Abstract

Intense terahertz (THz) emission in high quality GaAs film upon ultrafast excitation is demonstrated. Results showed that high quality GaAs grown by molecular beam epitaxy with a thin n-doped buffer can rival existing intense bare semiconductor THz surface emitters. The incorporation of a 0.2 µm n-GaAs buffer proved effective in enhancing the THz emission of GaAs by 281% and 295% in reflection and transmission THz time-domain excitation geometries, respectively. The GaAs film was of high crystallinity with or without the n-doped buffer layer as confirmed from X-ray diffraction and Raman scattering. The similar crystalline quality of the two samples was further exemplified by their comparable built-in field strength as measured by photoreflectance spectroscopy. The distinguishable difference in GaAs with and without the doped buffer was observed via low temperature photoluminescence (PL) spectroscopy. The GaAs film with the n-doped buffer exhibited intense GaAs PL while the GaAs film without the n-doped buffer exhibited prominent carbon impurity-related PL. THz enhancement was inferred to be due to the decrease in shallow defects in GaAs with n-doped buffer.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz emission enhancement in low-temperature-grown GaAs with an n-GaAs buffer in reflection and transmission excitation geometries

Elizabeth Ann P. Prieto, Sheryl Ann B. Vizcara, Armando S. Somintac, Arnel A. Salvador, Elmer S. Estacio, Christopher T. Que, Kohji Yamamoto, and Masahiko Tani
J. Opt. Soc. Am. B 31(2) 291-295 (2014)

All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001)

Jinkwan Kwoen, Bongyong Jang, Joohang Lee, Takeo Kageyama, Katsuyuki Watanabe, and Yasuhiko Arakawa
Opt. Express 26(9) 11568-11576 (2018)

Low temperature-grown GaAs carrier lifetime evaluation by double optical pump terahertz time-domain emission spectroscopy

Valynn Katrine Mag-usara, Stefan Funkner, Gudrun Niehues, Elizabeth Ann Prieto, Maria Herminia Balgos, Armando Somintac, Elmer Estacio, Arnel Salvador, Kohji Yamamoto, Muneaki Hase, and Masahiko Tani
Opt. Express 24(23) 26175-26185 (2016)

References

  • View by:
  • |
  • |
  • |

  1. X. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Physics 71(1), 326–338 (1992).
    [Crossref]
  2. M. B. Johnston, A. Dowd, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Enhancement of THz emission from semiconductor surfaces,” in Proceedings of IEEE Tenth International Conference on Terahertz Electronics, (IEEE, 2002), pp. 48–51.
  3. P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Physics 91(9), 5533–5537 (2002).
    [Crossref]
  4. M. Suzuki, M. Tonouchi, K.-I. Fujii, H. Ohtake, and T. Hirosumi, “Excitation wavelength dependence of terahertz emission from semiconductor surface,” Appl. Phys. Lett. 89(9), 091111 (2006).
    [Crossref]
  5. V. L. Malevich, R. Adomavicius, and A. Krotkus, “THz emission from semiconductor surfaces,” Comptes Rendus Physique 9(2), 130–141 (2008).
    [Crossref]
  6. R. Inoue, K. Takayama, and M. Tonouchi, “Angular dependence of terahertz emission from semiconductor surfaces photoexcited by femtosecond optical pulses,” J. Opt. Soc. Am. B 26(9), A14–A22 (2009).
    [Crossref]
  7. C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz Radiation from InAs Films on Silicon Substrates Excited by Femtosecond Laser Pulses,” Japanese J. Appl. Physics 48(1R), 010211 (2009).
    [Crossref]
  8. A. Krotkus, A. Arlauskas, R. Adomavicius, I. Nevinskas, and V. L. Malevich, “Physical mechanisms of surface terahertz emission from semiconductors,” in Terahertz Emitters, Receivers, and Applications VII, Proc. SPIE9934, 993405 (2016).
  9. M. Alfaro-Gomez and E. Castro-Camus, “The role of bandgap energy excess in surface emission of terahertz radiation from semiconductors,” Appl. Phys. Lett. 110(4), 042101 (2017).
    [Crossref]
  10. S. Sasa, S. Umino, Y. Ishibashi, T. Maemoto, M. Inoue, K. Takeya, and M. Tonouchi, “Intense Terahertz Radiation from InAs Thin Films,” J. Infrared, Millimeter, and Terahertz Waves 32(5), 646–654 (2011).
    [Crossref]
  11. M. Kozub, K. Nishisaka, T. Maemoto, S. Sasa, K. Takayama, and M. Tonouchi, “Reflection Layer Mediated Enhancement of Terahertz Radiation Utilizing Heavily-Doped InAs Thin FilmsM,” J. Infrared, Millimeter, and Terahertz Waves 36(5), 423–429 (2015).
    [Crossref]
  12. S. Sasa, Y. Kinoshita, M. Tatsumi, M. Koyama, T. Maemoto, S. Hamauchi, I. Kawayama, and M. Tonouchi, “Study for Enhancement of Terahertz Radiation Using GaSb/InAs Heterostructures,” J. Phys.: Conference Series 906(1), 012015 (2017).
  13. E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edamura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103(4), 825–829 (2011).
    [Crossref]
  14. C. P. Sadia, J. Muldera, E. S. Estacio, A. S. Somintac, A. A. Salvador, C. T. Que, K. Yamamoto, and M. Tani, “Interruption-assisted epitaxy of faceted p-InAs on buffered GaSb for terahertz emitters,” Appl. Phys. Express 8, 035501 (2015).
    [Crossref]
  15. M. Kaminska, Z. Liliental-Weber, E. R. Weber, T. George, J. B. Kortright, F. W. Smith, B. Tsaur, and A. R. Calawa, “Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 54(19), 1881–1883 (1989).
    [Crossref]
  16. X. Liu, A. Prasad, W. M. Chen, A. Kurpiewski, A. Stoschek, Z. Liliental-Weber, and E. R. Weber, “Mechanism responsible for the semi-insulating properties of low-temperature-grown GaAs,” Appl. Phys. Lett. 65(23), 3002–3004 (1994).
    [Crossref]
  17. M. Luysberg, H. Sohn, A. Prasad, P. Specht, Z. Liliental- Weber, E. R. Weber, J. Gebauer, and R. Krause-Rehberg, “Effects of the growth temperature and As/Ga flux ratio on the incorporation of excess As into low temperature grown GaAs,” J. Appl. Physics 83(1), 561–566 (1998).
    [Crossref]
  18. E. A. P. Prieto, S. A. B. Vizcara, A. S. Somintac, A. A. Salvador, E. S. Estacio, C. T. Que, K. Yamamoto, and M. Tani, “Terahertz emission enhancement in low-temperature-grown GaAs with an n-GaAs buffer in reflection and transmission excitation geometries,” J. Opt. Soc. Am. B 31(2), 291 (2014).
    [Crossref]
  19. R. F. C. Farrow, Molecular Beam Epitaxy (Noyes Publications, 1995).
  20. J. Darmo, G. Strasser, T. Muller, R. Bratschitsch, and K. Unterrainer, “Surface-modified GaAs terahertz plasmon emitter,” Appl. Phys. Lett. 81(5), 871–873 (2002).
    [Crossref]
  21. K. Liu, A. Krotkus, K. Bertulis, J. Xu, and X.-C. Zhang, “Terahertz radiation from n-type GaAs with Be-doped low-temperature-grown GaAs surface layers,” J. Appl. Physics 94(5), 3651–3653 (2003).
    [Crossref]
  22. H. Takeuchi, J. Yanagisawa, T. Hasegawa, and M. Nakayama, “Enhancement of terahertz electromagnetic wave emission from an undoped GaAs/n-type GaAs epitaxial layer structure,” Appl. Phys. Lett. 93(8), 081916 (2008).
    [Crossref]
  23. S. Tsuruta, H. Takeuchi, H. Yamada, M. Hata, and M. Nakayama, “Enhancement mechanism of terahertz radiation from coherent longitudinal optical phonons in undoped GaAs/n-type GaAs epitaxial structures,” J. Appl. Physics 113(14), 143502 (2013).
    [Crossref]
  24. M. Sydor, J. Angelo, J. J. Wilson, W. C. Mitchel, and M. Y. Yen, “Photoreflectance from GaAs and GaAs/GaAs interfaces,” Phys. Rev. B 40, 8473–8484 (1989).
    [Crossref]
  25. W. G. Spitzer and H. Y. Fan, “Determination of optical constants and carrier effective mass of semiconductors,” Phys. Rev. 106, 882–890 (1957).
    [Crossref]
  26. K. Osamura and Y. Murakami, “Free carrier absorption in n-GaAs,” Japanese J. Appl. Physics 11, 365 (1972).
    [Crossref]
  27. H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV,” J. Appl. Physics 46, 250–257 (1975).
    [Crossref]
  28. C.-C. Wu and C.-J. Lin, “Free-carrier absorption in n-type gallium arsenide films for polar optical phonon scattering,” J. Appl. Physics 79, 781–785 (1996).
    [Crossref]
  29. X. L. Lei and S. Y. Liu, “Nonlinear free-carrier absorption of intense THz radiation in semiconductors,” J. Physics: Condensed Matter 12, 4655 (2000).
  30. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley and Sons, Inc., 2007).
  31. F. Briones and D. M. Collins, “Low temperature photoluminescence of lightly Si-doped and undoped MBE GaAs,” J. Electronic Materials 11(4), 847–866 (1982).
    [Crossref]
  32. S. Schuppler, D. L. Adler, L. N. Pfeiffer, K. W. West, E. E. Chaban, and P. H. Citrin, “Identifying and quantifying point defects in semiconductors using x-ray-absorption spectroscopy: Si-doped GaAs,” Phys. Rev. B 51(16), 10527–10538 (1995).
    [Crossref]
  33. Y. Ohno, T. Taishi, I. Yonenaga, and S. Takeda, “Atomistic structure of stacking faults in a commercial GaAs:Si wafer revealed by cross-sectional scanning tunneling microscopy,” Physica B: Condensed Matter 401–402, 230–233 (2007).
    [Crossref]
  34. K. Sakai, Terahertz Optoelectronics (Springer-VerlagBerlin Heidelberg, 2005).
    [Crossref]
  35. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer Science+Business Media, LLC, 2009).

