Abstract

This work proposed a new kind of photosensitizer doped photopolymer and an optimized fabrication method. Holographic gratings are recorded in a glass-like photopolymer based on methyl methacrylate (MMA) as monomer, 2,2-azo-bisisobutyrolnitrile (AIBN) as thermo-initiator and a cationic initiator with high sensitivity and solubility, titanocene (Irgacure 784, BASF) (TI), as photo-initiator. In our fabrication, an optimized three-step thermal-polymerization method is investigated and depicted. 3 mm thick TI/PMMA photopolymers with different concentrations of AIBN and TI molecules are examined in detail. The photo-physical and photo-chemical processes inside the sample during continuous exposure are analyzed. In our photopolymers, permanent volume holographic gratings with diffraction efficiency approaching 74% and response time close to 20s, which makes this photopolymer available in volume holographic data storage.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Volume holographic recording in Irgacure 784-doped PMMA photopolymer

Ying Liu, Fenglan Fan, Yifan Hong, Jinliang Zang, Guoguo Kang, and Xiaodi Tan
Opt. Express 25(17) 20654-20662 (2017)

Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage

Shiuan Huei Lin, Ken Y. Hsu, Wei-Zheng Chen, and Wha Tzong Whang
Opt. Lett. 25(7) 451-453 (2000)

Improvement of ultrafast holographic performance in silver nanoprisms dispersed photopolymer

Peng Liu, Yu Zhao, Zeren Li, and Xiudong Sun
Opt. Express 26(6) 6993-7004 (2018)

