” Plasmonics 12(5), 1381–1390 (2017).
[Crossref] [PubMed]

Wang, L. Y. Y.

L. Y. Y. Wang, K. W. W. Smith, S. Dominguez-Medina, N. Moody, J. M. M. Olson, H. Zhang, W. S. S. Chang, N. Kotov, and S. Link, “Circular differential scattering of single chiral self-assembled gold nanorod dimers,” ACS Photonics 2(11), 1602–1610 (2015).
[Crossref]

Wang, M.

Weis, J.

S. De Zuani, M. Rommel, R. Vogelgesang, J. Weis, B. Gompf, M. Dressel, and A. Berrier, “Large-Area Two-Dimensional Plasmonic Meta-Glasses and Meta-Crystals: a Comparative Study,” Plasmonics 12(5), 1381–1390 (2017).
[Crossref] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Yoon, J.

Zhang, H.

L. Y. Y. Wang, K. W. W. Smith, S. Dominguez-Medina, N. Moody, J. M. M. Olson, H. Zhang, W. S. S. Chang, N. Kotov, and S. Link, “Circular differential scattering of single chiral self-assembled gold nanorod dimers,” ACS Photonics 2(11), 1602–1610 (2015).
[Crossref]

Zhao, A.

A. Pham, Q. Jiang, A. Zhao, J. Bellessa, C. Genet, and A. Drezet, “Manifestation of Planar and Bulk Chirality Mixture in Plasmonic Λ-Shaped Nanostructures Caused by Symmetry Breaking Defects,” ACS Photonics 4(10), 2453–2460 (2017).
[Crossref]

Zhao, L.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Zu, S.

S. Zu, Y. Bao, and Z. Fang, “Planar plasmonic chiral nanostructures,” Nanoscale 8(7), 3900–3905 (2016).
[Crossref] [PubMed]

ACS Nano (1)

Z. Liu, J. Siegel, M. Garcia-Lechuga, T. Epicier, Y. Lefkir, S. Reynaud, M. Bugnet, F. Vocanson, J. Solis, G. Vitrant, and N. Destouches, “Three-Dimensional Self-Organization in Nanocomposite Layered Systems by Ultrafast Laser Pulses,” ACS Nano 11(5), 5031–5040 (2017).
[Crossref] [PubMed]

ACS Photonics (3)

S. Bakhti, N. Destouches, and A. V. Tishchenko, “Coupled Mode Modeling to Interpret Hybrid Modes and Fano Resonances in Plasmonic Systems,” ACS Photonics 2(2), 246–255 (2015).
[Crossref]

L. Y. Y. Wang, K. W. W. Smith, S. Dominguez-Medina, N. Moody, J. M. M. Olson, H. Zhang, W. S. S. Chang, N. Kotov, and S. Link, “Circular differential scattering of single chiral self-assembled gold nanorod dimers,” ACS Photonics 2(11), 1602–1610 (2015).
[Crossref]

A. Pham, Q. Jiang, A. Zhao, J. Bellessa, C. Genet, and A. Drezet, “Manifestation of Planar and Bulk Chirality Mixture in Plasmonic Λ-Shaped Nanostructures Caused by Symmetry Breaking Defects,” ACS Photonics 4(10), 2453–2460 (2017).
[Crossref]

Adv.Optical Mater. (1)

J. T. Collins, C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, “Chirality and Chiroptical Effects in Metal Nanostructures: Fundamentals and Current Trends,” Adv.Optical Mater. 5(16), 1700182 (2017).
[Crossref]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Chem. Rev. (1)

J. Schellman and H. P. Jensen, “Optical Spectroscopy of Oriented Molecules,” Chem. Rev. 87(6), 1359–1399 (1987).
[Crossref]

J. Appl. Phys. (1)

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

N. Destouches, N. Crespo-Monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-Organized Growth of Metallic Nanoparticles in a Thin Film under Homogeneous and Continuous-Wave Light Excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Nano Today (1)

A. Guerrero-Martínez, J. Lorenzo Alonso-Gómez, B. Auguié, M. Magdalena Cid, and L. M. Liz-Marzán, “From individual to collective chirality in metal nanoparticles,” Nano Today 6(4), 381–400 (2011).
[Crossref]

Nanoscale (1)

S. Zu, Y. Bao, and Z. Fang, “Planar plasmonic chiral nanostructures,” Nanoscale 8(7), 3900–3905 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

B. Auguié and W. L. Barnes, “Collective Resonances in Gold Nanoparticle Arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Plasmonics (1)

S. De Zuani, M. Rommel, R. Vogelgesang, J. Weis, B. Gompf, M. Dressel, and A. Berrier, “Large-Area Two-Dimensional Plasmonic Meta-Glasses and Meta-Crystals: a Comparative Study,” Plasmonics 12(5), 1381–1390 (2017).
[Crossref] [PubMed]

Other (5)

H. G. Tompkins and W. A. McGahan, Spectroscopic Ellipsometry and Reflectometry (John Wiley & Sons, 1999).

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1999).