2017 (2)

M. Alfaro-Gomez and E. Castro-Camus, “The role of bandgap energy excess in surface emission of terahertz radiation from semiconductors,” Appl. Phys. Lett. 110(4), 042101 (2017).
[Crossref]

S. Sasa, Y. Kinoshita, M. Tatsumi, M. Koyama, T. Maemoto, S. Hamauchi, I. Kawayama, and M. Tonouchi, “Study for Enhancement of Terahertz Radiation Using GaSb/InAs Heterostructures,” J. Phys.: Conference Series 906(1), 012015 (2017).

2015 (2)

C. P. Sadia, J. Muldera, E. S. Estacio, A. S. Somintac, A. A. Salvador, C. T. Que, K. Yamamoto, and M. Tani, “Interruption-assisted epitaxy of faceted p-InAs on buffered GaSb for terahertz emitters,” Appl. Phys. Express 8, 035501 (2015).
[Crossref]

M. Kozub, K. Nishisaka, T. Maemoto, S. Sasa, K. Takayama, and M. Tonouchi, “Reflection Layer Mediated Enhancement of Terahertz Radiation Utilizing Heavily-Doped InAs Thin FilmsM,” J. Infrared, Millimeter, and Terahertz Waves 36(5), 423–429 (2015).
[Crossref]

2014 (1)

2013 (1)

S. Tsuruta, H. Takeuchi, H. Yamada, M. Hata, and M. Nakayama, “Enhancement mechanism of terahertz radiation from coherent longitudinal optical phonons in undoped GaAs/n-type GaAs epitaxial structures,” J. Appl. Physics 113(14), 143502 (2013).
[Crossref]

2011 (2)

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edamura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103(4), 825–829 (2011).
[Crossref]

S. Sasa, S. Umino, Y. Ishibashi, T. Maemoto, M. Inoue, K. Takeya, and M. Tonouchi, “Intense Terahertz Radiation from InAs Thin Films,” J. Infrared, Millimeter, and Terahertz Waves 32(5), 646–654 (2011).
[Crossref]

2009 (2)

R. Inoue, K. Takayama, and M. Tonouchi, “Angular dependence of terahertz emission from semiconductor surfaces photoexcited by femtosecond optical pulses,” J. Opt. Soc. Am. B 26(9), A14–A22 (2009).
[Crossref]

C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz Radiation from InAs Films on Silicon Substrates Excited by Femtosecond Laser Pulses,” Japanese J. Appl. Physics 48(1R), 010211 (2009).
[Crossref]

2008 (2)

V. L. Malevich, R. Adomavicius, and A. Krotkus, “THz emission from semiconductor surfaces,” Comptes Rendus Physique 9(2), 130–141 (2008).
[Crossref]

H. Takeuchi, J. Yanagisawa, T. Hasegawa, and M. Nakayama, “Enhancement of terahertz electromagnetic wave emission from an undoped GaAs/n-type GaAs epitaxial layer structure,” Appl. Phys. Lett. 93(8), 081916 (2008).
[Crossref]

2007 (1)

Y. Ohno, T. Taishi, I. Yonenaga, and S. Takeda, “Atomistic structure of stacking faults in a commercial GaAs:Si wafer revealed by cross-sectional scanning tunneling microscopy,” Physica B: Condensed Matter 401–402, 230–233 (2007).
[Crossref]

2006 (1)

M. Suzuki, M. Tonouchi, K.-I. Fujii, H. Ohtake, and T. Hirosumi, “Excitation wavelength dependence of terahertz emission from semiconductor surface,” Appl. Phys. Lett. 89(9), 091111 (2006).
[Crossref]

2003 (1)

K. Liu, A. Krotkus, K. Bertulis, J. Xu, and X.-C. Zhang, “Terahertz radiation from n-type GaAs with Be-doped low-temperature-grown GaAs surface layers,” J. Appl. Physics 94(5), 3651–3653 (2003).
[Crossref]

2002 (2)

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Physics 91(9), 5533–5537 (2002).
[Crossref]

J. Darmo, G. Strasser, T. Muller, R. Bratschitsch, and K. Unterrainer, “Surface-modified GaAs terahertz plasmon emitter,” Appl. Phys. Lett. 81(5), 871–873 (2002).
[Crossref]

2000 (1)

X. L. Lei and S. Y. Liu, “Nonlinear free-carrier absorption of intense THz radiation in semiconductors,” J. Physics: Condensed Matter 12, 4655 (2000).

1998 (1)

M. Luysberg, H. Sohn, A. Prasad, P. Specht, Z. Liliental- Weber, E. R. Weber, J. Gebauer, and R. Krause-Rehberg, “Effects of the growth temperature and As/Ga flux ratio on the incorporation of excess As into low temperature grown GaAs,” J. Appl. Physics 83(1), 561–566 (1998).
[Crossref]

1996 (1)

C.-C. Wu and C.-J. Lin, “Free-carrier absorption in n-type gallium arsenide films for polar optical phonon scattering,” J. Appl. Physics 79, 781–785 (1996).
[Crossref]

1995 (1)

S. Schuppler, D. L. Adler, L. N. Pfeiffer, K. W. West, E. E. Chaban, and P. H. Citrin, “Identifying and quantifying point defects in semiconductors using x-ray-absorption spectroscopy: Si-doped GaAs,” Phys. Rev. B 51(16), 10527–10538 (1995).
[Crossref]

1994 (1)

X. Liu, A. Prasad, W. M. Chen, A. Kurpiewski, A. Stoschek, Z. Liliental-Weber, and E. R. Weber, “Mechanism responsible for the semi-insulating properties of low-temperature-grown GaAs,” Appl. Phys. Lett. 65(23), 3002–3004 (1994).
[Crossref]

1992 (1)

X. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Physics 71(1), 326–338 (1992).
[Crossref]

1989 (2)

M. Kaminska, Z. Liliental-Weber, E. R. Weber, T. George, J. B. Kortright, F. W. Smith, B. Tsaur, and A. R. Calawa, “Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 54(19), 1881–1883 (1989).
[Crossref]

M. Sydor, J. Angelo, J. J. Wilson, W. C. Mitchel, and M. Y. Yen, “Photoreflectance from GaAs and GaAs/GaAs interfaces,” Phys. Rev. B 40, 8473–8484 (1989).
[Crossref]

1982 (1)

F. Briones and D. M. Collins, “Low temperature photoluminescence of lightly Si-doped and undoped MBE GaAs,” J. Electronic Materials 11(4), 847–866 (1982).
[Crossref]

1975 (1)

H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV,” J. Appl. Physics 46, 250–257 (1975).
[Crossref]

1972 (1)

K. Osamura and Y. Murakami, “Free carrier absorption in n-GaAs,” Japanese J. Appl. Physics 11, 365 (1972).
[Crossref]

1957 (1)

W. G. Spitzer and H. Y. Fan, “Determination of optical constants and carrier effective mass of semiconductors,” Phys. Rev. 106, 882–890 (1957).
[Crossref]

Adler, D. L.