References

  • View by:
  • |
  • |
  • |

  1. W. G. Lu, R. Xiao, J. Liu, L. Wang, H. Zhong, and Y. Wang, “Large-area rainbow holographic diffraction gratings on a curved surface using transferred photopolymer films,” Opt. Lett. 43(4), 675–678 (2018).
    [Crossref] [PubMed]
  2. M. L. Hsieh, W. C. Chen, H. Y. Chen, and S.-Y. Lin, “Optimization of light diffraction efficiency and its enhancement from a doped-PMMA volume holographic material,” Opt. Commun. 308, 121–124 (2013).
    [Crossref]
  3. L. P. Krul, V. Matusevich, D. Hoff, R. Kowarschik, Y. I. Matusevich, G. V. Butovskaya, and E. A. Murashko, “Modified polymethylmethacrylate as a base for thermostable optical recording media,” Opt. Express 15(14), 8543–8549 (2007).
    [Crossref] [PubMed]
  4. P. H. Wang, V. R. Singh, J. M. Wong, K. B. Sung, and Y. Luo, “Non-axial-scanning multifocal confocal microscopy with multiplexed volume holographic gratings,” Opt. Lett. 42(2), 346–349 (2017).
    [Crossref] [PubMed]
  5. Y. W. Yu, C. H. Yang, T. H. Yang, S. H. Lin, and C. C. Sun, “Analysis of a lens-array modulated coaxial holographic data storage system with considering recording dynamics of material,” Opt. Express 25(19), 22947–22958 (2017).
    [Crossref] [PubMed]
  6. D. Yu, H. Liu, Y. Jiang, and X. Sun, “Holographic storage stability in PQ-PMMA bulk photopolymer,” Opt. Commun. 283(21), 4219–4223 (2010).
    [Crossref]
  7. J. Wang, X. Sun, S. Luo, and Y. Jiang, “The shift of Bragg angular selectivity curve in darkness in glass-like photopolymer for holographic recording,” Opt. Mater. 32(1), 261–265 (2009).
    [Crossref]
  8. J. Wang, X. Sun, S. Luo, and Y. Jiang, “Study on the mechanism of dark enhancement in phenanthrenequinone-doped poly (methyl methacrylate) photopolymer for holographic recording,” Opt. Commun. 283(9), 1707–1710 (2010).
    [Crossref]
  9. S. Liu, M. R. Gleeson, J. Guo, J. T. Sheridan, E. Tolstik, V. Matusevich, and R. Kowarschik, “Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material,” J. Opt. Soc. Am. B 28(11), 2833–2843 (2011).
    [Crossref]
  10. H. Li, Y. Qi, and J. T. Sheridan, “Three-dimensional extended nonlocal photopolymerization driven diffusion model. Part I. Absorption,” J. Opt. Soc. Am. B 31(11), 2638–2647 (2014).
    [Crossref]
  11. H. Li, Y. Qi, and J. T. Sheridan, “Three-dimensional extended nonlocal photopolymerization driven diffusion model. Part II. Photopolymerization and model development,” J. Opt. Soc. Am. B 31(11), 2648–2656 (2014).
    [Crossref]
  12. H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
    [Crossref] [PubMed]
  13. X. Sun, F. Chang, and K. Gai, “Optoelectronic fast response properties of PQ/PMMA polymer,” Mater. Today: Proc. 3(2), 632–634 (2016).
    [Crossref]
  14. P. Liu, F. Chang, Y. Zhao, Z. Li, and X. Sun, “Ultrafast volume holographic storage on PQ/PMMA photopolymers with nanosecond pulsed exposures,” Opt. Express 26(2), 1072–1082 (2018).
    [Crossref] [PubMed]
  15. P. Liu, Y. Zhao, Z. Li, and X. Sun, “Improvement of ultrafast holographic performance in silver nanoprisms dispersed photopolymer,” Opt. Express 26(6), 6993–7004 (2018).
    [Crossref] [PubMed]
  16. D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part I: Short exposure,” Opt. Commun. 330, 191–198 (2014).
    [Crossref]
  17. D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part II: Consecutive exposure and dark decay,” Opt. Commun. 330, 199–207 (2014).
    [Crossref]
  18. C. Li, L. Cao, Q. He, and G. Jin, “Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer,” Opt. Express 22(5), 5017–5028 (2014).
    [Crossref] [PubMed]
  19. C. Li, L. Cao, J. Li, Q. He, G. Jin, S. Zhang, and F. Zhang, “Improvement of volume holographic performance by plasmon-induced holographic absorption grating,” Appl. Phys. Lett. 102(6), 061108 (2013).
    [Crossref]
  20. L. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, S. Zong, F. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111(14), 141104 (2017).
    [Crossref]
  21. D. Yu, H. Liu, Y. Jiang, and X. Sun, “Mutual diffusion dynamics with nonlocal response in SiO2 nanoparticles dispersed PQ-PMMA bulk photopolymer,” Opt. Express 19(15), 13787–13792 (2011).
    [Crossref] [PubMed]
  22. Y. Luo, J. M. Russo, R. K. Kostuk, and G. Barbastathis, “Silicon oxide nanoparticles doped PQ-PMMA for volume holographic imaging filters,” Opt. Lett. 35(8), 1269–1271 (2010).
    [Crossref] [PubMed]
  23. H. Liu, D. Yu, J. Wang, J. Jiang, and X. Sun, “Holographic grating formation in SiO2 nanoparticle-dispersed PQ-PMMA photopolymer,” Opt. Laser Technol. 44(4), 882–887 (2012).
    [Crossref]
  24. S. H. Lin, Y. N. Hsiao, and K. Y. Hsu, “Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A, Pure Appl. Opt. 11(2), 024012 (2009).
    [Crossref]
  25. D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resinphotopolymer,” J. Appl. Phys. 107(5), 053113 (2010).
    [Crossref]
  26. M. Kawana, J. Takahashi, S. Yasui, and Y. Tomita, “Characterization of volume holographic recording inphotopolymerizable nanoparticle-(thiol-ene) polymer composites at 404 nm,” J. Appl. Phys. 117(5), 053105 (2015).
    [Crossref]
  27. Y. M. Chang, S. C. Yoon, and M. Han, “Photopolymerization of aromatic acrylate containing phosphine oxide backbone and its application to holographic recording,” Opt. Mater. 30(4), 662–668 (2007).
    [Crossref]
  28. Y. Liu, F. Fan, Y. Hong, J. Zang, G. Kang, and X. Tan, “Volume holographic recording in Irgacure 784-doped PMMA photopolymer,” Opt. Express 25(17), 20654–20662 (2017).
    [Crossref] [PubMed]
  29. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Labs Tech. J. 48(9), 2909–2947 (1969).
    [Crossref]
  30. D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
    [Crossref]

2018 (3)

2017 (4)

2016 (1)

X. Sun, F. Chang, and K. Gai, “Optoelectronic fast response properties of PQ/PMMA polymer,” Mater. Today: Proc. 3(2), 632–634 (2016).
[Crossref]

2015 (1)

M. Kawana, J. Takahashi, S. Yasui, and Y. Tomita, “Characterization of volume holographic recording inphotopolymerizable nanoparticle-(thiol-ene) polymer composites at 404 nm,” J. Appl. Phys. 117(5), 053105 (2015).
[Crossref]