D. H. Goldstein, Polarized Light (Taylor & Francis Group, 2011).

A. Lakhtakia, ed., Selected Papers on Natural Optical Activity (SPIE Press, 1990).

H. Fujiwara, Spectroscopic Ellipsometry Principles and Applications (Wiley, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Calculated circular dichroism (CD) and circular birefringence (CB) as a function of the angle ϕ between two plasmonic nanorods simulated each by a Lorentz oscillator along the optical axes defined by the orientation of the rods.
Fig. 2
Fig. 2 a) Schematic of the fabricated sample; (b) SEM image of the Ag nanoparticle region; (c) Definition of azimuthal angle α as well as orientations x and y with respect to the nanoparticle lines; (d) schematic drawing illustrating the different physical phenomena at play in the investigated sample; (e) and (f) represent schematic drawings of the cross-section of the sample illustrating the modes supported by the structure and their interactions.
Fig. 3
Fig. 3 Measured transmittance Tss and Tpp for (a) α = 90° θ = 0° and (b) α = 0° θ = 0°; (c) dispersion plots of the measured transmittance between θ = 0° and 20° in steps of 2° in the spectral range between 370 and 700 nm with s-polarized light at α = 90° and (d) at α = 0°; (e) The Lorentz oscillators used in general oscillator model for fitting the transmittance with p-polarized light at α = 90°. All contour plots are shown together with dashed lines indicating DIM(±1); (h) The Lorentz oscillators used in general oscillator model for fitting the transmittance at α = 0°; (i-k) Transmittance contour plots as a function of the wavelength and the azimuthal angle (i) at normal incidence for s-polarized light and p-polarized light; (j) simulated transmittance at normal incidence for both polarizations; (k) contour plot at angle of incidence 10° for s-polarized light and p-polarized light, and (l) comparison of linecuts at azimuthal angle 0°. The calculated DIM lines are shown only on half-space to preserve the visibility of the raw measurement on the other half.
Fig. 4
Fig. 4 Comparison of measured and simulated selected Mueller Matrix Elements M as well as the corresponding decomposed matrix elements Lm (a) labels of the four quadrants for the representations of (b) M12, (c) M34, (d) M41, (e) M14 and (f) M23. The azimuthal dependence of the elements shown in this figure are made from the concatenation of four quadrants taken from the full elements while respecting their original quadrant place.
Fig. 5
Fig. 5 Comparison of linecuts at azimuthal angle 0° through matrix elements related to the circular dichroism or circular birefringence. a) Linecut along α = 0° for M14 (and its decomposed version Lm14) related to CD compared to the linecut of M23 (and its decomposed version Lm23) related to CB, the inset represents the color-coded contour plots of the respective elements plotted over 1/3 of the azimuthal range for sake of comparison; b) Spectra of CDlin, CBlin, CBint and CDint obtained from the decomposition of the experimental Mueller matrix.
Fig. 6
Fig. 6 Comparison of the (λ,α) contour plots representing the transmittance plots, and the CD signal distinguished in apparent CD, intrinsic CD and linear CD at normal incidence and at incident angle 20°. The comparison of selected linecuts is also shown in (c) and (f).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

2 φ 1 =2 tan 1 { ( n Ti O 2 2 sin 2 θ d n air 2 ) 1 2 n Ti O 2 cos θ d }, 2 φ 2 =2 tan 1 { ( n Ti O 2 2 sin 2 θ d n glass 2 ) 1 2 n Ti O 2 cos θ d }    for TE polarization
2 φ 1 =2 tan 1 { n Ti O 2 2 n air 2 ( n Ti O 2 2 sin 2 θ d n air 2 ) 1 2 n Ti O 2 cos θ d },  2 φ 2 =2 tan 1 { n Ti O 2 2 n glass 2 ( n Ti O 2 2 sin 2 θ d n glass 2 ) 1 2 n Ti O 2 cos θ d }    for TM polarization
Δφ=2 k Ti O 2 h(2 φ 1 +2 φ 2 )=(2f+1)π,             f=0, ±1,±2
n TiO 2 sin θ d sin α d = sin θ inc sinα
Δφ=2 k Ti O 2 h2 φ 1 2 φ 2 =2fπ,       f=0, ±1,±2

Metrics