S. Schuppler, D. L. Adler, L. N. Pfeiffer, K. W. West, E. E. Chaban, and P. H. Citrin, “Identifying and quantifying point defects in semiconductors using x-ray-absorption spectroscopy: Si-doped GaAs,” Phys. Rev. B 51(16), 10527–10538 (1995).
[Crossref]

Adomavicius, R.

V. L. Malevich, R. Adomavicius, and A. Krotkus, “THz emission from semiconductor surfaces,” Comptes Rendus Physique 9(2), 130–141 (2008).
[Crossref]

A. Krotkus, A. Arlauskas, R. Adomavicius, I. Nevinskas, and V. L. Malevich, “Physical mechanisms of surface terahertz emission from semiconductors,” in Terahertz Emitters, Receivers, and Applications VII, Proc. SPIE9934, 993405 (2016).

Alfaro-Gomez, M.

M. Alfaro-Gomez and E. Castro-Camus, “The role of bandgap energy excess in surface emission of terahertz radiation from semiconductors,” Appl. Phys. Lett. 110(4), 042101 (2017).
[Crossref]

Angelo, J.

M. Sydor, J. Angelo, J. J. Wilson, W. C. Mitchel, and M. Y. Yen, “Photoreflectance from GaAs and GaAs/GaAs interfaces,” Phys. Rev. B 40, 8473–8484 (1989).
[Crossref]

Arlauskas, A.

A. Krotkus, A. Arlauskas, R. Adomavicius, I. Nevinskas, and V. L. Malevich, “Physical mechanisms of surface terahertz emission from semiconductors,” in Terahertz Emitters, Receivers, and Applications VII, Proc. SPIE9934, 993405 (2016).

Auston, D. H.

X. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Physics 71(1), 326–338 (1992).
[Crossref]

Bertulis, K.

K. Liu, A. Krotkus, K. Bertulis, J. Xu, and X.-C. Zhang, “Terahertz radiation from n-type GaAs with Be-doped low-temperature-grown GaAs surface layers,” J. Appl. Physics 94(5), 3651–3653 (2003).
[Crossref]

Bratschitsch, R.

J. Darmo, G. Strasser, T. Muller, R. Bratschitsch, and K. Unterrainer, “Surface-modified GaAs terahertz plasmon emitter,” Appl. Phys. Lett. 81(5), 871–873 (2002).
[Crossref]

Briones, F.

F. Briones and D. M. Collins, “Low temperature photoluminescence of lightly Si-doped and undoped MBE GaAs,” J. Electronic Materials 11(4), 847–866 (1982).
[Crossref]

Cadatal-Raduban, M.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edamura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103(4), 825–829 (2011).
[Crossref]

Calawa, A. R.

M. Kaminska, Z. Liliental-Weber, E. R. Weber, T. George, J. B. Kortright, F. W. Smith, B. Tsaur, and A. R. Calawa, “Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 54(19), 1881–1883 (1989).
[Crossref]

Casey, H. C.

H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV,” J. Appl. Physics 46, 250–257 (1975).
[Crossref]

Castro-Camus, E.

M. Alfaro-Gomez and E. Castro-Camus, “The role of bandgap energy excess in surface emission of terahertz radiation from semiconductors,” Appl. Phys. Lett. 110(4), 042101 (2017).
[Crossref]

Chaban, E. E.

S. Schuppler, D. L. Adler, L. N. Pfeiffer, K. W. West, E. E. Chaban, and P. H. Citrin, “Identifying and quantifying point defects in semiconductors using x-ray-absorption spectroscopy: Si-doped GaAs,” Phys. Rev. B 51(16), 10527–10538 (1995).
[Crossref]

Chen, W. M.

X. Liu, A. Prasad, W. M. Chen, A. Kurpiewski, A. Stoschek, Z. Liliental-Weber, and E. R. Weber, “Mechanism responsible for the semi-insulating properties of low-temperature-grown GaAs,” Appl. Phys. Lett. 65(23), 3002–3004 (1994).
[Crossref]

Citrin, P. H.

S. Schuppler, D. L. Adler, L. N. Pfeiffer, K. W. West, E. E. Chaban, and P. H. Citrin, “Identifying and quantifying point defects in semiconductors using x-ray-absorption spectroscopy: Si-doped GaAs,” Phys. Rev. B 51(16), 10527–10538 (1995).
[Crossref]

Collins, D. M.

F. Briones and D. M. Collins, “Low temperature photoluminescence of lightly Si-doped and undoped MBE GaAs,” J. Electronic Materials 11(4), 847–866 (1982).
[Crossref]

Corchia, A.

M. B. Johnston, A. Dowd, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Enhancement of THz emission from semiconductor surfaces,” in Proceedings of IEEE Tenth International Conference on Terahertz Electronics, (IEEE, 2002), pp. 48–51.

Darmo, J.

J. Darmo, G. Strasser, T. Muller, R. Bratschitsch, and K. Unterrainer, “Surface-modified GaAs terahertz plasmon emitter,” Appl. Phys. Lett. 81(5), 871–873 (2002).
[Crossref]

Davies, A. G.

M. B. Johnston, A. Dowd, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Enhancement of THz emission from semiconductor surfaces,” in Proceedings of IEEE Tenth International Conference on Terahertz Electronics, (IEEE, 2002), pp. 48–51.

Dowd, A.

M. B. Johnston, A. Dowd, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Enhancement of THz emission from semiconductor surfaces,” in Proceedings of IEEE Tenth International Conference on Terahertz Electronics, (IEEE, 2002), pp. 48–51.

Edamura, T.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edamura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103(4), 825–829 (2011).
[Crossref]

C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz Radiation from InAs Films on Silicon Substrates Excited by Femtosecond Laser Pulses,” Japanese J. Appl. Physics 48(1R), 010211 (2009).
[Crossref]

Estacio, E.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edamura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103(4), 825–829 (2011).
[Crossref]

Estacio, E. S.

C. P. Sadia, J. Muldera, E. S. Estacio, A. S. Somintac, A. A. Salvador, C. T. Que, K. Yamamoto, and M. Tani, “Interruption-assisted epitaxy of faceted p-InAs on buffered GaSb for terahertz emitters,” Appl. Phys. Express 8, 035501 (2015).
[Crossref]

E. A. P. Prieto, S. A. B. Vizcara, A. S. Somintac, A. A. Salvador, E. S. Estacio, C. T. Que, K. Yamamoto, and M. Tani, “Terahertz emission enhancement in low-temperature-grown GaAs with an n-GaAs buffer in reflection and transmission excitation geometries,” J. Opt. Soc. Am. B 31(2), 291 (2014).
[Crossref]

Fan, H. Y.

W. G. Spitzer and H. Y. Fan, “Determination of optical constants and carrier effective mass of semiconductors,” Phys. Rev. 106, 882–890 (1957).
[Crossref]

Farrow, R. F. C.

R. F. C. Farrow, Molecular Beam Epitaxy (Noyes Publications, 1995).

Fujii, K.-I.

M. Suzuki, M. Tonouchi, K.-I. Fujii, H. Ohtake, and T. Hirosumi, “Excitation wavelength dependence of terahertz emission from semiconductor surface,” Appl. Phys. Lett. 89(9), 091111 (2006).
[Crossref]

Gebauer, J.

M. Luysberg, H. Sohn, A. Prasad, P. Specht, Z. Liliental- Weber, E. R. Weber, J. Gebauer, and R. Krause-Rehberg, “Effects of the growth temperature and As/Ga flux ratio on the incorporation of excess As into low temperature grown GaAs,” J. Appl. Physics 83(1), 561–566 (1998).
[Crossref]

George, T.

M. Kaminska, Z. Liliental-Weber, E. R. Weber, T. George, J. B. Kortright, F. W. Smith, B. Tsaur, and A. R. Calawa, “Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 54(19), 1881–1883 (1989).
[Crossref]

Gu, P.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Physics 91(9), 5533–5537 (2002).
[Crossref]

Hamauchi, S.

S. Sasa, Y. Kinoshita, M. Tatsumi, M. Koyama, T. Maemoto, S. Hamauchi, I. Kawayama, and M. Tonouchi, “Study for Enhancement of Terahertz Radiation Using GaSb/InAs Heterostructures,” J. Phys.: Conference Series 906(1), 012015 (2017).