2014 (5)

2013 (2)

C. Li, L. Cao, J. Li, Q. He, G. Jin, S. Zhang, and F. Zhang, “Improvement of volume holographic performance by plasmon-induced holographic absorption grating,” Appl. Phys. Lett. 102(6), 061108 (2013).
[Crossref]

M. L. Hsieh, W. C. Chen, H. Y. Chen, and S.-Y. Lin, “Optimization of light diffraction efficiency and its enhancement from a doped-PMMA volume holographic material,” Opt. Commun. 308, 121–124 (2013).
[Crossref]

2012 (1)

H. Liu, D. Yu, J. Wang, J. Jiang, and X. Sun, “Holographic grating formation in SiO2 nanoparticle-dispersed PQ-PMMA photopolymer,” Opt. Laser Technol. 44(4), 882–887 (2012).
[Crossref]

2011 (3)

2010 (5)

Y. Luo, J. M. Russo, R. K. Kostuk, and G. Barbastathis, “Silicon oxide nanoparticles doped PQ-PMMA for volume holographic imaging filters,” Opt. Lett. 35(8), 1269–1271 (2010).
[Crossref] [PubMed]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[Crossref] [PubMed]

J. Wang, X. Sun, S. Luo, and Y. Jiang, “Study on the mechanism of dark enhancement in phenanthrenequinone-doped poly (methyl methacrylate) photopolymer for holographic recording,” Opt. Commun. 283(9), 1707–1710 (2010).
[Crossref]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Holographic storage stability in PQ-PMMA bulk photopolymer,” Opt. Commun. 283(21), 4219–4223 (2010).
[Crossref]

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resinphotopolymer,” J. Appl. Phys. 107(5), 053113 (2010).
[Crossref]

2009 (2)

S. H. Lin, Y. N. Hsiao, and K. Y. Hsu, “Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A, Pure Appl. Opt. 11(2), 024012 (2009).
[Crossref]

J. Wang, X. Sun, S. Luo, and Y. Jiang, “The shift of Bragg angular selectivity curve in darkness in glass-like photopolymer for holographic recording,” Opt. Mater. 32(1), 261–265 (2009).
[Crossref]

2007 (2)

L. P. Krul, V. Matusevich, D. Hoff, R. Kowarschik, Y. I. Matusevich, G. V. Butovskaya, and E. A. Murashko, “Modified polymethylmethacrylate as a base for thermostable optical recording media,” Opt. Express 15(14), 8543–8549 (2007).
[Crossref] [PubMed]

Y. M. Chang, S. C. Yoon, and M. Han, “Photopolymerization of aromatic acrylate containing phosphine oxide backbone and its application to holographic recording,” Opt. Mater. 30(4), 662–668 (2007).
[Crossref]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Labs Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Barbastathis, G.

Butovskaya, G. V.

Cao, L.

L. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, S. Zong, F. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111(14), 141104 (2017).
[Crossref]

C. Li, L. Cao, Q. He, and G. Jin, “Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer,” Opt. Express 22(5), 5017–5028 (2014).
[Crossref] [PubMed]

C. Li, L. Cao, J. Li, Q. He, G. Jin, S. Zhang, and F. Zhang, “Improvement of volume holographic performance by plasmon-induced holographic absorption grating,” Appl. Phys. Lett. 102(6), 061108 (2013).
[Crossref]

Chang, F.

Chang, Y. M.

Y. M. Chang, S. C. Yoon, and M. Han, “Photopolymerization of aromatic acrylate containing phosphine oxide backbone and its application to holographic recording,” Opt. Mater. 30(4), 662–668 (2007).
[Crossref]

Chen, H. Y.

M. L. Hsieh, W. C. Chen, H. Y. Chen, and S.-Y. Lin, “Optimization of light diffraction efficiency and its enhancement from a doped-PMMA volume holographic material,” Opt. Commun. 308, 121–124 (2013).
[Crossref]

Chen, W. C.

M. L. Hsieh, W. C. Chen, H. Y. Chen, and S.-Y. Lin, “Optimization of light diffraction efficiency and its enhancement from a doped-PMMA volume holographic material,” Opt. Commun. 308, 121–124 (2013).
[Crossref]

Fan, F.

Gai, K.

X. Sun, F. Chang, and K. Gai, “Optoelectronic fast response properties of PQ/PMMA polymer,” Mater. Today: Proc. 3(2), 632–634 (2016).
[Crossref]

Geng, Y.

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part II: Consecutive exposure and dark decay,” Opt. Commun. 330, 199–207 (2014).
[Crossref]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part I: Short exposure,” Opt. Commun. 330, 191–198 (2014).
[Crossref]

Gleeson, M. R.

Guo, J.

Han, M.

Y. M. Chang, S. C. Yoon, and M. Han, “Photopolymerization of aromatic acrylate containing phosphine oxide backbone and its application to holographic recording,” Opt. Mater. 30(4), 662–668 (2007).
[Crossref]

Hao, J.

L. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, S. Zong, F. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111(14), 141104 (2017).
[Crossref]

He, Q.

C. Li, L. Cao, Q. He, and G. Jin, “Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer,” Opt. Express 22(5), 5017–5028 (2014).
[Crossref] [PubMed]

C. Li, L. Cao, J. Li, Q. He, G. Jin, S. Zhang, and F. Zhang, “Improvement of volume holographic performance by plasmon-induced holographic absorption grating,” Appl. Phys. Lett. 102(6), 061108 (2013).
[Crossref]

He, Z.

L. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, S. Zong, F. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111(14), 141104 (2017).
[Crossref]

Hoff, D.

Hong, Y.

Hsiao, Y. N.

S. H. Lin, Y. N. Hsiao, and K. Y. Hsu, “Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A, Pure Appl. Opt. 11(2), 024012 (2009).
[Crossref]

Hsieh, M. L.

M. L. Hsieh, W. C. Chen, H. Y. Chen, and S.-Y. Lin, “Optimization of light diffraction efficiency and its enhancement from a doped-PMMA volume holographic material,” Opt. Commun. 308, 121–124 (2013).
[Crossref]

Hsu, K. Y.

S. H. Lin, Y. N. Hsiao, and K. Y. Hsu, “Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A, Pure Appl. Opt. 11(2), 024012 (2009).
[Crossref]

Jiang, J.

H. Liu, D. Yu, J. Wang, J. Jiang, and X. Sun, “Holographic grating formation in SiO2 nanoparticle-dispersed PQ-PMMA photopolymer,” Opt. Laser Technol. 44(4), 882–887 (2012).
[Crossref]

Jiang, Y.

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[Crossref]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Mutual diffusion dynamics with nonlocal response in SiO2 nanoparticles dispersed PQ-PMMA bulk photopolymer,” Opt. Express 19(15), 13787–13792 (2011).
[Crossref] [PubMed]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Holographic storage stability in PQ-PMMA bulk photopolymer,” Opt. Commun. 283(21), 4219–4223 (2010).
[Crossref]

J. Wang, X. Sun, S. Luo, and Y. Jiang, “Study on the mechanism of dark enhancement in phenanthrenequinone-doped poly (methyl methacrylate) photopolymer for holographic recording,” Opt. Commun. 283(9), 1707–1710 (2010).
[Crossref]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[Crossref] [PubMed]

J. Wang, X. Sun, S. Luo, and Y. Jiang, “The shift of Bragg angular selectivity curve in darkness in glass-like photopolymer for holographic recording,” Opt. Mater. 32(1), 261–265 (2009).
[Crossref]

Jin, G.

L. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, S. Zong, F. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111(14), 141104 (2017).
[Crossref]

C. Li, L. Cao, Q. He, and G. Jin, “Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer,” Opt. Express 22(5), 5017–5028 (2014).
[Crossref] [PubMed]

C. Li, L. Cao, J. Li, Q. He, G. Jin, S. Zhang, and F. Zhang, “Improvement of volume holographic performance by plasmon-induced holographic absorption grating,” Appl. Phys. Lett. 102(6), 061108 (2013).
[Crossref]

Kang, G.

Kawana, M.

M. Kawana, J. Takahashi, S. Yasui, and Y. Tomita, “Characterization of volume holographic recording inphotopolymerizable nanoparticle-(thiol-ene) polymer composites at 404 nm,” J. Appl. Phys. 117(5), 053105 (2015).
[Crossref]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Labs Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Kostuk, R. K.

Kowarschik, R.

Krul, L. P.

Li, C.

C. Li, L. Cao, Q. He, and G. Jin, “Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer,” Opt. Express 22(5), 5017–5028 (2014).
[Crossref] [PubMed]

C. Li, L. Cao, J. Li, Q. He, G. Jin, S. Zhang, and F. Zhang, “Improvement of volume holographic performance by plasmon-induced holographic absorption grating,” Appl. Phys. Lett. 102(6), 061108 (2013).
[Crossref]

Li, H.