Hangyo, M.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edamura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103(4), 825–829 (2011).
[Crossref]

C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz Radiation from InAs Films on Silicon Substrates Excited by Femtosecond Laser Pulses,” Japanese J. Appl. Physics 48(1R), 010211 (2009).
[Crossref]

Hasegawa, T.

H. Takeuchi, J. Yanagisawa, T. Hasegawa, and M. Nakayama, “Enhancement of terahertz electromagnetic wave emission from an undoped GaAs/n-type GaAs epitaxial layer structure,” Appl. Phys. Lett. 93(8), 081916 (2008).
[Crossref]

Hata, M.

S. Tsuruta, H. Takeuchi, H. Yamada, M. Hata, and M. Nakayama, “Enhancement mechanism of terahertz radiation from coherent longitudinal optical phonons in undoped GaAs/n-type GaAs epitaxial structures,” J. Appl. Physics 113(14), 143502 (2013).
[Crossref]

Hirosumi, T.

M. Suzuki, M. Tonouchi, K.-I. Fujii, H. Ohtake, and T. Hirosumi, “Excitation wavelength dependence of terahertz emission from semiconductor surface,” Appl. Phys. Lett. 89(9), 091111 (2006).
[Crossref]

Inoue, M.

S. Sasa, S. Umino, Y. Ishibashi, T. Maemoto, M. Inoue, K. Takeya, and M. Tonouchi, “Intense Terahertz Radiation from InAs Thin Films,” J. Infrared, Millimeter, and Terahertz Waves 32(5), 646–654 (2011).
[Crossref]

Inoue, R.

Ishibashi, Y.

S. Sasa, S. Umino, Y. Ishibashi, T. Maemoto, M. Inoue, K. Takeya, and M. Tonouchi, “Intense Terahertz Radiation from InAs Thin Films,” J. Infrared, Millimeter, and Terahertz Waves 32(5), 646–654 (2011).
[Crossref]

Jaculbia, R.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edamura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103(4), 825–829 (2011).
[Crossref]

Johnston, M. B.

M. B. Johnston, A. Dowd, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Enhancement of THz emission from semiconductor surfaces,” in Proceedings of IEEE Tenth International Conference on Terahertz Electronics, (IEEE, 2002), pp. 48–51.

Kaminska, M.

M. Kaminska, Z. Liliental-Weber, E. R. Weber, T. George, J. B. Kortright, F. W. Smith, B. Tsaur, and A. R. Calawa, “Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 54(19), 1881–1883 (1989).
[Crossref]

Kawayama, I.

S. Sasa, Y. Kinoshita, M. Tatsumi, M. Koyama, T. Maemoto, S. Hamauchi, I. Kawayama, and M. Tonouchi, “Study for Enhancement of Terahertz Radiation Using GaSb/InAs Heterostructures,” J. Phys.: Conference Series 906(1), 012015 (2017).

Kinoshita, Y.

S. Sasa, Y. Kinoshita, M. Tatsumi, M. Koyama, T. Maemoto, S. Hamauchi, I. Kawayama, and M. Tonouchi, “Study for Enhancement of Terahertz Radiation Using GaSb/InAs Heterostructures,” J. Phys.: Conference Series 906(1), 012015 (2017).

Kono, S.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Physics 91(9), 5533–5537 (2002).
[Crossref]

Kortright, J. B.

M. Kaminska, Z. Liliental-Weber, E. R. Weber, T. George, J. B. Kortright, F. W. Smith, B. Tsaur, and A. R. Calawa, “Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 54(19), 1881–1883 (1989).
[Crossref]

Koyama, M.

S. Sasa, Y. Kinoshita, M. Tatsumi, M. Koyama, T. Maemoto, S. Hamauchi, I. Kawayama, and M. Tonouchi, “Study for Enhancement of Terahertz Radiation Using GaSb/InAs Heterostructures,” J. Phys.: Conference Series 906(1), 012015 (2017).

Kozub, M.

M. Kozub, K. Nishisaka, T. Maemoto, S. Sasa, K. Takayama, and M. Tonouchi, “Reflection Layer Mediated Enhancement of Terahertz Radiation Utilizing Heavily-Doped InAs Thin FilmsM,” J. Infrared, Millimeter, and Terahertz Waves 36(5), 423–429 (2015).
[Crossref]

Krause-Rehberg, R.

M. Luysberg, H. Sohn, A. Prasad, P. Specht, Z. Liliental- Weber, E. R. Weber, J. Gebauer, and R. Krause-Rehberg, “Effects of the growth temperature and As/Ga flux ratio on the incorporation of excess As into low temperature grown GaAs,” J. Appl. Physics 83(1), 561–566 (1998).
[Crossref]

Krotkus, A.

V. L. Malevich, R. Adomavicius, and A. Krotkus, “THz emission from semiconductor surfaces,” Comptes Rendus Physique 9(2), 130–141 (2008).
[Crossref]

K. Liu, A. Krotkus, K. Bertulis, J. Xu, and X.-C. Zhang, “Terahertz radiation from n-type GaAs with Be-doped low-temperature-grown GaAs surface layers,” J. Appl. Physics 94(5), 3651–3653 (2003).
[Crossref]

A. Krotkus, A. Arlauskas, R. Adomavicius, I. Nevinskas, and V. L. Malevich, “Physical mechanisms of surface terahertz emission from semiconductors,” in Terahertz Emitters, Receivers, and Applications VII, Proc. SPIE9934, 993405 (2016).

Kurpiewski, A.

X. Liu, A. Prasad, W. M. Chen, A. Kurpiewski, A. Stoschek, Z. Liliental-Weber, and E. R. Weber, “Mechanism responsible for the semi-insulating properties of low-temperature-grown GaAs,” Appl. Phys. Lett. 65(23), 3002–3004 (1994).
[Crossref]

Lee, Y.-S.

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer Science+Business Media, LLC, 2009).

Lei, X. L.

X. L. Lei and S. Y. Liu, “Nonlinear free-carrier absorption of intense THz radiation in semiconductors,” J. Physics: Condensed Matter 12, 4655 (2000).

Liliental- Weber, Z.

M. Luysberg, H. Sohn, A. Prasad, P. Specht, Z. Liliental- Weber, E. R. Weber, J. Gebauer, and R. Krause-Rehberg, “Effects of the growth temperature and As/Ga flux ratio on the incorporation of excess As into low temperature grown GaAs,” J. Appl. Physics 83(1), 561–566 (1998).
[Crossref]

Liliental-Weber, Z.

X. Liu, A. Prasad, W. M. Chen, A. Kurpiewski, A. Stoschek, Z. Liliental-Weber, and E. R. Weber, “Mechanism responsible for the semi-insulating properties of low-temperature-grown GaAs,” Appl. Phys. Lett. 65(23), 3002–3004 (1994).
[Crossref]

M. Kaminska, Z. Liliental-Weber, E. R. Weber, T. George, J. B. Kortright, F. W. Smith, B. Tsaur, and A. R. Calawa, “Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 54(19), 1881–1883 (1989).
[Crossref]

Lin, C.-J.

C.-C. Wu and C.-J. Lin, “Free-carrier absorption in n-type gallium arsenide films for polar optical phonon scattering,” J. Appl. Physics 79, 781–785 (1996).
[Crossref]

Linfield, E. H.

M. B. Johnston, A. Dowd, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Enhancement of THz emission from semiconductor surfaces,” in Proceedings of IEEE Tenth International Conference on Terahertz Electronics, (IEEE, 2002), pp. 48–51.

Liu, K.

K. Liu, A. Krotkus, K. Bertulis, J. Xu, and X.-C. Zhang, “Terahertz radiation from n-type GaAs with Be-doped low-temperature-grown GaAs surface layers,” J. Appl. Physics 94(5), 3651–3653 (2003).
[Crossref]

Liu, S. Y.

X. L. Lei and S. Y. Liu, “Nonlinear free-carrier absorption of intense THz radiation in semiconductors,” J. Physics: Condensed Matter 12, 4655 (2000).

Liu, X.

X. Liu, A. Prasad, W. M. Chen, A. Kurpiewski, A. Stoschek, Z. Liliental-Weber, and E. R. Weber, “Mechanism responsible for the semi-insulating properties of low-temperature-grown GaAs,” Appl. Phys. Lett. 65(23), 3002–3004 (1994).
[Crossref]

Luysberg, M.