Li, J.

C. Li, L. Cao, J. Li, Q. He, G. Jin, S. Zhang, and F. Zhang, “Improvement of volume holographic performance by plasmon-induced holographic absorption grating,” Appl. Phys. Lett. 102(6), 061108 (2013).
[Crossref]

Li, X.

Li, Z.

Lin, S. H.

Y. W. Yu, C. H. Yang, T. H. Yang, S. H. Lin, and C. C. Sun, “Analysis of a lens-array modulated coaxial holographic data storage system with considering recording dynamics of material,” Opt. Express 25(19), 22947–22958 (2017).
[Crossref] [PubMed]

S. H. Lin, Y. N. Hsiao, and K. Y. Hsu, “Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A, Pure Appl. Opt. 11(2), 024012 (2009).
[Crossref]

Lin, S.-Y.

M. L. Hsieh, W. C. Chen, H. Y. Chen, and S.-Y. Lin, “Optimization of light diffraction efficiency and its enhancement from a doped-PMMA volume holographic material,” Opt. Commun. 308, 121–124 (2013).
[Crossref]

Liu, H.

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part I: Short exposure,” Opt. Commun. 330, 191–198 (2014).
[Crossref]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part II: Consecutive exposure and dark decay,” Opt. Commun. 330, 199–207 (2014).
[Crossref]

H. Liu, D. Yu, J. Wang, J. Jiang, and X. Sun, “Holographic grating formation in SiO2 nanoparticle-dispersed PQ-PMMA photopolymer,” Opt. Laser Technol. 44(4), 882–887 (2012).
[Crossref]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Mutual diffusion dynamics with nonlocal response in SiO2 nanoparticles dispersed PQ-PMMA bulk photopolymer,” Opt. Express 19(15), 13787–13792 (2011).
[Crossref] [PubMed]

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[Crossref]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[Crossref] [PubMed]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Holographic storage stability in PQ-PMMA bulk photopolymer,” Opt. Commun. 283(21), 4219–4223 (2010).
[Crossref]

Liu, J.

Liu, P.

Liu, S.

Liu, Y.

Lu, W. G.

Luo, S.

J. Wang, X. Sun, S. Luo, and Y. Jiang, “Study on the mechanism of dark enhancement in phenanthrenequinone-doped poly (methyl methacrylate) photopolymer for holographic recording,” Opt. Commun. 283(9), 1707–1710 (2010).
[Crossref]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[Crossref] [PubMed]

J. Wang, X. Sun, S. Luo, and Y. Jiang, “The shift of Bragg angular selectivity curve in darkness in glass-like photopolymer for holographic recording,” Opt. Mater. 32(1), 261–265 (2009).
[Crossref]

Luo, Y.

Matusevich, V.

Matusevich, Y. I.

Murashko, E. A.

Qi, Y.

Russo, J. M.

Sabol, D.

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resinphotopolymer,” J. Appl. Phys. 107(5), 053113 (2010).
[Crossref]

Sheridan, J. T.

Singh, V. R.

Sun, C. C.

Sun, X.

P. Liu, F. Chang, Y. Zhao, Z. Li, and X. Sun, “Ultrafast volume holographic storage on PQ/PMMA photopolymers with nanosecond pulsed exposures,” Opt. Express 26(2), 1072–1082 (2018).
[Crossref] [PubMed]

P. Liu, Y. Zhao, Z. Li, and X. Sun, “Improvement of ultrafast holographic performance in silver nanoprisms dispersed photopolymer,” Opt. Express 26(6), 6993–7004 (2018).
[Crossref] [PubMed]

X. Sun, F. Chang, and K. Gai, “Optoelectronic fast response properties of PQ/PMMA polymer,” Mater. Today: Proc. 3(2), 632–634 (2016).
[Crossref]

H. Liu, D. Yu, J. Wang, J. Jiang, and X. Sun, “Holographic grating formation in SiO2 nanoparticle-dispersed PQ-PMMA photopolymer,” Opt. Laser Technol. 44(4), 882–887 (2012).
[Crossref]

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[Crossref]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Mutual diffusion dynamics with nonlocal response in SiO2 nanoparticles dispersed PQ-PMMA bulk photopolymer,” Opt. Express 19(15), 13787–13792 (2011).
[Crossref] [PubMed]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[Crossref] [PubMed]