M. Luysberg, H. Sohn, A. Prasad, P. Specht, Z. Liliental- Weber, E. R. Weber, J. Gebauer, and R. Krause-Rehberg, “Effects of the growth temperature and As/Ga flux ratio on the incorporation of excess As into low temperature grown GaAs,” J. Appl. Physics 83(1), 561–566 (1998).
[Crossref]

Maemoto, T.

S. Sasa, Y. Kinoshita, M. Tatsumi, M. Koyama, T. Maemoto, S. Hamauchi, I. Kawayama, and M. Tonouchi, “Study for Enhancement of Terahertz Radiation Using GaSb/InAs Heterostructures,” J. Phys.: Conference Series 906(1), 012015 (2017).

M. Kozub, K. Nishisaka, T. Maemoto, S. Sasa, K. Takayama, and M. Tonouchi, “Reflection Layer Mediated Enhancement of Terahertz Radiation Utilizing Heavily-Doped InAs Thin FilmsM,” J. Infrared, Millimeter, and Terahertz Waves 36(5), 423–429 (2015).
[Crossref]

S. Sasa, S. Umino, Y. Ishibashi, T. Maemoto, M. Inoue, K. Takeya, and M. Tonouchi, “Intense Terahertz Radiation from InAs Thin Films,” J. Infrared, Millimeter, and Terahertz Waves 32(5), 646–654 (2011).
[Crossref]

Malevich, V. L.

V. L. Malevich, R. Adomavicius, and A. Krotkus, “THz emission from semiconductor surfaces,” Comptes Rendus Physique 9(2), 130–141 (2008).
[Crossref]

A. Krotkus, A. Arlauskas, R. Adomavicius, I. Nevinskas, and V. L. Malevich, “Physical mechanisms of surface terahertz emission from semiconductors,” in Terahertz Emitters, Receivers, and Applications VII, Proc. SPIE9934, 993405 (2016).

Misa, J. V.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edamura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103(4), 825–829 (2011).
[Crossref]

Mitchel, W. C.

M. Sydor, J. Angelo, J. J. Wilson, W. C. Mitchel, and M. Y. Yen, “Photoreflectance from GaAs and GaAs/GaAs interfaces,” Phys. Rev. B 40, 8473–8484 (1989).
[Crossref]

Muldera, J.

C. P. Sadia, J. Muldera, E. S. Estacio, A. S. Somintac, A. A. Salvador, C. T. Que, K. Yamamoto, and M. Tani, “Interruption-assisted epitaxy of faceted p-InAs on buffered GaSb for terahertz emitters,” Appl. Phys. Express 8, 035501 (2015).
[Crossref]

Muller, T.

J. Darmo, G. Strasser, T. Muller, R. Bratschitsch, and K. Unterrainer, “Surface-modified GaAs terahertz plasmon emitter,” Appl. Phys. Lett. 81(5), 871–873 (2002).
[Crossref]

Murakami, Y.

K. Osamura and Y. Murakami, “Free carrier absorption in n-GaAs,” Japanese J. Appl. Physics 11, 365 (1972).
[Crossref]

Nakajima, M.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edamura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103(4), 825–829 (2011).
[Crossref]

C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz Radiation from InAs Films on Silicon Substrates Excited by Femtosecond Laser Pulses,” Japanese J. Appl. Physics 48(1R), 010211 (2009).
[Crossref]

Nakayama, M.

S. Tsuruta, H. Takeuchi, H. Yamada, M. Hata, and M. Nakayama, “Enhancement mechanism of terahertz radiation from coherent longitudinal optical phonons in undoped GaAs/n-type GaAs epitaxial structures,” J. Appl. Physics 113(14), 143502 (2013).
[Crossref]

H. Takeuchi, J. Yanagisawa, T. Hasegawa, and M. Nakayama, “Enhancement of terahertz electromagnetic wave emission from an undoped GaAs/n-type GaAs epitaxial layer structure,” Appl. Phys. Lett. 93(8), 081916 (2008).
[Crossref]

Nakazato, T.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edamura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103(4), 825–829 (2011).
[Crossref]

Nevinskas, I.

A. Krotkus, A. Arlauskas, R. Adomavicius, I. Nevinskas, and V. L. Malevich, “Physical mechanisms of surface terahertz emission from semiconductors,” in Terahertz Emitters, Receivers, and Applications VII, Proc. SPIE9934, 993405 (2016).

Ng, K. K.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley and Sons, Inc., 2007).

Nishisaka, K.

M. Kozub, K. Nishisaka, T. Maemoto, S. Sasa, K. Takayama, and M. Tonouchi, “Reflection Layer Mediated Enhancement of Terahertz Radiation Utilizing Heavily-Doped InAs Thin FilmsM,” J. Infrared, Millimeter, and Terahertz Waves 36(5), 423–429 (2015).
[Crossref]

Ohno, Y.

Y. Ohno, T. Taishi, I. Yonenaga, and S. Takeda, “Atomistic structure of stacking faults in a commercial GaAs:Si wafer revealed by cross-sectional scanning tunneling microscopy,” Physica B: Condensed Matter 401–402, 230–233 (2007).
[Crossref]

Ohtake, H.

M. Suzuki, M. Tonouchi, K.-I. Fujii, H. Ohtake, and T. Hirosumi, “Excitation wavelength dependence of terahertz emission from semiconductor surface,” Appl. Phys. Lett. 89(9), 091111 (2006).
[Crossref]

Osamura, K.

K. Osamura and Y. Murakami, “Free carrier absorption in n-GaAs,” Japanese J. Appl. Physics 11, 365 (1972).
[Crossref]

Pfeiffer, L. N.

S. Schuppler, D. L. Adler, L. N. Pfeiffer, K. W. West, E. E. Chaban, and P. H. Citrin, “Identifying and quantifying point defects in semiconductors using x-ray-absorption spectroscopy: Si-doped GaAs,” Phys. Rev. B 51(16), 10527–10538 (1995).
[Crossref]

Pham, M. H.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edamura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103(4), 825–829 (2011).
[Crossref]

Prasad, A.

M. Luysberg, H. Sohn, A. Prasad, P. Specht, Z. Liliental- Weber, E. R. Weber, J. Gebauer, and R. Krause-Rehberg, “Effects of the growth temperature and As/Ga flux ratio on the incorporation of excess As into low temperature grown GaAs,” J. Appl. Physics 83(1), 561–566 (1998).
[Crossref]

X. Liu, A. Prasad, W. M. Chen, A. Kurpiewski, A. Stoschek, Z. Liliental-Weber, and E. R. Weber, “Mechanism responsible for the semi-insulating properties of low-temperature-grown GaAs,” Appl. Phys. Lett. 65(23), 3002–3004 (1994).
[Crossref]

Prieto, E. A. P.

Que, C. T.

C. P. Sadia, J. Muldera, E. S. Estacio, A. S. Somintac, A. A. Salvador, C. T. Que, K. Yamamoto, and M. Tani, “Interruption-assisted epitaxy of faceted p-InAs on buffered GaSb for terahertz emitters,” Appl. Phys. Express 8, 035501 (2015).
[Crossref]

E. A. P. Prieto, S. A. B. Vizcara, A. S. Somintac, A. A. Salvador, E. S. Estacio, C. T. Que, K. Yamamoto, and M. Tani, “Terahertz emission enhancement in low-temperature-grown GaAs with an n-GaAs buffer in reflection and transmission excitation geometries,” J. Opt. Soc. Am. B 31(2), 291 (2014).
[Crossref]

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edamura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103(4), 825–829 (2011).
[Crossref]

C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz Radiation from InAs Films on Silicon Substrates Excited by Femtosecond Laser Pulses,” Japanese J. Appl. Physics 48(1R), 010211 (2009).
[Crossref]

Sadia, C. P.

C. P. Sadia, J. Muldera, E. S. Estacio, A. S. Somintac, A. A. Salvador, C. T. Que, K. Yamamoto, and M. Tani, “Interruption-assisted epitaxy of faceted p-InAs on buffered GaSb for terahertz emitters,” Appl. Phys. Express 8, 035501 (2015).
[Crossref]

Sakai, K.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Physics 91(9), 5533–5537 (2002).
[Crossref]

K. Sakai, Terahertz Optoelectronics (Springer-VerlagBerlin Heidelberg, 2005).
[Crossref]

Salvador, A.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edamura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103(4), 825–829 (2011).
[Crossref]

Salvador, A. A.

C. P. Sadia, J. Muldera, E. S. Estacio, A. S. Somintac, A. A. Salvador, C. T. Que, K. Yamamoto, and M. Tani, “Interruption-assisted epitaxy of faceted p-InAs on buffered GaSb for terahertz emitters,” Appl. Phys. Express 8, 035501 (2015).
[Crossref]

E. A. P. Prieto, S. A. B. Vizcara, A. S. Somintac, A. A. Salvador, E. S. Estacio, C. T. Que, K. Yamamoto, and M. Tani, “Terahertz emission enhancement in low-temperature-grown GaAs with an n-GaAs buffer in reflection and transmission excitation geometries,” J. Opt. Soc. Am. B 31(2), 291 (2014).
[Crossref]

Sarukura, N.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edamura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103(4), 825–829 (2011).
[Crossref]

Sasa, S.

S. Sasa, Y. Kinoshita, M. Tatsumi, M. Koyama, T. Maemoto, S. Hamauchi, I. Kawayama, and M. Tonouchi, “Study for Enhancement of Terahertz Radiation Using GaSb/InAs Heterostructures,” J. Phys.: Conference Series 906(1), 012015 (2017).

M. Kozub, K. Nishisaka, T. Maemoto, S. Sasa, K. Takayama, and M. Tonouchi, “Reflection Layer Mediated Enhancement of Terahertz Radiation Utilizing Heavily-Doped InAs Thin FilmsM,” J. Infrared, Millimeter, and Terahertz Waves 36(5), 423–429 (2015).
[Crossref]

S. Sasa, S. Umino, Y. Ishibashi, T. Maemoto, M. Inoue, K. Takeya, and M. Tonouchi, “Intense Terahertz Radiation from InAs Thin Films,” J. Infrared, Millimeter, and Terahertz Waves 32(5), 646–654 (2011).
[Crossref]

Schuppler, S.

S. Schuppler, D. L. Adler, L. N. Pfeiffer, K. W. West, E. E. Chaban, and P. H. Citrin, “Identifying and quantifying point defects in semiconductors using x-ray-absorption spectroscopy: Si-doped GaAs,” Phys. Rev. B 51(16), 10527–10538 (1995).
[Crossref]

Sell, D. D.

H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV,” J. Appl. Physics 46, 250–257 (1975).
[Crossref]

Shimizu, T.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edamura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103(4), 825–829 (2011).
[Crossref]

Smith, F. W.

M. Kaminska, Z. Liliental-Weber, E. R. Weber, T. George, J. B. Kortright, F. W. Smith, B. Tsaur, and A. R. Calawa, “Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 54(19), 1881–1883 (1989).
[Crossref]

Sohn, H.

M. Luysberg, H. Sohn, A. Prasad, P. Specht, Z. Liliental- Weber, E. R. Weber, J. Gebauer, and R. Krause-Rehberg, “Effects of the growth temperature and As/Ga flux ratio on the incorporation of excess As into low temperature grown GaAs,” J. Appl. Physics 83(1), 561–566 (1998).
[Crossref]

Somintac, A.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edamura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103(4), 825–829 (2011).
[Crossref]

Somintac, A. S.

C. P. Sadia, J. Muldera, E. S. Estacio, A. S. Somintac, A. A. Salvador, C. T. Que, K. Yamamoto, and M. Tani, “Interruption-assisted epitaxy of faceted p-InAs on buffered GaSb for terahertz emitters,” Appl. Phys. Express 8, 035501 (2015).
[Crossref]

E. A. P. Prieto, S. A. B. Vizcara, A. S. Somintac, A. A. Salvador, E. S. Estacio, C. T. Que, K. Yamamoto, and M. Tani, “Terahertz emission enhancement in low-temperature-grown GaAs with an n-GaAs buffer in reflection and transmission excitation geometries,” J. Opt. Soc. Am. B 31(2), 291 (2014).
[Crossref]

Specht, P.

M. Luysberg, H. Sohn, A. Prasad, P. Specht, Z. Liliental- Weber, E. R. Weber, J. Gebauer, and R. Krause-Rehberg, “Effects of the growth temperature and As/Ga flux ratio on the incorporation of excess As into low temperature grown GaAs,” J. Appl. Physics 83(1), 561–566 (1998).
[Crossref]

Spitzer, W. G.

W. G. Spitzer and H. Y. Fan, “Determination of optical constants and carrier effective mass of semiconductors,” Phys. Rev. 106, 882–890 (1957).
[Crossref]

Stoschek, A.

X. Liu, A. Prasad, W. M. Chen, A. Kurpiewski, A. Stoschek, Z. Liliental-Weber, and E. R. Weber, “Mechanism responsible for the semi-insulating properties of low-temperature-grown GaAs,” Appl. Phys. Lett. 65(23), 3002–3004 (1994).
[Crossref]

Strasser, G.

J. Darmo, G. Strasser, T. Muller, R. Bratschitsch, and K. Unterrainer, “Surface-modified GaAs terahertz plasmon emitter,” Appl. Phys. Lett. 81(5), 871–873 (2002).
[Crossref]

Suzuki, M.

M. Suzuki, M. Tonouchi, K.-I. Fujii, H. Ohtake, and T. Hirosumi, “Excitation wavelength dependence of terahertz emission from semiconductor surface,” Appl. Phys. Lett. 89(9), 091111 (2006).
[Crossref]

Sydor, M.

M. Sydor, J. Angelo, J. J. Wilson, W. C. Mitchel, and M. Y. Yen, “Photoreflectance from GaAs and GaAs/GaAs interfaces,” Phys. Rev. B 40, 8473–8484 (1989).
[Crossref]

Sze, S. M.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley and Sons, Inc., 2007).

Taishi, T.

Y. Ohno, T. Taishi, I. Yonenaga, and S. Takeda, “Atomistic structure of stacking faults in a commercial GaAs:Si wafer revealed by cross-sectional scanning tunneling microscopy,” Physica B: Condensed Matter 401–402, 230–233 (2007).
[Crossref]

Takatori, S.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edamura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103(4), 825–829 (2011).
[Crossref]

Takayama, K.

M. Kozub, K. Nishisaka, T. Maemoto, S. Sasa, K. Takayama, and M. Tonouchi, “Reflection Layer Mediated Enhancement of Terahertz Radiation Utilizing Heavily-Doped InAs Thin FilmsM,” J. Infrared, Millimeter, and Terahertz Waves 36(5), 423–429 (2015).
[Crossref]

R. Inoue, K. Takayama, and M. Tonouchi, “Angular dependence of terahertz emission from semiconductor surfaces photoexcited by femtosecond optical pulses,” J. Opt. Soc. Am. B 26(9), A14–A22 (2009).
[Crossref]

Takeda, S.

Y. Ohno, T. Taishi, I. Yonenaga, and S. Takeda, “Atomistic structure of stacking faults in a commercial GaAs:Si wafer revealed by cross-sectional scanning tunneling microscopy,” Physica B: Condensed Matter 401–402, 230–233 (2007).
[Crossref]

Takeuchi, H.

S. Tsuruta, H. Takeuchi, H. Yamada, M. Hata, and M. Nakayama, “Enhancement mechanism of terahertz radiation from coherent longitudinal optical phonons in undoped GaAs/n-type GaAs epitaxial structures,” J. Appl. Physics 113(14), 143502 (2013).
[Crossref]

H. Takeuchi, J. Yanagisawa, T. Hasegawa, and M. Nakayama, “Enhancement of terahertz electromagnetic wave emission from an undoped GaAs/n-type GaAs epitaxial layer structure,” Appl. Phys. Lett. 93(8), 081916 (2008).
[Crossref]

Takeya, K.

S. Sasa, S. Umino, Y. Ishibashi, T. Maemoto, M. Inoue, K. Takeya, and M. Tonouchi, “Intense Terahertz Radiation from InAs Thin Films,” J. Infrared, Millimeter, and Terahertz Waves 32(5), 646–654 (2011).
[Crossref]

Tani, M.

C. P. Sadia, J. Muldera, E. S. Estacio, A. S. Somintac, A. A. Salvador, C. T. Que, K. Yamamoto, and M. Tani, “Interruption-assisted epitaxy of faceted p-InAs on buffered GaSb for terahertz emitters,” Appl. Phys. Express 8, 035501 (2015).
[Crossref]

E. A. P. Prieto, S. A. B. Vizcara, A. S. Somintac, A. A. Salvador, E. S. Estacio, C. T. Que, K. Yamamoto, and M. Tani, “Terahertz emission enhancement in low-temperature-grown GaAs with an n-GaAs buffer in reflection and transmission excitation geometries,” J. Opt. Soc. Am. B 31(2), 291 (2014).
[Crossref]

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edamura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103(4), 825–829 (2011).
[Crossref]

C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz Radiation from InAs Films on Silicon Substrates Excited by Femtosecond Laser Pulses,” Japanese J. Appl. Physics 48(1R), 010211 (2009).
[Crossref]

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Physics 91(9), 5533–5537 (2002).
[Crossref]

Tatsumi, M.