J. Wang, X. Sun, S. Luo, and Y. Jiang, “Study on the mechanism of dark enhancement in phenanthrenequinone-doped poly (methyl methacrylate) photopolymer for holographic recording,” Opt. Commun. 283(9), 1707–1710 (2010).
[Crossref]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Holographic storage stability in PQ-PMMA bulk photopolymer,” Opt. Commun. 283(21), 4219–4223 (2010).
[Crossref]

J. Wang, X. Sun, S. Luo, and Y. Jiang, “The shift of Bragg angular selectivity curve in darkness in glass-like photopolymer for holographic recording,” Opt. Mater. 32(1), 261–265 (2009).
[Crossref]

Sung, K. B.

Takahashi, J.

M. Kawana, J. Takahashi, S. Yasui, and Y. Tomita, “Characterization of volume holographic recording inphotopolymerizable nanoparticle-(thiol-ene) polymer composites at 404 nm,” J. Appl. Phys. 117(5), 053105 (2015).
[Crossref]

Tan, X.

Tolstik, E.

Tomita, Y.

M. Kawana, J. Takahashi, S. Yasui, and Y. Tomita, “Characterization of volume holographic recording inphotopolymerizable nanoparticle-(thiol-ene) polymer composites at 404 nm,” J. Appl. Phys. 117(5), 053105 (2015).
[Crossref]

Wang, J.

H. Liu, D. Yu, J. Wang, J. Jiang, and X. Sun, “Holographic grating formation in SiO2 nanoparticle-dispersed PQ-PMMA photopolymer,” Opt. Laser Technol. 44(4), 882–887 (2012).
[Crossref]

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[Crossref]

J. Wang, X. Sun, S. Luo, and Y. Jiang, “Study on the mechanism of dark enhancement in phenanthrenequinone-doped poly (methyl methacrylate) photopolymer for holographic recording,” Opt. Commun. 283(9), 1707–1710 (2010).
[Crossref]

J. Wang, X. Sun, S. Luo, and Y. Jiang, “The shift of Bragg angular selectivity curve in darkness in glass-like photopolymer for holographic recording,” Opt. Mater. 32(1), 261–265 (2009).
[Crossref]

Wang, L.

Wang, P. H.

Wang, W.

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part I: Short exposure,” Opt. Commun. 330, 191–198 (2014).
[Crossref]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part II: Consecutive exposure and dark decay,” Opt. Commun. 330, 199–207 (2014).
[Crossref]

Wang, Y.

Wong, J. M.

Wu, S.

L. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, S. Zong, F. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111(14), 141104 (2017).
[Crossref]

Xiao, R.

Yang, C. H.

Yang, T. H.

Yasui, S.

M. Kawana, J. Takahashi, S. Yasui, and Y. Tomita, “Characterization of volume holographic recording inphotopolymerizable nanoparticle-(thiol-ene) polymer composites at 404 nm,” J. Appl. Phys. 117(5), 053105 (2015).
[Crossref]

Yoon, S. C.

Y. M. Chang, S. C. Yoon, and M. Han, “Photopolymerization of aromatic acrylate containing phosphine oxide backbone and its application to holographic recording,” Opt. Mater. 30(4), 662–668 (2007).
[Crossref]

Yu, D.

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part II: Consecutive exposure and dark decay,” Opt. Commun. 330, 199–207 (2014).
[Crossref]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part I: Short exposure,” Opt. Commun. 330, 191–198 (2014).
[Crossref]

H. Liu, D. Yu, J. Wang, J. Jiang, and X. Sun, “Holographic grating formation in SiO2 nanoparticle-dispersed PQ-PMMA photopolymer,” Opt. Laser Technol. 44(4), 882–887 (2012).
[Crossref]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Mutual diffusion dynamics with nonlocal response in SiO2 nanoparticles dispersed PQ-PMMA bulk photopolymer,” Opt. Express 19(15), 13787–13792 (2011).
[Crossref] [PubMed]

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[Crossref]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[Crossref] [PubMed]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Holographic storage stability in PQ-PMMA bulk photopolymer,” Opt. Commun. 283(21), 4219–4223 (2010).
[Crossref]

Yu, Y. W.

Zang, J.

Zhang, F.

L. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, S. Zong, F. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111(14), 141104 (2017).
[Crossref]

C. Li, L. Cao, J. Li, Q. He, G. Jin, S. Zhang, and F. Zhang, “Improvement of volume holographic performance by plasmon-induced holographic absorption grating,” Appl. Phys. Lett. 102(6), 061108 (2013).
[Crossref]

Zhang, S.

C. Li, L. Cao, J. Li, Q. He, G. Jin, S. Zhang, and F. Zhang, “Improvement of volume holographic performance by plasmon-induced holographic absorption grating,” Appl. Phys. Lett. 102(6), 061108 (2013).
[Crossref]

Zhang, Z.

L. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, S. Zong, F. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111(14), 141104 (2017).
[Crossref]

Zhao, Y.

P. Liu, Y. Zhao, Z. Li, and X. Sun, “Improvement of ultrafast holographic performance in silver nanoprisms dispersed photopolymer,” Opt. Express 26(6), 6993–7004 (2018).
[Crossref] [PubMed]

P. Liu, F. Chang, Y. Zhao, Z. Li, and X. Sun, “Ultrafast volume holographic storage on PQ/PMMA photopolymers with nanosecond pulsed exposures,” Opt. Express 26(2), 1072–1082 (2018).
[Crossref] [PubMed]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part II: Consecutive exposure and dark decay,” Opt. Commun. 330, 199–207 (2014).
[Crossref]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part I: Short exposure,” Opt. Commun. 330, 191–198 (2014).
[Crossref]

Zhong, H.

Zhu, C.

L. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, S. Zong, F. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111(14), 141104 (2017).
[Crossref]

Zong, S.

L. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, S. Zong, F. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111(14), 141104 (2017).
[Crossref]

Appl. Phys. Lett. (2)

C. Li, L. Cao, J. Li, Q. He, G. Jin, S. Zhang, and F. Zhang, “Improvement of volume holographic performance by plasmon-induced holographic absorption grating,” Appl. Phys. Lett. 102(6), 061108 (2013).
[Crossref]

L. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, S. Zong, F. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111(14), 141104 (2017).
[Crossref]

Bell Labs Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Labs Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

J. Appl. Phys. (2)

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resinphotopolymer,” J. Appl. Phys. 107(5), 053113 (2010).
[Crossref]

M. Kawana, J. Takahashi, S. Yasui, and Y. Tomita, “Characterization of volume holographic recording inphotopolymerizable nanoparticle-(thiol-ene) polymer composites at 404 nm,” J. Appl. Phys. 117(5), 053105 (2015).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

S. H. Lin, Y. N. Hsiao, and K. Y. Hsu, “Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A, Pure Appl. Opt. 11(2), 024012 (2009).
[Crossref]

J. Opt. Soc. Am. B (3)

Mater. Today: Proc. (1)

X. Sun, F. Chang, and K. Gai, “Optoelectronic fast response properties of PQ/PMMA polymer,” Mater. Today: Proc. 3(2), 632–634 (2016).
[Crossref]

Opt. Commun. (6)

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Holographic storage stability in PQ-PMMA bulk photopolymer,” Opt. Commun. 283(21), 4219–4223 (2010).
[Crossref]

M. L. Hsieh, W. C. Chen, H. Y. Chen, and S.-Y. Lin, “Optimization of light diffraction efficiency and its enhancement from a doped-PMMA volume holographic material,” Opt. Commun. 308, 121–124 (2013).
[Crossref]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part I: Short exposure,” Opt. Commun. 330, 191–198 (2014).
[Crossref]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part II: Consecutive exposure and dark decay,” Opt. Commun. 330, 199–207 (2014).
[Crossref]

J. Wang, X. Sun, S. Luo, and Y. Jiang, “Study on the mechanism of dark enhancement in phenanthrenequinone-doped poly (methyl methacrylate) photopolymer for holographic recording,” Opt. Commun. 283(9), 1707–1710 (2010).
[Crossref]

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[Crossref]

Opt. Express (8)

C. Li, L. Cao, Q. He, and G. Jin, “Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer,” Opt. Express 22(5), 5017–5028 (2014).
[Crossref] [PubMed]

Y. Liu, F. Fan, Y. Hong, J. Zang, G. Kang, and X. Tan, “Volume holographic recording in Irgacure 784-doped PMMA photopolymer,” Opt. Express 25(17), 20654–20662 (2017).
[Crossref] [PubMed]

L. P. Krul, V. Matusevich, D. Hoff, R. Kowarschik, Y. I. Matusevich, G. V. Butovskaya, and E. A. Murashko, “Modified polymethylmethacrylate as a base for thermostable optical recording media,” Opt. Express 15(14), 8543–8549 (2007).
[Crossref] [PubMed]