S. Sasa, Y. Kinoshita, M. Tatsumi, M. Koyama, T. Maemoto, S. Hamauchi, I. Kawayama, and M. Tonouchi, “Study for Enhancement of Terahertz Radiation Using GaSb/InAs Heterostructures,” J. Phys.: Conference Series 906(1), 012015 (2017).

Tonouchi, M.

S. Sasa, Y. Kinoshita, M. Tatsumi, M. Koyama, T. Maemoto, S. Hamauchi, I. Kawayama, and M. Tonouchi, “Study for Enhancement of Terahertz Radiation Using GaSb/InAs Heterostructures,” J. Phys.: Conference Series 906(1), 012015 (2017).

M. Kozub, K. Nishisaka, T. Maemoto, S. Sasa, K. Takayama, and M. Tonouchi, “Reflection Layer Mediated Enhancement of Terahertz Radiation Utilizing Heavily-Doped InAs Thin FilmsM,” J. Infrared, Millimeter, and Terahertz Waves 36(5), 423–429 (2015).
[Crossref]

S. Sasa, S. Umino, Y. Ishibashi, T. Maemoto, M. Inoue, K. Takeya, and M. Tonouchi, “Intense Terahertz Radiation from InAs Thin Films,” J. Infrared, Millimeter, and Terahertz Waves 32(5), 646–654 (2011).
[Crossref]

R. Inoue, K. Takayama, and M. Tonouchi, “Angular dependence of terahertz emission from semiconductor surfaces photoexcited by femtosecond optical pulses,” J. Opt. Soc. Am. B 26(9), A14–A22 (2009).
[Crossref]

M. Suzuki, M. Tonouchi, K.-I. Fujii, H. Ohtake, and T. Hirosumi, “Excitation wavelength dependence of terahertz emission from semiconductor surface,” Appl. Phys. Lett. 89(9), 091111 (2006).
[Crossref]

Tsaur, B.

M. Kaminska, Z. Liliental-Weber, E. R. Weber, T. George, J. B. Kortright, F. W. Smith, B. Tsaur, and A. R. Calawa, “Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 54(19), 1881–1883 (1989).
[Crossref]

Tsuruta, S.

S. Tsuruta, H. Takeuchi, H. Yamada, M. Hata, and M. Nakayama, “Enhancement mechanism of terahertz radiation from coherent longitudinal optical phonons in undoped GaAs/n-type GaAs epitaxial structures,” J. Appl. Physics 113(14), 143502 (2013).
[Crossref]

Umino, S.

S. Sasa, S. Umino, Y. Ishibashi, T. Maemoto, M. Inoue, K. Takeya, and M. Tonouchi, “Intense Terahertz Radiation from InAs Thin Films,” J. Infrared, Millimeter, and Terahertz Waves 32(5), 646–654 (2011).
[Crossref]

Unterrainer, K.

J. Darmo, G. Strasser, T. Muller, R. Bratschitsch, and K. Unterrainer, “Surface-modified GaAs terahertz plasmon emitter,” Appl. Phys. Lett. 81(5), 871–873 (2002).
[Crossref]

Vizcara, S. A. B.

Weber, E. R.

M. Luysberg, H. Sohn, A. Prasad, P. Specht, Z. Liliental- Weber, E. R. Weber, J. Gebauer, and R. Krause-Rehberg, “Effects of the growth temperature and As/Ga flux ratio on the incorporation of excess As into low temperature grown GaAs,” J. Appl. Physics 83(1), 561–566 (1998).
[Crossref]

X. Liu, A. Prasad, W. M. Chen, A. Kurpiewski, A. Stoschek, Z. Liliental-Weber, and E. R. Weber, “Mechanism responsible for the semi-insulating properties of low-temperature-grown GaAs,” Appl. Phys. Lett. 65(23), 3002–3004 (1994).
[Crossref]

M. Kaminska, Z. Liliental-Weber, E. R. Weber, T. George, J. B. Kortright, F. W. Smith, B. Tsaur, and A. R. Calawa, “Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 54(19), 1881–1883 (1989).
[Crossref]

Wecht, K. W.

H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV,” J. Appl. Physics 46, 250–257 (1975).
[Crossref]

West, K. W.

S. Schuppler, D. L. Adler, L. N. Pfeiffer, K. W. West, E. E. Chaban, and P. H. Citrin, “Identifying and quantifying point defects in semiconductors using x-ray-absorption spectroscopy: Si-doped GaAs,” Phys. Rev. B 51(16), 10527–10538 (1995).
[Crossref]

Whittaker, D. M.

M. B. Johnston, A. Dowd, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Enhancement of THz emission from semiconductor surfaces,” in Proceedings of IEEE Tenth International Conference on Terahertz Electronics, (IEEE, 2002), pp. 48–51.

Wilson, J. J.

M. Sydor, J. Angelo, J. J. Wilson, W. C. Mitchel, and M. Y. Yen, “Photoreflectance from GaAs and GaAs/GaAs interfaces,” Phys. Rev. B 40, 8473–8484 (1989).
[Crossref]

Wu, C.-C.

C.-C. Wu and C.-J. Lin, “Free-carrier absorption in n-type gallium arsenide films for polar optical phonon scattering,” J. Appl. Physics 79, 781–785 (1996).
[Crossref]

Xu, J.

K. Liu, A. Krotkus, K. Bertulis, J. Xu, and X.-C. Zhang, “Terahertz radiation from n-type GaAs with Be-doped low-temperature-grown GaAs surface layers,” J. Appl. Physics 94(5), 3651–3653 (2003).
[Crossref]

Yamada, H.

S. Tsuruta, H. Takeuchi, H. Yamada, M. Hata, and M. Nakayama, “Enhancement mechanism of terahertz radiation from coherent longitudinal optical phonons in undoped GaAs/n-type GaAs epitaxial structures,” J. Appl. Physics 113(14), 143502 (2013).
[Crossref]

Yamamoto, K.

C. P. Sadia, J. Muldera, E. S. Estacio, A. S. Somintac, A. A. Salvador, C. T. Que, K. Yamamoto, and M. Tani, “Interruption-assisted epitaxy of faceted p-InAs on buffered GaSb for terahertz emitters,” Appl. Phys. Express 8, 035501 (2015).
[Crossref]

E. A. P. Prieto, S. A. B. Vizcara, A. S. Somintac, A. A. Salvador, E. S. Estacio, C. T. Que, K. Yamamoto, and M. Tani, “Terahertz emission enhancement in low-temperature-grown GaAs with an n-GaAs buffer in reflection and transmission excitation geometries,” J. Opt. Soc. Am. B 31(2), 291 (2014).
[Crossref]

Yanagisawa, J.

H. Takeuchi, J. Yanagisawa, T. Hasegawa, and M. Nakayama, “Enhancement of terahertz electromagnetic wave emission from an undoped GaAs/n-type GaAs epitaxial layer structure,” Appl. Phys. Lett. 93(8), 081916 (2008).
[Crossref]

Yen, M. Y.

M. Sydor, J. Angelo, J. J. Wilson, W. C. Mitchel, and M. Y. Yen, “Photoreflectance from GaAs and GaAs/GaAs interfaces,” Phys. Rev. B 40, 8473–8484 (1989).
[Crossref]

Yonenaga, I.

Y. Ohno, T. Taishi, I. Yonenaga, and S. Takeda, “Atomistic structure of stacking faults in a commercial GaAs:Si wafer revealed by cross-sectional scanning tunneling microscopy,” Physica B: Condensed Matter 401–402, 230–233 (2007).
[Crossref]

Yoshioka, T.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edamura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103(4), 825–829 (2011).
[Crossref]

Zhang, X.

X. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Physics 71(1), 326–338 (1992).
[Crossref]

Zhang, X.-C.