Y. W. Yu, C. H. Yang, T. H. Yang, S. H. Lin, and C. C. Sun, “Analysis of a lens-array modulated coaxial holographic data storage system with considering recording dynamics of material,” Opt. Express 25(19), 22947–22958 (2017).
[Crossref] [PubMed]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[Crossref] [PubMed]

P. Liu, F. Chang, Y. Zhao, Z. Li, and X. Sun, “Ultrafast volume holographic storage on PQ/PMMA photopolymers with nanosecond pulsed exposures,” Opt. Express 26(2), 1072–1082 (2018).
[Crossref] [PubMed]

P. Liu, Y. Zhao, Z. Li, and X. Sun, “Improvement of ultrafast holographic performance in silver nanoprisms dispersed photopolymer,” Opt. Express 26(6), 6993–7004 (2018).
[Crossref] [PubMed]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Mutual diffusion dynamics with nonlocal response in SiO2 nanoparticles dispersed PQ-PMMA bulk photopolymer,” Opt. Express 19(15), 13787–13792 (2011).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

H. Liu, D. Yu, J. Wang, J. Jiang, and X. Sun, “Holographic grating formation in SiO2 nanoparticle-dispersed PQ-PMMA photopolymer,” Opt. Laser Technol. 44(4), 882–887 (2012).
[Crossref]

Opt. Lett. (3)

Opt. Mater. (2)

J. Wang, X. Sun, S. Luo, and Y. Jiang, “The shift of Bragg angular selectivity curve in darkness in glass-like photopolymer for holographic recording,” Opt. Mater. 32(1), 261–265 (2009).
[Crossref]

Y. M. Chang, S. C. Yoon, and M. Han, “Photopolymerization of aromatic acrylate containing phosphine oxide backbone and its application to holographic recording,” Opt. Mater. 30(4), 662–668 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) 3 mm TI/PMMA photopolymers; (b) Two beams coupling interference system, PBS, polarization beam splitter.
Fig. 2
Fig. 2 Visible absorption spectra, (a)different AIBN ratios; (b)different TI molecule ratios.
Fig. 3
Fig. 3 Holographic properties influenced by different sample thickness.
Fig. 4
Fig. 4 Temporal evolution of diffraction efficiency under holographic recording with different AIBN ratios, (a) exposure intensity: 115mW/cm2, (b) exposure intensity: 96mW/cm2, (c) exposure intensity: 64mW/cm2, (d) comparison with traditional PQ/PMMA polymer.
Fig. 5
Fig. 5 The response time of TI/PMMA photopolymers with different AIBN ratios.
Fig. 6
Fig. 6 Sensitivities of TI/PMMA photopolymers with different AIBN ratios, (a) dynamic sensitivity; (b) static sensitivity.
Fig. 7
Fig. 7 The refractive index modulation of TI/PMMA photopolymers with different AIBN ratios.
Fig. 8
Fig. 8 Temporal evolution of diffraction efficiency under holographic recording with different TI molecule ratios, (a) exposure intensity: 115mW/cm2, (b) exposure intensity: 96mW/cm2, (c) exposure intensity: 64mW/cm2, (d) comparison with traditional PQ/PMMA polymer.
Fig. 9
Fig. 9 The response time of TI/PMMA photopolymers with different TI molecule ratios.
Fig. 10
Fig. 10 Sensitivities of TI/PMMA photopolymers with different TI molecule ratios, (a) dynamic sensitivity; (b) static sensitivity.
Fig. 11
Fig. 11 The refractive index modulation of TI/PMMA photopolymers with different TI molecule ratios.
Fig. 12
Fig. 12 (a) Bragg angular selectivity scan with different AIBN doping ratios, (b) Bragg angular selectivity scan with different TI doping ratios, (c) nonlinear angle width with different AIBN doping ratios, (d) nonlinear angle width with different TI doping ratios.

Tables (1)

Tables Icon

Table 1 Detailed parameters in preparations of TI/PMMA photopolymers.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

η(t)= I d I I - I R
η= sin 2 ( Δnπd λcosθ )
η(t) = η sat [1exp(t/τ )]
S s = Δn E
S d = d(Δn) dE
TI+hv k b k a [TI] *
PMMA/MMA+ [TI] * k c TI-nMMA
[TI] * k d TI +B
TI +2PMMA/MMA k e nMMA-TI-nMMA

Metrics