K. Liu, A. Krotkus, K. Bertulis, J. Xu, and X.-C. Zhang, “Terahertz radiation from n-type GaAs with Be-doped low-temperature-grown GaAs surface layers,” J. Appl. Physics 94(5), 3651–3653 (2003).
[Crossref]

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Physics 91(9), 5533–5537 (2002).
[Crossref]

Appl. Phys. B (1)

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edamura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103(4), 825–829 (2011).
[Crossref]

Appl. Phys. Express (1)

C. P. Sadia, J. Muldera, E. S. Estacio, A. S. Somintac, A. A. Salvador, C. T. Que, K. Yamamoto, and M. Tani, “Interruption-assisted epitaxy of faceted p-InAs on buffered GaSb for terahertz emitters,” Appl. Phys. Express 8, 035501 (2015).
[Crossref]

Appl. Phys. Lett. (6)

M. Kaminska, Z. Liliental-Weber, E. R. Weber, T. George, J. B. Kortright, F. W. Smith, B. Tsaur, and A. R. Calawa, “Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 54(19), 1881–1883 (1989).
[Crossref]

X. Liu, A. Prasad, W. M. Chen, A. Kurpiewski, A. Stoschek, Z. Liliental-Weber, and E. R. Weber, “Mechanism responsible for the semi-insulating properties of low-temperature-grown GaAs,” Appl. Phys. Lett. 65(23), 3002–3004 (1994).
[Crossref]

J. Darmo, G. Strasser, T. Muller, R. Bratschitsch, and K. Unterrainer, “Surface-modified GaAs terahertz plasmon emitter,” Appl. Phys. Lett. 81(5), 871–873 (2002).
[Crossref]

M. Suzuki, M. Tonouchi, K.-I. Fujii, H. Ohtake, and T. Hirosumi, “Excitation wavelength dependence of terahertz emission from semiconductor surface,” Appl. Phys. Lett. 89(9), 091111 (2006).
[Crossref]

M. Alfaro-Gomez and E. Castro-Camus, “The role of bandgap energy excess in surface emission of terahertz radiation from semiconductors,” Appl. Phys. Lett. 110(4), 042101 (2017).
[Crossref]

H. Takeuchi, J. Yanagisawa, T. Hasegawa, and M. Nakayama, “Enhancement of terahertz electromagnetic wave emission from an undoped GaAs/n-type GaAs epitaxial layer structure,” Appl. Phys. Lett. 93(8), 081916 (2008).
[Crossref]

Comptes Rendus Physique (1)

V. L. Malevich, R. Adomavicius, and A. Krotkus, “THz emission from semiconductor surfaces,” Comptes Rendus Physique 9(2), 130–141 (2008).
[Crossref]

J. Appl. Physics (7)

K. Liu, A. Krotkus, K. Bertulis, J. Xu, and X.-C. Zhang, “Terahertz radiation from n-type GaAs with Be-doped low-temperature-grown GaAs surface layers,” J. Appl. Physics 94(5), 3651–3653 (2003).
[Crossref]

X. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Physics 71(1), 326–338 (1992).
[Crossref]

M. Luysberg, H. Sohn, A. Prasad, P. Specht, Z. Liliental- Weber, E. R. Weber, J. Gebauer, and R. Krause-Rehberg, “Effects of the growth temperature and As/Ga flux ratio on the incorporation of excess As into low temperature grown GaAs,” J. Appl. Physics 83(1), 561–566 (1998).
[Crossref]

S. Tsuruta, H. Takeuchi, H. Yamada, M. Hata, and M. Nakayama, “Enhancement mechanism of terahertz radiation from coherent longitudinal optical phonons in undoped GaAs/n-type GaAs epitaxial structures,” J. Appl. Physics 113(14), 143502 (2013).
[Crossref]

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Physics 91(9), 5533–5537 (2002).
[Crossref]

H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV,” J. Appl. Physics 46, 250–257 (1975).
[Crossref]

C.-C. Wu and C.-J. Lin, “Free-carrier absorption in n-type gallium arsenide films for polar optical phonon scattering,” J. Appl. Physics 79, 781–785 (1996).
[Crossref]

J. Electronic Materials (1)

F. Briones and D. M. Collins, “Low temperature photoluminescence of lightly Si-doped and undoped MBE GaAs,” J. Electronic Materials 11(4), 847–866 (1982).
[Crossref]

J. Infrared, Millimeter, and Terahertz Waves (2)

S. Sasa, S. Umino, Y. Ishibashi, T. Maemoto, M. Inoue, K. Takeya, and M. Tonouchi, “Intense Terahertz Radiation from InAs Thin Films,” J. Infrared, Millimeter, and Terahertz Waves 32(5), 646–654 (2011).
[Crossref]

M. Kozub, K. Nishisaka, T. Maemoto, S. Sasa, K. Takayama, and M. Tonouchi, “Reflection Layer Mediated Enhancement of Terahertz Radiation Utilizing Heavily-Doped InAs Thin FilmsM,” J. Infrared, Millimeter, and Terahertz Waves 36(5), 423–429 (2015).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys.: Conference Series (1)

S. Sasa, Y. Kinoshita, M. Tatsumi, M. Koyama, T. Maemoto, S. Hamauchi, I. Kawayama, and M. Tonouchi, “Study for Enhancement of Terahertz Radiation Using GaSb/InAs Heterostructures,” J. Phys.: Conference Series 906(1), 012015 (2017).

J. Physics: Condensed Matter (1)

X. L. Lei and S. Y. Liu, “Nonlinear free-carrier absorption of intense THz radiation in semiconductors,” J. Physics: Condensed Matter 12, 4655 (2000).

Japanese J. Appl. Physics (2)

K. Osamura and Y. Murakami, “Free carrier absorption in n-GaAs,” Japanese J. Appl. Physics 11, 365 (1972).
[Crossref]

C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz Radiation from InAs Films on Silicon Substrates Excited by Femtosecond Laser Pulses,” Japanese J. Appl. Physics 48(1R), 010211 (2009).
[Crossref]

Phys. Rev. (1)

W. G. Spitzer and H. Y. Fan, “Determination of optical constants and carrier effective mass of semiconductors,” Phys. Rev. 106, 882–890 (1957).
[Crossref]

Phys. Rev. B (2)

M. Sydor, J. Angelo, J. J. Wilson, W. C. Mitchel, and M. Y. Yen, “Photoreflectance from GaAs and GaAs/GaAs interfaces,” Phys. Rev. B 40, 8473–8484 (1989).
[Crossref]

S. Schuppler, D. L. Adler, L. N. Pfeiffer, K. W. West, E. E. Chaban, and P. H. Citrin, “Identifying and quantifying point defects in semiconductors using x-ray-absorption spectroscopy: Si-doped GaAs,” Phys. Rev. B 51(16), 10527–10538 (1995).
[Crossref]

Physica B: Condensed Matter (1)

Y. Ohno, T. Taishi, I. Yonenaga, and S. Takeda, “Atomistic structure of stacking faults in a commercial GaAs:Si wafer revealed by cross-sectional scanning tunneling microscopy,” Physica B: Condensed Matter 401–402, 230–233 (2007).
[Crossref]

Other (6)

K. Sakai, Terahertz Optoelectronics (Springer-VerlagBerlin Heidelberg, 2005).
[Crossref]

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer Science+Business Media, LLC, 2009).

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley and Sons, Inc., 2007).

A. Krotkus, A. Arlauskas, R. Adomavicius, I. Nevinskas, and V. L. Malevich, “Physical mechanisms of surface terahertz emission from semiconductors,” in Terahertz Emitters, Receivers, and Applications VII, Proc. SPIE9934, 993405 (2016).

R. F. C. Farrow, Molecular Beam Epitaxy (Noyes Publications, 1995).

M. B. Johnston, A. Dowd, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Enhancement of THz emission from semiconductor surfaces,” in Proceedings of IEEE Tenth International Conference on Terahertz Electronics, (IEEE, 2002), pp. 48–51.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the samples grown via MBE.
Fig. 2
Fig. 2 Sample orientation with respect to the THz-TDS pump beam and detector in (a) reflection and (b) transmission excitation geometries. (c) Sample orientation with respect to the probe, laser and detector in the PR set-up.
Fig. 3
Fig. 3 THz waveform and power spectra (inset) of the samples in reflection geometry.
Fig. 4
Fig. 4 THz waveform and power spectra (inset) of the samples in transmission geometry.
Fig. 5
Fig. 5 (Left) PR signal of the samples. (Right) Linearized plot of the FKO extrema against the FKO index.
Fig. 6
Fig. 6 (a) X-ray diffraction and (b) Raman Spectra of samples A and B.
Fig. 7
Fig. 7 (Left) PL spectra of samples A and B performed at 11K. (Right) Corresponding peak positions. The PL intensity is normalized with respect to to the PL peak of sample B.

Tables (1)

Tables Icon

Table 1 Peak-to-Peak THz Current of the Samples.

Metrics